JPS6324761B2 - - Google Patents
Info
- Publication number
- JPS6324761B2 JPS6324761B2 JP99079A JP99079A JPS6324761B2 JP S6324761 B2 JPS6324761 B2 JP S6324761B2 JP 99079 A JP99079 A JP 99079A JP 99079 A JP99079 A JP 99079A JP S6324761 B2 JPS6324761 B2 JP S6324761B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- rolling
- stepped
- roll
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005096 rolling process Methods 0.000 claims description 56
- 229910000831 Steel Inorganic materials 0.000 claims description 15
- 239000010959 steel Substances 0.000 claims description 15
- 238000009749 continuous casting Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 5
- 238000005266 casting Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/02—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
- B21B1/026—Rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/46—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Metal Rolling (AREA)
Description
この発明は、連続鋳造による厚鋼板用スラブの
製造法に関するものである。
連続鋳造スラブから製造される厚鋼板の最大板
厚は、一般にスラブ内部に存在するザク疵が圧着
されるのに必要な圧下比(連続鋳造スラブ厚/製
品鋼板厚)によつて限定される。通常、ザク疵を
圧着させるのに必要な圧下比は4〜5と云われて
おり、現存の連続鋳造機による200〜300mm厚のス
ラブから得られる鋼板の厚さは50〜70mmが限界と
される。
従来、上記限界厚以上の厚鋼板を連続鋳造スラ
ブから製造する方法には、
スラブの凝固組織自身を改善する溶鋼脱ガス
法、
スラブのザク疵の圧着を目的とするインライ
ンリダクシヨン法、
スラブ内の空孔に凝集し、欠陥となる水素を
スラブから抜き取ることを目的とする圧延→再
加熱→徐冷法、
等の種々の方法がある。
しかしながら、の方法では、スラブ内部の凝
固組織の改善には限度があり、また、の方法で
は、スラブ内部に高い圧延圧力を与えるには、ロ
ール径を大きくし、大圧下をとることが必要とな
り、大規模な圧延機が必要となる。更に、の方
法では、工程が複雑になり能率が低下するといつ
た問題がある。
一般に、フラツト圧延において、板長手方向
(圧延方向)に作用する張力を考慮した場合の平
均圧力は、平行平板の圧縮理論から、下式で与え
られる。
P=(kf−S)Qp ………(1)
ここで、
P:平均圧延圧力、
kf:2次元変形抵抗、
S:板長手方向に作用する張力の平均値、
Qp:圧下力関数
である。
上記(1)式から、板長手方向に作用する圧縮力を
付与すれば平均圧延圧力Pは上昇することがわか
る。
しかし、一般の1スタンドのフラツト圧延で
は、上記板長手方向に作用する圧縮力を圧延中に
与えることは困難である。従つて、圧延圧力を増
加させるにはロール径を大きくし、Qpを大きく
するしかない。しかし、この方法では、頑丈な圧
延機と強力な駆動用モータを必要とし、経済的に
不利である。
この発明は、上述のような観点から、フラツト
ロールの替りに段付ロールを使用して、圧延中に
圧延材料中央部に板長手方向に作用する圧縮力を
生じせしめ、圧延材料中央部の圧延圧力を上昇さ
せることによつて、ザク圧着効果を高め健全な厚
鋼板を得るための連続鋳造による厚鋼板用スラブ
の製造法を提供するものであつて、
連続鋳造スラブから厚鋼板を製造するに際し、
連続鋳造設備のスラブ切断装置に続いて、段付ロ
ール圧延機とフラツトロール圧延機とをこの順で
連続して配設し、前記スラブがその中心部と表面
部との間に温度差を有する間に、前記段付ロール
によりスラブ全巾の40〜60%のスラブ巾中央部を
強圧下し、続いて、前記フラツトロールにより残
りの領域を強圧下することに特徴を有する。
この発明を図面とともに説明する。
この発明の方法は、第1図に示されるように、
段付ロール1を使用して圧延中に圧延材料2の中
央部分A部に板長手方向に作用する圧縮力を自然
発生させ、板中央圧延部の圧延圧力を上昇させる
ものである。すなわち、連続鋳造スラブがその中
心部と表面部との温度差を有する間に、段付ロー
ル1により前記A部を強圧下する。これによりA
部は板長手方向に延びようとするが、このとき圧
下がないB部は前記伸びを拘束する作用をするの
で、結果的にA部には板長手方向に作用する圧縮
応力が、そしてB部には板長手方向に作用する引
張り応力が加わることになる。従つて、前記A部
は板長手方向に作用する圧縮応力下での圧延とな
り、同一ロール径のフラツト圧延に比べてA部の
圧延圧力を増大させる効果が大となるのである。
更に、上述のようにして段付ロールにより圧延
された段付スラブに、第2図に示されるようにフ
ラツトロール3による圧延を加える。これによ
り、今度は段付ロールの場合とは逆に、B部が板
長手方向に作用する圧縮応力下で圧延され、高い
圧延圧力が得られる。
一般に、連続鋳造スラブのザク分布は、その横
断面をみると第3図に示されるように、スラブエ
ツジ約300mmの巾を除いて板厚中心部にほぼ一様
に分布する傾向にある。従つて、このようなスラ
ブのザク4を圧着するには、前記段付ロール1と
フラツトロール3とにより交互に第1図における
A部及びB部を強圧下し、板巾方向に均一にザク
を圧着する必要がある。
第4図には、プラスチシン粘土を用いた模型実
験により確認した、段付ロール圧延による板厚中
心部の圧延圧力の結果が示されている。
第4図において、第5図に示される如く、t0と
は圧延前の板厚、B1とは同圧延前の板巾であり、
t1とは圧延後の板中央部の板厚、t2とは同圧延後
の板側端の板厚、B2とは同圧延巾である。図か
ら明らかなように、B2/B1=1、すなわち、フ
ラツトロールによる圧延の場合と比較して、
B2/B1の値を小さくすれば、すなわち、B2を小
さくすれば、これに従つて、板厚中心部の圧延圧
力σtcの最大値は大きくなることがわかる。しか
し、前述したように、段付ロールによる圧延領域
は、ザク分布の関係から、これをできるだけ均一
に圧着させるためにスラブ巾の40〜60%にする必
要がある。
第6図Aには、有限要素法による段付ロールに
よる圧延効果の解析結果が示されているが、これ
から明らかなように、板厚方向に温度分布がない
スラブの場合(図中点線で示す)に比べて、凝固
完了直後に板厚方向に大きな温度分布を有する連
続鋳造スラブ(図中実線で示す)に、段付ロール
による圧延を加えた場合には、圧延効果が著しく
大きくなることがわかる。すなわち、第6図Bに
示すように、凝固完了直後のスラブを段付ロール
によつて圧延すると、高温のスラブ中心部は、そ
の囲りの低温部に比べて変形抵抗が小さいために
スラブ長手方向に伸びようとするが、前記低温部
に拘束されて伸びられず、スラブ長手方向に圧縮
応力σlが加わる。このために前記(1)式のSの値が
大きくなるのと同じ原理によつて、圧下部での板
厚方向中心部の応力σt/σyの値は大きくなる。
従つて、連続鋳造スラブが完全に凝固した直後に
段付ロールにより圧下を加えれば大きなザク圧着
効果を得られることが明らかである。
第6図Aにおいて、σtは板厚方向の圧縮応力、
σyは降伏応力、tは板厚、t0は圧下部の板厚を
夫々示す。
尚、上記ザク圧着効果は、第1図におけるA部
とB部との圧下率差が5%以上になつたときに顕
著に現われることがわかつた。
第7図〜第10図には、上記圧延を行なう段付
ロールが示されている。
第7図に示される段付ロール1は、凸部を圧延
材料2の板巾方向の中央部に1つ有するものであ
るが、板巾方向のザクを出来るだけ均一に圧着す
るためには、B2/B1=0.4〜0.6とし、スラブ巾の
40〜60%の領域を強圧下する必要がある。ここ
で、B1とは、スラブ巾でありB2とは、前記段付
ロール1の凸部の巾を示す。第8図に示される段
付ロール1′は、凹部を圧延材料2の板巾方向の
中央部に1つ有するもので、板巾方向両縁部を圧
下するものであり、前記第7図の段付ロール1と
同様なザク圧着効果が得られる。この場合も、
B2/B1とする必要があるが、この場合、B2はb1
+b2である。第9図及び第10図に示される段付
ロール1″、及び1は、スラブ巾の寸法レンジ
が広い場合に使用するものである。このように、
凸部あるいは凹部を多数設けたのは、スラブ巾の
寸法レンジが広い場合に、第7図あるいは第8図
の段付ロール1あるいは1′を使用すると、B2/
B1<0.4、B2/B1>0.6となることが多くなり、ザ
ク圧着効果が板巾方向に均一でなくなるからであ
る。従つて、第9図の段付ロールではB2=b1+
b2+b3であり、第10図の段付ロールではB2=b1
+b2となつている。
第11図a及びbには、上記段付ロール圧延機
の配置例が示されている。すなわち、第11図a
の例は、連続鋳造設備5のスラブ切断装置6に続
いて、段付ロール圧延機7を設け、これに続いて
フラツトロール圧延機8を設けたものである。第
11図bの例は、2台の連続鋳造設備5,5のス
ラブ切断装置6,6からのスラブを1ケ所で処理
するようにしたものである。
次に、この発明の実施例について説明する。
第12図に示される如き形状寸法の段付ロール
1を用い、厚さ250mm、巾2000mmの圧延材料2を
第1表に示される圧延スケジユールに従がい圧延
した。このときの厚鋼板製品の超音波探傷結果が
第13図bに従来法により圧延を行なつた場合の
結果第13図aと合わせて示されている。
The present invention relates to a method for producing slabs for thick steel plates by continuous casting. The maximum thickness of a thick steel plate manufactured from a continuously cast slab is generally limited by the reduction ratio (continuously cast slab thickness/product steel plate thickness) required to compress the scratches existing inside the slab. Normally, the reduction ratio required to crimp the scratches is said to be 4 to 5, and the maximum thickness of steel plate obtained from a 200 to 300 mm thick slab using existing continuous casting machines is 50 to 70 mm. Ru. Conventionally, methods for producing thick steel plates with a thickness greater than the above-mentioned limit thickness from continuously cast slabs include molten steel degassing, which improves the solidified structure of the slab itself, in-line reduction, which aims to crimp cracks in the slab, and in-slab There are various methods such as rolling → reheating → slow cooling, which aim to remove hydrogen that aggregates in the pores of the slab and becomes defects from the slab. However, with method 2, there is a limit to the improvement of the solidified structure inside the slab, and with method 2, it is necessary to increase the roll diameter and take a large reduction in order to apply high rolling pressure to the interior of the slab. , a large-scale rolling mill is required. Furthermore, the method has the problem of complicating the process and reducing efficiency. Generally, in flat rolling, the average pressure when considering the tension acting in the longitudinal direction (rolling direction) of the plate is given by the following formula from the compression theory of parallel flat plates. P = (k f - S) Q p ...... (1) where, P: average rolling pressure, k f : two-dimensional deformation resistance, S: average value of tension acting in the longitudinal direction of the plate, Q p : rolling reduction It is a force function. From the above equation (1), it can be seen that the average rolling pressure P increases if a compressive force acting in the longitudinal direction of the plate is applied. However, in general one-stand flat rolling, it is difficult to apply the compressive force acting in the longitudinal direction of the plate during rolling. Therefore, the only way to increase the rolling pressure is to increase the roll diameter and increase Q p . However, this method requires a sturdy rolling mill and a powerful drive motor, which is economically disadvantageous. From the above-mentioned viewpoint, the present invention uses stepped rolls instead of flat rolls to generate a compressive force acting in the longitudinal direction of the sheet at the center of the rolled material during rolling, thereby improving the rolling of the center of the rolled material. The present invention provides a method for producing slabs for thick steel plates by continuous casting to enhance the crimp effect and obtain sound steel plates by increasing the pressure, ,
Following the slab cutting device of the continuous casting equipment, a stepped roll rolling mill and a flat roll rolling mill are successively arranged in this order, and the slab has a temperature difference between its center part and surface part. In the meantime, a central part of the slab width of 40 to 60% of the total width of the slab is strongly rolled down by the stepped roll, and then the remaining area is strongly rolled down by the flat roll. This invention will be explained with reference to the drawings. The method of this invention, as shown in FIG.
The corrugated roll 1 is used to naturally generate a compressive force acting in the longitudinal direction of the plate at the central portion A of the rolled material 2 during rolling, thereby increasing the rolling pressure at the central rolling portion of the plate. That is, while the continuously cast slab has a temperature difference between its central part and surface part, the part A is strongly rolled down by the stepped rolls 1. This allows A
The part tries to extend in the longitudinal direction of the plate, but at this time, part B, which is not rolled down, acts to restrain the elongation, so as a result, a compressive stress acts in the longitudinal direction of the plate in part A, and part B A tensile stress acting in the longitudinal direction of the plate is applied to the plate. Therefore, the A part is rolled under compressive stress acting in the longitudinal direction of the plate, and the effect of increasing the rolling pressure in the A part is greater than in flat rolling with the same roll diameter. Further, the stepped slab rolled by the stepped rolls as described above is further rolled by a flat roll 3 as shown in FIG. As a result, portion B is rolled under compressive stress acting in the longitudinal direction of the plate, contrary to the case of the stepped roll, and a high rolling pressure is obtained. In general, the roughness distribution of a continuously cast slab tends to be almost uniformly distributed in the center of the plate thickness, except for the approximately 300 mm width of the slab edge, as shown in FIG. 3 when viewed in cross section. Therefore, in order to press the corrugations 4 of such a slab, the stepped rolls 1 and the flat rolls 3 are used to alternately press down portions A and B in FIG. need to be crimped. FIG. 4 shows the results of the rolling pressure at the center of the plate thickness due to stepped roll rolling, which was confirmed by a model experiment using plasticine clay. In Fig. 4, as shown in Fig. 5, t 0 is the plate thickness before rolling, B 1 is the plate width before rolling,
t 1 is the thickness of the central part of the plate after rolling, t 2 is the thickness of the side edge of the plate after rolling, and B 2 is the rolling width. As is clear from the figure, compared to the case where B 2 /B 1 = 1, that is, rolling with flat rolls,
It can be seen that if the value of B 2 /B 1 is decreased, that is, if B 2 is decreased, the maximum value of the rolling pressure σtc at the center of the plate thickness increases accordingly. However, as mentioned above, the rolling area by the stepped rolls needs to be 40 to 60% of the slab width in order to compress the slab as uniformly as possible due to the unevenness distribution. Figure 6A shows the analysis results of the rolling effect of the stepped rolls using the finite element method. ), when rolling with stepped rolls is applied to a continuously cast slab (indicated by a solid line in the figure) that has a large temperature distribution in the thickness direction immediately after solidification, the rolling effect becomes significantly larger. Recognize. In other words, as shown in FIG. 6B, when a slab immediately after solidification is rolled with stepped rolls, the high temperature central part of the slab has a lower deformation resistance than the surrounding low temperature part, so that the longitudinal length of the slab is reduced. Although the slab tries to stretch in the longitudinal direction, it is restrained by the low-temperature portion and cannot stretch, and a compressive stress σ l is applied in the longitudinal direction of the slab. For this reason, the value of the stress σt/σy at the center in the thickness direction of the rolled portion increases based on the same principle as the value of S in equation (1) increases.
Therefore, it is clear that if the continuous casting slab is rolled down using the stepped rolls immediately after it is completely solidified, a great crimp effect can be obtained. In Figure 6A, σt is the compressive stress in the plate thickness direction,
σy is the yield stress, t is the plate thickness, and t 0 is the plate thickness at the rolled part. It has been found that the above-mentioned uneven crimping effect appears prominently when the difference in rolling reduction between portions A and B in FIG. 1 becomes 5% or more. FIGS. 7 to 10 show the stepped rolls for carrying out the above-mentioned rolling. The corrugated roll 1 shown in FIG. 7 has one convex portion in the center of the rolled material 2 in the width direction, but in order to crimp the corrugations in the width direction as uniformly as possible, B 2 /B 1 = 0.4 to 0.6, and the slab width
It is necessary to apply heavy pressure to 40-60% of the area. Here, B 1 is the slab width, and B 2 is the width of the convex portion of the stepped roll 1. The stepped roll 1' shown in FIG. 8 has one recess in the center of the rolled material 2 in the width direction, and rolls down both edges in the width direction. The same uneven pressure bonding effect as the stepped roll 1 can be obtained. In this case too,
It is necessary to make B 2 /B 1 , but in this case, B 2 is b 1
+ b2 . The stepped rolls 1'' and 1 shown in FIGS. 9 and 10 are used when the slab width has a wide range of dimensions.In this way,
The reason why a large number of convex portions or concave portions are provided is that when the width of the slab has a wide range of dimensions, when the stepped roll 1 or 1' shown in Fig. 7 or 8 is used, B 2 /
This is because B 1 <0.4 and B 2 /B 1 >0.6 in many cases, and the crimp crimping effect will not be uniform in the board width direction. Therefore, in the stepped roll of FIG. 9, B 2 = b 1 +
b 2 + b 3 , and for the stepped roll in Fig. 10, B 2 = b 1
+b 2 . FIGS. 11a and 11b show an example of the arrangement of the stepped roll rolling mill. That is, Figure 11a
In this example, a stepped roll rolling mill 7 is provided following the slab cutting device 6 of the continuous casting facility 5, and a flat roll rolling mill 8 is provided following this. In the example shown in FIG. 11b, slabs from slab cutting devices 6, 6 of two continuous casting facilities 5, 5 are processed at one location. Next, embodiments of the invention will be described. Using a stepped roll 1 having the shape and dimensions as shown in FIG. 12, a rolled material 2 having a thickness of 250 mm and a width of 2000 mm was rolled according to the rolling schedule shown in Table 1. The results of the ultrasonic flaw detection of the thick steel plate product at this time are shown in FIG. 13b together with the results obtained when rolling was carried out by the conventional method and FIG. 13a.
【表】
尚、第1表において、*印は圧延後のスラブ中
央部の厚さである。
第13図から明らかなように、この発明の方法
により圧延を行なえば、圧下比2までザク性欠陥
は発生しないことがわかる。
以上説明したように、この発明によれば、連結
鋳造スラブから厚鋼板を製造するに際し、スラブ
がその中央部と表面部との温度差を有する間に、
段付ロールによりスラブの一定巾を強圧下した
後、フラツトロールにより圧延し、スラブ内部に
高い圧縮応力を生じせしめることにより、スラブ
中心部のザクが良好に圧着されるとともに、鋳造
組織が効率良く鍛練される結果、健全な高品質の
厚鋼板を製造することが可能となり、スラブから
の厚鋼板の製造限界を大巾に拡大することができ
るという極めて有用な効果がもたらされる。[Table] In Table 1, the * mark indicates the thickness of the central portion of the slab after rolling. As is clear from FIG. 13, it can be seen that if rolling is performed according to the method of the present invention, no grain defects will occur up to a rolling reduction ratio of 2. As explained above, according to the present invention, when manufacturing a thick steel plate from a connected cast slab, while the slab has a temperature difference between its central part and surface part,
After strongly rolling down a certain width of the slab with stepped rolls, it is rolled with flat rolls to generate high compressive stress inside the slab, which allows the corrugation in the center of the slab to be well crimped and to improve the casting structure. As a result of the forging, it becomes possible to manufacture sound, high-quality thick steel plates, and the extremely useful effect of greatly expanding the manufacturing limits of thick steel plates from slabs is brought about.
第1図及び第2図は、この発明による圧延態様
の説明図、第3図は、連続鋳造スラブ中のザク分
布を示す図、第4図は、プラスチシンによる段付
ロールの圧延効果を示す図、第5図は、圧延前と
圧延後の圧延材料の寸法を示す図、第6図A図
は、有限要素法による段付ロールの圧延効果を示
す図、第6図Bは、スラブ中心部に作用する圧縮
応力の説明図、第7図〜第10図は、この発明に
使用する段付ロールの形状を示す図、第11図
は、この発明における圧延機の配置図、第12図
は、この発明の実施例に使用した段付ロールの形
状寸法図、第13図a及びbは、従来方法及びこ
の発明の方法で圧延を行なつた場合の厚鋼板製品
の超音波探傷結果を示す図である。図面におい
て、
1,1″,1……段付ロール、2……圧延材
料、3……フラツトロール、4……ザク、5……
連続鋳造設備、6……スラブ切断装置、7……段
付ロール圧延機、8……フラツトロール圧延機。
Figures 1 and 2 are explanatory diagrams of the rolling mode according to the present invention, Figure 3 is a diagram showing the roughness distribution in a continuously cast slab, and Figure 4 is a diagram showing the rolling effect of a stepped roll using plasticine. , FIG. 5 is a diagram showing the dimensions of the rolled material before and after rolling, FIG. 6A is a diagram showing the rolling effect of the stepped roll by the finite element method, and FIG. 6B is the diagram showing the central part of the slab. 7 to 10 are diagrams showing the shape of the stepped roll used in this invention. FIG. 11 is a layout diagram of the rolling mill in this invention. Figures 13a and 13b, which are dimensional drawings of the corrugated rolls used in the examples of the present invention, show the results of ultrasonic flaw detection of thick steel plate products when rolling was performed by the conventional method and the method of the present invention. It is a diagram. In the drawings, 1, 1'', 1...corrugated roll, 2...rolled material, 3...flat roll, 4...corrugated roll, 5...
Continuous casting equipment, 6... Slab cutting device, 7... Stepped roll rolling mill, 8... Flat roll rolling mill.
Claims (1)
し、連続鋳造設備のスラブ切断装置に続いて、段
付ロール圧延機とフラツトロール圧延機とをこの
順で連続して配設し、前記スラブがその中心部と
表面部との間に温度差を有する間に、前記段付ロ
ールによりスラブ全巾の40〜60%のスラブ巾中央
部を強圧下し、続いて、前記フラツトロールによ
り残りの領域を強圧下することを特徴とする連続
鋳造による厚鋼板用スラブの製造法。1. When producing a thick steel plate from a continuously cast slab, a stepped roll rolling mill and a flat roll rolling mill are successively installed in this order following the slab cutting device of the continuous casting equipment, and the slab is While there is a temperature difference between the part and the surface part, the stepped roll is used to strongly press down the central part of the slab width, which is 40 to 60% of the total width of the slab, and then the remaining area is pressed down by the flat roll. A method for producing slabs for thick steel plates by continuous casting, which is characterized by casting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP99079A JPS55106601A (en) | 1979-01-11 | 1979-01-11 | Manufacture of slab for thick steel plate by continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP99079A JPS55106601A (en) | 1979-01-11 | 1979-01-11 | Manufacture of slab for thick steel plate by continuous casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55106601A JPS55106601A (en) | 1980-08-15 |
JPS6324761B2 true JPS6324761B2 (en) | 1988-05-23 |
Family
ID=11489027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP99079A Granted JPS55106601A (en) | 1979-01-11 | 1979-01-11 | Manufacture of slab for thick steel plate by continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55106601A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10076783B2 (en) | 2014-05-14 | 2018-09-18 | Nippon Steel & Sumitomo Metal Corporation | Method for continuous-casting slab |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8414600D0 (en) * | 1984-06-08 | 1984-07-11 | Davy Mckee Sheffield | Rolling metal slab |
US4876874A (en) * | 1986-03-15 | 1989-10-31 | Nippon Steel Corporation | Method of hot rolling steel strip with deformed sections |
JPH04305301A (en) * | 1991-04-01 | 1992-10-28 | Nkk Corp | Rolling method of billet |
JPH04327301A (en) * | 1991-04-30 | 1992-11-16 | Nkk Corp | Method for rolling billet |
WO2014178369A1 (en) * | 2013-05-02 | 2014-11-06 | 新日鐵住金株式会社 | Continuous casting facility |
-
1979
- 1979-01-11 JP JP99079A patent/JPS55106601A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10076783B2 (en) | 2014-05-14 | 2018-09-18 | Nippon Steel & Sumitomo Metal Corporation | Method for continuous-casting slab |
US10183325B2 (en) | 2014-05-14 | 2019-01-22 | Nippon Steel & Sumitomo Metal Corporation | Method for continuous-casting slab |
US10189077B2 (en) | 2014-05-14 | 2019-01-29 | Nippon Steel & Sumitomo Metal Corporation | Method for continuous-casting slab |
US10207316B2 (en) | 2014-05-14 | 2019-02-19 | Nippon Steel & Sumitomo Metal Corporation | Method for continuous-casting slab |
Also Published As
Publication number | Publication date |
---|---|
JPS55106601A (en) | 1980-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4354880A (en) | Method of forge-conditioning non-ferrous metals prior to rolling | |
CN105026143A (en) | Clad automotive body panel with sharp character lines | |
CN114433625B (en) | Wave-flat cast rolling device and method for double-layer metal composite plate | |
JPS6324761B2 (en) | ||
CN100396801C (en) | Method and mould for producing face-centered cubic metal plate with fine grain | |
JP3333619B2 (en) | Manufacturing method of extra thick steel plate | |
JP3528504B2 (en) | Manufacturing method of extra thick steel plate | |
JP2738280B2 (en) | Manufacturing method of external constant parallel flange channel steel | |
JPH08164460A (en) | Production of continuously cast slab having good internal quality | |
JPH10216884A (en) | Method for repeated lateral forging and forming of metallic material | |
JPS59113905A (en) | Production of steel plate of different thicknesses having one flat surface | |
JP2002192201A (en) | Metalworking process for introducing large amount of strain into metal due to combined line of forging and rolling | |
JPH0255605A (en) | Manufacture of very thick steel plate of excellent internal quality | |
JPS6213083B2 (en) | ||
JP3822282B2 (en) | Manufacturing method of angle | |
JP3430819B2 (en) | Box-hole type roll and rolling method for section steel | |
JP2676430B2 (en) | Method for hot rolling channel steel and rolling apparatus for the same | |
JP2986928B2 (en) | Continuous forging method of slab strand in continuous casting. | |
JP2641233B2 (en) | Method of manufacturing beam blank in continuous casting | |
JP2000140906A (en) | Manufacture of ultra-heavy steel plate at extremely large reduction ratio | |
JP2734040B2 (en) | Rough rolling method for non-ferrous metals | |
JP3404253B2 (en) | Method and apparatus for producing billet for bar steel | |
JPS61273201A (en) | Production of continuously cast slab for thick steel plate having excellent internal non-defectiveness | |
JP2502235B2 (en) | Rolling method for extra-thick steel plates with excellent internal quality | |
JPH0513721B2 (en) |