JP2006124670A - Prepreg and metal foil-clad laminate and printed circuit board using the same - Google Patents

Prepreg and metal foil-clad laminate and printed circuit board using the same Download PDF

Info

Publication number
JP2006124670A
JP2006124670A JP2005280457A JP2005280457A JP2006124670A JP 2006124670 A JP2006124670 A JP 2006124670A JP 2005280457 A JP2005280457 A JP 2005280457A JP 2005280457 A JP2005280457 A JP 2005280457A JP 2006124670 A JP2006124670 A JP 2006124670A
Authority
JP
Japan
Prior art keywords
group
resin
prepreg
general formula
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005280457A
Other languages
Japanese (ja)
Other versions
JP4736671B2 (en
Inventor
Kazumasa Takeuchi
一雅 竹内
Katsuyuki Masuda
克之 増田
Makoto Yanagida
真 柳田
Maki Yamaguchi
真樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005280457A priority Critical patent/JP4736671B2/en
Publication of JP2006124670A publication Critical patent/JP2006124670A/en
Application granted granted Critical
Publication of JP4736671B2 publication Critical patent/JP4736671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg having sufficiently excellent circuit filling property and heat resistance and giving a printed circuit board which can be bent and highly densely stored in a chasis of an electronic equipment. <P>SOLUTION: The prepreg comprises a fibrous base material and resin composition impregnated in the above material. The resin composition contains a polyamideimide resin and a naphthalene diglycidyl compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プリプレグ、金属箔張積層板及びこれらを使用した印刷回路板に関する。   The present invention relates to a prepreg, a metal foil-clad laminate, and a printed circuit board using these.

プリント配線板用の積層板は、電気絶縁性樹脂組成物をマトリックス樹脂とするプリプレグを所定枚数重ね、加熱加圧して一体化したものである。プリント配線板をサブトラクティブ法により形成する場合には、金属張積層板が用いられる。この金属張積層板は、プリプレグの表面(片面又は両面)に銅箔などの金属箔を重ねて加熱加圧することにより製造される。電気絶縁性樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド−トリアジン樹脂などのような熱硬化性樹脂が汎用される。また、フッ素樹脂やポリフェニレンエーテル樹脂などのような熱可塑性樹脂が、電気絶縁性樹脂として用いられることもある。   A laminated board for a printed wiring board is obtained by stacking a predetermined number of prepregs having an electrically insulating resin composition as a matrix resin, and integrating them by heating and pressing. When the printed wiring board is formed by a subtractive method, a metal-clad laminate is used. This metal-clad laminate is manufactured by stacking a metal foil such as a copper foil on the surface (one side or both sides) of the prepreg and heating and pressing. As the electrically insulating resin, a thermosetting resin such as a phenol resin, an epoxy resin, a polyimide resin, a bismaleimide-triazine resin or the like is generally used. In addition, a thermoplastic resin such as a fluororesin or a polyphenylene ether resin may be used as the electrically insulating resin.

一方、パーソナルコンピュータや携帯電話等の情報端末機器の普及に伴って、これらに搭載される印刷回路板は、小型化、実装の高密度化が進んでいる。そのような要求を満足するために、両面に回路を配した内層基板の回路上に、更にプリプレグ、金属箔を順に積層する工程を経て得られる多層印刷回路板が用いられている。その上、内層基板に形成された回路も高密度化されているため、プリプレグが内層基板の表面凹部にも隙間なく充填されるような高い回路充填性が必要となる。また、その実装形態はピン挿入型から表面実装型へ、さらにはプラスチック基板を使用したBGA(ボールグリッドアレイ)に代表されるエリアアレイ型へと進んでいる。BGAのようなベアチップを直接基板に実装する場合、チップと基板との接続は、熱超音波圧着によるワイヤボンディングで行うのが一般的である。この際、ベアチップを実装する基板は150℃以上の高温にさらされることになるため、電気絶縁性樹脂にはある程度の耐熱性が必要となる。   On the other hand, with the widespread use of information terminal devices such as personal computers and mobile phones, printed circuit boards mounted on them are becoming smaller and higher in mounting density. In order to satisfy such a requirement, a multilayer printed circuit board obtained through a process of further sequentially stacking a prepreg and a metal foil on a circuit of an inner layer substrate having circuits on both sides is used. In addition, since the circuit formed on the inner layer substrate is also densified, it is necessary to have a high circuit filling property that allows the prepreg to fill the surface recesses of the inner layer substrate without any gaps. Further, the mounting form has progressed from a pin insertion type to a surface mounting type, and further to an area array type represented by BGA (ball grid array) using a plastic substrate. When a bare chip such as a BGA is directly mounted on a substrate, the connection between the chip and the substrate is generally performed by wire bonding using thermosonic bonding. At this time, since the substrate on which the bare chip is mounted is exposed to a high temperature of 150 ° C. or higher, the electrically insulating resin needs to have a certain degree of heat resistance.

また、環境問題の観点からはんだの鉛フリー化が進み、それに伴いはんだの溶融温度が高温化しているため、基板にはより高い耐熱性が要求されるようになっている。それとともに、基板材料に対してはハロゲンフリーの要求が高まっているため、臭素系難燃剤の使用が難しくなっている。更に一度実装したチップを交換し得る性能、いわゆるリペア性も要求される場合がある。チップの交換時には、まず、チップ実装時と同程度の熱をかけてチップを基板から取り外し、その後、再度熱をかけてチップを再実装する。したがって、リペア性の要求される基板では、高温での熱サイクル的な耐熱衝撃性も要求される。従来の絶縁性樹脂系では、耐熱衝撃性が低いために、チップ交換時又はチップを交換した後に、繊維基材と樹脂との間で剥離を起こす場合がある。   In addition, lead-free solder has been developed from the viewpoint of environmental problems, and the melting temperature of solder has been increased accordingly, so that higher heat resistance is required for substrates. At the same time, halogen-free requirements for substrate materials are increasing, making it difficult to use brominated flame retardants. In addition, there is a case where the capability of replacing a chip once mounted, so-called repairability, is also required. When exchanging the chip, first, the chip is removed from the substrate by applying the same level of heat as the chip is mounted, and then the chip is remounted by applying heat again. Accordingly, a substrate that requires repairability is also required to have thermal cycle thermal shock resistance at a high temperature. In the conventional insulating resin system, since the thermal shock resistance is low, peeling may occur between the fiber base material and the resin when the chip is replaced or after the chip is replaced.

耐熱衝撃性、耐リフロー性、耐クラック性に優れ微細配線形成性を向上するために、繊維基材にポリアミドイミドを必須成分とする樹脂組成物を含浸したプリプレグが提案されている(例えば特許文献1を参照)。   A prepreg impregnated with a resin composition containing polyamideimide as an essential component on a fiber base material has been proposed in order to improve thermal wire impact resistance, reflow resistance, and crack resistance, and to improve fine wiring formation (for example, Patent Documents). 1).

近年、電子機器の更なる小型化、高性能化の要求に伴い、部品実装を施された印刷回路板は、限られた空間内に収納できることが必要とされている。かかる要求に対して、複数の印刷回路板を多段に配し、相互をワイヤーハーネスやフレキシブル配線板によって接続する方法がとられている。また、ポリイミドをベースとするフレキシブル基板と従来のリジッド基板とを多層化したリジッド−フレックス基板が用いられている。
特開2003−55486号公報
In recent years, with the demand for further downsizing and higher performance of electronic devices, printed circuit boards on which components are mounted are required to be housed in a limited space. In response to such demands, a method is adopted in which a plurality of printed circuit boards are arranged in multiple stages and connected to each other by a wire harness or a flexible wiring board. Further, a rigid-flex substrate in which a flexible substrate based on polyimide and a conventional rigid substrate are multilayered is used.
JP 2003-55486 A

しかしながら、従来、耐熱性に優れると同時に、回路充填性が高く、限られた空間内に高密度に充填可能な印刷回路板、そのような印刷回路板を提供可能なプリプレグ及び金属箔張積層板は、まだ提案されていない。   However, conventionally, a printed circuit board that is excellent in heat resistance and at the same time has a high circuit filling property and can be filled in a limited space at a high density, and a prepreg and a metal foil-clad laminate that can provide such a printed circuit board Has not yet been proposed.

本発明は、上記従来技術の問題点を解消し、回路充填性及び耐熱性に十分優れ、印刷回路板としたときに折り曲げ可能で電子機器の筐体内に高密度に収納可能な印刷回路板、並びにその印刷回路板を与えるプリプレグ及び金属箔張積層板を提供するものである。   The present invention solves the above-mentioned problems of the prior art, is sufficiently excellent in circuit filling properties and heat resistance, can be bent when used as a printed circuit board, and can be stored in a high density in the casing of an electronic device, In addition, the present invention provides a prepreg and a metal foil-clad laminate that provide the printed circuit board.

本発明は、次のものに関する。   The present invention relates to the following.

(1)繊維基材と、これに含浸した樹脂組成物と、を備え、その樹脂組成物が、ポリアミドイミド樹脂と、ナフタレンジグリシジル化合物とを含むものであるプリプレグ。   (1) A prepreg comprising a fiber substrate and a resin composition impregnated therein, wherein the resin composition contains a polyamideimide resin and a naphthalenediglycidyl compound.

本発明のプリプレグが上記課題を解決できる要因として、樹脂組成物を加熱硬化させると、ポリアミドイミド樹脂のイミド骨格とナフタレングリシジルエーテル化合物との相互作用により耐熱性が飛躍的に向上することが考えられる。また、ポリアミドイミド樹脂のアミド骨格が柔軟性を有しており、ナフタレングリシジルエーテル化合物がその柔軟性を低下させないために、可撓性が高い状態に維持されることが推測される。さらには、ポリアミドイミド樹脂の分子間に、平面的なナフタレングリシジルエーテル化合物が配されることにより、樹脂組成物の硬化体の弾性が十分なものになることが考えられる。ただし、要因はこれらに限定されない。   As a factor that the prepreg of the present invention can solve the above problems, when the resin composition is heated and cured, it is considered that the heat resistance is drastically improved by the interaction between the imide skeleton of the polyamideimide resin and the naphthalene glycidyl ether compound. . Moreover, since the amide skeleton of the polyamide-imide resin has flexibility and the naphthalene glycidyl ether compound does not reduce the flexibility, it is presumed that the flexibility is maintained in a high state. Furthermore, it is considered that the elasticity of the cured body of the resin composition becomes sufficient by arranging a planar naphthalene glycidyl ether compound between the molecules of the polyamideimide resin. However, the factors are not limited to these.

また、本発明のプリプレグは、優れた成形性及び高い耐熱衝撃性を示す。ポリアミドイミド樹脂は、他の熱可塑性樹脂と比較すると、高い耐熱性を示すが成形性に劣るところ、ナフタレングリシジルエーテル化合物を含有する本発明のプリプレグに対して加熱加圧処理を施すと、単にポリアミドイミド樹脂を含む場合よりも更に耐熱性が高まると共に成形性が向上する。このように優れた成形性を示す要因として、本発明のプリプレグに含まれる樹脂組成物は、熱処理の際に溶融粘度の低下度合が、従来のものと比較して大きくなることが考えられる。また、高い耐熱衝撃性を示す要因として、本発明のプリプレグを熱処理して得られる硬化物は、その架橋点間分子量が従来のものと比較して小さくなることが推測される。ただし、要因はこれらに限定されない。   Moreover, the prepreg of the present invention exhibits excellent moldability and high thermal shock resistance. The polyamide-imide resin shows high heat resistance compared to other thermoplastic resins but is inferior in moldability. When the prepreg of the present invention containing a naphthalene glycidyl ether compound is subjected to heat and pressure treatment, it is simply polyamide. The heat resistance is further increased and the moldability is improved as compared with the case of containing an imide resin. As a factor showing such excellent moldability, it is considered that the resin composition contained in the prepreg of the present invention has a higher degree of decrease in melt viscosity than that of the conventional one during heat treatment. Moreover, as a factor which shows high thermal shock resistance, it is estimated that the cured | curing material obtained by heat-processing the prepreg of this invention becomes small compared with the conventional molecular weight between the crosslinking points. However, the factors are not limited to these.

(2)ポリアミドイミド樹脂は、下記一般式(1);

Figure 2006124670

(式(1)中、R、Rは2価のアルキル基、R、R、R、Rは1価のアルキル基又は置換基を有する1価のアルキル基、R、Rは1価の芳香族基又は置換基を有する1価の芳香族基を示し、m、nはそれぞれ0から40の整数で、1≦n+m≦50を満足する。)
で表される構造を有するポリアミドイミド樹脂を含むものである、項(1)に記載のプリプレグ。本発明のプリプレグは、このようなポリアミドイミド樹脂を含むことにより、繊維基材や金属箔との接着性が更に高くなり、また耐熱性が一層向上し、さらには、より柔軟になって容易に折り曲げ可能となる。 (2) The polyamideimide resin has the following general formula (1):
Figure 2006124670

(In the formula (1), R 1 and R 2 are divalent alkyl groups, R 3 , R 4 , R 7 and R 8 are monovalent alkyl groups or monovalent alkyl groups having a substituent, R 5 , R 6 represents a monovalent aromatic group or a monovalent aromatic group having a substituent, and m and n are each an integer of 0 to 40 and satisfy 1 ≦ n + m ≦ 50.
The prepreg according to item (1), comprising a polyamideimide resin having a structure represented by: By including such a polyamide-imide resin, the prepreg of the present invention is further improved in adhesion to a fiber base material and metal foil, further improved in heat resistance, and more flexible and easily. Can be bent.

(3)ポリアミドイミド樹脂は、下記一般式(2);

Figure 2006124670

で表される構造を有するポリアミドイミド樹脂を含むものである、項(1)又は(2)に記載のプリプレグ。本発明のプリプレグは、このようなポリアミドイミド樹脂を含むことにより、吸湿時の耐熱性に一層優れたものとなる。 (3) The polyamideimide resin has the following general formula (2):
Figure 2006124670

The prepreg according to Item (1) or (2), comprising a polyamideimide resin having a structure represented by: By including such a polyamideimide resin, the prepreg of the present invention is further excellent in heat resistance during moisture absorption.

(4)ポリアミドイミド樹脂が、下記一般式(3a)で表されるジアミン、下記一般式(1a)又は下記一般式(1b)で表される芳香族環を2個以上有するジアミン及びシロキサンジアミンの混合物と無水トリメリット酸とを反応させて得られるジイミドジカルボン酸を含む混合物に、ジイソシアネート化合物を反応させて得られるポリアミドイミド樹脂を含むものである、項(1)〜(3)のいずれか一項に記載のプリプレグ。本発明のプリプレグは、このようなポリアミドイミド樹脂を含むことにより、繊維基材や金属箔との接着性が更に高くなり、また耐熱性が一層向上し、さらには、より柔軟になって容易に折り曲げ可能となる。

Figure 2006124670

(式(1a)及び(1b)中、Xは炭素数1〜3の2価の脂肪族炭化水素基、炭素数1〜3の2価のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基、単結合又は下記一般式(2a)若しくは下記一般式(2b)で表される2価の基を示し、Yは炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基又はカルボニル基を示し、R、R及びRはそれぞれ独立に水素原子、水酸基、メトキシ基、メチル基又はハロゲン化メチル基を示す。但し、Zは、炭素数1〜3の2価の脂肪族炭化水素基、炭素数1〜3の2価のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基又は単結合を示す。)
Figure 2006124670
(4) A diamine having a polyamideimide resin represented by the following general formula (3a), a diamine having two or more aromatic rings represented by the following general formula (1a) or the following general formula (1b), and a siloxane diamine In any one of Items (1) to (3), comprising a polyamideimide resin obtained by reacting a diisocyanate compound with a mixture containing diimidedicarboxylic acid obtained by reacting the mixture with trimellitic anhydride. The prepreg as described. By including such a polyamide-imide resin, the prepreg of the present invention is further improved in adhesion to a fiber base material and metal foil, further improved in heat resistance, and more flexible and easily. Can be bent.
Figure 2006124670

(In the formulas (1a) and (1b), X represents a divalent aliphatic hydrocarbon group having 1 to 3 carbon atoms, a divalent halogenated aliphatic hydrocarbon group having 1 to 3 carbon atoms, a sulfonyl group, and an ether group. , A carbonyl group, a single bond, or a divalent group represented by the following general formula (2a) or the following general formula (2b), Y represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. A halogenated aliphatic hydrocarbon group, a sulfonyl group, an ether group or a carbonyl group, and R 1 , R 2 and R 3 each independently represent a hydrogen atom, a hydroxyl group, a methoxy group, a methyl group or a halogenated methyl group. However, Z shows a C1-C3 bivalent aliphatic hydrocarbon group, a C1-C3 bivalent halogenated aliphatic hydrocarbon group, a sulfonyl group, an ether group, a carbonyl group, or a single bond. .)
Figure 2006124670

(5)繊維基材が厚さ5〜100μmのガラスクロスである、項(1)〜(4)のいずれか一項に記載のプリプレグ。このようなプリプレグは、一層容易に、任意に折り曲げることができる。また、かかるプリプレグは、これを用いて印刷回路板を形成する際に、温度変化や吸湿などに伴い生じる寸法変化をより小さくすることが可能となる。   (5) The prepreg according to any one of Items (1) to (4), wherein the fiber base material is a glass cloth having a thickness of 5 to 100 μm. Such a prepreg can be easily and arbitrarily bent. Further, such a prepreg can further reduce a dimensional change caused by a temperature change or moisture absorption when a printed circuit board is formed using the prepreg.

(6)項(1)〜(5)のいずれか一項に記載のプリプレグを所定枚数重ねて加熱することにより樹脂組成物を硬化して得られる基板と、その基板の片側又は両側に設けられた金属箔と、を備える金属箔張積層板。   (6) A substrate obtained by curing a resin composition by heating a predetermined number of the prepregs according to any one of (1) to (5), and provided on one or both sides of the substrate. A metal foil-clad laminate comprising:

(7)項(6)記載の金属箔張積層板に回路を形成して得られる印刷回路板。   (7) A printed circuit board obtained by forming a circuit on the metal foil-clad laminate according to item (6).

本発明によれば、回路充填性及び耐熱性に十分優れ、印刷回路板としたときに折り曲げ可能で電子機器の筐体内に高密度に収納可能な印刷回路板、並びにその印刷回路板を与えるプリプレグ及び金属箔張積層板を提供することができる。また、本発明におけるプリプレグで得られる金属箔張積層板及び印刷回路板は、任意に折り曲げ可能であり、成形性、寸法安定性、耐熱衝撃性にも優れる。   According to the present invention, a printed circuit board that is sufficiently excellent in circuit filling property and heat resistance, can be bent when formed into a printed circuit board, and can be stored in a high density in a casing of an electronic device, and a prepreg that provides the printed circuit board In addition, a metal foil-clad laminate can be provided. Moreover, the metal foil tension laminated board and printed circuit board obtained by the prepreg in this invention can be bent arbitrarily, and are excellent also in a moldability, dimensional stability, and a thermal shock resistance.

以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

本発明のプリプレグは、繊維基材と、これに含浸した樹脂組成物とを備え、その樹脂組成物が、ポリアミドイミド樹脂と、ナフタレンジグリシジル化合物とを含むものであることを特徴の一つとしている。ナフタレンジグリシジル化合物は、主に、繊維基材に含浸したときに樹脂組成物の溶融粘度を低下させるとともに、硬化後の樹脂組成物の耐熱性を向上させる。   The prepreg of the present invention includes a fiber base material and a resin composition impregnated therein, and the resin composition includes a polyamideimide resin and a naphthalenediglycidyl compound. The naphthalene diglycidyl compound mainly reduces the melt viscosity of the resin composition when impregnated into the fiber base material, and improves the heat resistance of the cured resin composition.

ポリアミドイミド樹脂及びナフタレンジグリシジル化合物を含む樹脂組成物に熱等を加えると、ポリアミドイミド樹脂のアミド基とナフタレングリシジル化合物のグリシジル基とが主に反応して、硬化体を形成すると考えられる。   When heat or the like is applied to a resin composition containing a polyamideimide resin and a naphthalene diglycidyl compound, the amide group of the polyamideimide resin and the glycidyl group of the naphthalene glycidyl compound mainly react to form a cured product.

本発明で用いるナフタレンジグリシジル化合物は、置換基を有していてもよいナフタレンのジグリシジルエーテルであれば、特に限定されない。ナフタレンジグリシジル化合物としては、ナフタレンジグリシジルエーテルの他、ナフタレン環に適宜置換基を有しているナフタレンジグリシジルエーテル、複数のナフタレンジグリシジル化合物のナフタレン環をメタンジイル基で結合してなるノボラック型のオリゴマなども使用でき、更に粘度を低下させるために分子蒸留を行ったものも使用できる。ナフタレンジグリシジル化合物としては、例えば、2,6−ナフタレンジグリシジルエーテル、1,4−ナフタレンジグリシジルエーテル、1,5−ナフタレンジグリシジルエーテル、1,8−ナフタレンジグリシジルエーテル、1,5ジメチル−2,6−ナフタレンジグリシジルエーテルなどが例示できる。市販品としては、HP−4032、HP−4032D(以上大日本インキ株式会社製商品名)、ESN−165、ESN−195、ESN−355、ESN−375(以上新日鐵化学株式会社製商品名)等を使用することができる。これらは1種を単独で又は2種以上を組み合わせて用いられる。   The naphthalene diglycidyl compound used in the present invention is not particularly limited as long as it is a diglycidyl ether of naphthalene which may have a substituent. As the naphthalene diglycidyl compound, naphthalene diglycidyl ether, naphthalene diglycidyl ether having an appropriate substituent on the naphthalene ring, and a novolac type formed by connecting naphthalene rings of a plurality of naphthalene diglycidyl compounds with a methanediyl group Oligomers can also be used, and those subjected to molecular distillation to lower the viscosity can also be used. Examples of the naphthalenediglycidyl compound include 2,6-naphthalenediglycidyl ether, 1,4-naphthalenediglycidyl ether, 1,5-naphthalenediglycidyl ether, 1,8-naphthalenediglycidyl ether, 1,5 dimethyl- Examples include 2,6-naphthalenediglycidyl ether. Commercially available products include HP-4032, HP-4032D (trade name, manufactured by Dainippon Ink Co., Ltd.), ESN-165, ESN-195, ESN-355, ESN-375 (trade name, manufactured by Nippon Steel Chemical Co., Ltd.). ) Etc. can be used. These are used singly or in combination of two or more.

これらのナフタレンジグリシジル化合物とポリアミドイミド樹脂とを含む樹脂組成物を繊維基材に含浸した場合には、ナフタレンジグリシジル化合物により樹脂の溶融粘度を低下することが可能であり、成形性に優れたプリプレグを得ることができる。本発明に使用される樹脂組成物は、ナフタレンジグリシジル化合物及びポリアミドイミド樹脂以外の樹脂や化合物等を適宜含んでいてもよく、例えばエポキシ樹脂などの熱硬化性樹脂を含んでいてもよい。また樹脂組成物に配合するナフタレンジグリシジル化合物の量は、ポリアミドイミド樹脂のアミド基に対して、ナフタレンジグリシジル化合物のグリシジル基の総量が当モル以下の範囲、すなわち、アミド基1モルに対してグリシジル基が1モル以下の範囲で使用することが好ましく、アミド基の総量に対するグリシジル基の総量で1〜95モル%、すなわちアミド基の総量100モル部に対するグリシジル基の総量で1〜95モル部がより好ましく、アミド基の総量に対するグリシジル基の総量で20〜80モル%、すなわちアミド基の総量100モル部に対するグリシジル基の総量で20〜80モル部が更に好ましい。なお樹脂組成物が、エポキシ樹脂を含む場合には、樹脂組成物に配合するナフタレンジグリシジル化合物の量は、ポリアミドイミド樹脂のアミド基に対して、ナフタレンジグリシジル化合物とエポキシ樹脂のグリシジル基の総量が当モル以下の範囲、すなわち、アミド基1モルに対して、ナフタレンジグリシジル化合物及びエポキシ樹脂のグリシジル基の総量が1モル以下の範囲で使用することが好ましく、アミド基の総量に対するグリシジル基の総量で1〜95モル%がより好ましく、20〜80モル%が更に好ましい。当モルより多いとグリシジル基と反応するアミド基が少なくなり、熱硬化性樹脂として硬化性が低下する上、未反応のナフタレンジグリシジル化合物の存在により耐熱性が低下する。1モル%より少ないと溶融粘度の低下効果が不十分となる。   When a fiber base material is impregnated with a resin composition containing these naphthalene diglycidyl compounds and a polyamideimide resin, the naphthalene diglycidyl compound can reduce the melt viscosity of the resin and has excellent moldability. A prepreg can be obtained. The resin composition used in the present invention may appropriately contain a resin or a compound other than the naphthalene diglycidyl compound and the polyamideimide resin, and may contain a thermosetting resin such as an epoxy resin. The amount of naphthalene diglycidyl compound to be blended in the resin composition is within a range where the total amount of glycidyl groups of the naphthalene diglycidyl compound is equal to or less than that of the amide group of the polyamideimide resin, that is, 1 mol of the amide group. The glycidyl group is preferably used in an amount of 1 mol or less, and is 1 to 95 mol% in terms of the total amount of glycidyl groups with respect to the total amount of amide groups, that is, 1 to 95 mol parts in total amount of glycidyl groups with respect to 100 mol parts of amide groups. More preferably, the total amount of glycidyl groups with respect to the total amount of amide groups is 20 to 80 mol%, that is, the total amount of glycidyl groups with respect to 100 mol parts of the total amount of amide groups is still more preferable. When the resin composition contains an epoxy resin, the amount of naphthalene diglycidyl compound to be blended in the resin composition is the total amount of the naphthalene diglycidyl compound and the glycidyl group of the epoxy resin with respect to the amide group of the polyamideimide resin. Is in the range of less than this mole, that is, the total amount of glycidyl groups of the naphthalene diglycidyl compound and the epoxy resin is preferably not more than 1 mol with respect to 1 mol of amide groups. The total amount is more preferably 1 to 95 mol%, further preferably 20 to 80 mol%. When the amount exceeds this mole, the number of amide groups that react with the glycidyl group decreases, the curability of the thermosetting resin decreases, and the heat resistance decreases due to the presence of the unreacted naphthalene diglycidyl compound. If it is less than 1 mol%, the effect of decreasing the melt viscosity becomes insufficient.

本発明で用いるポリアミドイミド樹脂は、前記一般式(1)又は前記一般式(2)の構造を有するものを含むことが好ましい。前記一般式(1)中、R、Rは炭素数1〜10の2価のアルキル基が好ましい。またR、R、R、Rは炭素数1〜3の1価のアルキル基又は置換基を有する1価のアルキル基が好ましい。R、Rの1価の芳香族基又は置換基を有する1価の芳香族基としては、フェニル基が好ましい。前記一般式(1)又は前記一般式(2)の構造を有するこれらのポリアミドイミド樹脂は、好ましくは非プロトン性溶媒の存在下、前記一般式(3a)で表されるジアミン、芳香族環を2個以上有するジアミン及びシロキサンジアミンの混合物と無水トリメリット酸とを反応させて得られるジイミドジカルボン酸を含む混合物に、更にジイソシアネートを反応させて得られることが好ましい。これらは1種を単独で又は2種以上を組み合わせて用いられる。 The polyamideimide resin used in the present invention preferably includes those having the structure of the general formula (1) or the general formula (2). In the general formula (1), R 1 and R 2 are preferably a divalent alkyl group having 1 to 10 carbon atoms. R 3 , R 4 , R 7 and R 8 are preferably a monovalent alkyl group having 1 to 3 carbon atoms or a monovalent alkyl group having a substituent. The monovalent aromatic group having R 5 or R 6 or the monovalent aromatic group having a substituent is preferably a phenyl group. These polyamideimide resins having the structure of the general formula (1) or the general formula (2) preferably have a diamine or an aromatic ring represented by the general formula (3a) in the presence of an aprotic solvent. It is preferably obtained by further reacting a diisocyanate with a mixture containing diimide dicarboxylic acid obtained by reacting a mixture of two or more diamines and siloxane diamines with trimellitic anhydride. These are used singly or in combination of two or more.

更に、ポリアミドイミド樹脂は、前記一般式(3a)で表されるジアミンのモルaと、それ以外の芳香族環を2個以上有するジアミン(芳香族ジアミン)及びシロキサンジアミンの合計モルbとの混合比率が、a/b=0.1/99.9〜99.9/0.1(モル比)であると好ましく、a/b=10/90〜50/50であると更に好ましく、a/b=20/80〜40/60であるとより一層好ましい。a/bをこの数値範囲とすることにより、吸湿耐熱性により優れた基板とすることができる。   Furthermore, the polyamide-imide resin is a mixture of a mole a of the diamine represented by the general formula (3a) and a total mole b of a diamine having two or more other aromatic rings (aromatic diamine) and a siloxane diamine. The ratio is preferably a / b = 0.1 / 99.9 to 99.9 / 0.1 (molar ratio), more preferably a / b = 10/90 to 50/50, It is even more preferable that b = 20/80 to 40/60. By setting a / b within this numerical range, a substrate superior in moisture absorption heat resistance can be obtained.

前記一般式(3a)で表されるジアミンとしては、市販品であるワンダミン(新日本理化株式会社製商品名)が例示できる。芳香族ジアミン(芳香族環を2個以上有するジアミン)としては、上記一般式(1a)又は(1b)で表されるものが好ましい。より具体的には、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ジアミノジフェニルスルホン(DDS)、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ジメチルビフェニル−4,4’−ジアミン、2,2’−ビス(トリフルオロメチル)ビフェニル−4,4’−ジアミン、2,6,2’,6’−テトラメチル−ビフェニル−4,4’−ジアミン、5,5’−ジメチル−2,2’−スルフォニル−ビフェニル−4,4’−ジアミン、3,3’−ジヒドロキシビフェニル−4,4’−ジアミン、(4,4’−ジアミノ)ジフェニルエーテル、(4,4’−ジアミノ)ジフェニルスルホン、(4,4’−ジアミノ)ベンゾフェノン、(3,3’―ジアミノ)ベンゾフェノン、(4,4’−ジアミノ)ジフェニルメタン、(4,4’−ジアミノ)ジフェニルエーテル、(3,3’―ジアミノ)ジフェニルエーテル等が例示できる。これらは1種を単独で又は2種以上を組み合わせて用いられる。   Examples of the diamine represented by the general formula (3a) include commercially available wandamine (trade name, manufactured by Shin Nippon Chemical Co., Ltd.). As the aromatic diamine (a diamine having two or more aromatic rings), those represented by the general formula (1a) or (1b) are preferable. More specifically, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), bis [4- (3-aminophenoxy) phenyl] sulfone, diaminodiphenylsulfone (DDS), bis [ 4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (4-aminophenoxy) phenyl] methane, 4,4 ′ -Bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ketone, 1,3-bis (4-aminophenoxy) benzene 1,4-bis (4-aminophenoxy) benzene, 2,2′-dimethylbiphenyl-4,4′-diamine, 2, '-Bis (trifluoromethyl) biphenyl-4,4'-diamine, 2,6,2', 6'-tetramethyl-biphenyl-4,4'-diamine, 5,5'-dimethyl-2,2 ' -Sulfonyl-biphenyl-4,4'-diamine, 3,3'-dihydroxybiphenyl-4,4'-diamine, (4,4'-diamino) diphenyl ether, (4,4'-diamino) diphenylsulfone, (4 , 4′-diamino) benzophenone, (3,3′-diamino) benzophenone, (4,4′-diamino) diphenylmethane, (4,4′-diamino) diphenyl ether, (3,3′-diamino) diphenyl ether, etc. it can. These are used singly or in combination of two or more.

本発明で使用するシロキサンジアミンとしては、以下に示す一般式(3)〜(6)のものが挙げられる。

Figure 2006124670
Examples of the siloxane diamine used in the present invention include those represented by the following general formulas (3) to (6).
Figure 2006124670

なお、シロキサンジアミンとして、反応性シリコンオイルKF−8010(信越化学工業株式会社製商品名、アミン当量430)、上記一般式(3)で表されるシロキサンジアミンとしては、X−22−161AS(アミン当量450)、X−22−161A(アミン当量840)、X−22−161B(アミン当量1500)(以上、信越化学工業株式会社製商品名)、BY16−853(アミン当量650)、BY16−853B(アミン当量2200)、(以上、東レダウコーニングシリコーン株式会社製商品名)等が例示できる。上記一般式(6)で表されるシロキサンジアミンとしては、X−22−9409(アミン当量700)、X−22−1660B−3(アミン当量2200)(以上、信越化学工業株式会社製商品名)等が例示できる。上述のシロキサンジアミンは、1種を単独で又は2種以上を組み合わせて用いられる。   As siloxane diamine, reactive silicon oil KF-8010 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., amine equivalent 430), and siloxane diamine represented by the above general formula (3), X-22-161AS (amine) Equivalent 450), X-22-161A (amine equivalent 840), X-22-161B (amine equivalent 1500) (above, trade name manufactured by Shin-Etsu Chemical Co., Ltd.), BY16-853 (amine equivalent 650), BY16-853B (Amine equivalent 2200) (above, trade name of Toray Dow Corning Silicone Co., Ltd.) and the like. As the siloxane diamine represented by the general formula (6), X-22-9409 (amine equivalent 700), X-22-1660B-3 (amine equivalent 2200) (above, trade name manufactured by Shin-Etsu Chemical Co., Ltd.) Etc. can be illustrated. The above siloxane diamines are used alone or in combination of two or more.

本発明で用いるポリアミドイミド樹脂の合成において、前記のジアミン以外に、脂肪族ジアミン類として、下記一般式(7)で表される化合物を併用することができる。

Figure 2006124670

(式(7)中、Xはメチレン基(メタンジイル基)、スルホニル基、エーテル基、カルボニル基又は単結合を示し、R及びRはそれぞれ水素原子、アルキル基、フェニル基又は置換フェニル基を示し、pは1〜50の整数を示す。) In the synthesis of the polyamideimide resin used in the present invention, in addition to the diamine, a compound represented by the following general formula (7) can be used in combination as the aliphatic diamine.
Figure 2006124670

(In formula (7), X represents a methylene group (methanediyl group), a sulfonyl group, an ether group, a carbonyl group or a single bond, and R 1 and R 2 represent a hydrogen atom, an alkyl group, a phenyl group or a substituted phenyl group, respectively. P represents an integer of 1 to 50.)

及びRの具体例としては、水素原子、炭素数が1〜3のアルキル基、フェニル基又は置換フェニル基、すなわち置換基を有するフェニル基が好ましく、フェニル基に結合していてもよい置換基としては、炭素数1〜3のアルキル基、ハロゲン原子等が例示できる。脂肪族ジアミンは、低弾性率及び高Tgの両立の観点から、上記一般式(7)におけるXがエーテル基であることが好ましい。このような脂肪族ジアミンの市販品としては、ジェファーミンD−400(アミン当量400)、ジェファーミンD−2000(アミン当量1000)等(以上、サンテクノケミカル社製商品名)が例示できる。 Specific examples of R 1 and R 2 are preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a phenyl group or a substituted phenyl group, that is, a phenyl group having a substituent, and may be bonded to the phenyl group. Examples of the substituent include an alkyl group having 1 to 3 carbon atoms and a halogen atom. In the aliphatic diamine, X in the general formula (7) is preferably an ether group from the viewpoint of achieving both low elastic modulus and high Tg. Examples of commercially available products of such aliphatic diamines include Jeffamine D-400 (amine equivalent 400), Jeffamine D-2000 (amine equivalent 1000), and the like (trade names manufactured by Sun Techno Chemical Co., Ltd.).

本発明のポリアミドイミド樹脂の製造に用いるジイソシアネートとしては、脂肪族ジイソシアネート又は芳香族ジイソシアネートを用いることができ、好適には下記一般式(8)で表される化合物を用いることができる。

Figure 2006124670
As the diisocyanate used for producing the polyamideimide resin of the present invention, aliphatic diisocyanate or aromatic diisocyanate can be used, and a compound represented by the following general formula (8) can be preferably used.
Figure 2006124670

一般式(8)中、Dは少なくとも1つの芳香環を有する2価の有機基、又は、2価の脂肪族炭化水素基であり、−C−CH−C−で表される基、トリレン基、ナフチレン基、ヘキサメチレン基、2,2,4−トリメチルヘキサメチレン基及びイソホロン基からなる群より選ばれる少なくとも1つの基であることが好ましい。 In General Formula (8), D is a divalent organic group having at least one aromatic ring or a divalent aliphatic hydrocarbon group, and —C 6 H 4 —CH 2 —C 6 H 4 — It is preferably at least one group selected from the group consisting of a group represented by: a tolylene group, a naphthylene group, a hexamethylene group, a 2,2,4-trimethylhexamethylene group, and an isophorone group.

上記一般式(8)で表されるジイソシアネートとしては、脂肪族ジイソシアネート又は芳香族ジイソシアネートを用いることができるが、芳香族ジイソシアネートを用いることが好ましく、両者を併用することが特に好ましい。   As the diisocyanate represented by the general formula (8), an aliphatic diisocyanate or an aromatic diisocyanate can be used, but it is preferable to use an aromatic diisocyanate, and it is particularly preferable to use both in combination.

芳香族ジイソシアネートとしては、4,4’−ジフェニルメタンジイソシアネート(MDI)、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ナフタレン−1,5−ジイソシアネート、2,4−トリレンダイマー等が例示でき、これらの中ではMDIを用いることが特に好ましい。芳香族ジイソシアネートとしてMDIを用いることにより、得られるポリアミドイミド樹脂の可撓性を向上させることができる。   Examples of aromatic diisocyanates include 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, 2,4-tolylene dimer, and the like. Among them, it is particularly preferable to use MDI. By using MDI as the aromatic diisocyanate, the flexibility of the resulting polyamideimide resin can be improved.

脂肪族ジイソシアネートとしては、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート等が例示できる。   Examples of the aliphatic diisocyanate include hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and isophorone diisocyanate.

芳香族ジイソシアネート及び脂肪族ジイソシアネートを併用する場合は、脂肪族ジイソシアネートを芳香族ジイソシアネートに対して5〜10モル%、すなわち、芳香族ジイソシアネート100モル部に対して5〜10モル部程度添加することが好ましい。かかる併用により、得られるポリアミドイミド樹脂の耐熱性を更に向上させることができる。   When the aromatic diisocyanate and the aliphatic diisocyanate are used in combination, the aliphatic diisocyanate may be added in an amount of 5 to 10 mol% with respect to the aromatic diisocyanate, that is, about 5 to 10 mol parts with respect to 100 mol parts of the aromatic diisocyanate. preferable. Such combined use can further improve the heat resistance of the resulting polyamideimide resin.

ポリアミドイミド樹脂の合成に際し、ジアミンのアミノ基は無水トリメリット酸のカルボキシル基又は無水カルボキシル基と反応するが、無水カルボキシル基と反応させることが好ましい。かかる反応は、非プロトン性極性溶媒中、70〜100℃で行うことができる。   In synthesizing the polyamideimide resin, the amino group of the diamine reacts with the carboxyl group or anhydride carboxyl group of trimellitic anhydride, but it is preferable to react with the carboxyl group of anhydride. Such a reaction can be carried out in an aprotic polar solvent at 70 to 100 ° C.

非プロトン性極性溶媒としては、N−メチル−2−ピロリドン(NMP)、γ−ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、シクロヘキサノン等が例示でき、これらの1種又は2種以上用いてもよいが、NMPを用いることが好ましい。   Examples of the aprotic polar solvent include N-methyl-2-pyrrolidone (NMP), γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, sulfolane, cyclohexanone, and the like. However, it is preferable to use NMP.

かかる非プロトン性極性溶媒は、溶液の全重量に対して固形分が10〜70重量%となる量を加えることが好ましく、20〜60重量%となる量を加えることがより好ましい。溶液中の固形分が10重量%未満となる場合、溶媒の使用量が多いため工業的に不利となる傾向があり、70重量%を超える場合、無水トリメリット酸の溶解性が低下し、充分な反応を行うことが困難となる場合がある。   Such an aprotic polar solvent is preferably added in an amount such that the solid content is 10 to 70% by weight, more preferably 20 to 60% by weight, based on the total weight of the solution. When the solid content in the solution is less than 10% by weight, there is a tendency to be industrially disadvantageous because the amount of the solvent used is large, and when it exceeds 70% by weight, the solubility of trimellitic anhydride is lowered and sufficient. It may be difficult to perform a simple reaction.

上記の反応後、水と共沸可能な芳香族炭化水素を加え、150〜200℃で更に反応させて脱水閉環反応を生じさせることにより、ジイミドジカルボン酸を得ることができる。水と共沸可能な芳香族炭化水素としては、トルエン、ベンゼン、キシレン、エチルベンゼン等が例示でき、トルエンを用いることが好ましい。かかる芳香族炭化水素は非プロトン性極性溶媒の重量に対して、重量比で10〜50重量%となる量を加えることが好ましい。芳香族炭化水素の添加量が、非プロトン性極性溶媒の重量に対して10重量%未満である場合、水の除去効果が不充分となる傾向があり、イミド基含有ジカルボン酸の生成量も減少する傾向がある。また50重量%を超える場合、反応温度が低下し、イミド基含有ジカルボン酸の生成量が減少する傾向がある。   After said reaction, diimide dicarboxylic acid can be obtained by adding the aromatic hydrocarbon which can azeotrope with water, and making it react further at 150-200 degreeC, and producing dehydration ring closure reaction. Examples of aromatic hydrocarbons that can be azeotroped with water include toluene, benzene, xylene, and ethylbenzene, and it is preferable to use toluene. The aromatic hydrocarbon is preferably added in an amount of 10 to 50% by weight based on the weight of the aprotic polar solvent. When the amount of aromatic hydrocarbon added is less than 10% by weight based on the weight of the aprotic polar solvent, the water removal effect tends to be insufficient, and the amount of imide group-containing dicarboxylic acid produced is also reduced. Tend to. Moreover, when it exceeds 50 weight%, reaction temperature falls and there exists a tendency for the production amount of imide group containing dicarboxylic acid to reduce.

また、脱水閉環反応中に、水と同時に芳香族炭化水素も留出することにより、芳香族炭化水素量が上記の好適な範囲よりも少なくなる場合があるため、例えば、コック付きの水分定量受器中に留出した芳香族炭化水素を水と分離した後に反応溶液中に戻す等して、芳香族炭化水素量を一定割合に保つことが好ましい。なお、脱水閉環反応の終了後には、温度を150〜200℃程度に保持して水と共沸可能な芳香族炭化水素を除去しておくことが好ましい。   Also, during the dehydration and ring closure reaction, aromatic hydrocarbons may be distilled simultaneously with water, so that the amount of aromatic hydrocarbons may be less than the above preferred range. It is preferable to keep the amount of aromatic hydrocarbons at a constant ratio, for example, by separating the aromatic hydrocarbons distilled into the vessel and then returning them to the reaction solution. In addition, after completion | finish of a spin-drying | dehydration ring-closing reaction, it is preferable to maintain the temperature at about 150-200 degreeC, and to remove the aromatic hydrocarbon which can azeotrope with water.

そして、ジイミドジカルボン酸とジイソシアネートとの反応は、主としてジイミドジカルボン酸のカルボキシル基とジイソシアネートのイソシアネート基との間で生じる反応である。かかる反応は、上述の反応により得られたジイミドジカルボン酸を含む溶液中にジイソシアネートを加え、反応温度130〜200℃で行うことができる。   The reaction between diimide dicarboxylic acid and diisocyanate is a reaction that occurs mainly between the carboxyl group of diimide dicarboxylic acid and the isocyanate group of diisocyanate. Such a reaction can be performed at a reaction temperature of 130 to 200 ° C. by adding diisocyanate to a solution containing diimide dicarboxylic acid obtained by the above reaction.

ジイミドジカルボン酸とジイソシアネートとの反応は、塩基性触媒の存在下、70〜180℃で行うことが好ましく、120〜150℃で行うことがより好ましい。塩基性触媒の存在下でかかる反応を行う場合は、塩基性触媒の不在下で反応を行う場合に比べてより低い温度で反応させることができるため、ジイソシアネート同士による反応等の副反応の進行を抑制でき、更に高分子量のポリアミドイミド樹脂を得ることが可能となる。   The reaction between diimidedicarboxylic acid and diisocyanate is preferably performed at 70 to 180 ° C., more preferably 120 to 150 ° C. in the presence of a basic catalyst. When such a reaction is performed in the presence of a basic catalyst, the reaction can be performed at a lower temperature than when the reaction is performed in the absence of a basic catalyst. It is possible to obtain a high molecular weight polyamideimide resin.

かかる塩基性触媒としては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリ(2−エチルへキシル)アミン、トリオクチルアミン等のトリアルキルアミンが例示でき、中でもトリエチルアミンは、反応促進に好適な塩基性であり、かつ反応後の除去が容易であることから特に好ましい。   Examples of such basic catalysts include trialkylamines such as trimethylamine, triethylamine, tripropylamine, tri (2-ethylhexyl) amine, and trioctylamine. Among them, triethylamine is basic suitable for promoting the reaction. In addition, it is particularly preferable because removal after the reaction is easy.

上述のようにして得られたポリアミドイミド樹脂の重量平均分子量は、20000〜300000であることが好ましく、30000〜200000であることがより好ましく、40000〜150000であることが特に好ましい。なお、ここでいう重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定を行い、標準ポリスチレンを用いて作成した検量線により換算したものである。   The weight average molecular weight of the polyamideimide resin obtained as described above is preferably 20000 to 300000, more preferably 30000 to 200000, and particularly preferably 40000 to 150,000. In addition, the weight average molecular weight here is measured by gel permeation chromatography and converted by a calibration curve prepared using standard polystyrene.

前記したように本発明に使用される樹脂組成物では、ナフタレンジグリシジル化合物やポリアミドイミド樹脂と併用して、更に熱硬化性樹脂を用いることが好ましい。熱硬化性樹脂としては、エポキシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ビスマレイミド樹脂、トリアジン−ビスマレイミド樹脂、フェノール樹脂等が挙げられる。ポリアミドイミド樹脂100重量部に対し、熱硬化性樹脂1〜200重量部を用いることが好ましい。ポリアミドイミド樹脂100重量部に対し、熱硬化性樹脂が1重量部未満では、耐溶剤性に劣る。また、200重量部を超えると、未反応の熱硬化性樹脂の影響により、樹脂組成物のTgが低下し耐熱性が不十分となったり、可撓性が低下したりするため好ましくない。そのため、ポリアミドイミド樹脂100重量部に対し、熱硬化性樹脂3〜100重量部がより好ましく、更に10〜60重量部が特に好ましい。本発明では、ポリアミドイミド樹脂中のアミド基と反応し得る有機基を分子内に有する熱硬化性樹脂が好ましく、グリシジル基を有するエポキシ樹脂がより好ましい。   As described above, in the resin composition used in the present invention, it is preferable to use a thermosetting resin in combination with a naphthalenediglycidyl compound or a polyamideimide resin. Examples of the thermosetting resin include epoxy resins, polyimide resins, unsaturated polyester resins, polyurethane resins, bismaleimide resins, triazine-bismaleimide resins, phenol resins, and the like. It is preferable to use 1 to 200 parts by weight of thermosetting resin with respect to 100 parts by weight of polyamideimide resin. When the thermosetting resin is less than 1 part by weight relative to 100 parts by weight of the polyamideimide resin, the solvent resistance is poor. On the other hand, if it exceeds 200 parts by weight, the Tg of the resin composition is lowered due to the influence of the unreacted thermosetting resin, the heat resistance becomes insufficient, and the flexibility is lowered, which is not preferable. Therefore, 3-100 weight part of thermosetting resins are more preferable with respect to 100 weight part of polyamideimide resin, and 10-60 weight part is especially more preferable. In this invention, the thermosetting resin which has the organic group which can react with the amide group in a polyamide-imide resin in a molecule | numerator is preferable, and the epoxy resin which has a glycidyl group is more preferable.

エポキシ樹脂としては、ビスフェノールA、ノボラック型フェノール樹脂若しくはオルトクレゾールノボラック型フェノール樹脂等の多価フェノール又は1,4−ブタンジオール等の多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル、フタル酸又はヘキサヒドロフタル酸等の多塩基酸とエピクロルヒドリンとを反応させて得られるポリグリシジルエステル、アミン、アミド又は複素環式窒素塩基を有する化合物のN−グリシジル誘導体、脂環式エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂などが挙げられる。   Examples of the epoxy resin include polyglycidyl ethers and phthalates obtained by reacting a polyhydric phenol such as bisphenol A, a novolac type phenol resin or an orthocresol novolac type phenol resin or a polyhydric alcohol such as 1,4-butanediol with epichlorohydrin. N-glycidyl derivatives, alicyclic epoxy resins, salicylaldehydes of compounds having polyglycidyl esters, amines, amides or heterocyclic nitrogen bases obtained by reacting polybasic acids such as acid or hexahydrophthalic acid with epichlorohydrin Type epoxy resin.

本発明では、ナフタレンジグリシジル化合物と他のエポキシ樹脂とを併用することが、それらの物質のグリシジル基等がポリアミドイミド樹脂のアミド基に対して反応し、熱的、機械的、電気的特性を向上させるため好ましい。また、2個以上のグリシジル基を有するエポキシ樹脂及びその硬化剤、2個以上のグリシジル基を有するエポキシ樹脂及びその硬化促進剤、又は2個以上のグリシジル基を持つエポキシ樹脂、その硬化剤及びその硬化促進剤を用いることが更に好ましい。また、ナフタレンジグリシジル化合物及び他のエポキシ樹脂の一分子当たりのグリシジル基は多いほどよく、3個以上であれば特に好ましい。一分子当たりのグリシジル基の数により、ナフタレンジグリシジル化合物及び他のエポキシ樹脂の配合量が異なり、一分子当たりのグリシジル基が多いほどその配合量が少なくてもよい。   In the present invention, a naphthalene diglycidyl compound and another epoxy resin are used in combination, the glycidyl group of those substances reacts with the amide group of the polyamideimide resin, and the thermal, mechanical and electrical properties are improved. It is preferable because of improvement. Also, an epoxy resin having two or more glycidyl groups and its curing agent, an epoxy resin having two or more glycidyl groups and its curing accelerator, or an epoxy resin having two or more glycidyl groups, its curing agent, and its More preferably, a curing accelerator is used. Moreover, the more the number of glycidyl groups per molecule of the naphthalene diglycidyl compound and other epoxy resins, the better. Depending on the number of glycidyl groups per molecule, the blending amounts of the naphthalene diglycidyl compound and other epoxy resins differ, and the blending amount may be smaller as the number of glycidyl groups per molecule is larger.

エポキシ樹脂の硬化剤、硬化促進剤は、エポキシ樹脂と反応するもの、又は、硬化を促進させるものであれば制限なく、例えば、アミン類、イミダゾール類、多官能フェノール類、酸無水物類等が挙げられる。アミン類として、ジシアンジアミド、ジアミノジフェニルメタン、グアニル尿素等が使用できる。多官能フェノール類として、ヒドロキノン、レゾルシノール、ビスフェノールA及びこれらのハロゲン化合物、フェノールとホルムアルデヒドとの縮合物であるノボラック型フェノール樹脂、レゾール型フェノール樹脂などが使用できる。酸無水物類として、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、メチルハイミック酸等が使用できる。イミダゾール類は、硬化促進剤としてアルキル基置換イミダゾール、ベンゾイミダゾール等が使用できる。これらは1種を単独で又は2種以上を組み合わせて用いられる。   The curing agent and curing accelerator of the epoxy resin are not limited as long as they react with the epoxy resin or accelerate the curing. For example, amines, imidazoles, polyfunctional phenols, acid anhydrides, etc. Can be mentioned. As the amines, dicyandiamide, diaminodiphenylmethane, guanylurea and the like can be used. As the polyfunctional phenols, hydroquinone, resorcinol, bisphenol A and their halogen compounds, novolak type phenol resins and resol type phenol resins which are condensates of phenol and formaldehyde can be used. As the acid anhydrides, phthalic anhydride, benzophenone tetracarboxylic dianhydride, methyl hymic acid and the like can be used. For imidazoles, alkyl group-substituted imidazoles, benzimidazoles, and the like can be used as curing accelerators. These are used singly or in combination of two or more.

これらの硬化剤又は硬化促進剤を用いる場合、その必要量としては、アミン類で、アミンの活性水素の当量と、エポキシ樹脂のエポキシ当量とがほぼ等しくなる量であると好ましい。硬化促進剤であるイミダゾール類の場合は、単純に活性水素との当量比とならず、経験的にエポキシ樹脂100重量部に対して、0.001〜10重量部とするのが好ましい。多官能フェノール類や酸無水物類の場合、エポキシ樹脂におけるエポキシ基1当量に対して、フェノール性水酸基やカルボキシル基0.6〜1.2当量とするのが好ましい。これらの硬化剤又は硬化促進剤の量は、少なければ未硬化のエポキシ樹脂が残り、Tg(ガラス転移温度)が低くなり、多すぎると、未反応の硬化剤及び硬化促進剤が残り、絶縁性が低下する。エポキシ樹脂のエポキシ基は、ポリアミドイミド樹脂のアミド基とも反応することができる。よって、エポキシ樹脂の硬化剤若しくは硬化促進剤の配合量は、その点も考慮に入れて調整することが好ましい。   When these curing agents or curing accelerators are used, the required amount is preferably an amount of amines such that the equivalent of the active hydrogen of the amine is substantially equal to the epoxy equivalent of the epoxy resin. In the case of imidazoles which are curing accelerators, it is preferably not 0.001 to 10 parts by weight based on 100 parts by weight of the epoxy resin, based on experience, without simply having an equivalent ratio with active hydrogen. In the case of polyfunctional phenols and acid anhydrides, the phenolic hydroxyl group or carboxyl group is preferably 0.6 to 1.2 equivalents per 1 equivalent of epoxy group in the epoxy resin. If the amount of these curing agents or curing accelerators is small, uncured epoxy resin remains, and Tg (glass transition temperature) becomes low. If too large, unreacted curing agents and curing accelerators remain, and insulating properties are maintained. Decreases. The epoxy group of the epoxy resin can also react with the amide group of the polyamideimide resin. Therefore, the blending amount of the curing agent or curing accelerator of the epoxy resin is preferably adjusted in consideration of that point.

また、本発明の樹脂組成物は、難燃性の向上を目的に、添加型の難燃剤を含むことが好ましい。本発明で使用可能な添加型の難燃剤としては、リンを含有するフィラーが好ましく、そのリン含有フィラーとしてはOP930(クラリアント社製商品名、リン含有量23.5重量%)、HCA−HQ(三光株式会社製商品名、リン含有量9.6重量%)、ポリリン酸メラミンPMP−100(リン含有量13.8重量%)、PMP−200(リン含有量9.3重量%)、PMP−300(リン含有量9.8重量%)(以上日産化学株式会社製商品名)等が挙げられる。   Moreover, it is preferable that the resin composition of this invention contains an addition type flame retardant for the purpose of an improvement of a flame retardance. The additive-type flame retardant that can be used in the present invention is preferably a filler containing phosphorus. As the phosphorus-containing filler, OP930 (trade name, manufactured by Clariant, phosphorus content 23.5% by weight), HCA-HQ ( Sanko Co., Ltd. trade name, phosphorus content 9.6% by weight), melamine polyphosphate PMP-100 (phosphorus content 13.8% by weight), PMP-200 (phosphorus content 9.3% by weight), PMP- 300 (phosphorus content: 9.8% by weight) (trade name, manufactured by Nissan Chemical Co., Ltd.) and the like.

図1は、本発明によるプリプレグの一実施形態を示す斜視図である。図1に示すプリプレグ100は、繊維基材と、これに含浸した樹脂組成物とで構成されるシート状のプリプレグである。プリプレグ100における樹脂組成物は、上述の樹脂組成物である。   FIG. 1 is a perspective view showing an embodiment of a prepreg according to the present invention. A prepreg 100 shown in FIG. 1 is a sheet-like prepreg composed of a fiber base material and a resin composition impregnated therein. The resin composition in the prepreg 100 is the above-described resin composition.

本発明のプリプレグは、プリプレグ用の樹脂組成物を有機溶媒中で混合、溶解又は分散して得られる樹脂組成物のワニスを、繊維基材に含浸し、乾燥して作製されることが好ましい。このような有機溶媒としては、溶解性が得られるものであれば制限するものでなく、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、γ−ブチロラクトン、スルホラン、シクロヘキサノン等が挙げられる。 プリプレグを得るための樹脂組成物は、上述のように、ポリアミドイミド樹脂とナフタレンジグリシジル化合物とエポキシ樹脂とを含む樹脂組成物が好ましい。これにより、樹脂組成物のワニスの有機溶媒の揮発速度が速く、熱硬化性樹脂の硬化反応を促進しない150℃以下の低温でも残存有機溶媒分を5重量%以下にすることが可能であり、繊維基材及び銅箔等の金属箔との密着性が良好で成形性に優れたプリプレグを得ることができる。また、残存有機溶媒分が少ないと、銅箔等の金属箔と積層する場合、有機溶媒の揮発によるフクレの発生が抑制され、また、得られる金属箔張積層板のはんだ耐熱性もさらに優れるものとすることができる。   The prepreg of the present invention is preferably prepared by impregnating a fiber base material with a varnish of a resin composition obtained by mixing, dissolving or dispersing a resin composition for prepreg in an organic solvent, and drying. Such an organic solvent is not limited as long as solubility is obtained, and examples thereof include dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, γ-butyrolactone, sulfolane, and cyclohexanone. It is done. As described above, the resin composition for obtaining the prepreg is preferably a resin composition containing a polyamideimide resin, a naphthalenediglycidyl compound, and an epoxy resin. Thereby, the volatilization rate of the organic solvent of the varnish of the resin composition is fast, and it is possible to reduce the residual organic solvent content to 5% by weight or less even at a low temperature of 150 ° C. or less that does not promote the curing reaction of the thermosetting resin. It is possible to obtain a prepreg which has good adhesion to a fiber base and a metal foil such as a copper foil and is excellent in moldability. In addition, when the residual organic solvent content is small, when laminating with a metal foil such as copper foil, the occurrence of swelling due to volatilization of the organic solvent is suppressed, and the resulting metal foil-clad laminate is further excellent in soldering heat resistance. It can be.

本発明のプリプレグは、樹脂組成物のワニスを繊維基材に含浸させ、80℃〜180℃の範囲で乾燥(ワニスから溶媒を除去)させて、プリプレグを製造することが好ましい。本発明のプリプレグに使用される繊維基材としては、金属箔張積層板や多層印刷回路板を製造する際に一般的に用いられるものであれば特に制限されないが、通常織布や不織布等の繊維基材が用いられる。繊維基材を構成する繊維の材質としては、ガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維や、アラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維、あるいはこれらの混抄系が挙げられる。これらのなかでは、特にガラス繊維の織布(ガラスクロス)が好ましく用いられる。また繊維基材の厚みは、5〜100μmであることが好ましい。プリプレグに使用される繊維基材としては、5〜100μmのガラスクロスが特に好適に用いられる。厚みが5〜100μmのガラスクロスを用いると、上述の樹脂組成物と組み合わせた際に、極めて容易に、任意に折り曲げ可能な印刷回路板を得ることができ、製造プロセス上での温度、吸湿等に伴う寸法変化を小さくすることが可能となる。   The prepreg of the present invention is preferably produced by impregnating a varnish of a resin composition into a fiber substrate and drying (removing the solvent from the varnish) in a range of 80 ° C. to 180 ° C. The fiber base material used in the prepreg of the present invention is not particularly limited as long as it is generally used when producing a metal foil-clad laminate or a multilayer printed circuit board, but usually a woven fabric, a nonwoven fabric, etc. A fiber substrate is used. The material of the fibers constituting the fiber substrate includes glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyranno, silicon carbide, silicon nitride, zirconia, and other inorganic fibers, aramid, polyether ether ketone, poly Examples thereof include organic fibers such as ether imide, polyether sulfone, carbon and cellulose, and mixed papers thereof. Among these, a glass fiber woven fabric (glass cloth) is particularly preferably used. Moreover, it is preferable that the thickness of a fiber base material is 5-100 micrometers. As the fiber substrate used for the prepreg, a glass cloth of 5 to 100 μm is particularly preferably used. When a glass cloth having a thickness of 5 to 100 μm is used, a printed circuit board that can be arbitrarily bent can be obtained very easily when combined with the above-described resin composition. It is possible to reduce the dimensional change caused by.

前記プリプレグの製造条件等は特に制限するものではないが、前記樹脂組成物のワニスに使用した溶剤が80重量%以上揮発していることが好ましい。製造方法や乾燥条件等も制限はなく、乾燥時の温度は80℃〜180℃、時間はワニスのゲル化時間との兼ね合いで特に制限はなく、ワニスがゲル化しないような時間であると好ましい。前記樹脂組成物のワニスの含浸量は、ワニスにおける樹脂固形分と繊維基材との総量に対して、ワニスにおける樹脂固形分が30〜80重量%になるようにすることが好ましい。   The conditions for producing the prepreg are not particularly limited, but it is preferable that the solvent used for the varnish of the resin composition is volatilized by 80% by weight or more. There are no restrictions on the production method, drying conditions, etc., the temperature during drying is 80 ° C. to 180 ° C., the time is not particularly limited in consideration of the gelation time of the varnish, and is preferably a time that does not cause the varnish to gel. . The amount of varnish impregnated in the resin composition is preferably such that the resin solid content in the varnish is 30 to 80% by weight with respect to the total amount of the resin solid content and the fiber substrate in the varnish.

本発明のプリプレグを用いた絶縁板は以下のようにして作製される。まず、本発明のプリプレグを1枚又は複数枚積層して積層体を得る。次いで、その積層体を、通常150〜280℃、好ましくは180℃〜250℃の範囲の温度で、通常0.5〜20MPa、好ましくは1〜8MPaの範囲の圧力で、加熱加圧成形することにより絶縁板が作製される。   An insulating plate using the prepreg of the present invention is produced as follows. First, one or a plurality of prepregs of the present invention are laminated to obtain a laminate. Next, the laminate is heated and pressure-molded at a temperature usually in the range of 150 to 280 ° C., preferably in the range of 180 ° C. to 250 ° C., usually at a pressure in the range of 0.5 to 20 MPa, preferably 1 to 8 MPa. Thus, an insulating plate is produced.

図2は、本発明による金属箔張積層板の一実施形態を示す部分断面図である。金属箔張積層板200は、複数枚のプリプレグ100を積層した積層体を加熱及び加圧して得られるシート状の基板30と、基板30の両面に密着して設けられた2枚の金属箔10とで構成される。   FIG. 2 is a partial cross-sectional view showing an embodiment of a metal foil-clad laminate according to the present invention. The metal foil-clad laminate 200 includes a sheet-like substrate 30 obtained by heating and pressing a laminate in which a plurality of prepregs 100 are laminated, and two metal foils 10 provided in close contact with both surfaces of the substrate 30. It consists of.

基板30は、複数のプリプレグ100に由来する複数の繊維強化樹脂層3が積層された積層体からなる。金属箔張積層板及び印刷回路板の柔軟性を高めるため、基板30の厚みは10〜500μmであることが好ましい。それぞれの繊維強化樹脂層3においては、繊維基材に樹脂がマトリックスとして含浸している。この樹脂においては、ポリアミドイミド樹脂とナフタレンジグリシジル化合物との架橋反応等により架橋構造が形成されている。   The substrate 30 is made of a laminate in which a plurality of fiber reinforced resin layers 3 derived from a plurality of prepregs 100 are laminated. In order to increase the flexibility of the metal foil-clad laminate and the printed circuit board, the thickness of the substrate 30 is preferably 10 to 500 μm. In each fiber reinforced resin layer 3, the fiber base material is impregnated with resin as a matrix. In this resin, a crosslinked structure is formed by a crosslinking reaction between a polyamideimide resin and a naphthalenediglycidyl compound.

金属箔張積層板は、所定枚数(好ましくは10枚以下)のプリプレグ100を積層した積層体の両面に金属箔を重ね、これを加熱及び加圧することにより、得られる。このとき、加熱する温度及び圧力は特に限定されないが、加熱する温度は通常150〜280℃(好ましくは180〜250℃)で、圧力は通常0.5〜20MPa(好ましくは1〜8MPa)の範囲である。   The metal foil-clad laminate can be obtained by stacking metal foil on both sides of a laminate in which a predetermined number (preferably 10 or less) of prepregs 100 are laminated, and heating and pressing the laminate. At this time, the heating temperature and pressure are not particularly limited, but the heating temperature is usually 150 to 280 ° C. (preferably 180 to 250 ° C.), and the pressure is usually 0.5 to 20 MPa (preferably 1 to 8 MPa). It is.

金属箔10としては、銅箔やアルミニウム箔が一般的に用いられるが、銅箔が好ましい。金属箔10は、通常の金属箔張積層板に用いられている、5〜200μm厚さのものを使用できるが、印刷回路板の柔軟性を高めるために、その厚さは5〜18μmであることがより好ましい。また、ニッケル、ニッケル−リン、ニッケル−スズ合金、ニッケル−鉄合金、鉛、鉛−スズ合金等を中間層とし、この両面に0.5〜15μmの銅層と10〜300μmの銅層を設けた3層構造の複合箔あるいはアルミニウムと銅箔とを複合した2層構造複合箔を用いることもできる。   As the metal foil 10, a copper foil or an aluminum foil is generally used, but a copper foil is preferable. The metal foil 10 having a thickness of 5 to 200 μm, which is used for a normal metal foil-clad laminate, can be used. In order to increase the flexibility of the printed circuit board, the thickness is 5 to 18 μm. It is more preferable. Also, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a 0.5-15 μm copper layer and a 10-300 μm copper layer are provided on both sides. Alternatively, a three-layer composite foil or a two-layer composite foil in which aluminum and copper foil are combined can be used.

金属箔張積層板の実施形態は、上記のような態様に限定されない。例えば、1枚のプリプレグ100を用いて、基板を1層の繊維強化樹脂層からなるものとしてもよいし、基板の片側のみに金属箔を設けてもよい。また、金属箔張積層板の金属箔をエッチング等によりパターン化することにより、本発明に係る印刷回路板を得ることができる。   The embodiment of the metal foil-clad laminate is not limited to the above aspect. For example, using one prepreg 100, the substrate may be composed of one fiber reinforced resin layer, or a metal foil may be provided on only one side of the substrate. Further, the printed circuit board according to the present invention can be obtained by patterning the metal foil of the metal foil-clad laminate by etching or the like.

図3は、本発明による印刷回路板の一実施形態を示す模式断面図である。図3に示される印刷回路板300は多層印刷回路板であり、貫通孔311に導電体312が充填された絶縁基板310の両側に内層回路313a、bをそれぞれ配してなる内層回路基板315と、その内層回路基板315の両側に設けられた、貫通孔321a、bに導電体322a、bがそれぞれ充填された絶縁基板320a、bと、それら絶縁基板320a、bの外側に形成された回路323a、bと、を備える。   FIG. 3 is a schematic cross-sectional view showing an embodiment of a printed circuit board according to the present invention. The printed circuit board 300 shown in FIG. 3 is a multilayer printed circuit board, and includes an inner layer circuit board 315 formed by arranging inner layer circuits 313a and 313b on both sides of an insulating substrate 310 in which a through hole 311 is filled with a conductor 312. Insulating substrates 320a, b provided on both sides of the inner circuit board 315, with through holes 321a, b filled with conductors 322a, b, respectively, and circuits 323a formed outside the insulating substrates 320a, 320b , B.

印刷回路板300は、例えば以下のようにして形成される。まず内層回路基板315の両側に、本発明に係るプリプレグ100を積層し、加熱及び加圧により硬化して絶縁基板320a、bを形成する。次いで、絶縁基板320a、bに貫通孔321a、bを設け、そこに導電体322a、bを充填する。そして、絶縁基板320a、bの外側にパターン化された回路323a、bを形成して印刷回路板300を完成する。   The printed circuit board 300 is formed as follows, for example. First, the prepreg 100 according to the present invention is laminated on both sides of the inner layer circuit board 315 and cured by heating and pressurization to form the insulating substrates 320a and 320b. Next, through holes 321a and b are provided in the insulating substrates 320a and 320b, and conductors 322a and b are filled therein. Then, patterned circuits 323a and 323b are formed outside the insulating substrates 320a and 320b to complete the printed circuit board 300.

あるいは、内層回路基板315の両側に、本発明に係るプリプレグ100を積層し、貫通孔321a、bを設け、そこに導電体322a、bを充填する。更に、プリプレグ100の外側に金属箔を積層して、加熱及び加圧を施した後に、金属箔をエッチング等によりパターン化して回路323a、bを形成し、印刷回路板300を完成する。この場合、本発明のプリプレグ100は寸法安定性に優れているため、加熱及び加圧処理によっても貫通孔321a、bの孔径変化が抑制され、貫通孔321a、bと導電体322a、bとの間に空隙が生じ難くなる。   Alternatively, the prepreg 100 according to the present invention is laminated on both sides of the inner layer circuit board 315, through holes 321a and b are provided, and conductors 322a and b are filled therein. Further, a metal foil is laminated on the outside of the prepreg 100 and heated and pressurized, and then the metal foil is patterned by etching or the like to form circuits 323a and b, thereby completing the printed circuit board 300. In this case, since the prepreg 100 of the present invention is excellent in dimensional stability, a change in the hole diameter of the through holes 321a and 321b is suppressed even by heating and pressurizing treatment, and the through holes 321a and b and the conductors 322a and 322b It is difficult for voids to occur between them.

本発明のプリプレグは、ポリアミドイミド樹脂の流動性を向上させることにより、内層回路313a、bが設けられていない絶縁基板320a、bの表面に、隙間なく密着した状態で積層できる。また、同様の理由により、本発明のプリプレグを硬化して得られる絶縁基板320a、bについて、その外側の面は凹凸の抑制された平滑な面となる。   The prepreg of the present invention can be laminated in close contact with the surfaces of the insulating substrates 320a and 320b on which the inner layer circuits 313a and 313b are not provided by improving the fluidity of the polyamideimide resin. For the same reason, the outer surfaces of the insulating substrates 320a and 320b obtained by curing the prepreg of the present invention are smooth surfaces with unevenness suppressed.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。 Examples are described below, but the present invention is not limited to these examples.

(合成例1)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに、芳香族環を2個以上有するジアミンとしてDDS(ジアミノジフェニルスルホン)19.8g(0.08mol)、シロキサンジアミンとして反応性シリコンオイルKF−8010(信越化学工業株式会社製商品名、アミン当量430)17.2g(0.02mol)、脂肪族ジアミンとしてジェファーミンD2000(サンテクノケミカル社製商品名、アミン当量1000)80.0g(0.04mol)、一般式(3a)で表されるジアミンとしてワンダミン(新日本理化株式会社製商品名)12.5g(0.06mol)、TMA(無水トリメリット酸)80.7g(0.42mol)、及び非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)514gを仕込み、80℃で30分間撹拌した。そして、水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ、約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、及び水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)60.1g(0.24mol)を投入し、190℃で2時間反応させた。反応終了後、ポリアミドイミド樹脂のNMP溶液(樹脂固形分32重量%)を得た。
(Synthesis Example 1)
19.8 g of DDS (diaminodiphenyl sulfone) as a diamine having two or more aromatic rings in a 1-liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer, and a stirrer (0.08 mol), reactive silicone oil KF-8010 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., amine equivalent 430) 17.2 g (0.02 mol) as siloxane diamine, and Jeffamine D2000 (Sun Techno Chemical Co., Ltd.) as aliphatic diamine Product name, amine equivalent 1000) 80.0 g (0.04 mol), 12.5 g (0.06 mol) of Wandamine (trade name, manufactured by Shin Nippon Rika Co., Ltd.) as a diamine represented by the general formula (3a), TMA ( Trimellitic anhydride) 80.7 g (0.42 mol), and aprotic polar solution They were charged NMP (N-methyl-2-pyrrolidone) 514 g as, and stirred at 80 ° C. 30 min. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and then the temperature was raised and refluxed at about 160 ° C. for 2 hours. Confirm that water has accumulated in the moisture determination receiver about 7.2 ml or more, and that no water is being distilled, and while removing the distillate collected in the moisture determination receiver, The temperature was raised to 190 ° C. to remove toluene. Thereafter, the solution was returned to room temperature (25 ° C.), 60.1 g (0.24 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin (resin solid content 32% by weight) was obtained.

(合成例2)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに、芳香族環を2個以上有するジアミンとしてDDS(ジアミノジフェニルスルホン)14.9g(0.06mol)、シロキサンジアミンとして反応性シリコンオイルKF−8010(信越化学工業株式会社製商品名、アミン当量430)17.2g(0.02mol)、脂肪族ジアミンとしてジェファーミンD2000(サンテクノケミカル社製商品名、アミン当量1000)80.0g(0.04mol)、一般式(3a)で表されるジアミンとしてワンダミン(新日本理化株式会社製商品名)16.7g(0.08mol)、TMA(無水トリメリット酸)80.7g(0.42mol)、及び非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)508gを仕込み、80℃で30分間撹拌した。そして、水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ、約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、及び水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)60.1g(0.24mol)を投入し、190℃で2時間反応させた。反応終了後、ポリアミドイミド樹脂のNMP溶液(樹脂固形分34重量%)を得た。
(Synthesis Example 2)
DDS (diaminodiphenyl sulfone) 14.9 g as a diamine having two or more aromatic rings in a 1-liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer, and a stirrer (0.06 mol), reactive silicon oil KF-8010 (trade name, amine equivalent 430, manufactured by Shin-Etsu Chemical Co., Ltd.) as siloxane diamine, 17.2 g (0.02 mol) as aliphatic diamine, Jeffamine D2000 (Sun Techno Chemical Co., Ltd.) Product name, amine equivalent 1000) 80.0 g (0.04 mol), Wandamine (trade name, manufactured by Shin Nippon Rika Co., Ltd.) 16.7 g (0.08 mol) as a diamine represented by the general formula (3a), TMA ( Trimellitic anhydride) 80.7 g (0.42 mol), and aprotic polar solution They were charged NMP (N-methyl-2-pyrrolidone) 508 g as, and stirred at 80 ° C. 30 min. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and then the temperature was raised and refluxed at about 160 ° C. for 2 hours. Confirm that water has accumulated in the moisture determination receiver about 7.2 ml or more, and that no water is being distilled, and while removing the distillate collected in the moisture determination receiver, The temperature was raised to 190 ° C. to remove toluene. Thereafter, the solution was returned to room temperature (25 ° C.), 60.1 g (0.24 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin (resin solid content: 34% by weight) was obtained.

(実施例1)
合成例1のポリアミドイミド樹脂のNMP溶液218.8g(樹脂固形分32重量%)に、ナフタレンジグリシジル化合物としてHP4032D(大日本インキ株式会社製商品名)12.5g(樹脂固形分80重量%のメチルエチルケトン溶液)、エポキシ樹脂としてEPPN−502H40.0g(樹脂固形分50重量%のメチルエチルケトン溶液)(日本化薬株式会社製商品名)、硬化促進剤として2E4MZ−CN(四国化成工業株式会社製商品名)1.5g(5重量%のメチルエチルケトン溶液)、難燃剤としてリン系フィラーOP930(クラリアント株式会社製商品名)20.0gを配合し、樹脂組成物が均一になるまで約1時間撹拌した後、メチルエチルケトンを加えて樹脂組成物のワニスの粘度を1000cPに調整し、脱泡のため24時間、室温(25℃)で静置して、樹脂組成物ワニスとした。
Example 1
212.5 g of NMP solution of polyamideimide resin of Synthesis Example 1 (resin solid content 32 wt%), 12.5 g of HP4032D (trade name, manufactured by Dainippon Ink Co., Ltd.) as a naphthalene diglycidyl compound (resin solid content of 80 wt%) Methyl ethyl ketone solution), 40.0 g of EPPN-502H as epoxy resin (methyl ethyl ketone solution with a resin solid content of 50% by weight) (trade name, manufactured by Nippon Kayaku Co., Ltd.), 2E4MZ-CN (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator ) 1.5 g (5% by weight methyl ethyl ketone solution), 20.0 g of phosphorus filler OP930 (trade name, manufactured by Clariant Co., Ltd.) as a flame retardant, and stirred for about 1 hour until the resin composition is uniform, Add methyl ethyl ketone to adjust the viscosity of the varnish of the resin composition to 1000 cP 24 hours, allowed to stand at room temperature (25 ° C.) for, and a resin composition varnish.

(実施例2)
合成例2のポリアミドイミド樹脂のNMP溶液205.9g(樹脂固形分34重量%)に、ナフタレンジグリシジル化合物としてHP4032D(大日本インキ株式会社製商品名)25.0g(樹脂固形分80重量%のメチルエチルケトン溶液)、エポキシ樹脂としてEPPN−502H(日本化薬株式会社製商品名)20.0g(樹脂固形分50重量%のメチルエチルケトン溶液)、硬化促進剤として2E4MZ−CN(四国化成工業株式会社製商品名)1.5g(5重量%のメチルエチルケトン溶液)、難燃剤としてリン系フィラーOP930(クラリアント株式会社製商品名)20.0gを配合し、樹脂組成物が均一になるまで約1時間撹拌した後、メチルエチルケトンを加えて樹脂組成物のワニスの粘度を1100cPに調整し、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
(Example 2)
The NMP solution of the polyamideimide resin of Synthesis Example 2 (205.9 g (resin solid content: 34% by weight)) and HP4032D (trade name, manufactured by Dainippon Ink Co., Ltd.) 25.0 g (resin solid content: 80% by weight) as the naphthalene diglycidyl compound. Methyl ethyl ketone solution), 20.0 g of EPPN-502H (trade name, manufactured by Nippon Kayaku Co., Ltd.) as an epoxy resin (methyl ethyl ketone solution having a resin solid content of 50% by weight), and 2E4MZ-CN (product of Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator Name) After blending 1.5 g (5 wt% methyl ethyl ketone solution) and 20.0 g of a phosphorus filler OP930 (trade name, manufactured by Clariant Co., Ltd.) as a flame retardant, stirring for about 1 hour until the resin composition is uniform The viscosity of the varnish of the resin composition is adjusted to 1100 cP by adding methyl ethyl ketone, 24 hours for, it was room temperature (25 ° C.) in to stand resin composition varnish.

(実施例3)
合成例1のポリアミドイミド樹脂のNMP溶液218.8g(樹脂固形分32重量%)に、ナフタレンジグリシジル化合物としてHP4032D(大日本インキ株式会社製商品名)12.5g(樹脂固形分80重量%のメチルエチルケトン溶液)、エポキシ樹脂としてN−770(大日本インキ株式会社製商品名)33.3g(樹脂固形分60重量%のメチルエチルケトン溶液)、硬化促進剤として2E4MZ−CN(四国化成工業株式会社製商品名)1.5g(5重量%のメチルエチルケトン溶液)、難燃剤としてリン系フィラーOP930(クラリアント株式会社製商品名)20.0gを配合し、樹脂組成物が均一になるまで約1時間撹拌した後、メチルエチルケトンを加えて樹脂組成物のワニスの粘度を1000cPに調整し、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
(Example 3)
212.5 g of NMP solution of polyamideimide resin of Synthesis Example 1 (resin solid content 32 wt%), 12.5 g of HP4032D (trade name, manufactured by Dainippon Ink Co., Ltd.) as a naphthalene diglycidyl compound (resin solid content of 80 wt%) Methyl ethyl ketone solution), N-770 (trade name, manufactured by Dainippon Ink Co., Ltd.) as an epoxy resin, 33.3 g (methyl ethyl ketone solution having a resin solid content of 60% by weight), and 2E4MZ-CN (product of Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator Name) After blending 1.5 g (5 wt% methyl ethyl ketone solution) and 20.0 g of a phosphorus filler OP930 (trade name, manufactured by Clariant Co., Ltd.) as a flame retardant, stirring for about 1 hour until the resin composition is uniform The viscosity of the varnish of the resin composition was adjusted to 1000 cP by adding methyl ethyl ketone, 24 hours because, was room temperature (25 ° C.) in to stand resin composition varnish.

(比較例1)
合成例1のポリアミドイミド樹脂のNMP溶液218.8g(樹脂固形分32重量%)に、エポキシ樹脂としてDER331L(大日本インキ株式会社製商品名)16.7g(樹脂固形分60重量%のメチルエチルケトン溶液)、EPPN−502H(日本化薬株式会社製商品名)33.3g(樹脂固形分60重量%のメチルエチルケトン溶液)、硬化促進剤として2E4MZ−CN(四国化成工業株式会社製商品名)1.5g(5重量%のメチルエチルケトン溶液)、難燃剤としてリン系フィラーOP930(クラリアント株式会社製商品名)20.0gを配合し、樹脂組成物が均一になるまで約1時間撹拌した後、メチルエチルケトンを加えて樹脂組成物のワニスの粘度を1000cPに調整し、脱泡のため24時間、室温(25℃)で静置して、ナフタレンジグリシジル化合物を含まない樹脂組成物ワニスとした。
(Comparative Example 1)
218.8 g of NMP solution of polyamideimide resin of Synthesis Example 1 (resin solid content 32% by weight) and 16.7 g of DER331L (trade name, manufactured by Dainippon Ink Co., Ltd.) as an epoxy resin (methyl ethyl ketone solution having a resin solid content of 60% by weight) ), EPPN-502H (trade name, manufactured by Nippon Kayaku Co., Ltd.) 33.3 g (methyl ethyl ketone solution having a resin solid content of 60% by weight), 2E4MZ-CN (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) 1.5 g as a curing accelerator (5% by weight methyl ethyl ketone solution), 20.0 g of a phosphorus filler OP930 (trade name, manufactured by Clariant Co., Ltd.) as a flame retardant, and after stirring for about 1 hour until the resin composition becomes uniform, methyl ethyl ketone was added. The viscosity of the varnish of the resin composition is adjusted to 1000 cP, and for defoaming for 24 hours at room temperature (25 ° C.) And location, and a resin composition varnish containing no naphthalene diglycidyl compound.

(比較例2)
合成例1のポリアミドイミド樹脂のNMP溶液218.8g(樹脂固形分32重量%)に、エポキシ樹脂としてDER331L(大日本インキ株式会社製商品名)50.0g(樹脂固形分60重量%のメチルエチルケトン溶液)、硬化促進剤として2E4MZ−CN(四国化成工業株式会社製商品名)1.5g(5重量%のメチルエチルケトン溶液)、難燃剤としてリン系フィラーOP930(クラリアント株式会社製商品名)20.0gを配合し、樹脂組成物が均一になるまで約1時間撹拌した後、メチルエチルケトンを加えて樹脂組成物のワニスの粘度を1000cPに調整し、脱泡のため24時間、室温(25℃)で静置してナフタレンジグリシジル化合物を含まない樹脂組成物ワニスとした。
(Comparative Example 2)
210.0 g of NMP solution of polyamideimide resin of Synthesis Example 1 (resin solid content 32% by weight) and 50.0 g of DER331L (trade name, manufactured by Dainippon Ink Co., Ltd.) as an epoxy resin (methyl ethyl ketone solution having a resin solid content of 60% by weight) ), 2E4MZ-CN (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) 1.5 g (5% by weight methyl ethyl ketone solution) as a curing accelerator, and phosphorus-based filler OP930 (trade name, manufactured by Clariant Co., Ltd.) 20.0 g as a flame retardant. After mixing and stirring for about 1 hour until the resin composition becomes uniform, methyl ethyl ketone is added to adjust the viscosity of the varnish of the resin composition to 1000 cP, and it is left at room temperature (25 ° C.) for 24 hours for defoaming. Thus, a resin composition varnish containing no naphthalene diglycidyl compound was obtained.

(プリプレグ及び両面銅箔張積層板の作製)
実施例1〜3、比較例1、2で作製した樹脂組成物ワニスを、厚さ28μmのガラスクロス(旭シュエーベル株式会社製商品名1037)に含浸後、150℃で15分加熱、乾燥して樹脂固形分70重量%のプリプレグを得た。作製したプリプレグ1枚の両側に厚さ12μmの電解銅箔(古河電工株式会社製商品名F2−WS−12)を接着面がプリプレグと合わさるようにして重ね、230℃、90分、4.0MPaのプレス条件で絶縁層の厚みが50μmの両面銅箔張積層板を作製した。
(Preparation of prepreg and double-sided copper foil-clad laminate)
The resin composition varnishes produced in Examples 1 to 3 and Comparative Examples 1 and 2 were impregnated into a glass cloth having a thickness of 28 μm (trade name: 1037 manufactured by Asahi Sebel Co., Ltd.), then heated at 150 ° C. for 15 minutes and dried. A prepreg having a resin solid content of 70% by weight was obtained. A 12 μm thick electrolytic copper foil (trade name: F2-WS-12, manufactured by Furukawa Electric Co., Ltd.) is stacked on both sides of one prepared prepreg so that the adhesive surface is aligned with the prepreg, 230 ° C., 90 minutes, 4.0 MPa A double-sided copper foil-clad laminate with an insulating layer thickness of 50 μm was produced under the above pressing conditions.

(耐衝撃性の評価)
実施例1〜3及び比較例1、2の両面銅箔張積層板に通常のドリル加工、めっき、フォトリソ工程により、直径0.25mmの接続穴250穴を有するデイジーチェーンパターンを4列作製し、それぞれの始点及び終点をはんだによりリード線で接続し、一列1000穴の導通パターンを有する各印刷回路板を作製し、前記導通パターンの初期の抵抗を測定した。その後各印刷回路板を所定の筐体に搭載し、高さ1.5mから所定の回数落下させ、断線の有無、落下後の抵抗値を測定した。1000回落下させた後、抵抗値の変化率が10%以内の場合を○、10%超の場合を×とした。結果を表1に示した。
(Evaluation of impact resistance)
Four rows of daisy chain patterns having 250 connection holes with a diameter of 0.25 mm were prepared on the double-sided copper foil-clad laminates of Examples 1 to 3 and Comparative Examples 1 and 2 by ordinary drilling, plating, and photolithography processes. Each start point and end point were connected with a lead wire by solder, each printed circuit board having a conductive pattern of 1000 holes in a row was produced, and the initial resistance of the conductive pattern was measured. Thereafter, each printed circuit board was mounted on a predetermined housing, dropped a predetermined number of times from a height of 1.5 m, and the presence or absence of disconnection and the resistance value after dropping were measured. After dropping 1000 times, the resistance change rate is within 10%, and the case where it exceeds 10% is evaluated as x. The results are shown in Table 1.

(銅箔引き剥がし強さの測定)
実施例1〜3の両面銅箔張積層板及び比較例1、2の両面銅箔張積層板の金属箔接着強度(銅箔引き剥がし強さ)を、90℃方向の引き剥がし試験により測定し、そのときの最大荷重を銅箔引き剥がし強さとした。結果を表1に示した。
(Measurement of peel strength of copper foil)
The metal foil adhesive strength (copper foil peeling strength) of the double-sided copper foil-clad laminates of Examples 1 to 3 and the double-sided copper foil-clad laminates of Comparative Examples 1 and 2 was measured by a peeling test in the 90 ° C. direction. The maximum load at that time was defined as the peel strength of the copper foil. The results are shown in Table 1.

(はんだ耐熱性の評価)
実施例1〜3の両面銅箔張積層板及び比較例1、2の両面銅箔張積層板を、260℃、288℃及び300℃のはんだ浴に浸漬し、はんだ耐熱性を評価した。表1には、はんだ浴浸漬し、ふくれ、剥がれ等の異常が認められるまでの時間を示した。
(Evaluation of solder heat resistance)
The double-sided copper foil-clad laminates of Examples 1 to 3 and the double-sided copper foil-clad laminates of Comparative Examples 1 and 2 were immersed in solder baths at 260 ° C., 288 ° C. and 300 ° C. to evaluate solder heat resistance. Table 1 shows the time until an abnormality such as blistering or peeling was observed after immersion in the solder bath.

(折り曲げ性の評価)
折り曲げ性の評価は、以下のようにして行った。まず、実施例1〜3及び比較例1、2の両面銅箔張積層板の銅箔を全面エッチングにより除去した積層板を、幅10mm×長さ100mmに切断して試料を作製した。次いで、5mm厚の長方形のアルミ板をその試料の主面上に長さ方向が直交するように設置した。そして、そのアルミ板を上から押さえながら、その側端部で積層板を上方に向かって90度に曲げた後の試料の状態を観察した。評価は、積層板の折り曲げた部分に異常がない場合を○、一部クラックにより白化した場合を△、全面クラックにより白化した場合を×とした。結果を表1に示した。
(Evaluation of bendability)
Evaluation of bendability was performed as follows. First, the laminated board which removed the copper foil of the double-sided copper foil tension laminated board of Examples 1-3 and Comparative Examples 1 and 2 by the whole surface etching was cut | disconnected to width 10mm x length 100mm, and the sample was produced. Next, a rectangular aluminum plate having a thickness of 5 mm was placed on the main surface of the sample so that the length direction was orthogonal. Then, while pressing the aluminum plate from above, the state of the sample after bending the laminated plate upward by 90 degrees at the side end portion was observed. In the evaluation, the case where there was no abnormality in the folded part of the laminated board was evaluated as “◯”, the case where it was whitened by a partial crack, “Δ”, and the case where it was whitened due to an overall crack as “X”. The results are shown in Table 1.

(フロー量の測定)
実施例1〜3、比較例1〜2のプリプレグを直径10mmの円形に打ち抜き、3枚重ねて、それぞれ離型処理した2枚のポリイミドフィルム(ユーピレックス50S宇部興産株式会社製商品名)で挟み、230℃、6MPa、5分間の条件でプレスを行った。プレス後の直径3カ所の平均と初期の直径10mmとの差の1/2をしみ出しによる変形量(フロー量)として測定し、評価した。結果を表1に示した。
(Measurement of flow amount)
The prepregs of Examples 1 to 3 and Comparative Examples 1 to 2 were punched into a circular shape with a diameter of 10 mm, sandwiched between two polyimide films (trade names manufactured by Upilex 50S Ube Industries Co., Ltd.), each of which was released from the mold, Pressing was performed at 230 ° C., 6 MPa, and 5 minutes. One half of the difference between the average of the three diameters after pressing and the initial diameter of 10 mm was measured and evaluated as the amount of deformation (flow amount) due to exudation. The results are shown in Table 1.

(回路充填性の評価)
ライン/スペース幅が50μm/50μm、75μm/75μm、100μm/100μm、150μm/150μm、200μm/200μmの櫛形パターンを形成した内層回路基板の上に、実施例1〜3、比較例1〜2のプリプレグ1枚を積層した。更に、厚さ12μmの電解銅箔(古河電工株式会社製商品名F2−WS−12)を接着面がプリプレグと合わさるようにして重ね、230℃、90分、4.0MPaのプレス条件で試験用多層板を作製した。銅箔をエッチングにより除去して、内層回路基板の櫛形パターンの凹部上におけるプリプレグの硬化体の充填性を、顕微鏡により観察した。空隙が認められなかった場合を○、空隙が認められた場合を×とした。結果を表1に示した。
(Evaluation of circuit fillability)
The prepregs of Examples 1 to 3 and Comparative Examples 1 to 2 are formed on an inner circuit board on which a comb-shaped pattern having a line / space width of 50 μm / 50 μm, 75 μm / 75 μm, 100 μm / 100 μm, 150 μm / 150 μm, 200 μm / 200 μm is formed. One sheet was laminated. Furthermore, an electrolytic copper foil having a thickness of 12 μm (trade name F2-WS-12, manufactured by Furukawa Electric Co., Ltd.) is stacked so that the adhesive surface is combined with the prepreg, and the test is performed at 230 ° C., 90 minutes, 4.0 MPa pressing conditions. A multilayer board was produced. The copper foil was removed by etching, and the filling property of the cured body of the prepreg on the concave portion of the comb-shaped pattern of the inner layer circuit board was observed with a microscope. The case where no void was observed was marked with ◯, and the case where a void was recognized was marked with x. The results are shown in Table 1.

(樹脂組成物の弾性率の測定)
実施例1〜3、比較例1〜2で得られた樹脂組成物ワニスを、厚さ12μmの電解銅箔(古河電工株式会社製、商品名F2−WS−12)に、試料(塗膜)厚みが約50〜100μmになるように塗工して塗膜を得、150℃で15分間加熱した。次いで、試料である塗膜の上記電解銅箔側とは反対側の面に厚さ12μmの別の電解銅箔を、その面と銅箔の接着面とが重なるように積層して、230℃、4MPa、60分間加熱の条件で積層方向に真空プレスしながら、塗膜を硬化した。その後、銅箔をエッチングにより除去して得られた樹脂硬化物を試験用基板とした。この試験用基板を約30mm×5mmに切り出し、UBM社製動的粘弾性測定装置Reogel−E−4000を用い、測定長20mm、測定周波数10Hzの条件で測定を行った。得られた動的粘弾性曲線の25℃の動的弾性率を測定値とした。結果を表1に示した。
(Measurement of elastic modulus of resin composition)
The resin composition varnishes obtained in Examples 1 to 3 and Comparative Examples 1 to 2 were applied to a 12 μm thick electrolytic copper foil (Furukawa Electric Co., Ltd., trade name F2-WS-12) as a sample (coating film). The coating was applied to a thickness of about 50 to 100 μm to obtain a coating film and heated at 150 ° C. for 15 minutes. Next, another electrolytic copper foil having a thickness of 12 μm was laminated on the surface opposite to the electrolytic copper foil side of the coating film as a sample so that the surface and the adhesive surface of the copper foil overlapped, and 230 ° C. The coating film was cured while being vacuum-pressed in the laminating direction under conditions of heating at 4 MPa for 60 minutes. Thereafter, the cured resin obtained by removing the copper foil by etching was used as a test substrate. This test substrate was cut out to about 30 mm × 5 mm and measured using a dynamic viscoelasticity measuring device Regel-E-4000 manufactured by UBM under the conditions of a measurement length of 20 mm and a measurement frequency of 10 Hz. The dynamic elastic modulus at 25 ° C. of the obtained dynamic viscoelastic curve was taken as a measured value. The results are shown in Table 1.

(樹脂組成物のTgの測定)
実施例1〜3、比較例1〜2で得られた樹脂組成物ワニスを、厚さ12μmの電解銅箔(古河電工株式会社製、商品名F2−WS−12)に、試料(塗膜)厚みが約50〜100μmになるように塗工して塗膜を得、150℃で15分間加熱した。次いで、試料である塗膜の上記電解銅箔側とは反対側の面に厚さ12μmの別の電解銅箔を、その面と銅箔の接着面とが重なるように積層して、230℃、4MPa、60分間加熱の条件で積層方向に真空プレスしながら、塗膜を硬化した。その後、銅箔をエッチングにより除去して得られた樹脂硬化物を試験用基板とした。この試験用基板を約30mm×5mmに切り出し、UBM社製動的粘弾性測定装置Reogel−E−4000を用い、測定長20mm、測定周波数10Hz、昇温速度5℃/min、測定範囲30〜300℃の条件で、Tg(ガラス転移点)を測定した。結果を表1に示した。
(Measurement of Tg of resin composition)
The resin composition varnishes obtained in Examples 1 to 3 and Comparative Examples 1 to 2 were applied to a 12 μm thick electrolytic copper foil (Furukawa Electric Co., Ltd., trade name F2-WS-12) as a sample (coating film). The coating was applied to a thickness of about 50 to 100 μm to obtain a coating film and heated at 150 ° C. for 15 minutes. Next, another electrolytic copper foil having a thickness of 12 μm was laminated on the surface opposite to the electrolytic copper foil side of the coating film as a sample so that the surface and the adhesive surface of the copper foil overlapped, and 230 ° C. The coating film was cured while being vacuum-pressed in the laminating direction under conditions of heating at 4 MPa for 60 minutes. Thereafter, the cured resin obtained by removing the copper foil by etching was used as a test substrate. This test substrate was cut out to about 30 mm × 5 mm, and measured using a dynamic viscoelasticity measuring device Regel-E-4000 manufactured by UBM, measuring length 20 mm, measuring frequency 10 Hz, heating rate 5 ° C./min, measuring range 30 to 300. Tg (glass transition point) was measured under the condition of ° C. The results are shown in Table 1.

Figure 2006124670
Figure 2006124670

得られた両面銅箔張積層板の金属箔接着強度(銅箔引き剥がし強さ)を測定した結果、F2−WS−12と実施例1〜3、比較例1、2のいずれのプリプレグとの組み合わせでも0.9〜1.2kN/mであった。260℃、288℃及び300℃のはんだ浴に浸漬してはんだ耐熱性を測定した結果、実施例1〜3、比較例1では、いずれの温度でも5分間、ふくれ、剥がれ等の異常が見られなかった。しかし比較例2では288℃、60秒でプリプレグのボイドによると思われるふくれが発生した。また、銅箔をエッチングにより除去した両面銅箔張積層板は、いずれも可とう性に富み任意に折り曲げることが可能であった。   As a result of measuring the metal foil adhesive strength (copper foil peeling strength) of the obtained double-sided copper foil-clad laminate, F2-WS-12 and any of the prepregs of Examples 1 to 3 and Comparative Examples 1 and 2 The combination was 0.9 to 1.2 kN / m. As a result of immersing in a solder bath at 260 ° C., 288 ° C. and 300 ° C. and measuring solder heat resistance, Examples 1 to 3 and Comparative Example 1 showed abnormalities such as blistering and peeling for 5 minutes at any temperature. There wasn't. However, in Comparative Example 2, blistering that appeared to be caused by prepreg voids occurred at 288 ° C. for 60 seconds. In addition, the double-sided copper foil-clad laminate from which the copper foil was removed by etching was highly flexible and could be bent arbitrarily.

ナフタレンジグリシジル化合物を含む実施例1〜3では、9mm以上のフロー量となったが、比較例1、2ではそれぞれ4.5mm、7.2mmであった。回路充填性の評価は、ナフタレンジグリシジル化合物を含む実施例1〜3では、櫛形回路間の凹部上に樹脂が隙間なく充填されていたが、比較例1〜2では回路間の凹部上に空隙が多数認められた。   In Examples 1 to 3 containing a naphthalenediglycidyl compound, the flow amount was 9 mm or more, but in Comparative Examples 1 and 2, they were 4.5 mm and 7.2 mm, respectively. In Examples 1 to 3 containing a naphthalene diglycidyl compound, the resin was filled in the recesses between the comb circuits without any gaps, but in Comparative Examples 1 and 2, there was a gap in the recesses between the circuits. Many were recognized.

耐衝撃性は、実施例1〜3及び比較例1、2とも良好であった。また、ナフタレンジグリシジル化合物を含む実施例1〜3は、樹脂組成物のフロー量が比較例1〜2と比べて大きく、また、樹脂組成物のTgは大きいことから、成形性及び耐熱性が優れていることがわかる。   The impact resistance was good in each of Examples 1 to 3 and Comparative Examples 1 and 2. Moreover, since Examples 1-3 which contain a naphthalene diglycidyl compound have the large amount of flow of a resin composition compared with Comparative Examples 1-2, and Tg of a resin composition is large, a moldability and heat resistance are good. It turns out that it is excellent.

本発明によるプリプレグの一実施形態を示す部分斜視図である。It is a fragmentary perspective view which shows one Embodiment of the prepreg by this invention. 本発明による金属箔張積層板の一実施形態を示す部分断面図である。It is a fragmentary sectional view showing one embodiment of a metal foil tension laminate sheet by the present invention. 本発明による印刷回路板の一実施形態を示す部分断面図である。1 is a partial cross-sectional view illustrating an embodiment of a printed circuit board according to the present invention.

符号の説明Explanation of symbols

3…繊維強化樹脂層、10…金属箔、30…基板、100…プリプレグ、200…金属箔張積層板、300…印刷回路板、313a、313b、323a、323b…回路、315…内層回路基板、311、321a、321b…貫通孔、412、322a、322b…導電体、310、320a、320b…絶縁基板。
DESCRIPTION OF SYMBOLS 3 ... Fiber reinforced resin layer, 10 ... Metal foil, 30 ... Board | substrate, 100 ... Prepreg, 200 ... Metal foil tension laminated board, 300 ... Printed circuit board, 313a, 313b, 323a, 323b ... Circuit, 315 ... Inner layer circuit board, 311, 321 a, 321 b... Through-hole, 412, 322 a, 322 b... Conductor, 310, 320 a, 320 b.

Claims (7)

繊維基材と、これに含浸した樹脂組成物と、を備え、
前記樹脂組成物が、ポリアミドイミド樹脂と、ナフタレンジグリシジル化合物と、を含むものであるプリプレグ。
A fiber base material, and a resin composition impregnated therein,
A prepreg in which the resin composition includes a polyamideimide resin and a naphthalenediglycidyl compound.
前記ポリアミドイミド樹脂は、下記一般式(1);
Figure 2006124670

(式(1)中、R、Rは2価のアルキル基、R、R、R、Rは1価のアルキル基又は置換基を有する1価のアルキル基、R、Rは1価の芳香族基又は置換基を有する1価の芳香族基を示し、m、nはそれぞれ0から40の整数で、1≦n+m≦50を満足する。)
で表される構造を有するポリアミドイミド樹脂を含むものである、請求項1記載のプリプレグ。
The polyamideimide resin has the following general formula (1):
Figure 2006124670

(In the formula (1), R 1 and R 2 are divalent alkyl groups, R 3 , R 4 , R 7 and R 8 are monovalent alkyl groups or monovalent alkyl groups having a substituent, R 5 , R 6 represents a monovalent aromatic group or a monovalent aromatic group having a substituent, and m and n are each an integer of 0 to 40 and satisfy 1 ≦ n + m ≦ 50.
The prepreg according to claim 1, comprising a polyamideimide resin having a structure represented by:
前記ポリアミドイミド樹脂は、下記一般式(2);
Figure 2006124670

で表される構造を有するポリアミドイミド樹脂を含むものである、請求項1又は2に記載のプリプレグ。
The polyamideimide resin has the following general formula (2):
Figure 2006124670

The prepreg according to claim 1, comprising a polyamideimide resin having a structure represented by:
前記ポリアミドイミド樹脂が、下記一般式(3a)で表されるジアミン、下記一般式(1a)又は下記一般式(1b)で表される芳香族環を2個以上有するジアミン及びシロキサンジアミンの混合物と無水トリメリット酸とを反応させて得られるジイミドジカルボン酸を含む混合物に、ジイソシアネート化合物を反応させて得られるポリアミドイミド樹脂を含むものである、請求項1〜3のいずれか一項に記載のプリプレグ。
Figure 2006124670

(式(1a)及び(1b)中、Xは炭素数1〜3の2価の脂肪族炭化水素基、炭素数1〜3の2価のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基、単結合又は下記一般式(2a)若しくは下記一般式(2b)で表される2価の基を示し、Yは炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基又はカルボニル基を示し、R、R及びRはそれぞれ独立に水素原子、水酸基、メトキシ基、メチル基又はハロゲン化メチル基を示す。但し、Zは、炭素数1〜3の2価の脂肪族炭化水素基、炭素数1〜3の2価のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基又は単結合を示す。)
Figure 2006124670
A mixture of a diamine represented by the following general formula (3a), a diamine having two or more aromatic rings represented by the following general formula (1a) or the following general formula (1b), and a siloxane diamine; The prepreg as described in any one of Claims 1-3 which contains the polyamidoimide resin obtained by making a diisocyanate compound react with the mixture containing the diimide dicarboxylic acid obtained by making it react with trimellitic anhydride.
Figure 2006124670

(In the formulas (1a) and (1b), X represents a divalent aliphatic hydrocarbon group having 1 to 3 carbon atoms, a divalent halogenated aliphatic hydrocarbon group having 1 to 3 carbon atoms, a sulfonyl group, and an ether group. , A carbonyl group, a single bond, or a divalent group represented by the following general formula (2a) or the following general formula (2b), Y represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. A halogenated aliphatic hydrocarbon group, a sulfonyl group, an ether group or a carbonyl group, and R 1 , R 2 and R 3 each independently represent a hydrogen atom, a hydroxyl group, a methoxy group, a methyl group or a halogenated methyl group. However, Z shows a C1-C3 bivalent aliphatic hydrocarbon group, a C1-C3 bivalent halogenated aliphatic hydrocarbon group, a sulfonyl group, an ether group, a carbonyl group, or a single bond. .)
Figure 2006124670
前記繊維基材が厚さ5〜100μmのガラスクロスである、請求項1〜4のいずれか一項に記載のプリプレグ。   The prepreg as described in any one of Claims 1-4 whose said fiber base material is a glass cloth with a thickness of 5-100 micrometers. 請求項1〜5のいずれか一項に記載のプリプレグを所定枚数重ねて加熱することにより前記樹脂組成物を硬化して得られる基板と、その基板の片側又は両側に設けられた金属箔と、を備える金属箔張積層板。   A substrate obtained by curing the resin composition by heating a predetermined number of the prepregs according to any one of claims 1 to 5, a metal foil provided on one side or both sides of the substrate, A metal foil clad laminate. 請求項6記載の金属箔張積層板に回路を形成して得られる印刷回路板。   A printed circuit board obtained by forming a circuit on the metal foil-clad laminate according to claim 6.
JP2005280457A 2004-09-28 2005-09-27 Prepreg, metal foil-clad laminate and printed circuit board using these Expired - Fee Related JP4736671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280457A JP4736671B2 (en) 2004-09-28 2005-09-27 Prepreg, metal foil-clad laminate and printed circuit board using these

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004281507 2004-09-28
JP2004281507 2004-09-28
JP2005280457A JP4736671B2 (en) 2004-09-28 2005-09-27 Prepreg, metal foil-clad laminate and printed circuit board using these

Publications (2)

Publication Number Publication Date
JP2006124670A true JP2006124670A (en) 2006-05-18
JP4736671B2 JP4736671B2 (en) 2011-07-27

Family

ID=36719701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280457A Expired - Fee Related JP4736671B2 (en) 2004-09-28 2005-09-27 Prepreg, metal foil-clad laminate and printed circuit board using these

Country Status (1)

Country Link
JP (1) JP4736671B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040399A1 (en) 2009-09-30 2011-04-07 日立化成工業株式会社 Resin composition, prepreg using same, metal foil with resin, adhesive film, and metal-clad laminate
WO2014148441A1 (en) * 2013-03-18 2014-09-25 旭化成イーマテリアルズ株式会社 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
WO2020040494A1 (en) * 2018-08-20 2020-02-27 주식회사 엘지화학 Polyimide precursor composition, polyimide film produced using same, and flexible device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017006A1 (en) * 1994-12-02 1996-06-06 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
JPH08225667A (en) * 1994-12-02 1996-09-03 Toray Ind Inc Prepreg and fiber-reinforced composite material
JP2003055486A (en) * 2001-05-24 2003-02-26 Hitachi Chem Co Ltd Prepreg and laminate
JP2003238806A (en) * 2002-02-20 2003-08-27 Hitachi Chem Co Ltd Flame-retardant and heat-resistant resin composition, adherent film using the same and polyimide film with adhesive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017006A1 (en) * 1994-12-02 1996-06-06 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
JPH08225667A (en) * 1994-12-02 1996-09-03 Toray Ind Inc Prepreg and fiber-reinforced composite material
JP2003055486A (en) * 2001-05-24 2003-02-26 Hitachi Chem Co Ltd Prepreg and laminate
JP2003238806A (en) * 2002-02-20 2003-08-27 Hitachi Chem Co Ltd Flame-retardant and heat-resistant resin composition, adherent film using the same and polyimide film with adhesive

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9132611B2 (en) 2009-09-30 2015-09-15 Hitachi Chemical Co., Ltd. Resin composition, prepreg using same, metal foil with resin, adhesive film, and metal-clad laminate
WO2011040399A1 (en) 2009-09-30 2011-04-07 日立化成工業株式会社 Resin composition, prepreg using same, metal foil with resin, adhesive film, and metal-clad laminate
KR20170097245A (en) * 2013-03-18 2017-08-25 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
CN104854165A (en) * 2013-03-18 2015-08-19 旭化成电子材料株式会社 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
JPWO2014148441A1 (en) * 2013-03-18 2017-02-16 旭化成株式会社 RESIN PRECURSOR AND RESIN COMPOSITION CONTAINING THE SAME, RESIN FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD
KR20170097242A (en) * 2013-03-18 2017-08-25 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
WO2014148441A1 (en) * 2013-03-18 2014-09-25 旭化成イーマテリアルズ株式会社 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR20170097243A (en) * 2013-03-18 2017-08-25 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR101896268B1 (en) 2013-03-18 2018-09-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR101896271B1 (en) 2013-03-18 2018-09-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR101896885B1 (en) 2013-03-18 2018-09-10 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR20180100738A (en) * 2013-03-18 2018-09-11 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR102008160B1 (en) 2013-03-18 2019-08-07 아사히 가세이 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
CN104854165B (en) * 2013-03-18 2020-09-11 旭化成株式会社 Resin precursor, resin composition containing the same, resin film and method for producing the same, and laminate and method for producing the same
WO2020040494A1 (en) * 2018-08-20 2020-02-27 주식회사 엘지화학 Polyimide precursor composition, polyimide film produced using same, and flexible device

Also Published As

Publication number Publication date
JP4736671B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
TWI450651B (en) Multilayer wiring board
KR100818470B1 (en) Prepreg, metal-clad laminate and printed circuit board using same
JP5124984B2 (en) Printed wiring board
JP5470725B2 (en) Metal foil-clad laminate and printed wiring board
JP2006066894A (en) Printed-circuit board
JP4517749B2 (en) Prepreg and metal-clad laminate and printed circuit board using the same
JP4735092B2 (en) Printed circuit board
JP2009190387A (en) Metallic foil-clad laminate plate and printed wiring board
JP4736671B2 (en) Prepreg, metal foil-clad laminate and printed circuit board using these
JP5200565B2 (en) Printed wiring board and electronic device
JP2007318071A (en) Insulating base board, base board with metal foil, and printed circuit board
JP4555985B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP4590982B2 (en) Metal foil with resin
JP5018011B2 (en) Metal foil-laminated laminate, resin-coated metal foil and multilayer printed wiring board
JP2005325203A (en) Prepreg, metal foil-clad laminated plate and printed circuit board obtained using the same
JP5241992B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP4586424B2 (en) Printed circuit board
JP2009079200A (en) Prepreg, laminate, and metal foil-clad laminate
JP4774702B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP4595434B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP4378628B2 (en) Prepreg, laminated board and printed circuit board using them
JP2010037489A (en) Adhesive film, and metal foil with resin
JP2005307148A (en) Prepreg and metal foil-adhered lamination plate and printed circuit board using it
JP2005325162A (en) Prepreg, metal foil-clad laminated plate and printed circuit board obtained using these
JP2012169680A (en) Printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R151 Written notification of patent or utility model registration

Ref document number: 4736671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees