JP2006125511A - Power transmission device, and grinder and agitator using the same - Google Patents

Power transmission device, and grinder and agitator using the same Download PDF

Info

Publication number
JP2006125511A
JP2006125511A JP2004314374A JP2004314374A JP2006125511A JP 2006125511 A JP2006125511 A JP 2006125511A JP 2004314374 A JP2004314374 A JP 2004314374A JP 2004314374 A JP2004314374 A JP 2004314374A JP 2006125511 A JP2006125511 A JP 2006125511A
Authority
JP
Japan
Prior art keywords
motion
shaft
reciprocating
swing
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004314374A
Other languages
Japanese (ja)
Inventor
Terumi Kimura
照美 木村
Toshiyuki Kimura
敏之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOWA KK
Original Assignee
TOWA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOWA KK filed Critical TOWA KK
Priority to JP2004314374A priority Critical patent/JP2006125511A/en
Publication of JP2006125511A publication Critical patent/JP2006125511A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmission device having novel construction using a reciprocating slider crank mechanism as an application for outputting the power of non-constant speed rotating motion, and to provide a grinder and an agitator using the same for finely and uniformly crushing ground objects into pieces in a relatively shorter time and for homogeneously mixing/agitating agitated objects in a relatively shorter time, respectively. <P>SOLUTION: A driven shaft 23 of the power transmission device 1 has reciprocating linear motion together with a sliding portion 14 and an articulated arm 17. The driven shaft 23 also has non-constant speed rotating motion at a composite angular speed which is composed of the rotating angular speed of constant rotating motion transmitted from a driving shaft 21 via a gear transmission mechanism 20 (a driving side small gear 22 and a driven side large gear 24) and a rocking angular speed based on the reciprocating rocking motion of the articulated arm 17 around a supporting shaft 16 (an axis O3) of a slider 15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、往復スライダクランク機構(又はオフセットクランク機構)を応用した新規な動力伝達装置に関する。また、そのような動力伝達装置を用いて、例えば乳鉢と乳棒により、固体状の塊を微細かつ均一な粉末状(乾式)又はスラリー状(湿式)の砕片に擂り潰し混合するための擂り潰し装置と、粉末状(乾式)・スラリー状(湿式)等の物質を均質に混合・撹拌するための撹拌装置とに関する。   The present invention relates to a novel power transmission device to which a reciprocating slider crank mechanism (or an offset crank mechanism) is applied. Further, a crushing device for crushing and mixing a solid lump into fine and uniform powdery (dry) or slurry (wet) fragments using such a power transmission device, for example, with a mortar and pestle. And a stirrer for homogeneously mixing and stirring substances such as powder (dry) and slurry (wet).

例えば、実験室において組成定量用試料の粒径を均一化したり、製薬工程において複数の薬剤を均一に混合したりするために、従来より乳鉢が広く用いられている。その際、化学品、薬品等の被粉砕物を入れた乳鉢と乳棒との擂り合わせは、古くは人手により行われていたが、現在では電動モータ等の回転駆動力によって乳鉢及び/又は乳棒を回転させる機構(俗に「自動乳鉢」と称する)が多用されている(例えば特許文献1〜3参照)。ところが、これらの擂り潰し装置では、乳鉢や乳棒を等速で回転させるため、乳鉢の中の擂り潰し対象物が乳棒とともに連れ回りしやすく(逃げ回りやすく)なり、短時間で微細かつ均一に砕片化されにくい場合がある。   For example, a mortar has been widely used in the past in order to uniformize the particle size of a sample for composition determination in a laboratory or to mix a plurality of drugs uniformly in a pharmaceutical process. At that time, mortar and pestle containing crushed materials such as chemicals and chemicals were manually squeezed in the old days, but at present, the mortar and / or pestle is driven by the rotational driving force of an electric motor or the like. A rotating mechanism (commonly referred to as “automatic mortar”) is frequently used (see, for example, Patent Documents 1 to 3). However, in these crushing devices, the mortar and pestle are rotated at a constant speed, so that the crushing object in the mortar is easy to be carried along with the pestle (easy to escape), and is finely and uniformly fragmented in a short time. It may be difficult to be done.

特開平6−320041号公報JP-A-6-320041 特開2002−306986号公報JP 2002-306986 A 特開2002−316065号公報JP 2002-316065 A

一方、動力の伝達機能及び直線運動−回転運動の変換機能を有する機構として往復スライダクランク機構(及びオフセットクランク機構)が広く用いられ、その代表例がエンジンのピストン−クランク機構である。周知の通り、往復スライダクランク機構(オフセットクランク機構)は、回転運動するクランクアームと、往復直線運動するスライダ(ピストン)と、両者を連結する連接棒とから構成される簡素な機構である。そのため、例えば特許文献4に示すように、基本的にはクランクアームの回転運動かスライダの往復直線運動がそのまま取り出して用いられるにすぎなかった。また、例えば特許文献5に示すように、連接棒を2分割して早戻り機構とすることも知られているが、簡素な構成であるが故に他の機構等を組み込んで新たな動力伝達装置とする工夫はほとんどなされてこなかった。   On the other hand, a reciprocating slider crank mechanism (and an offset crank mechanism) is widely used as a mechanism having a power transmission function and a linear motion-rotational motion conversion function, and a typical example thereof is an engine piston-crank mechanism. As is well known, the reciprocating slider crank mechanism (offset crank mechanism) is a simple mechanism including a rotating crank arm, a reciprocating linearly moving slider (piston), and a connecting rod connecting the two. Therefore, for example, as shown in Patent Document 4, basically, the rotational movement of the crank arm or the reciprocating linear movement of the slider is merely taken out and used as it is. For example, as shown in Patent Document 5, it is also known that the connecting rod is divided into two to make a quick return mechanism. However, because of the simple configuration, a new power transmission device is incorporated by incorporating another mechanism or the like. Almost no ingenuity has been made.

特開平6−201010号公報JP-A-6-201010 特開2000−291760号公報JP 2000-291760 A

本発明の課題は、往復スライダクランク機構(又はオフセットクランク機構)を応用した新規な構成を有し、不等速回転運動の動力取出しを可能とする動力伝達装置を提供することにある。また、本発明の課題は、そのような動力伝達装置を用いて、擂り潰し対象物を比較的短時間で微細かつ均一に砕片化できる擂り潰し装置と、撹拌対象物を比較的短時間で均質に混合・撹拌できる撹拌装置とを提供することにある。   The subject of this invention is providing the power transmission device which has the novel structure which applied the reciprocating slider crank mechanism (or offset crank mechanism), and can take out the power of non-constant speed rotational motion. Another object of the present invention is to use such a power transmission device to crush the object to be ground finely and uniformly in a relatively short time, and to homogenize the stirring object in a relatively short time. And a stirring device capable of mixing and stirring.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明に係る動力伝達装置は、
クランクアームが駆動軸から所定距離離間して回転運動する偏心回転部と、スライダが直線上を往復運動するスライド移動部と、前記クランクアームの支持軸及び前記スライダの支持軸をそれぞれ回転可能にかつ互いに平行状に軸支し、前記スライダの支持軸を中心として往復揺動運動しつつ前記スライド移動部とともに往復直線運動する揺動連接部と、を有する往復スライダクランク機構又はオフセットクランク機構と、
前記揺動連接部に回転可能に軸支され、前記偏心回転部のクランクアームの回転運動に同期して前記駆動軸周りに回転運動を行う原動軸と、その原動軸と平行状に配置され、前記揺動連接部に回転可能に軸支された従動軸と、を有し、当該原動軸から従動軸へ回転運動を伝達する回転伝動機構と、
を備え、
前記従動軸は、前記スライド移動部及び揺動連接部とともに往復直線運動を行いながら、前記原動軸から前記回転伝動機構を介して伝達された回転運動の回転角速度と、前記スライダの支持軸を中心とする前記揺動連接部の往復揺動運動に基づく揺動角速度とが合成された合成角速度を有する不等速回転運動を行うことを特徴とする。
In order to solve the above-described problem, a power transmission device according to the present invention includes:
An eccentric rotating part in which the crank arm rotates away from the drive shaft by a predetermined distance, a slide moving part in which the slider reciprocates on a straight line, a support shaft of the crank arm, and a support shaft of the slider are respectively rotatable. A reciprocating slider crank mechanism or an offset crank mechanism, each having a reciprocating linearly reciprocating motion with the slide moving portion while reciprocatingly reciprocatingly swinging around a support shaft of the slider,
A driving shaft that is rotatably supported by the oscillating connecting portion, and that rotates around the drive shaft in synchronization with the rotating motion of the crank arm of the eccentric rotating portion, and is arranged in parallel with the driving shaft; A rotation shaft that is rotatably supported by the oscillating joint, and a rotational transmission mechanism that transmits rotational motion from the driving shaft to the driven shaft;
With
The driven shaft performs a reciprocating linear motion together with the slide moving portion and the oscillating connecting portion, and the rotational angular velocity of the rotational motion transmitted from the driving shaft via the rotational transmission mechanism and the support shaft of the slider are centered. The oscillating joint portion performs an inconstant speed rotational motion having a combined angular velocity combined with a swing angular velocity based on a reciprocating swing motion of the swing connecting portion.

この動力伝達装置では、往復スライダクランク機構又はオフセットクランク機構のクランクアームと同期回転する原動軸から、揺動連接部に回転可能に軸支された従動軸へ、回転運動を伝達する回転伝動機構が組み込まれている。これによって、従動軸は、往復スライダクランク機構等による往復直線運動と、原動軸から伝達された回転運動の回転角速度及び揺動連接部の往復揺動運動に基づく揺動角速度が合成された合成角速度を有する不等速回転運動と、を同時に行うことになる。つまり、揺動連接部に軸支された従動軸は、往復スライダクランク機構等から得られる往復直線運動(これも一種の不等速直線運動に該当する)に加えて、新たに上記不等速回転運動を行うので、この従動軸を出力取出軸として作動装置を接続すれば、作動装置に斬新な作動形態、機能、用途等を付与することができる。しかも、往復スライダクランク機構等に原動軸と従動軸とを含む回転伝動機構を組み込むだけでこのような動力伝達装置を構成できるので、小型・コンパクトかつ安価に新規な動力伝達装置を得ることができる。   In this power transmission device, there is a rotational transmission mechanism that transmits rotational motion from a driving shaft that rotates synchronously with a crank arm of a reciprocating slider crank mechanism or an offset crank mechanism to a driven shaft that is rotatably supported by a swinging connecting portion. It has been incorporated. As a result, the driven shaft is a combined angular velocity obtained by combining the reciprocating linear motion by the reciprocating slider crank mechanism, the rotational angular velocity of the rotational motion transmitted from the driving shaft, and the swing angular velocity based on the reciprocating swing motion of the swing joint. And an inconstant speed rotational movement having In other words, the driven shaft that is pivotally supported by the oscillating connecting portion is newly added to the non-uniform speed in addition to the reciprocating linear motion obtained from the reciprocating slider crank mechanism (this also corresponds to a kind of non-uniform linear motion). Since the rotary motion is performed, if an operating device is connected using the driven shaft as an output take-out shaft, a novel operating mode, function, application, etc. can be given to the operating device. In addition, since such a power transmission device can be configured simply by incorporating a rotary transmission mechanism including a driving shaft and a driven shaft into a reciprocating slider crank mechanism or the like, a new power transmission device can be obtained in a compact, compact and inexpensive manner. .

例えば、上下方向に配置された従動軸(出力取出軸)に擂り潰し装置(自動乳鉢)の乳鉢を載置・固定した場合、その乳鉢が往復直線運動と不等速回転運動とを行うことによって、乳鉢内の擂り潰し対象物が乳鉢の回転速度変化(合成角速度の変化)で混ざりやすくなり、擂り潰し対象物を比較的短時間で微細かつ均一な粉末状(乾式)又はスラリー状(湿式)に砕片化できるようになる。あるいは、上下方向に配置された従動軸(出力取出軸)に撹拌装置の容器を載置・固定した場合、その容器が往復直線運動と不等速回転運動とを行うことによって、容器内の粉末状(乾式)・スラリー状(湿式)等の撹拌対象物が容器の回転速度変化(合成角速度の変化)で混ざりやすくなり、撹拌対象物を比較的短時間で均質に混合・撹拌できるようになる。   For example, when a mortar of a crushing device (automatic mortar) is placed and fixed on a driven shaft (output take-out shaft) arranged in the vertical direction, the mortar performs a reciprocating linear motion and an inconstant speed rotational motion. The crushed object in the mortar becomes easy to mix by changing the rotation speed of the mortar (change in the synthetic angular velocity), and the crushed object is fine and uniform in a relatively short time (dry type) or slurry (wet type) Can be broken into pieces. Alternatively, when the container of the stirrer is placed and fixed on the driven shaft (output take-out shaft) arranged in the vertical direction, the container performs reciprocating linear motion and inconstant speed rotation motion, whereby the powder in the container Stirring objects such as liquid (dry) and slurry (wet) can be easily mixed by changing the rotation speed of the container (changing the synthetic angular velocity), and the stirring objects can be mixed and stirred uniformly in a relatively short time. .

また、上記課題を解決するために、本発明に係る動力伝達装置の具体的態様は、
クランクアームが駆動軸から所定距離離間して等速回転運動する偏心回転部と、スライダが前記駆動軸の軸線と直交する直線上を往復運動するスライド移動部と、前記クランクアームの支持軸及び前記スライダの支持軸をそれぞれ回転可能にかつ互いに平行状に軸支し、前記スライダの支持軸を中心として往復揺動運動しつつ前記スライド移動部とともに往復直線運動する揺動連接部と、を有する往復スライダクランク機構と、
前記揺動連接部に回転可能に軸支されたクランクアームの支持軸と一体化され、前記偏心回転部のクランクアームの等速回転運動と同周期で前記駆動軸周りに等速回転運動を行う原動軸と、その原動軸と平行状に、かつ前記揺動連接部に回転可能に軸支されたスライダの支持軸と同芯状に配置され、その揺動連接部に回転可能に軸支された従動軸と、を有し、当該原動軸から従動軸へ等速回転運動を伝達する回転伝動機構と、
を備え、
前記従動軸は、前記スライド移動部及び揺動連接部とともに、前記原動軸が1回転する1サイクル毎に1往復する往復直線運動を行いながら、
(1)その1サイクルのうち、前記スライダの支持軸を中心とする前記揺動連接部の揺動運動方向が、前記原動軸から前記回転伝動機構を介して伝達された前記従動軸の回転運動方向と同方向になる第一の揺動範囲においては、前記原動軸から伝達された等速回転運動の回転角速度が前記揺動連接部の往復揺動運動に基づく揺動角速度と合成されることにより、増速された合成角速度を有する不等速回転運動を行い、
(2)前記1サイクルのうち、前記揺動連接部の揺動運動方向が前記従動軸の回転運動方向と逆方向になる第二の揺動範囲においては、前記等速回転運動の回転角速度が、前記往復揺動運動に基づく揺動角速度と合成されることにより減速された合成角速度を有する不等速回転運動を行うことを特徴とする。
In order to solve the above-mentioned problem, a specific mode of the power transmission device according to the present invention is as follows.
An eccentric rotating part in which the crank arm rotates at a constant speed away from the drive shaft at a constant speed, a slide moving part in which the slider reciprocates on a straight line perpendicular to the axis of the drive shaft, a support shaft of the crank arm, and the A reciprocating reciprocating portion having a support shaft of the slider rotatably and parallel to each other, and a reciprocating reciprocating motion about the support shaft of the slider and a reciprocating linear motion together with the slide moving portion. A slider crank mechanism;
It is integrated with the support shaft of the crank arm that is rotatably supported by the rocking connecting portion, and performs constant speed rotation around the drive shaft at the same period as the constant speed rotation of the crank arm of the eccentric rotation portion. The drive shaft is arranged in parallel with the drive shaft and concentrically with the support shaft of the slider rotatably supported by the swing connecting portion, and is rotatably supported by the swing connecting portion. A rotation transmission mechanism that transmits a constant speed rotation motion from the driving shaft to the driven shaft,
With
While the driven shaft performs a reciprocating linear motion that reciprocates once every cycle in which the driving shaft rotates once, together with the slide moving portion and the swing connecting portion,
(1) In the cycle, the rotational motion of the driven shaft is transmitted from the driving shaft via the rotational transmission mechanism in the direction of the swinging motion of the swinging connecting portion around the support shaft of the slider. In the first swing range that is the same direction as the direction, the rotational angular velocity of the constant speed rotational motion transmitted from the driving shaft is combined with the swing angular velocity based on the reciprocal swing motion of the swing joint. To perform a non-uniform rotational motion with an increased combined angular velocity,
(2) Of the one cycle, in the second swing range in which the swing motion direction of the swing joint is opposite to the rotational motion direction of the driven shaft, the rotational angular velocity of the constant speed rotational motion is In addition, an inconstant speed rotational motion having a combined angular velocity that is decelerated by being combined with a swing angular velocity based on the reciprocating swing motion is performed.

この動力伝達装置では、往復スライダクランク機構のクランクアームの支持軸と一体化されそのクランクアームと同周期で等速回転する原動軸から、スライダの支持軸と同芯状に配置され揺動連接部に回転可能に軸支された従動軸へ、等速回転運動を伝達する回転伝動機構が組み込まれている。これによって、従動軸は、往復スライダクランク機構による往復直線運動と、原動軸から伝達された等速回転運動の回転角速度及び揺動連接部の往復揺動運動に基づく揺動角速度が合成された合成角速度を有する不等速回転運動と、を同時に行うことになる。つまり、揺動連接部に軸支された従動軸は、往復スライダクランク機構から得られる往復直線運動に加えて、新たに合成角速度が増速するエリア(増速領域)と減速するエリア(減速領域)とからなる不等速回転運動を行うので、この従動軸を出力取出軸として作動装置を接続すれば、作動装置に斬新でダイナミックな作動形態、機能、用途等を付与することができる。しかも、往復スライダクランク機構に原動軸と従動軸とを含む回転伝動機構を組み込むだけでこのような動力伝達装置を構成できるので、小型・コンパクトかつ安価に新規な動力伝達装置を得ることができる。   In this power transmission device, an oscillating connecting portion is arranged concentrically with a support shaft of a slider from a driving shaft that is integrated with a support shaft of a crank arm of a reciprocating slider crank mechanism and rotates at the same speed as the crank arm. A rotation transmission mechanism for transmitting a constant speed rotation motion is incorporated into a driven shaft that is rotatably supported by the motor. As a result, the driven shaft is a combination of the reciprocating linear motion by the reciprocating slider crank mechanism and the rotational angular velocity of the constant speed rotational motion transmitted from the driving shaft and the swing angular velocity based on the reciprocating swing motion of the swing joint. An inconstant speed rotational motion having an angular velocity is performed simultaneously. In other words, in addition to the reciprocating linear motion obtained from the reciprocating slider crank mechanism, the driven shaft that is pivotally supported by the oscillating connecting portion newly has an area where the combined angular velocity is increased (acceleration area) and an area where the combined angular velocity is increased (deceleration area). Therefore, if an operating device is connected using the driven shaft as an output extraction shaft, a novel and dynamic operating mode, function, application, etc. can be given to the operating device. In addition, since such a power transmission device can be configured simply by incorporating a rotary transmission mechanism including a driving shaft and a driven shaft into the reciprocating slider crank mechanism, a new power transmission device can be obtained in a small, compact and inexpensive manner.

そして、第二の揺動範囲(すなわち減速領域)には、往復揺動運動に基づく揺動角速度が等速回転運動の回転角速度を上回ることにより、従動軸の合成角速度が正負反転する反転領域(逆回転領域)を部分的に含む場合がある。従動軸の合成角速度が減速するエリア(減速領域)に相当する揺動連接部の第二の揺動範囲内に、このような反転領域(従動軸が逆回転する領域)が形成されることによって、例えば擂り潰し装置では、擂り潰し対象物をさらに短時間で微細かつ均一な粉末状(乾式)又はスラリー状(湿式)に砕片化できるようになる。また、撹拌装置では、撹拌対象物をさらに短時間で均質に混合・撹拌できるようになる。   In the second swing range (that is, the deceleration region), a reversal region (where the combined angular velocity of the driven shaft is reversed between positive and negative when the swing angular velocity based on the reciprocating swing motion exceeds the rotational angular velocity of the constant speed rotary motion ( In some cases, a reverse rotation region) is partially included. By forming such a reversal region (region where the driven shaft rotates reversely) in the second swing range of the swing joint corresponding to the area (deceleration region) where the combined angular velocity of the driven shaft is decelerated. For example, in the crushing apparatus, the object to be crushed can be broken into fine and uniform powder (dry) or slurry (wet) in a shorter time. Moreover, in the stirring device, the stirring target can be uniformly mixed and stirred in a shorter time.

なお、これらの動力伝達装置において、回転伝動機構には、歯車、摩擦車等を用いた接触伝動機構と、ベルト、ロープ、ワイヤ、チェン等を用いた巻き掛け伝動機構とのいずれを使用してもよい。   In these power transmission devices, the rotation transmission mechanism is any one of a contact transmission mechanism using a gear, a friction wheel, etc., and a winding transmission mechanism using a belt, rope, wire, chain, etc. Also good.

このうち、原動軸に固定された原動側小歯車と従動軸に固定された従動側大歯車とを噛み合わせた歯車伝動機構によって回転伝動機構を構成する場合には、原動軸から従動軸への伝動ロスを小さくして動力伝達率を向上させることができる。しかも、原動軸から従動軸への回転角速度は回転伝動機構(歯車伝動機構)を介して減速されるので、揺動角速度との合成による従動軸の回転速度変化(合成角速度の増減速変化)が相対的に小さくなり、従動軸への応力集中等を緩和できる。   Of these, when the rotational transmission mechanism is constituted by a gear transmission mechanism in which a driving side small gear fixed to the driving shaft and a driven side large gear fixed to the driven shaft are meshed, the rotation from the driving shaft to the driven shaft The power transmission rate can be improved by reducing the transmission loss. In addition, since the rotational angular velocity from the driving shaft to the driven shaft is decelerated via the rotational transmission mechanism (gear transmission mechanism), the rotational speed change of the driven shaft (synthetic angular speed increase / decrease change) by combining with the swing angular velocity is It becomes relatively small and stress concentration on the driven shaft can be alleviated.

次に、上記課題を解決するために、本発明に係る擂り潰し装置は、
このような動力伝達装置と、
上下方向に配置された駆動軸を回転駆動する電動モータのような回転駆動源と、
上下方向に配置された従動軸の上端部に載置・固定され、その従動軸とともに往復直線運動と不等速回転運動とを行う、乳鉢のように(例えば上方が開放されて)擂り潰し対象物が収容された碗状容器と、
その碗状容器が往復直線運動と不等速回転運動とを行う際に、その内面に少なくとも一時的に接触して擂り潰し対象物を擂り潰して砕片化する、乳棒のような擂り潰し体と、
を備えることを特徴とする。
Next, in order to solve the above-mentioned problem, the crushing device according to the present invention is:
Such a power transmission device,
A rotational drive source such as an electric motor that rotationally drives a drive shaft arranged in the vertical direction;
Placed and fixed at the upper end of the driven shaft arranged in the vertical direction, and performs the reciprocating linear motion and non-uniform speed rotation motion with the driven shaft, like a mortar (for example, the upper part is opened) A bowl-shaped container containing objects;
When the bowl-like container performs reciprocating linear motion and inconstant speed rotation movement, it is at least temporarily in contact with the inner surface thereof to crush and crush the object to be crushed into fragments, ,
It is characterized by providing.

このような擂り潰し装置によれば、碗状容器(乳鉢)が往復直線運動と不等速回転運動とを行うことによって、碗状容器内の擂り潰し対象物が碗状容器の回転速度変化(合成角速度の変化)で混ざりやすくなり、擂り潰し対象物を比較的短時間で微細かつ均一な粉末状(乾式)又はスラリー状(湿式)に砕片化できるようになる。よって、小型・コンパクトで安価な擂り潰し装置が得られる。   According to such a crushing apparatus, a crushing container (mortar) performs a reciprocating linear motion and an inconstant rotational movement, whereby a crushing object in the crusted container changes in the rotational speed of the bowl-shaped container ( It becomes easy to mix due to the change in the synthetic angular velocity, and the object to be crushed can be crushed into a fine and uniform powder (dry) or slurry (wet) in a relatively short time. Therefore, a compact, compact and inexpensive grinding device can be obtained.

そしてこのとき、擂り潰し体(乳棒)を、碗状容器が往復直線運動と不等速回転運動とを行う間常時その碗状容器の内面に接触するように、かつ平面視で従動軸の軸線の往復直線運動軌跡上又はその延長上に位置するように、本体部(本体ケーシング)に固定配置するとともに下向きに押圧保持することが望ましい。これによって、擂り潰し体は、碗状容器に対して従動軸の軸線の往復直線運動軌跡上又はその延長上を相対移動することになる。したがって、例えば碗状容器の軸線と従動軸の軸線とを一致させてあれば、碗状容器に対する擂り潰し体の相対移動ストロークを碗状容器の内径一杯まで大きくすることが可能となり、碗状容器内面を広範囲に使用して擂り潰し対象物を擂り潰すことができる。なお、碗状容器の内底面及び擂り潰し体の下端部外周面をそれぞれ半球面状に形成してあると、擂り潰し体の下端部が常に碗状容器の内面に接触(押圧)していても、碗状容器の往復直線運動と不等速回転運動とが円滑に行われ、両者の摩耗等を抑制できる。   At this time, the crushed body (pestle) is always in contact with the inner surface of the bowl-shaped container while the bowl-shaped container performs the reciprocating linear motion and the non-uniform rotation motion, and the axis of the driven shaft in plan view. It is desirable that the main body part (main body casing) is fixedly disposed and pressed downward so as to be positioned on the reciprocating linear motion trajectory or the extension thereof. As a result, the crushing body moves relative to the bowl-shaped container on the reciprocating linear motion locus of the axis of the driven shaft or on its extension. Therefore, for example, if the axis of the bowl-shaped container and the axis of the driven shaft are matched, the relative movement stroke of the crushed body with respect to the bowl-shaped container can be increased to the full inner diameter of the bowl-shaped container. The object to be crushed can be crushed by using the inner surface extensively. If the inner bottom surface of the bowl-shaped container and the outer peripheral surface of the lower end portion of the crushed body are each formed in a hemispherical shape, the lower end part of the crushed body is always in contact (pressed) with the inner surface of the bowl-shaped container. However, the reciprocating linear motion and the non-uniform rotation motion of the bowl-shaped container are smoothly performed, and wear and the like of both can be suppressed.

さらに、碗状容器が往復直線運動と不等速回転運動とを行う際に、その内面に少なくとも一時的に接触して、擂り潰し体で擂り潰された擂り潰し対象物の砕片を撹拌するために、へら等の撹拌体を擂り潰し体の近傍に(位置させて本体部(本体ケーシング)に固定)配置する場合がある。撹拌体(へら)を擂り潰し体の近傍に位置させることにより、撹拌体は、擂り潰し体で擂り潰された直後の擂り潰し対象物の砕片に対して直ちに撹拌作用を及ぼすことができ、擂り潰し対象物を一層短時間で微細かつ均一に砕片化できるようになる。   Further, when the bowl-shaped container performs reciprocating linear motion and non-uniform speed rotation motion, at least temporarily contacts the inner surface of the bowl-shaped container and stirs the debris of the ground object to be ground by the ground body. In some cases, a stirring body such as a spatula is disposed near the crushing body (positioned and fixed to the main body (main body casing)). By positioning the stirrer (scalpel) in the vicinity of the crushed body, the stirrer can immediately act on the debris of the crushed object immediately after being crushed by the crushed body. The object to be crushed can be finely and uniformly fragmented in a shorter time.

具体的には、撹拌体は、碗状容器の不等速回転運動における増速領域において、互いに接近した擂り潰し体と碗状容器の壁部との間にあってその碗状容器の壁部に接触する形態で位置し、それら(擂り潰し体と碗状容器)によって擂り潰された擂り潰し対象物の砕片を受け止めて碗状容器の中央部へ向けて案内するとよい。碗状容器の増速領域(高速回転領域)における擂り潰し体と碗状容器との擂り合わせによって、擂り潰し対象物は最も高速で能率的に微細かつ均一に砕片化され、その直後に砕片は撹拌体で受け止められて碗状容器の中央部へ案内される(戻される)ので、擂り潰し対象物は最も効率的に擂り潰し作用及び撹拌作用を受けることになる。また、擂り潰し後の砕片は、撹拌体で碗状容器の中央部へ案内されるのと略同時に又はその後に、碗状容器の減速回転(減速領域又は反転領域)で混ぜ合わされるので、次サイクルでの擂り潰し作用及び撹拌作用を円滑に及ぼすことができる。なお、特にスラリー状の砕片に擂り潰し混合する湿式タイプの場合には、撹拌体は、碗状容器の壁部内面に沿って付着しやすい擂り潰し後のスラリー状砕片を碗状容器の内底部側に掻き落とす作用が顕著になる。   Specifically, the stirrer is in contact with the wall of the bowl-shaped container between the crushing body and the wall of the bowl-shaped container that are close to each other in the speed increasing region in the non-uniform rotation of the bowl-shaped container. It is good to receive the debris of the crushing target object which is located in the form to be crushed by them (the crushing body and the bowl-shaped container) and guide it toward the center of the bowl-shaped container. By grinding the crushed body and the bowl-shaped container in the speed-up area (high-speed rotation area) of the bowl-shaped container, the object to be crushed is fragmented at the highest speed and efficiently finely and uniformly. Since it is received by the stirring body and guided (returned) to the central portion of the bowl-shaped container, the object to be crushed is subjected to the crushing action and the stirring action most efficiently. In addition, since the crushed pieces are mixed with the reduced-speed rotation (deceleration region or reversal region) of the bowl-like container substantially simultaneously with or after being guided to the central part of the bowl-like container by the stirring body, the next cycle The crushing action and the stirring action can be smoothly exerted. In particular, in the case of the wet type in which slurry-like debris is crushed and mixed, the stirrer is used for the slurry-like debris after crushing that tends to adhere along the inner surface of the wall of the bowl-like container. The action of scraping to the side becomes remarkable.

一方、上記課題を解決するために、本発明に係る撹拌装置は、
このような動力伝達装置と、
上下方向に配置された駆動軸を回転駆動する電動モータのような回転駆動源と、
上下方向に配置された従動軸の上端部に載置・固定され、その従動軸とともに往復直線運動と不等速回転運動とを行う、(例えば上方が開放されて)撹拌対象物が収容された碗状容器と、
その碗状容器が往復直線運動と不等速回転運動とを行う際に、その内面に少なくとも一時的に接触して撹拌対象物を撹拌するへら等の撹拌体と、
を備えることを特徴とする。
On the other hand, in order to solve the above problem, the stirring device according to the present invention is:
Such a power transmission device,
A rotational drive source such as an electric motor that rotationally drives a drive shaft arranged in the vertical direction;
Placed and fixed at the upper end of the driven shaft arranged in the vertical direction, and performs reciprocating linear motion and inconstant speed rotational motion with the driven shaft (for example, the upper part is opened), and the object to be stirred is accommodated A bowl-shaped container;
When the bowl-shaped container performs reciprocating linear motion and inconstant speed rotational motion, a stirring body such as a spatula that stirs the stirring target object at least temporarily in contact with the inner surface thereof;
It is characterized by providing.

このような撹拌装置によれば、碗状容器が往復直線運動と不等速回転運動とを行うことによって、碗状容器内の粉末状(乾式)・スラリー状(湿式)等の撹拌対象物が碗状容器の回転速度変化(合成角速度の変化)で混ざりやすくなり、撹拌対象物を比較的短時間で均質に混合・撹拌できるようになる。よって、小型・コンパクトで安価な撹拌装置が得られる。   According to such a stirrer, when the bowl-shaped container performs a reciprocating linear motion and an inconstant speed rotation movement, the stirring target object such as a powder (dry type) or slurry (wet type) in the bowl-shaped container is obtained. It becomes easy to mix by changing the rotational speed of the bowl-like container (change in the combined angular speed), and the stirring object can be uniformly mixed and stirred in a relatively short time. Therefore, a small, compact and inexpensive stirring device can be obtained.

(実施例1)
次に、本発明の実施の形態を、図面に示す実施例を参照して説明する。図1は本発明に係る動力伝達装置を用いた擂り潰し装置の一例を示す正面部分断面図、図2はその右側面部分断面図、図3はその平面図である。図2に示すように、擂り潰し装置2は、往復スライダクランク機構10と回転伝動機構20とを有する動力伝達装置1と、その動力伝達装置1を駆動する電動モータ30(回転駆動源)と、被粉砕物(擂り潰し対象物)を収容するアルミナ等のセラミック製の乳鉢40(碗状容器)と、被粉砕物を擂り潰して砕片化するアルミナ等のセラミック製の乳棒50(擂り潰し体)と、砕片を撹拌するシリコン等のゴム又はプラスチック製のへら60(撹拌体)と、動力伝達装置1、電動モータ30等を収容する本体ケーシング90(本体部)とを備えている。
Example 1
Next, embodiments of the present invention will be described with reference to examples shown in the drawings. FIG. 1 is a front partial sectional view showing an example of a grinding apparatus using a power transmission device according to the present invention, FIG. 2 is a right side partial sectional view thereof, and FIG. 3 is a plan view thereof. As shown in FIG. 2, the crushing device 2 includes a power transmission device 1 having a reciprocating slider crank mechanism 10 and a rotation transmission mechanism 20, an electric motor 30 (rotation drive source) that drives the power transmission device 1, and Ceramic mortar 40 (a bowl-like container) made of alumina or the like for accommodating the object to be crushed (crushed object), and ceramic pestle 50 (a crushed object) made of alumina or the like for crushing the object to be crushed into pieces. And a spatula 60 (stirring body) made of rubber or plastic such as silicon that stirs the fragments, and a main body casing 90 (main body portion) that houses the power transmission device 1, the electric motor 30, and the like.

本体ケーシング90は、四角筒状の側壁90aの上下の開口がそれぞれ部分的に開口する底壁90b及び天板90cによって覆われることにより、箱状に構成されている。本体ケーシング90の内部で上下方向中途部には、複数(例えば4個)の連結パイプ91及びねじ91a(固定部材;図3参照)を介して、ベースプレート92が天板90cの下面から水平状に吊り下げ保持・固定されている。このベースプレート92の下面側には電動モータ30が固定・保持される一方、その上面側には動力伝達装置1が載置・固定されている。   The main body casing 90 is formed in a box shape by covering the upper and lower openings of the rectangular tubular side wall 90a with a bottom wall 90b and a top plate 90c that are partially opened. In the middle of the main body casing 90, a base plate 92 extends horizontally from the lower surface of the top plate 90c via a plurality of (for example, four) connecting pipes 91 and screws 91a (fixing members; see FIG. 3). It is suspended and fixed. The electric motor 30 is fixed and held on the lower surface side of the base plate 92, while the power transmission device 1 is mounted and fixed on the upper surface side.

動力伝達装置1の往復スライダクランク機構10は、ピストン機関のクランクに相当する偏心回転部11と、ピストンに相当するスライド移動部14と、コネクティングロッドに相当する連接アーム17(揺動連接部)とを含んで構成される。具体的には、偏心回転部11は、モータ軸31(駆動軸)の軸線O1から所定距離(回転半径r)離間して等速回転運動する偏心カム12(クランクアーム)を有しており、モータ軸31は、ベースプレート92の上面に固定されたベアリングケース11aに上下方向に配置(軸支)され上方突出している。また、スライド移動部14は、スライドシャフト15aとスライドブッシュ15bとによって形成されかつモータ軸31の軸線O1と直交する水平直線に沿って(すなわち往復直線運動軌跡K上を)、ストロークs(s=2r)で往復運動するスライダ15を有している。さらに、連接アーム17は、偏心カム12の支持軸13及びスライダ15の支持軸16をそれぞれ回転可能にかつ互いに平行状に軸支して、スライダ15の支持軸16を中心として往復揺動運動しつつスライド移動部14とともに往復直線運動する。   The reciprocating slider crank mechanism 10 of the power transmission device 1 includes an eccentric rotating portion 11 corresponding to a crank of a piston engine, a slide moving portion 14 corresponding to a piston, and a connecting arm 17 (swinging connecting portion) corresponding to a connecting rod. It is comprised including. Specifically, the eccentric rotating part 11 has an eccentric cam 12 (crank arm) that moves at a constant speed (rotation radius r) away from the axis O1 of the motor shaft 31 (drive shaft), and rotates at a constant speed. The motor shaft 31 is disposed (axially supported) in a vertical direction on a bearing case 11 a fixed to the upper surface of the base plate 92 and protrudes upward. The slide moving unit 14 has a stroke s (s = s = s) along a horizontal straight line formed by the slide shaft 15a and the slide bush 15b and orthogonal to the axis O1 of the motor shaft 31 (that is, on the reciprocating linear motion locus K). 2r) has a slider 15 that reciprocates. Further, the connecting arm 17 reciprocally swings around the support shaft 16 of the slider 15 by rotatably supporting the support shaft 13 of the eccentric cam 12 and the support shaft 16 of the slider 15 in a mutually parallel manner. While reciprocating linearly moving with the slide moving unit 14.

他方、動力伝達装置1の回転伝動機構20は、偏心カム12の支持軸13と一体化され軸線O2を共通にする形態で連接アーム17に回転可能に軸支された原動軸21と、原動軸21と平行状でスライダ15の支持軸16と同芯状に配置され軸線O3を共通にする形態で連接アーム17に回転可能に軸支された従動軸23とを有している。また、回転伝動機構20は、原動軸21に固定された原動側小歯車22(原動ギヤ)と従動軸23に固定された従動側大歯車24(従動ギヤ)とが噛み合わせられた歯車伝動機構で構成されている。これによって、原動軸21は偏心回転部11の偏心カム12と同周期でモータ軸31周りに等速回転運動を行い、原動軸21から従動軸23へ等速回転運動が伝達される。   On the other hand, the rotation transmission mechanism 20 of the power transmission device 1 includes a driving shaft 21 that is integrated with the support shaft 13 of the eccentric cam 12 and is rotatably supported by the connecting arm 17 in a form in which the axis O2 is shared. 21 has a driven shaft 23 that is rotatably supported by the connecting arm 17 in a form that is parallel to the shaft 21 and concentrically with the support shaft 16 of the slider 15 and that shares the axis O3. The rotation transmission mechanism 20 is a gear transmission mechanism in which a driving small gear 22 (driving gear) fixed to a driving shaft 21 and a driven large gear 24 (driven gear) fixed to a driven shaft 23 are meshed. It consists of As a result, the driving shaft 21 performs a constant speed rotating motion around the motor shaft 31 at the same period as the eccentric cam 12 of the eccentric rotating portion 11, and the constant speed rotating motion is transmitted from the driving shaft 21 to the driven shaft 23.

したがって、動力伝達装置1の従動軸23は、スライド移動部14及び連接アーム17とともに、平面視往復直線運動軌跡K上又はその延長上(図3参照)で往復直線運動を行う。また、従動軸23は、原動軸21から歯車伝動機構20(原動側小歯車22及び従動側大歯車24)を介して伝達された等速回転運動の回転角速度と、スライダ15の支持軸16(軸線O3)を中心とする連接アーム17の往復揺動運動に基づく揺動角速度とが合成された合成角速度を有する不等速回転運動を行う。   Therefore, the driven shaft 23 of the power transmission device 1 performs a reciprocating linear motion on the reciprocating linear motion locus K in plan view or an extension thereof (see FIG. 3) together with the slide moving unit 14 and the connecting arm 17. Further, the driven shaft 23 includes the rotational angular velocity of the constant speed rotational motion transmitted from the driving shaft 21 via the gear transmission mechanism 20 (the driving side small gear 22 and the driven side large gear 24), and the support shaft 16 ( A non-uniform rotational motion having a combined angular velocity obtained by combining the swing angular velocity based on the reciprocating swing motion of the articulated arm 17 about the axis O3) is performed.

次に、このような従動軸23の往復直線運動と不等速回転運動について、図4及び図5の作動説明平面図と図6及び図7のグラフとを用いて詳細に説明する。   Next, such reciprocating linear motion and inconstant speed rotational motion of the driven shaft 23 will be described in detail with reference to the operation explanatory plan views of FIGS. 4 and 5 and the graphs of FIGS. 6 and 7. FIG.

(1)従動軸23の往復直線運動
既に述べた通り、従動軸23は、往復直線運動軌跡K上又はその延長上を、スライド移動部14及び連接アーム17とともに、ストロークsで往復直線運動を行う。具体的には、原動軸21(モータ軸31)が1回転(1サイクル)する毎に1往復する往復直線運動を行う。例えば、原動軸21の回転によって従動軸23(スライダ15)がモータ軸31に最も近接した図4(a)の位置(近死点位置P1:ピストン機関の下死点に相当)から、従動軸23がモータ軸31から最も離間した図5(a)の位置(遠死点位置P4:ピストン機関の上死点に相当)を経て、再び図4(a)の近死点位置P1に戻る。このとき、図6に示すように、従動軸23(スライダ15の支持軸16)の移動速度は、原動軸21(偏心カム12の支持軸13)の回転角度に対して不等速(不等速直線運動)である。なお、図6では、近死点位置P1(回転角度0°;図4(a))から遠死点位置P4(回転角度180°;図5(a))への移動を正、遠死点位置(回転角度180°)から近死点位置P1(回転角度360°;図4(a))への移動を負で表わしてある。また、図1〜図3は原動軸21(偏心カム12の支持軸13)が遠死点位置P4にある場合(図5(a))を示している。
(1) Reciprocating linear motion of the driven shaft 23 As already described, the driven shaft 23 performs the reciprocating linear motion with the stroke s on the reciprocating linear motion trajectory K or on its extension together with the slide moving unit 14 and the connecting arm 17. . Specifically, a reciprocating linear motion that reciprocates once every time the driving shaft 21 (motor shaft 31) makes one rotation (one cycle) is performed. For example, from the position in FIG. 4A where the driven shaft 23 (slider 15) is closest to the motor shaft 31 due to the rotation of the driving shaft 21 (near dead center position P1: corresponding to the bottom dead center of the piston engine), the driven shaft 5 returns to the near dead center position P1 of FIG. 4A again after passing through the position of FIG. 5A farthest from the motor shaft 31 (far dead center position P4: corresponding to the top dead center of the piston engine). At this time, as shown in FIG. 6, the moving speed of the driven shaft 23 (support shaft 16 of the slider 15) is unequal with respect to the rotation angle of the drive shaft 21 (support shaft 13 of the eccentric cam 12). Fast linear motion). In FIG. 6, the movement from the near dead center position P1 (rotation angle 0 °; FIG. 4A) to the far dead center position P4 (rotation angle 180 °; FIG. 5A) is positive, far dead center. The movement from the position (rotation angle 180 °) to the near dead center position P1 (rotation angle 360 °; FIG. 4A) is represented by a negative value. 1 to 3 show the case where the driving shaft 21 (the support shaft 13 of the eccentric cam 12) is at the far dead center position P4 (FIG. 5A).

(2)従動軸23の不等速回転運動
既に述べた通り、従動軸23は、原動軸21から伝達された等速回転運動の回転角速度(図7(a))と、連接アーム17の往復揺動運動に基づく揺動角速度(図7(b))との合成角速度(図7(c))を有する不等速回転運動を行う。
(2) Unequal speed rotation motion of the driven shaft 23 As already described, the driven shaft 23 has the rotational angular velocity (FIG. 7A) of the constant speed rotation motion transmitted from the drive shaft 21 and the reciprocation of the connecting arm 17. An inconstant speed rotary motion having a combined angular velocity (FIG. 7C) with a swing angular velocity (FIG. 7B) based on the swing motion is performed.

(2−1)増速領域(第一の揺動範囲A1)
連接アーム17の揺動によって原動軸21(偏心カム12の支持軸13)が、図4(c)に示す一方の揺動限界位置P3(原動軸21の回転角度α)から、遠死点位置P4(図5(a))を挟んで、図5(b)に示す他方の揺動限界位置P5(原動軸21の回転角度β)へ至る間(ただし、90°<α<180°;β=360°−α)では、連接アーム17の揺動運動方向(時計回り)は、原動軸21から原動側小歯車22及び従動側大歯車24を介して伝達された従動軸23の回転運動方向(時計回り)と一致(順方向)する(図5(a))。したがって、P3(図4(c))―P4(図5(a))―P5(図5(b))の間(第一の揺動範囲A1)では、図7(c)に示す従動軸23の合成角速度は、図7(a)に示す従動軸23の等速回転運動の回転角速度に、図7(b)に示す連接アーム17の揺動角速度を加算した値となって増速される。
(2-1) Speed increase region (first swing range A1)
As the articulated arm 17 swings, the driving shaft 21 (the support shaft 13 of the eccentric cam 12) moves away from the one swing limit position P3 (the rotation angle α of the driving shaft 21) shown in FIG. Between P4 (FIG. 5A) and reaching the other swing limit position P5 (rotation angle β of the drive shaft 21) shown in FIG. 5B (however, 90 ° <α <180 °; β = 360 ° −α), the swinging motion direction (clockwise) of the connecting arm 17 is the rotational motion direction of the driven shaft 23 transmitted from the driving shaft 21 via the driving side small gear 22 and the driven side large gear 24. (Clockwise) matches (forward direction) (FIG. 5A). Accordingly, during P3 (FIG. 4C) -P4 (FIG. 5A) -P5 (FIG. 5B) (first swing range A1), the driven shaft shown in FIG. The combined angular velocity 23 is increased by a value obtained by adding the angular velocity of the connected arm 17 shown in FIG. 7 (b) to the rotational angular velocity of the constant speed rotation of the driven shaft 23 shown in FIG. 7 (a). The

(2−2)減速領域(第二の揺動範囲A2)
一方、原動軸21(偏心カム12の支持軸13)が、図5(b)に示す他方の揺動限界位置P5(原動軸21の回転角度β)から、近死点位置P1(図4(a))を挟んで、図4(c)に示す一方の揺動限界位置P3(原動軸21の回転角度α)へ至る間では、連接アーム17の揺動運動方向(反時計回り)は、従動軸23の回転運動方向(時計回り)と反対(逆方向)になる(図5(c),図4(a),図4(b))。したがって、P5(図5(b))―P6(図5(c))―P1(図4(a))―P2(図4(b))の間(第二の揺動範囲A2)では、図7(c)に示す従動軸23の合成角速度は、図7(a)に示す従動軸23の等速回転運動の回転角速度から、図7(b)に示す連接アーム17の揺動角速度の絶対値を減算した値となって減速される。
(2-2) Deceleration region (second swing range A2)
On the other hand, the driving shaft 21 (the support shaft 13 of the eccentric cam 12) moves from the other swing limit position P5 (the rotation angle β of the driving shaft 21) shown in FIG. Between the a)) and the one swing limit position P3 (rotation angle α of the drive shaft 21) shown in FIG. 4C, the swing movement direction (counterclockwise) of the connecting arm 17 is The direction of rotation of the driven shaft 23 (clockwise) is opposite (reverse direction) (FIGS. 5C, 4A, and 4B). Therefore, between P5 (FIG. 5 (b))-P6 (FIG. 5 (c))-P1 (FIG. 4 (a))-P2 (FIG. 4 (b)) (second swing range A2), The combined angular velocity of the driven shaft 23 shown in FIG. 7C is obtained from the rotational angular velocity of the constant-speed rotational motion of the driven shaft 23 shown in FIG. 7A from the swing angular velocity of the connecting arm 17 shown in FIG. Decrease the absolute value.

(2−3)反転領域(A3)
さらに、第二の揺動範囲A2(減速領域)には、図7(a)に示す従動軸23の等速回転運動の回転角速度よりも、図7(b)に示す連接アーム17の揺動角速度の絶対値の方が大となる領域(反転領域A3)を含んでいる。したがって、反転開始位置P7(原動軸21の回転角度360°−θ)から、近死点位置P1(図4(a))を挟んで、反転終了位置P8(原動軸21の回転角度θ)の間(反転領域A3)では、図7(c)に示す従動軸23の合成角速度が負に変化(反転=逆回転)する。なお、原動側小歯車22と従動側大歯車24との歯数比が大きくなると、従動側大歯車24の角速度が相対的に大きくなるので、反転領域A3の幅(面積)が減少傾向になる。適切な反転領域A3の幅(面積)を確保するためには、原動側小歯車22と従動側大歯車24との歯数比を1:2〜1:10の範囲内(例えば1:4)とすることが望ましい。
(2-3) Inversion area (A3)
Further, in the second swing range A2 (deceleration region), the swing of the connecting arm 17 shown in FIG. 7B is larger than the rotational angular velocity of the constant speed rotary motion of the driven shaft 23 shown in FIG. A region (inversion region A3) where the absolute value of the angular velocity is larger is included. Therefore, from the reversal start position P7 (rotation angle 360 ° −θ of the drive shaft 21) to the reversal end position P8 (rotation angle θ of the drive shaft 21) across the near dead center position P1 (FIG. 4A). In the meantime (inversion area A3), the combined angular velocity of the driven shaft 23 shown in FIG. 7C changes negatively (inversion = reverse rotation). When the gear ratio between the driving small gear 22 and the driven large gear 24 is increased, the angular speed of the driven large gear 24 is relatively increased, so that the width (area) of the reversal region A3 tends to decrease. . In order to ensure an appropriate width (area) of the reversal region A3, the gear ratio between the driving side small gear 22 and the driven side large gear 24 is within a range of 1: 2 to 1:10 (for example, 1: 4). Is desirable.

このように、動力伝達装置1の従動軸23は、往復直線運動(不等速直線運動)と不等速回転運動とを同時に行う。これによって、従動軸23に固定された乳鉢40(図2参照)に回転速度変化(合成角速度の変化)が付与されて被粉砕物が混ざりやすくなり、比較的短時間で微細かつ均一な粉末状に砕片化できる。   As described above, the driven shaft 23 of the power transmission device 1 simultaneously performs the reciprocating linear motion (non-uniform linear motion) and the non-uniform rotational motion. As a result, a rotational speed change (change in the combined angular speed) is imparted to the mortar 40 (see FIG. 2) fixed to the driven shaft 23, and the material to be pulverized easily mixes, and the powder form is fine and uniform in a relatively short time. Can be broken into pieces.

なお、動力伝達装置1及び電動モータ30は、本体ケーシング90の天板90cに吊り下げ保持されたベースプレート92に固定され、底壁90bには取り付けられていない。これによって、組み付け精度が向上するとともに組立コスト(工数)を削減でき、振動・騒音の防止を図ることができる。   The power transmission device 1 and the electric motor 30 are fixed to a base plate 92 that is suspended and held on the top plate 90c of the main body casing 90, and are not attached to the bottom wall 90b. As a result, the assembling accuracy can be improved, the assembling cost (man-hours) can be reduced, and vibration and noise can be prevented.

図1に戻り、乳鉢40は、従動軸23の上端部に乳鉢載置台41を介し軸線O3を共通にする形態で載置されている。そして、乳鉢40の上面と乳鉢載置台41の下面とを周方向に複数(例えば等間隔で3個;図3参照)配置した止め具42で挟み、ノブねじ等の固定部材43で締付固定されている。   Returning to FIG. 1, the mortar 40 is placed on the upper end portion of the driven shaft 23 in a form in which the axis line O <b> 3 is made common via the mortar placement table 41. Then, the upper surface of the mortar 40 and the lower surface of the mortar mounting table 41 are sandwiched by a plurality of stoppers 42 arranged in the circumferential direction (for example, three at equal intervals; see FIG. 3), and are fastened and fixed by a fixing member 43 such as a knob screw. Has been.

図2に示すように、乳棒50は、乳鉢40が往復直線運動(不等速直線運動)と不等速回転運動とを同時に行う際に、その内面に常時接触(押圧)して被粉砕物を擂り潰して砕片化する。この乳棒50(の軸線)は、図3において従動軸23の軸線O3(図1参照)の往復直線運動軌跡K上又はその延長上に位置するように本体ケーシング90(本体部)に固定配置されている。具体的には、天板90cとその上面に固定されたブラケット93とを上下に貫通して昇降シャフト94が挿通され、昇降シャフト94の上端部から水平状に延びる固定アーム95の先端部に、ボール付きブッシュ(図示せず)を介して乳棒50が上下昇降及び回転可能に取り付けられている。再び図2において、乳棒50は、固定アーム95と乳棒50との間に介装された圧縮コイルばね96(押圧部材)の押圧力及び自重によって、乳鉢40の内面に常時下向きに押圧保持されている。   As shown in FIG. 2, the pestle 50 always contacts (presses) the inner surface of the mortar 40 when the mortar 40 performs reciprocating linear motion (non-uniform linear motion) and non-uniform rotational motion simultaneously. Crush and crush into pieces. The pestle 50 (the axis thereof) is fixedly disposed on the main body casing 90 (main body portion) so as to be positioned on or along the reciprocating linear motion locus K of the axis O3 (see FIG. 1) of the driven shaft 23 in FIG. ing. Specifically, the elevating shaft 94 is inserted vertically through the top plate 90c and the bracket 93 fixed to the upper surface thereof, and the tip of the fixed arm 95 extending horizontally from the upper end of the elevating shaft 94, A pestle 50 is attached via a bush (not shown) with a ball so that it can be moved up and down and rotated. In FIG. 2 again, the pestle 50 is always pressed and held downward on the inner surface of the mortar 40 by the pressing force and weight of the compression coil spring 96 (pressing member) interposed between the fixed arm 95 and the pestle 50. Yes.

以上の構成によって、乳鉢40に対する乳棒50の相対移動ストロークsを乳鉢40の内径一杯まで大きくすることができる。また、乳鉢40の内底面及び乳棒50の下端部外周面をそれぞれ半球面状に形成してあるので、乳棒50の下端部が常に乳鉢40の内面に接触(押圧)していても、乳鉢40の往復直線運動と不等速回転運動とが円滑に行える。   With the above configuration, the relative movement stroke s of the pestle 50 with respect to the mortar 40 can be increased to the full inner diameter of the mortar 40. Further, since the inner bottom surface of the mortar 40 and the outer peripheral surface of the lower end portion of the pestle 50 are each formed in a hemispherical shape, even if the lower end portion of the pestle 50 is always in contact (pressed) with the inner surface of the mortar 40, the mortar 40 The reciprocating linear motion and the non-uniform speed rotational motion can be smoothly performed.

昇降シャフト94の下端部には棒状部材94aの上端部が固定され、棒状部材94aの下端部はベースプレート92から延出するガイド部材94bに挿通されている。昇降シャフト94の下端面とガイド部材94bの上面との間には圧縮コイルばね94c(弾発部材)が介装されている。そこで、昇降シャフト94をブラケット93に固定するための固定レバー93aを緩めると、圧縮コイルばね94cの弾発力によって昇降シャフト94、固定アーム95、乳棒50、へら60等を一斉に上方に持ち上げ保持させる(図2の仮想線)ことができるので、乳鉢40の着脱等が容易となる。なお、97は電動モータ30の駆動をON・OFF操作するための手動スイッチである。   The upper end portion of the rod-shaped member 94 a is fixed to the lower end portion of the elevating shaft 94, and the lower end portion of the rod-shaped member 94 a is inserted into a guide member 94 b extending from the base plate 92. A compression coil spring 94c (elastic member) is interposed between the lower end surface of the elevating shaft 94 and the upper surface of the guide member 94b. Therefore, when the fixing lever 93a for fixing the elevating shaft 94 to the bracket 93 is loosened, the elevating shaft 94, the fixing arm 95, the pestle 50, the spatula 60, etc. are lifted upward and held together by the elastic force of the compression coil spring 94c. (Imaginary line in FIG. 2) can be made, so that the mortar 40 can be easily attached and detached. Reference numeral 97 denotes a manual switch for turning on / off the drive of the electric motor 30.

次に、へら60の具体的形状を図8に示す。へら60は、シリコン等のゴム又はプラスチック製で略直角三角形状のへら本体61が、直角を挟む2辺をそれぞれ上下方向と水平方向とに向けた形態で、板状取付部材63を介して棒状取付部材62に固定されている。   Next, the specific shape of the spatula 60 is shown in FIG. The spatula 60 is made of rubber or plastic, such as silicon, and has a substantially right-angled triangular spatula body 61 in a form in which two sides sandwiching a right angle are directed in the vertical direction and the horizontal direction, respectively, through a plate-like mounting member 63. It is fixed to the mounting member 62.

さらに、図3に示すように、へら60は、乳棒50の近傍に位置させて本体ケーシング90に固定配置され、乳鉢40が往復直線運動と不等速回転運動とを行う際に、その内面に少なくとも一時的に接触して、乳棒50で擂り潰された砕片を撹拌する。具体的には、乳棒50が取り付けられた固定アーム95の先端部を平面視L字状に折り曲げ形成し、その折曲部にへら60の棒状取付部材62を挿通してノブねじ等の固定部材95a(図1参照)で締付固定されている。   Further, as shown in FIG. 3, the spatula 60 is positioned in the vicinity of the pestle 50 and fixedly disposed on the main body casing 90. When the mortar 40 performs the reciprocating linear motion and the inconstant speed rotational motion, At least temporarily contact and stir the crushed pieces with the pestle 50. Specifically, the distal end portion of the fixing arm 95 to which the pestle 50 is attached is bent and formed in an L shape in plan view, and the rod-like attachment member 62 of the spatula 60 is inserted into the bent portion to fix the fixing member such as a knob screw. Fastened and fixed at 95a (see FIG. 1).

そして、ノブねじ95aによるへら60の位置決めと、へら60による撹拌作用は、図9のようにして行われる。
(1)まず、図9(a)に示すように、原動軸21が近死点位置P1(回転角度0°;図4(a)参照)にあって、乳鉢40が昇降シャフト94に最接近した停止状態にて、へら本体61の先端部が乳鉢40の内壁に軽く接触して被粉砕物や砕片を受け止めるように、ノブねじ95a(図1参照)で締付固定する。
(2)電動モータ30(図2参照)の回転により、乳鉢40の不等速回転運動における増速領域[P3(図4(c))―P4(図5(a))―P5(図5(b))]において、その中でも特に、図9(c)に示すように、原動軸21が遠死点位置P4(回転角度180°;図5(a)参照)にあるとき、へら本体61の先端部は、互いに接近した乳棒50と乳鉢40の壁部との間にあって乳鉢40の壁部に広範囲に接触する形態で位置し、擂り潰された砕片を受け止めて乳鉢40の中央部へ向けて案内する作用を有する。
The positioning of the spatula 60 by the knob screw 95a and the stirring action by the spatula 60 are performed as shown in FIG.
(1) First, as shown in FIG. 9A, the driving shaft 21 is at the near dead center position P1 (rotation angle 0 °; see FIG. 4A), and the mortar 40 is closest to the lifting shaft 94. In the stopped state, the spatula body 61 is fastened and fixed with a knob screw 95a (see FIG. 1) so that the tip of the spatula body 61 comes into light contact with the inner wall of the mortar 40 and receives the object to be crushed or debris.
(2) Speed increase region [P3 (FIG. 4 (c))-P4 (FIG. 5 (a))-P5 (FIG. 5) in the inequality rotational motion of the mortar 40 by the rotation of the electric motor 30 (see FIG. 2). (B))], in particular, as shown in FIG. 9C, when the driving shaft 21 is at the far dead center position P4 (rotation angle 180 °; see FIG. 5A), the spatula body 61 The tip of the mortar is located between the pestle 50 and the wall of the mortar 40 that are close to each other and is in contact with the wall of the mortar 40 over a wide range. Have the effect of guiding.

このとき、増速領域(例えば図9(c)[図5(a)参照])における乳棒50と乳鉢40との擂り合わせによって、被粉砕物は最も高速で能率的に擂り潰され、その直後に砕片はへら60で受け止められて乳鉢40の中央部へ案内される(戻される)ので、効率的に擂り潰し作用及び撹拌作用を及ぼすことができる。その後に、砕片は乳鉢40の減速回転(減速領域又は反転領域;例えば図9(b),図9(a)[図5(c),図4(a),図4(b)参照])で十分に混ぜ合わされるので、次サイクルでの擂り潰し作用及び撹拌作用を円滑に及ぼすことができる。ところで、擂り潰し装置2を特にスラリー状の砕片に擂り潰し混合する湿式タイプに用いた場合には、へら60によって、乳鉢40の壁部内面に沿って付着しやすい擂り潰し後のスラリー状砕片を乳鉢40の内底部側に掻き落とすことができる。なお、図9(b)は、原動軸21(偏心カム12の支持軸13)が中間位置P2(回転角度90°;図4(b)参照)又は中間位置P6(回転角度270°;図5(c)参照)にあるときを表わしている。   At this time, the object to be crushed is crushed at the highest speed and efficiently by the grinding of the pestle 50 and the mortar 40 in the speed increasing region (for example, FIG. 9 (c) [see FIG. 5 (a)]). The crushed pieces are received by the spatula 60 and guided (returned) to the center of the mortar 40, so that the crushing action and the stirring action can be efficiently performed. Thereafter, the debris is decelerated rotation of the mortar 40 (deceleration region or reversal region; for example, FIG. 9B, FIG. 9A [see FIG. 5C, FIG. 4A, FIG. 4B]). Therefore, the crushing action and the stirring action in the next cycle can be exerted smoothly. By the way, when the crushing apparatus 2 is used for a wet type that crushes and mixes particularly into slurry-like pieces, slurry pieces after crushing that easily adhere along the inner surface of the wall of the mortar 40 by the spatula 60 are removed. It can be scraped off to the inner bottom side of the mortar 40. In FIG. 9B, the driving shaft 21 (support shaft 13 of the eccentric cam 12) is in the intermediate position P2 (rotation angle 90 °; see FIG. 4B) or intermediate position P6 (rotation angle 270 °; FIG. 5). (See (c)).

ところで、前述の通り、図3に示す擂り潰し装置2の従動軸23及び乳鉢40は、往復直線運動(不等速直線運動)と不等速回転運動とを同時に行う。これに対して乳棒50及びへら60は乳鉢40の内部に位置して本体ケーシング90に固定されている。その結果、乳棒50及びへら60は、乳鉢40に対して、原動軸21(モータ軸31)の1サイクル(1回転)毎に平面視で数字の「8」の字状を描いて相対移動する。   Incidentally, as described above, the driven shaft 23 and the mortar 40 of the crushing device 2 shown in FIG. 3 simultaneously perform the reciprocating linear motion (inconstant linear motion) and the inconstant rotational motion. In contrast, the pestle 50 and the spatula 60 are located inside the mortar 40 and are fixed to the main body casing 90. As a result, the pestle 50 and the spatula 60 move relative to the mortar 40 while drawing the number “8” in a plan view every cycle (one rotation) of the driving shaft 21 (motor shaft 31). .

図1〜図3に示すように、固定アーム95の下面には、乳鉢40の外径よりも幅広でその往復移動方向Kに沿って細長い楕円状又は長円状を呈する透明プラスチック(例えばアクリル)製の蓋体98が、乳鉢40の移動範囲上方を水平状に覆うように取り付けられている。一方、乳鉢40(止め具42)には、その外周に沿って蓋体98の下面近接位置又は接触位置まで延出形成されたプラスチック(例えば塩化ビニル)製の周壁99が取付・固定されている。これらの蓋体98と周壁99とによって、被粉砕物やその砕片が乳鉢40から上方(外側)へ跳び出したり、吹き出したりするのを防止している。なお、蓋体98を乳鉢40側により近づけるために、図1又は図2に仮想線で示すように圧縮コイルばね96の下側に設ければ、周壁99を省略できる場合がある。また、乳鉢40の上面に円形状の蓋を直接被せて固定し、その蓋に乳鉢40(移動側)と乳棒50・へら60(固定側)との相対運動による干渉を避けるための溝を貫通形成してもよい。   As shown in FIG. 1 to FIG. 3, a transparent plastic (for example, acrylic) on the lower surface of the fixed arm 95 that is wider than the outer diameter of the mortar 40 and has an elongated oval or oval shape along the reciprocating movement direction K. A lid 98 made of metal is attached so as to cover the moving range of the mortar 40 horizontally. On the other hand, a peripheral wall 99 made of plastic (for example, vinyl chloride) is attached and fixed to the mortar 40 (stopper 42) so as to extend along the outer periphery of the mortar 40 to the lower surface proximity position or contact position of the lid 98. . The lid 98 and the peripheral wall 99 prevent the object to be crushed and its fragments from jumping upward (outside) from the mortar 40 or blowing out. In order to bring the lid 98 closer to the mortar 40 side, the peripheral wall 99 may be omitted if it is provided below the compression coil spring 96 as indicated by a virtual line in FIG. 1 or FIG. In addition, a circular lid is directly put on and fixed to the upper surface of the mortar 40, and a groove for avoiding interference due to the relative movement between the mortar 40 (moving side) and the pestle 50 and spatula 60 (fixing side) is passed through the lid. It may be formed.

(実施例2)
図10に、本発明に係る動力伝達装置を用いた撹拌装置の一例を示す。この撹拌装置3では、実施例1(図1)に示す擂り潰し装置2から、乳棒50(擂り潰し体)及びそれに付随する部材を除いたものに相当する。したがって、従動軸23に固定された碗状容器40に回転速度変化(合成角速度の変化)が付与されて被撹拌物が混ざりやすくなり、比較的短時間で均質に混合・撹拌できる。なお、実施例2(図10)において実施例1(図1〜図9)と共通する機能を有する部分には同一符号を付して説明を省略する。
(Example 2)
FIG. 10 shows an example of a stirring device using the power transmission device according to the present invention. This stirring device 3 corresponds to the crushing device 2 shown in Example 1 (FIG. 1) except for the pestle 50 (crushed body) and the members associated therewith. Therefore, the rotational speed change (change in the combined angular speed) is imparted to the bowl-shaped container 40 fixed to the driven shaft 23 so that the material to be stirred can be easily mixed and can be uniformly mixed and stirred in a relatively short time. In addition, in Example 2 (FIG. 10), the part which has the function which is common in Example 1 (FIGS. 1-9) is attached | subjected, and description is abbreviate | omitted.

(変更例)
次に、図11及び図12に示す動力伝達装置の概略構造及び作動を説明する。この動力伝達装置100には、実施例1(図4及び図5)に示した動力伝達装置1に、以下のような変更を加えている。
(1)往復スライダクランク機構10に代わってオフセットクランク機構110を用いた。すなわち、スライダ15(支持軸16)の往復直線運動軌跡K又はその延長線は、モータ軸31(軸線O1)と交差しない。
(2)原動軸21は偏心カム12の支持軸13と一体化されているが、歯車伝動機構120(回転伝動機構)の原動軸21(原動側小歯車22)と従動軸23(従動側大歯車24)との間には中間軸121(中間歯車122)が介在している。
(3)従動軸23(軸線O3)はスライダ15の支持軸16と同芯状でなく、異なる位置にある。
(Example of change)
Next, the schematic structure and operation of the power transmission device shown in FIGS. 11 and 12 will be described. The power transmission device 100 is modified as follows from the power transmission device 1 shown in the first embodiment (FIGS. 4 and 5).
(1) An offset crank mechanism 110 is used in place of the reciprocating slider crank mechanism 10. That is, the reciprocating linear motion locus K of the slider 15 (support shaft 16) or its extension does not intersect the motor shaft 31 (axis O1).
(2) Although the drive shaft 21 is integrated with the support shaft 13 of the eccentric cam 12, the drive shaft 21 (drive side small gear 22) and the driven shaft 23 (driven side large) of the gear transmission mechanism 120 (rotation transmission mechanism). An intermediate shaft 121 (intermediate gear 122) is interposed between the gear 24).
(3) The driven shaft 23 (axis line O3) is not concentric with the support shaft 16 of the slider 15, but is in a different position.

したがって、動力伝達装置100の従動軸23は、スライド移動部14及び連接アーム17とともに、スライダ15の往復直線運動軌跡Kと平行して往復直線運動を行う。また、従動軸23は、原動軸21から歯車伝動機構120(原動側小歯車22、中間歯車122及び従動側大歯車24)を介して伝達された等速回転運動の回転角速度と、スライダ15の支持軸16を中心とする連接アーム17の往復揺動運動に基づく揺動角速度とが合成された合成角速度を有する不等速回転運動を行う。   Accordingly, the driven shaft 23 of the power transmission device 100 performs a reciprocating linear motion in parallel with the reciprocating linear motion locus K of the slider 15 together with the slide moving unit 14 and the connecting arm 17. Further, the driven shaft 23 includes a rotational angular velocity of a constant rotational motion transmitted from the driving shaft 21 via the gear transmission mechanism 120 (the driving side small gear 22, the intermediate gear 122 and the driven side large gear 24), and the slider 15. An inconstant speed rotational motion having a combined angular velocity obtained by combining the swing angular velocity based on the reciprocating swing motion of the connecting arm 17 around the support shaft 16 is performed.

次に、このような従動軸23の往復直線運動と不等速回転運動について、図11及び図12の作動説明平面図を用いて概略説明する。   Next, the reciprocating linear motion and the inconstant speed rotational motion of the driven shaft 23 will be schematically described with reference to the operation explanatory plan views of FIGS. 11 and 12.

(1)従動軸23の往復直線運動
従動軸23は、往復直線運動軌跡Kと平行して、スライド移動部14及び連接アーム17とともに、ストロークsで往復直線運動を行う。具体的には、原動軸21(モータ軸31)が1回転(1サイクル)する毎に1往復する往復直線運動を行う。例えば、原動軸21の回転によって従動軸23(スライダ15)がモータ軸31に最も近接した図11(a)の位置(近死点位置P1:ピストン機関の下死点に相当)から、従動軸23がモータ軸31から最も離間した図12(a)の位置(遠死点位置P4:ピストン機関の上死点に相当)を経て、再び図11(a)の近死点位置P1に戻る。
(1) Reciprocating linear motion of the driven shaft 23 The driven shaft 23 performs the reciprocating linear motion with the stroke s in parallel with the reciprocating linear motion locus K together with the slide moving unit 14 and the connecting arm 17. Specifically, a reciprocating linear motion that reciprocates once every time the driving shaft 21 (motor shaft 31) makes one rotation (one cycle) is performed. For example, from the position in FIG. 11A where the driven shaft 23 (slider 15) is closest to the motor shaft 31 by the rotation of the driving shaft 21 (near dead center position P1: corresponding to the bottom dead center of the piston engine), the driven shaft 12 returns to the near dead center position P1 in FIG. 11 (a) again after passing through the position shown in FIG. 12 (a) farthest from the motor shaft 31 (far dead center position P4: corresponding to the top dead center of the piston engine).

(2)従動軸23の不等速回転運動
従動軸23は、原動軸21から伝達された等速回転運動の回転角速度と、連接アーム17の往復揺動運動に基づく揺動角速度との合成角速度を有する不等速回転運動を行う。
(2) Inconstant speed rotational motion of the driven shaft 23 The driven shaft 23 is a combined angular velocity of the rotational angular velocity of the constant speed rotational motion transmitted from the driving shaft 21 and the swing angular velocity based on the reciprocating swing motion of the connecting arm 17. An inconstant speed rotational movement is performed.

(2−1)減速領域(第二の揺動範囲A2)
連接アーム17の揺動によって原動軸21(偏心カム12の支持軸13)が、図11(c)に示す一方の揺動限界位置P3(原動軸21の回転角度α)から、遠死点位置P4(図12(a))を挟んで、図12(b)に示す他方の揺動限界位置P5(原動軸21の回転角度β)へ至る間(ただし、90°<α<180°;180°<β<270°)では、連接アーム17の揺動運動方向(時計回り)は、原動軸21から原動側小歯車22、中間歯車122及び従動側大歯車24を介して伝達された従動軸23の回転運動方向(反時計回り)と反対(逆方向)になる(図12(a))。したがって、P3(図11(c))―P4(図12(a))―P5(図12(b))の間(第二の揺動範囲A2)では、従動軸23の合成角速度は、従動軸23の等速回転運動の回転角速度から、連接アーム17の揺動角速度の絶対値を減算した値となって減速される。
(2-1) Deceleration region (second swing range A2)
As the articulated arm 17 swings, the driving shaft 21 (the support shaft 13 of the eccentric cam 12) moves from the one swing limit position P3 (the rotation angle α of the driving shaft 21) shown in FIG. Between P4 (FIG. 12 (a)) and reaching the other swing limit position P5 (rotation angle β of the drive shaft 21) shown in FIG. 12 (b) (where 90 ° <α <180 °; 180 In the case of ° <β <270 °, the swinging motion direction (clockwise) of the connecting arm 17 is the driven shaft transmitted from the driving shaft 21 via the driving side small gear 22, the intermediate gear 122, and the driven side large gear 24. It is opposite (reverse direction) to the rotational movement direction (counterclockwise) of 23 (FIG. 12 (a)). Accordingly, during P3 (FIG. 11 (c))-P4 (FIG. 12 (a))-P5 (FIG. 12 (b)) (second swing range A2), the combined angular velocity of the driven shaft 23 is the driven The speed is reduced to a value obtained by subtracting the absolute value of the swing angular velocity of the articulated arm 17 from the rotational angular velocity of the constant-speed rotational motion of the shaft 23.

(2−2)増速領域(第一の揺動範囲A1)
一方、原動軸21(偏心カム12の支持軸13)が、図12(b)に示す他方の揺動限界位置P5(原動軸21の回転角度β)から、近死点位置P1(図11(a))を挟んで、図11(c)に示す一方の揺動限界位置P3(原動軸21の回転角度α)へ至る間では、連接アーム17の揺動運動方向(反時計回り)は、従動軸23の回転運動方向(反時計回り)と一致(順方向)する(図12(c),図11(a),図11(b))。したがって、P5(図12(b))―P6(図12(c))―P1(図11(a))―P2(図11(b))の間(第一の揺動範囲A1)では、従動軸23の合成角速度は、従動軸23の等速回転運動の回転角速度に、連接アーム17の揺動角速度を加算した値となって増速される。
(2-2) Speed increase region (first swing range A1)
On the other hand, the drive shaft 21 (the support shaft 13 of the eccentric cam 12) moves from the other swing limit position P5 (the rotation angle β of the drive shaft 21) shown in FIG. During the period between the swing limit position P3 (rotation angle α of the drive shaft 21) shown in FIG. 11 (c) across the a)), the swing movement direction (counterclockwise) of the connecting arm 17 is It coincides (forward direction) with the rotational movement direction (counterclockwise) of the driven shaft 23 (FIG. 12C, FIG. 11A, FIG. 11B). Therefore, between P5 (FIG. 12 (b))-P6 (FIG. 12 (c))-P1 (FIG. 11 (a))-P2 (FIG. 11 (b)) (first swing range A1), The combined angular velocity of the driven shaft 23 is increased to a value obtained by adding the swing angular velocity of the articulated arm 17 to the rotational angular velocity of the constant speed rotational motion of the driven shaft 23.

(2−3)反転領域(A3)
さらに、第二の揺動範囲A2(減速領域)には、従動軸23の等速回転運動の回転角速度よりも、連接アーム17の揺動角速度の絶対値の方が大となる領域(反転領域A3)を含んでいる。
(2-3) Inversion area (A3)
Further, in the second swing range A2 (deceleration region), a region where the absolute value of the swing angular velocity of the articulated arm 17 is larger than the rotational angular velocity of the constant speed rotation of the driven shaft 23 (reversal region). A3) is included.

このように、動力伝達装置100の従動軸23は、往復直線運動(不等速直線運動)と不等速回転運動とを同時に行う。これによって、従動軸23に固定された乳鉢40(図2参照)に回転速度変化(合成角速度の変化)が付与されて被粉砕物が混ざりやすくなり、比較的短時間で微細かつ均一な粉末状に砕片化できる。なお、動力伝達装置100の歯車伝動機構120には中間歯車122が介在しているため、増速領域と減速領域との位置関係が実施例1とは逆になる。   As described above, the driven shaft 23 of the power transmission device 100 simultaneously performs the reciprocating linear motion (non-uniform linear motion) and the non-uniform rotational motion. As a result, a rotational speed change (change in the combined angular speed) is imparted to the mortar 40 (see FIG. 2) fixed to the driven shaft 23, and the material to be pulverized easily mixes, and the powder form is fine and uniform in a relatively short time. Can be broken into pieces. Since the intermediate gear 122 is interposed in the gear transmission mechanism 120 of the power transmission device 100, the positional relationship between the speed increasing area and the speed reducing area is opposite to that in the first embodiment.

以上の説明においては、粉末状の砕片に擂り潰し混合するための乾式擂り潰し装置や粉末状の物質を均質に混合・撹拌するための乾式撹拌装置について述べたが、スラリー状の砕片に擂り潰し混合するための湿式擂り潰し装置やスラリー状の物質を均質に混合・撹拌するための湿式撹拌装置に用いてもよい。また、乳棒50やへら60は本体ケーシング90に固定式としたが、電動モータ等によって駆動(例えば軸線周りでのその場回転)させてもよい。さらに、単一の乳鉢40に対して乳棒50やへら60を複数配置してもよい。そして、回転伝動機構20,120を歯車伝動機構で構成したが、Vベルト等の巻き掛け伝動機構で構成してもよい。   In the above description, a dry crushing apparatus for crushing and mixing powdery debris and a dry stirrer for mixing and stirring powdery substances are described. You may use for the wet crushing apparatus for mixing, and the wet stirring apparatus for mixing and stirring a slurry-like substance uniformly. Further, although the pestle 50 and the spatula 60 are fixed to the main body casing 90, they may be driven by an electric motor or the like (for example, in-situ rotation around the axis). Furthermore, a plurality of pestles 50 and spatulas 60 may be arranged for a single mortar 40. And although the rotation transmission mechanisms 20 and 120 were comprised with the gear transmission mechanism, you may comprise with winding transmission mechanisms, such as a V belt.

実施例では本発明に係る動力伝達装置を擂り潰し装置及び撹拌装置に用いた場合のみについて説明したが、本発明の動力伝達装置はこれらの用途に限定されるわけではない。例えば、振動式篩装置、試験管・ビーカ・フラスコ等の振盪装置等にも適用できる。   In the embodiment, only the case where the power transmission device according to the present invention is used in the crushing device and the stirring device has been described, but the power transmission device of the present invention is not limited to these applications. For example, the present invention can also be applied to a vibrating sieve device, a shaking device such as a test tube, a beaker, or a flask.

本発明に係る動力伝達装置を用いた擂り潰し装置の一例を示す正面部分断面図。The front fragmentary sectional view which shows an example of the crushing apparatus using the power transmission device which concerns on this invention. 図1の右側面部分断面図。FIG. 2 is a right side partial cross-sectional view of FIG. 1. 図2の平面図。The top view of FIG. 動力伝達装置の作動を説明する平面図。The top view explaining the action | operation of a power transmission device. 図4に続いて動力伝達装置の作動を説明する平面図。The top view explaining the action | operation of a power transmission device following FIG. 図4及び図5の作動に基づく従動軸の移動速度の変化を表わすグラフ。The graph showing the change of the moving speed of a driven shaft based on the action | operation of FIG.4 and FIG.5. 図4及び図5の作動に基づく従動軸の角速度の変化を表わすグラフ。The graph showing the change of the angular velocity of a driven shaft based on the action | operation of FIG.4 and FIG.5. 図1の擂り潰し装置に装着される撹拌用へらの正面図及び右側面図。The front view and right view of the stirring spatula with which the crushing apparatus of FIG. 1 is mounted | worn. 図8の撹拌用へらの作用を説明する平面図。The top view explaining the effect | action of the spatula for stirring of FIG. 本発明に係る動力伝達装置を用いた撹拌装置の一例を示す正面部分断面図。The front fragmentary sectional view which shows an example of the stirring apparatus using the power transmission device which concerns on this invention. 図4及び図5に代わる動力伝達装置の概略構造及び作動を説明する平面図。FIG. 6 is a plan view for explaining the schematic structure and operation of a power transmission device in place of FIG. 4 and FIG. 5. 図11に続いて動力伝達装置の概略構造及び作動を説明する平面図。The top view explaining the schematic structure and operation | movement of a power transmission device following FIG.

符号の説明Explanation of symbols

1 動力伝達装置
2 擂り潰し装置
3 撹拌装置
10 往復スライダクランク機構
11 偏心回転部
12 偏心カム(クランクアーム)
13 偏心カム支持軸(クランクアーム支持軸)
14 スライド移動部
15 スライダ
16 スライダ支持軸
17 連接アーム(揺動連接部)
20 歯車伝動機構(回転伝動機構)
21 原動軸
22 原動側小歯車(原動ギヤ)
23 従動軸
24 従動側大歯車(従動ギヤ)
30 電動モータ(回転駆動源)
31 モータ軸(駆動軸)
40 乳鉢(碗状容器)
50 乳棒(擂り潰し体)
60 へら(撹拌体)
90 本体ケーシング(本体部)
100 動力伝達装置
110 オフセットクランク機構
120 歯車伝動機構(回転伝動機構)
121 中間軸
122 中間歯車
A1 増速領域(第一の揺動範囲)
A2 減速領域(第二の揺動範囲)
A3 反転領域
K 往復直線運動軌跡
O1 モータ軸線(駆動軸線)
O2 原動軸線
O3 従動軸線
DESCRIPTION OF SYMBOLS 1 Power transmission device 2 Crushing device 3 Agitation device 10 Reciprocating slider crank mechanism 11 Eccentric rotation part 12 Eccentric cam (crank arm)
13 Eccentric cam support shaft (crank arm support shaft)
14 Slide moving part 15 Slider 16 Slider support shaft 17 Connecting arm (oscillating connecting part)
20 Gear transmission mechanism (Rotation transmission mechanism)
21 Drive shaft 22 Drive side small gear (drive gear)
23 driven shaft 24 driven large gear (driven gear)
30 Electric motor (rotation drive source)
31 Motor shaft (drive shaft)
40 Mortar (boiled container)
50 pestle (crushed body)
60 spatula (stirring body)
90 Main body casing (main body)
DESCRIPTION OF SYMBOLS 100 Power transmission device 110 Offset crank mechanism 120 Gear transmission mechanism (rotation transmission mechanism)
121 Intermediate shaft 122 Intermediate gear A1 Speed increase area (first swing range)
A2 Deceleration area (second swing range)
A3 Reverse area K Reciprocal linear motion locus O1 Motor axis (drive axis)
O2 Drive axis O3 Drive axis

Claims (9)

クランクアームが駆動軸から所定距離離間して回転運動する偏心回転部と、スライダが直線上を往復運動するスライド移動部と、前記クランクアームの支持軸及び前記スライダの支持軸をそれぞれ回転可能にかつ互いに平行状に軸支し、前記スライダの支持軸を中心として往復揺動運動しつつ前記スライド移動部とともに往復直線運動する揺動連接部と、を有する往復スライダクランク機構又はオフセットクランク機構と、
前記揺動連接部に回転可能に軸支され、前記偏心回転部のクランクアームの回転運動に同期して前記駆動軸周りに回転運動を行う原動軸と、その原動軸と平行状に配置され、前記揺動連接部に回転可能に軸支された従動軸と、を有し、当該原動軸から従動軸へ回転運動を伝達する回転伝動機構と、
を備え、
前記従動軸は、前記スライド移動部及び揺動連接部とともに往復直線運動を行いながら、前記原動軸から前記回転伝動機構を介して伝達された回転運動の回転角速度と、前記スライダの支持軸を中心とする前記揺動連接部の往復揺動運動に基づく揺動角速度とが合成された合成角速度を有する不等速回転運動を行うことを特徴とする動力伝達装置。
An eccentric rotating part in which the crank arm rotates away from the drive shaft by a predetermined distance, a slide moving part in which the slider reciprocates on a straight line, a support shaft of the crank arm, and a support shaft of the slider are respectively rotatable. A reciprocating slider crank mechanism or an offset crank mechanism, each having a reciprocating linearly reciprocating motion with the slide moving portion while reciprocatingly reciprocatingly swinging around a support shaft of the slider,
A driving shaft that is rotatably supported by the oscillating connecting portion, and that rotates around the drive shaft in synchronization with the rotating motion of the crank arm of the eccentric rotating portion, and is arranged in parallel with the driving shaft; A rotation shaft that is rotatably supported by the oscillating joint, and a rotational transmission mechanism that transmits rotational motion from the driving shaft to the driven shaft;
With
The driven shaft performs a reciprocating linear motion together with the slide moving portion and the oscillating connecting portion, and the rotational angular velocity of the rotational motion transmitted from the driving shaft via the rotational transmission mechanism and the support shaft of the slider are centered. A power transmission device that performs an inconstant rotational motion having a combined angular velocity obtained by combining a swing angular velocity based on a reciprocating swing motion of the swing connecting portion.
クランクアームが駆動軸から所定距離離間して等速回転運動する偏心回転部と、スライダが前記駆動軸の軸線と直交する直線上を往復運動するスライド移動部と、前記クランクアームの支持軸及び前記スライダの支持軸をそれぞれ回転可能にかつ互いに平行状に軸支し、前記スライダの支持軸を中心として往復揺動運動しつつ前記スライド移動部とともに往復直線運動する揺動連接部と、を有する往復スライダクランク機構と、
前記揺動連接部に回転可能に軸支されたクランクアームの支持軸と一体化され、前記偏心回転部のクランクアームの等速回転運動と同周期で前記駆動軸周りに等速回転運動を行う原動軸と、その原動軸と平行状に、かつ前記揺動連接部に回転可能に軸支されたスライダの支持軸と同芯状に配置され、その揺動連接部に回転可能に軸支された従動軸と、を有し、当該原動軸から従動軸へ等速回転運動を伝達する回転伝動機構と、
を備え、
前記従動軸は、前記スライド移動部及び揺動連接部とともに、前記原動軸が1回転する1サイクル毎に1往復する往復直線運動を行いながら、
(1)その1サイクルのうち、前記スライダの支持軸を中心とする前記揺動連接部の揺動運動方向が、前記原動軸から前記回転伝動機構を介して伝達された前記従動軸の回転運動方向と同方向になる第一の揺動範囲においては、前記原動軸から伝達された等速回転運動の回転角速度が前記揺動連接部の往復揺動運動に基づく揺動角速度と合成されることにより、増速された合成角速度を有する不等速回転運動を行い、
(2)前記1サイクルのうち、前記揺動連接部の揺動運動方向が前記従動軸の回転運動方向と逆方向になる第二の揺動範囲においては、前記等速回転運動の回転角速度が、前記往復揺動運動に基づく揺動角速度と合成されることにより減速された合成角速度を有する不等速回転運動を行うことを特徴とする動力伝達装置。
An eccentric rotating part in which the crank arm rotates at a constant speed away from the drive shaft at a constant speed, a slide moving part in which the slider reciprocates on a straight line perpendicular to the axis of the drive shaft, a support shaft of the crank arm, and the A reciprocating reciprocating portion having a support shaft of the slider rotatably and parallel to each other, and a reciprocating reciprocating motion about the support shaft of the slider and a reciprocating linear motion together with the slide moving portion. A slider crank mechanism;
It is integrated with the support shaft of the crank arm that is rotatably supported by the rocking connecting portion, and performs constant speed rotation around the drive shaft at the same period as the constant speed rotation of the crank arm of the eccentric rotation portion. The drive shaft is arranged in parallel with the drive shaft and concentrically with the support shaft of the slider rotatably supported by the swing connecting portion, and is rotatably supported by the swing connecting portion. A rotation transmission mechanism that transmits a constant speed rotation motion from the driving shaft to the driven shaft,
With
While the driven shaft performs a reciprocating linear motion that reciprocates once every cycle in which the driving shaft rotates once, together with the slide moving portion and the swing connecting portion,
(1) In the cycle, the rotational motion of the driven shaft is transmitted from the driving shaft via the rotational transmission mechanism in the direction of the swinging motion of the swinging connecting portion around the support shaft of the slider. In the first swing range that is the same direction as the direction, the rotational angular velocity of the constant speed rotational motion transmitted from the driving shaft is combined with the swing angular velocity based on the reciprocal swing motion of the swing joint. To perform a non-uniform rotational motion with an increased combined angular velocity,
(2) Of the one cycle, in the second swing range in which the swing motion direction of the swing joint is opposite to the rotational motion direction of the driven shaft, the rotational angular velocity of the constant speed rotational motion is A power transmission device that performs non-uniform speed rotation motion having a combined angular velocity that is decelerated by being combined with a swing angular velocity based on the reciprocating swing motion.
前記第二の揺動範囲には、前記往復揺動運動に基づく揺動角速度が前記等速回転運動の回転角速度を上回ることにより、前記従動軸の合成角速度が正負反転する反転領域を部分的に含む請求項2に記載の動力伝達装置。   In the second swing range, a reversal region in which the combined angular velocity of the driven shaft is reversed positively and negatively when a swing angular velocity based on the reciprocating swing motion exceeds a rotational angular velocity of the constant speed rotary motion is partially provided. The power transmission device according to claim 2 including. 前記回転伝動機構は、前記原動軸に固定された原動側小歯車と前記従動軸に固定された従動側大歯車とが噛み合わせられた歯車伝動機構で構成されている請求項1ないし3のいずれか1項に記載の動力伝達装置。   4. The rotation transmission mechanism is constituted by a gear transmission mechanism in which a driving side small gear fixed to the driving shaft and a driven side large gear fixed to the driven shaft are meshed with each other. The power transmission device according to claim 1. 請求項1ないし4のいずれか1項に記載の動力伝達装置と、
上下方向に配置された前記駆動軸を回転駆動する電動モータのような回転駆動源と、
上下方向に配置された前記従動軸の上端部に載置・固定され、その従動軸とともに前記往復直線運動と不等速回転運動とを行う、乳鉢のように擂り潰し対象物が収容された碗状容器と、
その碗状容器が前記往復直線運動と不等速回転運動とを行う際に、その内面に少なくとも一時的に接触して前記擂り潰し対象物を擂り潰して砕片化する、乳棒のような擂り潰し体と、
を備えることを特徴とする擂り潰し装置。
The power transmission device according to any one of claims 1 to 4,
A rotational drive source such as an electric motor that rotationally drives the drive shaft disposed in the vertical direction;
A bowl in which the object to be crushed is contained like a mortar, which is placed and fixed on the upper end portion of the driven shaft arranged in the vertical direction and performs the reciprocating linear motion and the non-uniform rotation motion with the driven shaft. A container,
When the bowl-like container performs the reciprocating linear movement and the inconstant speed rotation movement, it is at least temporarily in contact with the inner surface of the bowl-like container to crush and crush the object to be crushed into pieces. Body,
A crushing device characterized by comprising:
前記擂り潰し体は、前記碗状容器が前記往復直線運動と不等速回転運動とを行う間常時その碗状容器の内面に接触するように、かつ平面視で前記従動軸の軸線の往復直線運動軌跡上又はその延長上に位置するように、本体部に固定配置されるとともに下向きに押圧保持されている請求項5に記載の擂り潰し装置。   The crushed body is in a reciprocating straight line of the axis of the driven shaft in a plan view so that the bowl-shaped container always contacts the inner surface of the bowl-shaped container while performing the reciprocating linear motion and the non-uniform rotational motion. The crushing device according to claim 5, wherein the crushing device is fixedly disposed on the main body portion and pressed and held downward so as to be positioned on the movement locus or on an extension thereof. 前記碗状容器が前記往復直線運動と不等速回転運動とを行う際に、その内面に少なくとも一時的に接触して、前記擂り潰し体で擂り潰された擂り潰し対象物の砕片を撹拌するために、へら等の撹拌体が前記擂り潰し体の近傍に配置されている請求項5又は6に記載の擂り潰し装置。   When the bowl-shaped container performs the reciprocating linear movement and the inconstant speed rotation movement, it is at least temporarily in contact with the inner surface of the bowl-shaped container and agitates the debris of the ground object that has been ground by the ground body. Therefore, the crushing apparatus according to claim 5 or 6, wherein a stirring body such as a spatula is disposed in the vicinity of the crushing body. 前記撹拌体は、前記碗状容器の不等速回転運動における増速領域において、互いに接近した前記擂り潰し体と碗状容器の壁部との間にあってその碗状容器の壁部に接触する形態で位置し、それらによって擂り潰された擂り潰し対象物の砕片を受け止めて当該碗状容器の中央部へ向けて案内する請求項7に記載の擂り潰し装置。   The stirrer is in a speed increasing region in the inconstant speed rotational movement of the bowl-shaped container, and is between the crushing body and the wall of the bowl-shaped container that are close to each other and is in contact with the wall of the bowl-shaped container The crushing apparatus according to claim 7, wherein the crushing object is crushed by the crushing object and is guided toward the center of the bowl-shaped container. 請求項1ないし4のいずれか1項に記載の動力伝達装置と、
上下方向に配置された前記駆動軸を回転駆動する電動モータのような回転駆動源と、
上下方向に配置された前記従動軸の上端部に載置・固定され、その従動軸とともに前記往復直線運動と不等速回転運動とを行う、撹拌対象物が収容された碗状容器と、
その碗状容器が前記往復直線運動と不等速回転運動とを行う際に、その内面に少なくとも一時的に接触して前記撹拌対象物を撹拌するへら等の撹拌体と、
を備えることを特徴とする撹拌装置。
The power transmission device according to any one of claims 1 to 4,
A rotational drive source such as an electric motor that rotationally drives the drive shaft disposed in the vertical direction;
A bowl-shaped container containing a stirring object, which is placed and fixed on the upper end portion of the driven shaft arranged in the vertical direction, and performs the reciprocating linear motion and the non-uniform rotation motion with the driven shaft;
When the bowl-shaped container performs the reciprocating linear motion and the inconstant speed rotational motion, a stirring body such as a spatula that stirs the stirring target object at least temporarily in contact with the inner surface thereof;
A stirrer comprising:
JP2004314374A 2004-10-28 2004-10-28 Power transmission device, and grinder and agitator using the same Pending JP2006125511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314374A JP2006125511A (en) 2004-10-28 2004-10-28 Power transmission device, and grinder and agitator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314374A JP2006125511A (en) 2004-10-28 2004-10-28 Power transmission device, and grinder and agitator using the same

Publications (1)

Publication Number Publication Date
JP2006125511A true JP2006125511A (en) 2006-05-18

Family

ID=36720445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314374A Pending JP2006125511A (en) 2004-10-28 2004-10-28 Power transmission device, and grinder and agitator using the same

Country Status (1)

Country Link
JP (1) JP2006125511A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562996A (en) * 2012-01-12 2012-07-11 王祥章 Double-side complementary type mechanical power saver
CN102678873A (en) * 2012-05-31 2012-09-19 王祥章 Multi-group driving type mechanical force saver
CN103301918A (en) * 2013-06-08 2013-09-18 中南钻石股份有限公司 Automatic grinding and mixing device for ultrahard material
CN103639311A (en) * 2013-12-05 2014-03-19 北京联合大学 Feed device of cold bending machine
CN104132111A (en) * 2014-07-11 2014-11-05 华侨大学 Automatic-manual convertible lead screw nut mechanism
CN106179668A (en) * 2016-08-29 2016-12-07 丁继来 A kind of medical treatment quick lapping device of pediatric drugs product
CN106179681A (en) * 2016-08-04 2016-12-07 苏州毕诺佳医药技术有限公司 A kind of reducing mechanism for medical material
CN106475205A (en) * 2016-12-05 2017-03-08 严海良 A kind of medical medicinal material efficient grinding device
CN106622570A (en) * 2016-11-30 2017-05-10 广西大学 Hand-cranking medicinal material grinding device
CN107008551A (en) * 2017-05-28 2017-08-04 宋双燕 A kind of Chinese medicine lapping device
CN107029851A (en) * 2017-05-28 2017-08-11 孙培冈 A kind of department of traditional Chinese medicine Chinese medicine lapping device
CN107583720A (en) * 2017-10-09 2018-01-16 闫大勇 One kind building removal portable type rubbish mashing device
CN107952561A (en) * 2017-12-10 2018-04-24 广西壮族自治区环境监测中心站 Botany Experiment extraction mortar
CN108311245A (en) * 2017-04-08 2018-07-24 姜海 A kind of integrated electronic Chinese medicine grinding device
CN108325679A (en) * 2017-04-08 2018-07-27 李晓媛 A kind of Chinese medicine hand-ground device
CN108339626A (en) * 2017-04-08 2018-07-31 姜海 A kind of drug grinding device
CN108620210A (en) * 2018-01-25 2018-10-09 陈柯 A kind of biological medicine abrasive structure
CN108816445A (en) * 2018-05-03 2018-11-16 郑州郑先医药科技有限公司 A kind of chemical products research and development material grinding device
CN108816389A (en) * 2018-06-29 2018-11-16 金阿益 A kind of chemical industry liquid medicine processing tablet milling apparatus
CN108940508A (en) * 2018-06-07 2018-12-07 安徽清山艾草制品有限公司 A kind of grinding device extracted for wormwood
CN109513472A (en) * 2018-11-16 2019-03-26 陈伟景 Smash traditional chinese medicine device to pieces
CN109550550A (en) * 2018-11-14 2019-04-02 张喜光 Grinding device for Chinese medicine processing of crude drugs
CN110124826A (en) * 2019-06-17 2019-08-16 马亮 A kind of high molecular material production raw material grinding system
CN110479450A (en) * 2019-08-21 2019-11-22 佛山科学技术学院 A kind of bone tissue RNA milling and extracting method and grinding device
CN110508376A (en) * 2019-09-04 2019-11-29 湖南丹尼尔智能科技有限公司 A kind of Electric medicine grinder for processing of crude drugs grinding
CN110560239A (en) * 2019-09-25 2019-12-13 郭娟 Freeze-dried medicinal material grinding device
CN110860348A (en) * 2019-11-29 2020-03-06 徐威 Chinese-medicinal material preparation facilities
CN111420778A (en) * 2020-04-02 2020-07-17 王雷 Magnetic material and preparation system and method thereof
CN111871569A (en) * 2020-07-22 2020-11-03 云南中医药大学 Production device of traditional Chinese medicine sachet for preventing influenza
CN114309577A (en) * 2020-11-27 2022-04-12 株洲天桥舜臣选煤机械有限责任公司 Raw material mixing device for powder metallurgy
CN114308071A (en) * 2021-12-29 2022-04-12 中南大学 Method and equipment for recycling and preparing renewable platinum carbon and palladium carbon
CN114570506A (en) * 2022-03-03 2022-06-03 福能科技江苏有限公司 Preheating device for polycrystalline silicon production
CN114618660A (en) * 2022-03-30 2022-06-14 湘南学院 Industrial robot and use method thereof
CN115041051A (en) * 2022-08-12 2022-09-13 诸城市五洲化工涂料有限公司 Prevent volatile paint production of paint raw materials and use dispenser
CN115382647A (en) * 2022-10-27 2022-11-25 山东沃烯新材料科技有限公司 Grinding device and grinding method for graphene production and processing
CN115532402A (en) * 2022-09-29 2022-12-30 杜超杰 Grinder and using method thereof

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562996A (en) * 2012-01-12 2012-07-11 王祥章 Double-side complementary type mechanical power saver
CN102678873A (en) * 2012-05-31 2012-09-19 王祥章 Multi-group driving type mechanical force saver
CN103301918A (en) * 2013-06-08 2013-09-18 中南钻石股份有限公司 Automatic grinding and mixing device for ultrahard material
CN103639311A (en) * 2013-12-05 2014-03-19 北京联合大学 Feed device of cold bending machine
CN104132111A (en) * 2014-07-11 2014-11-05 华侨大学 Automatic-manual convertible lead screw nut mechanism
CN106179681A (en) * 2016-08-04 2016-12-07 苏州毕诺佳医药技术有限公司 A kind of reducing mechanism for medical material
CN106179668A (en) * 2016-08-29 2016-12-07 丁继来 A kind of medical treatment quick lapping device of pediatric drugs product
CN106622570A (en) * 2016-11-30 2017-05-10 广西大学 Hand-cranking medicinal material grinding device
CN106622570B (en) * 2016-11-30 2019-10-11 广西大学 A kind of hand-rail type medicinal material grinding device
CN106475205A (en) * 2016-12-05 2017-03-08 严海良 A kind of medical medicinal material efficient grinding device
CN108339626A (en) * 2017-04-08 2018-07-31 姜海 A kind of drug grinding device
CN108311245A (en) * 2017-04-08 2018-07-24 姜海 A kind of integrated electronic Chinese medicine grinding device
CN108325679A (en) * 2017-04-08 2018-07-27 李晓媛 A kind of Chinese medicine hand-ground device
CN107029851A (en) * 2017-05-28 2017-08-11 孙培冈 A kind of department of traditional Chinese medicine Chinese medicine lapping device
CN107008551A (en) * 2017-05-28 2017-08-04 宋双燕 A kind of Chinese medicine lapping device
CN107583720A (en) * 2017-10-09 2018-01-16 闫大勇 One kind building removal portable type rubbish mashing device
CN107583720B (en) * 2017-10-09 2019-01-18 江苏华泰建设工程有限公司 A kind of building removal portable type rubbish mashing device
CN107952561A (en) * 2017-12-10 2018-04-24 广西壮族自治区环境监测中心站 Botany Experiment extraction mortar
CN108620210A (en) * 2018-01-25 2018-10-09 陈柯 A kind of biological medicine abrasive structure
CN108816445A (en) * 2018-05-03 2018-11-16 郑州郑先医药科技有限公司 A kind of chemical products research and development material grinding device
CN108940508A (en) * 2018-06-07 2018-12-07 安徽清山艾草制品有限公司 A kind of grinding device extracted for wormwood
CN108816389A (en) * 2018-06-29 2018-11-16 金阿益 A kind of chemical industry liquid medicine processing tablet milling apparatus
CN109550550A (en) * 2018-11-14 2019-04-02 张喜光 Grinding device for Chinese medicine processing of crude drugs
CN109513472B (en) * 2018-11-16 2020-11-27 徐维伟 Smash traditional chinese medicine device to pieces
CN109513472A (en) * 2018-11-16 2019-03-26 陈伟景 Smash traditional chinese medicine device to pieces
CN110124826A (en) * 2019-06-17 2019-08-16 马亮 A kind of high molecular material production raw material grinding system
CN110124826B (en) * 2019-06-17 2020-10-09 苏德左 Raw materials grinding system is used in macromolecular material production
CN110479450A (en) * 2019-08-21 2019-11-22 佛山科学技术学院 A kind of bone tissue RNA milling and extracting method and grinding device
CN110508376A (en) * 2019-09-04 2019-11-29 湖南丹尼尔智能科技有限公司 A kind of Electric medicine grinder for processing of crude drugs grinding
CN110508376B (en) * 2019-09-04 2021-11-26 安徽盛安堂药业有限公司 A electronic medicine grinds for medicinal material processing is ground
CN110560239A (en) * 2019-09-25 2019-12-13 郭娟 Freeze-dried medicinal material grinding device
CN110560239B (en) * 2019-09-25 2020-12-25 武汉钧安制药有限公司 Freeze-dried medicinal material grinding device
CN110860348A (en) * 2019-11-29 2020-03-06 徐威 Chinese-medicinal material preparation facilities
CN111420778B (en) * 2020-04-02 2021-08-10 浙江岘峰磁材有限公司 Magnetic material and preparation system and method thereof
CN111420778A (en) * 2020-04-02 2020-07-17 王雷 Magnetic material and preparation system and method thereof
CN111871569A (en) * 2020-07-22 2020-11-03 云南中医药大学 Production device of traditional Chinese medicine sachet for preventing influenza
CN114309577A (en) * 2020-11-27 2022-04-12 株洲天桥舜臣选煤机械有限责任公司 Raw material mixing device for powder metallurgy
CN114308071A (en) * 2021-12-29 2022-04-12 中南大学 Method and equipment for recycling and preparing renewable platinum carbon and palladium carbon
CN114308071B (en) * 2021-12-29 2023-03-14 中南大学 Method and equipment for recycling and preparing renewable platinum carbon and palladium carbon
CN114570506A (en) * 2022-03-03 2022-06-03 福能科技江苏有限公司 Preheating device for polycrystalline silicon production
CN114618660A (en) * 2022-03-30 2022-06-14 湘南学院 Industrial robot and use method thereof
CN114618660B (en) * 2022-03-30 2022-11-25 湘南学院 Industrial robot and use method thereof
CN115041051A (en) * 2022-08-12 2022-09-13 诸城市五洲化工涂料有限公司 Prevent volatile paint production of paint raw materials and use dispenser
CN115532402A (en) * 2022-09-29 2022-12-30 杜超杰 Grinder and using method thereof
CN115382647A (en) * 2022-10-27 2022-11-25 山东沃烯新材料科技有限公司 Grinding device and grinding method for graphene production and processing

Similar Documents

Publication Publication Date Title
JP2006125511A (en) Power transmission device, and grinder and agitator using the same
RU2292943C1 (en) Turbo-mixer with the electromechanical vibration exciter
JP2006231320A (en) Experimental stirring device
US3850580A (en) Laboratory mixer
CN105854684A (en) Rapid stirring mechanism of pharmacy stirring machine
KR101195776B1 (en) planetary mixer
US20030081498A1 (en) Food processor comprising a sifter device
CN112871045B (en) Layering stirring mixer
KR101537909B1 (en) mixer
KR20160049966A (en) mixer
CN214810315U (en) Powder mixing machine for metal powder production
KR102315097B1 (en) Stirring device including blade
CN106040072B (en) A kind of &#34;-&#34; type oscillating agitator
CN109277041A (en) A kind of cement raw material processing mixing arrangement
CN209631110U (en) A kind of cement raw material processing mixing arrangement
CN217746765U (en) Mixer with differential rabbling mechanism
SU887201A1 (en) Mixer
CN213471697U (en) Stirring machine
RU2077941C1 (en) Mixer
CN209865905U (en) Multidirectional motion mixer capable of effectively improving mixing quality and efficiency
RU2547018C1 (en) Lever-and-planetary mixer
CN211487444U (en) Emulsification-balanced oil powder production device
CN217909926U (en) Chemical product processing device
CN208215681U (en) A kind of blender with vibrating base
UA17342U (en) Mixer-crusher