JP2006124242A - Fluoride single crystal, calcium fluoride single crystal and its sorting method - Google Patents

Fluoride single crystal, calcium fluoride single crystal and its sorting method Download PDF

Info

Publication number
JP2006124242A
JP2006124242A JP2004316294A JP2004316294A JP2006124242A JP 2006124242 A JP2006124242 A JP 2006124242A JP 2004316294 A JP2004316294 A JP 2004316294A JP 2004316294 A JP2004316294 A JP 2004316294A JP 2006124242 A JP2006124242 A JP 2006124242A
Authority
JP
Japan
Prior art keywords
single crystal
fluoride single
wavelength
transmittance
calcium fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004316294A
Other languages
Japanese (ja)
Inventor
Keiji Sumiya
圭二 住谷
Senguttoban Nachimusu
セングットバン ナチムス
Hiroyuki Ishibashi
浩之 石橋
Masahiro Aoshima
真裕 青嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004316294A priority Critical patent/JP2006124242A/en
Publication of JP2006124242A publication Critical patent/JP2006124242A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calcium fluoride single crystal having total characteristics more suitable as an optical element material used in a short-wavelength light source; and to provide a method for sorting the same. <P>SOLUTION: The method for sorting the calcium fluoride single crystal comprises irradiating a calcium fluoride single crystal with a gamma ray of a dose of 1×10<SP>5</SP>rad/h for 1 h, then measuring the transmissivity T<SB>140</SB>at 140 nm wavelength and the transmissivity T<SB>190</SB>at 190 nm wavelength, and selecting the single crystal having T<SB>140</SB>and T<SB>190</SB>values of both ≥80% and a transmissivity ratio T<SB>140</SB>/T<SB>190</SB>of ≥0.9. Thereby, a calcium fluoride single crystal maintaining high transmissivity both at 140 nm and 190 nm wavelengths, almost free from lowering of the transmissivity in a wavelength range of 190 to 140 nm, and having total characteristics more suitable as an optical element material used in a short wavelength light source can be sorted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学素子等に用いられるフッ化物単結晶及びフッ化カルシウム単結晶、並びに、その選別方法に関する。   The present invention relates to a fluoride single crystal and a calcium fluoride single crystal used for an optical element and the like, and a selection method thereof.

近年では光学素子の微細化への要請から露光解像度を高めることが求められており、その一手段として露光光源の短波長化が進んでいる。具体的には、従来のKrFレーザー(248nm)からArFレーザー(193nm)やFレーザー(157nm)へと短波長化されている。こうした短波長化に対応可能な光学素子として、真空紫外域での透過率が従来の合成石英(SiO)より優れるフッ化カルシウム等のフッ化物単結晶が注目されている。 In recent years, it has been required to increase the exposure resolution due to the demand for miniaturization of optical elements, and as one means, the wavelength of the exposure light source has been shortened. Specifically, the wavelength is shortened from a conventional KrF laser (248 nm) to an ArF laser (193 nm) or an F 2 laser (157 nm). As an optical element capable of dealing with such a short wavelength, a fluoride single crystal such as calcium fluoride, which has better transmittance in the vacuum ultraviolet region than conventional synthetic quartz (SiO 2 ), has attracted attention.

短波長化に対応可能なフッ化カルシウム単結晶の特性や検査方法に関する技術としては、例えば下記特許文献1に記載の技術がある。同文献1によれば、比較的安価な手段としてガンマ線の照射を提案しており、線量1×10R/hのガンマ線を1時間照射した後の波長140nmにおける厚さ30mm当たりの透過率の減少量が照射前に対して12%以下(好ましくは7%以下)、または、線量1×10R/hのガンマ線を1時間照射した後の波長190nmにおける厚さ30mm当たりの透過率の減少量が照射前に対して9%以下(好ましくは7%以下)であるフッ化カルシウム単結晶が好適であるとしている。(同文献1段落番号0007等) As a technique relating to the characteristics of calcium fluoride single crystals and inspection methods that can cope with shorter wavelengths, there is a technique described in Patent Document 1, for example. According to the literature 1, gamma ray irradiation is proposed as a relatively inexpensive means, and the transmittance per 30 mm thickness at a wavelength of 140 nm after irradiation with a gamma ray with a dose of 1 × 10 6 R / h for one hour is proposed. Decrease of 12% or less (preferably 7% or less) before irradiation, or decrease in transmittance per 30 mm thickness at 190 nm wavelength after irradiation for 1 hour with a dose of 1 × 10 6 R / h gamma rays It is said that a calcium fluoride single crystal whose amount is 9% or less (preferably 7% or less) with respect to that before irradiation is suitable. (Paragraph number 0007, etc. in the same document)

特開2003−206197号公報JP 2003-206197 A

しかしながら、フッ化物単結晶の透過率は短波長域に進むごとに急激に低下するのが一般的であるが、単一波長の透過率を測定するのみでは他の結晶特性を類推することが困難であるため、光学特性を含む結晶の総合特性を判断するには不十分であった。   However, the transmittance of a fluoride single crystal generally decreases sharply as it goes into the short wavelength region, but it is difficult to analogize other crystal characteristics simply by measuring the transmittance at a single wavelength. Therefore, it was insufficient to judge the overall characteristics of the crystal including the optical characteristics.

本発明は上記課題に鑑みてなされたものであり、短波長光源に用いる光学素子材料としてより好適な総合特性を持つフッ化物単結晶及びフッ化カルシウム単結晶、並びに、その選別方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a fluoride single crystal and a calcium fluoride single crystal having comprehensive characteristics more suitable as an optical element material used for a short wavelength light source, and a selection method thereof. With the goal.

本発明に係るフッ化物単結晶は、線量1×10rad/hのガンマ線を1時間照射した後の波長140nmにおける透過率T140及び波長190nmにおける透過率T190が共に80パーセント以上であって、T140/T190が0.9以上であることを特徴とする。 In the fluoride single crystal according to the present invention, the transmittance T 140 at a wavelength of 140 nm and the transmittance T 190 at a wavelength of 190 nm after irradiation with a gamma ray with a dose of 1 × 10 5 rad / h for 1 hour are both 80% or more. , T 140 / T 190 is 0.9 or more.

また、本発明に係るフッ化カルシウム単結晶は、線量1×10rad/hのガンマ線を1時間照射した後の波長140nmにおける透過率T140及び波長190nmにおける透過率T190が共に80パーセント以上であって、T140/T190が0.9以上であることを特徴とする。 The calcium fluoride single crystal according to the present invention has a transmittance T 140 at a wavelength of 140 nm and a transmittance T 190 at a wavelength of 190 nm of 80% or more after irradiation with a gamma ray with a dose of 1 × 10 5 rad / h for 1 hour. And T140 / T190 is 0.9 or more, It is characterized by the above-mentioned.

また、本発明に係るフッ化物単結晶の選別方法は、フッ化物単結晶に線量1×10rad/hのガンマ線を1時間照射した後、波長140nmにおける透過率T140及び波長190nmにおける透過率T190を測定し、T140及びT190が共に80パーセント以上であって、T140/T190が0.9以上であるものを選別することを特徴とする。 In addition, the method for selecting a fluoride single crystal according to the present invention is that the fluoride single crystal is irradiated with a gamma ray with a dose of 1 × 10 5 rad / h for 1 hour, and then the transmittance T 140 at a wavelength of 140 nm and the transmittance at a wavelength of 190 nm. T 190 is measured, and T 140 and T 190 are both 80% or more, and T 140 / T 190 is 0.9 or more.

また、本発明に係るフッ化カルシウム単結晶の選別方法は、フッ化カルシウム単結晶に線量1×10rad/hのガンマ線を1時間照射した後、波長140nmにおける透過率T140及び波長190nmにおける透過率T190を測定し、T140及びT190が共に80パーセント以上であって、T140/T190が0.9以上であるものを選別することを特徴とする。 Further, the calcium fluoride single crystal selection method according to the present invention is such that the calcium fluoride single crystal is irradiated with a gamma ray with a dose of 1 × 10 5 rad / h for 1 hour, and then has a transmittance T 140 at a wavelength of 140 nm and a wavelength of 190 nm. The transmittance T 190 is measured, and T 140 and T 190 are both 80% or more and T 140 / T 190 is 0.9 or more.

本発明に係るフッ化物単結晶によれば、線量1×10rad/hのガンマ線を1時間照射した後の波長140nmにおける透過率T140及び波長190nmにおける透過率T190が共に80パーセント以上であって、T140/T190が0.9以上であるため、190nm及び140nmの両者における透過率を高く維持していると共に190nm〜140nmでの透過率の低下が少なく、短波長光源に用いる光学素子材料としてより好適な総合特性を持つと言える。 According to the fluoride single crystal of the present invention, the transmittance T 140 at a wavelength of 140 nm and the transmittance T 190 at a wavelength of 190 nm after irradiation with a gamma ray with a dose of 1 × 10 5 rad / h for 1 hour are both 80% or more. In addition, since T 140 / T 190 is 0.9 or more, the transmittance at both 190 nm and 140 nm is kept high, and the decrease in the transmittance at 190 nm to 140 nm is small. It can be said that it has comprehensive characteristics more suitable as an element material.

また、本発明に係るフッ化カルシウム単結晶によれば、線量1×10rad/hのガンマ線を1時間照射した後の波長140nmにおける透過率T140及び波長190nmにおける透過率T190が共に80パーセント以上であって、T140/T190が0.9以上であるため、190nm及び140nmの両者における透過率を高く維持していると共に190nm〜140nmでの透過率の低下が少なく、短波長光源に用いる光学素子材料としてより好適な総合特性を持つと言える。 In addition, according to the calcium fluoride single crystal according to the present invention, the transmittance T 140 at a wavelength of 140 nm and the transmittance T 190 at a wavelength of 190 nm after irradiation with a gamma ray with a dose of 1 × 10 5 rad / h for 1 hour are both 80. Since the T 140 / T 190 is not less than 0.9 percent and the T 140 / T 190 is not less than 0.9, the transmittance at both 190 nm and 140 nm is maintained high, and the decrease in the transmittance at 190 nm to 140 nm is small, and the short wavelength light source It can be said that it has a more suitable overall characteristic as an optical element material used in the above.

また、本発明に係るフッ化物単結晶の選別方法によれば、フッ化物単結晶に線量1×10rad/hのガンマ線を1時間照射した後、波長140nmにおける透過率T140及び波長190nmにおける透過率T190を測定し、T140及びT190が共に80パーセント以上であって、T140/T190が0.9以上であるものを選別するため、190nm及び140nmの両者における透過率を高く維持していると共に190nm〜140nmでの透過率の低下が少なく、短波長光源に用いる光学素子材料としてより好適な総合特性を持つフッ化物単結晶を選別することができる。 Further, according to the method for selecting a fluoride single crystal according to the present invention, the fluoride single crystal is irradiated with a gamma ray having a dose of 1 × 10 5 rad / h for 1 hour, and then the transmittance T 140 at a wavelength of 140 nm and the wavelength at a wavelength of 190 nm. The transmittance T 190 is measured, and T 140 and T 190 are both 80% or more, and T 140 / T 190 is 0.9 or more. Therefore, the transmittance at both 190 nm and 140 nm is increased. It is possible to select a fluoride single crystal that is maintained and has a low decrease in transmittance at 190 nm to 140 nm, and has comprehensive characteristics more suitable as an optical element material used for a short wavelength light source.

また、本発明に係るフッ化カルシウム単結晶の選別方法によれば、フッ化カルシウム単結晶に線量1×10rad/hのガンマ線を1時間照射した後、波長140nmにおける透過率T140及び波長190nmにおける透過率T190を測定し、T140及びT190が共に80パーセント以上であって、T140/T190が0.9以上であるものを選別するため、190nm及び140nmの両者における透過率を高く維持していると共に190nm〜140nmでの透過率の低下が少なく、短波長光源に用いる光学素子材料としてより好適な総合特性を持つフッ化カルシウム単結晶を選別することができる。 Moreover, according to the selection method of the calcium fluoride single crystal according to the present invention, the calcium fluoride single crystal is irradiated with gamma rays having a dose of 1 × 10 5 rad / h for 1 hour, and then the transmittance T 140 and the wavelength at a wavelength of 140 nm are used. The transmittance T 190 at 190 nm is measured, and the transmittance at both 190 nm and 140 nm is selected in order to sort out those having both T 140 and T 190 of 80% or more and T 140 / T 190 of 0.9 or more. Can be selected, and a single crystal of calcium fluoride having a comprehensive characteristic more suitable as an optical element material used for a short wavelength light source can be selected.

図1に示すフローチャートを参照しながら、本実施形態に係るフッ化カルシウム単結晶の選別方法について説明する。まず、選別対象となるフッ化カルシウム単結晶に対し、線量1×10rad/hのガンマ線が1時間照射される(S1)。これは、上記特許文献1の図9等にも示されているように、フッ化カルシウム単結晶に関してFレーザー耐久劣化量とガンマ線耐久劣化量に相関性があることが知られており、測定精度や測定コストの面からレーザー照射よりもガンマ線照射のほうが有利なためである。 A method for selecting a calcium fluoride single crystal according to the present embodiment will be described with reference to the flowchart shown in FIG. First, the calcium fluoride single crystal to be selected is irradiated with gamma rays with a dose of 1 × 10 5 rad / h for 1 hour (S1). This is known to have a correlation between the F 2 laser durability deterioration amount and the gamma ray durability deterioration amount with respect to the calcium fluoride single crystal as shown in FIG. This is because gamma irradiation is more advantageous than laser irradiation in terms of accuracy and measurement cost.

ガンマ線が1時間照射された後、波長140nmにおける透過率T140及び波長190nmにおける透過率T190が測定される(S2)。この140nm及び190nmとは、上記特許文献1の段落番号0019等に示されているように、Fレーザーとガンマ線とに共通して得られるピークであることが知られており、透過率の劣化評価波長として選択されている。また、この透過率の測定には既知の真空紫外波長領域測定用の分光光度計が用いられる。そして、T140及びT190が共に80パーセント以上であって、T140とT190との比であるT140/T190が0.9以上であるものが選別される(S3)。 After gamma ray irradiation for 1 hour, the transmittance T 140 at a wavelength of 140 nm and the transmittance T 190 at a wavelength of 190 nm are measured (S2). The 140 nm and 190 nm are known to be peaks obtained in common with the F 2 laser and the gamma ray, as shown in paragraph No. 0019 of Patent Document 1 and the like. It is selected as the evaluation wavelength. In addition, a known spectrophotometer for measuring the vacuum ultraviolet wavelength region is used for measuring the transmittance. Then, there is T 140 and T 190 are both 80% or more, T 140 / T 190 which is the ratio of the T 140 and T 190 are sorted those less than 0.9 (S3).

図2は、3種類のガンマ線照射後のフッ化カルシウム単結晶A、B、Cについて、本発明者らが波長と透過率との関係を調査した結果を示すグラフである。同図中Aは、単結晶の高純度化に効果があるスカベンジャーを原料に添加せずに育成したフッ化カルシウム単結晶、すなわち不純物排除の処理が施されていないフッ化カルシウム単結晶について示したものである。同図によれば、単結晶Aの透過率は200nm付近で急激に低下しており、T140及びT190が共に80パーセント以上という条件を満たしていない。従って、本実施形態に係るフッ化カルシウム単結晶の選別方法では、この単結晶Aを排除することができる。 FIG. 2 is a graph showing the results of the investigation of the relationship between wavelength and transmittance by the present inventors for three types of calcium fluoride single crystals A, B, and C after irradiation with gamma rays. In the figure, A shows a calcium fluoride single crystal grown without adding a scavenger effective for the purification of the single crystal to the raw material, that is, a calcium fluoride single crystal not subjected to impurity exclusion treatment. Is. According to the figure, the transmittance of the single crystal A rapidly decreases near 200 nm, and both T140 and T190 do not satisfy the condition of 80% or more. Therefore, the single crystal A can be excluded in the calcium fluoride single crystal selection method according to the present embodiment.

同図中Bは、スカベンジャーを添加して育成させたものの原料に固有の不純物を含んでいたフッ化カルシウム単結晶について示したものである。同図によれば、単結晶Bの透過率は145nm付近で急激に低下しており、T190が80パーセント以上という条件は満たしているもののT140が80パーセント以上という条件を満たしていない。従って、本実施形態に係るフッ化カルシウム単結晶の選別方法では、この単結晶Bを排除することができる。 B in the figure shows a calcium fluoride single crystal that was grown by adding a scavenger and contained impurities inherent in the raw material. According to the figure, the transmittance of the single crystal B rapidly decreases near 145 nm, and the condition that T 190 is 80% or more is satisfied, but the condition that T 140 is 80% or more is not satisfied. Therefore, this single crystal B can be excluded in the calcium fluoride single crystal selection method according to the present embodiment.

また、上記特許文献1の図9に示されるフッ化カルシウム単結晶の透過率は160nm付近で垂れており、T190が80パーセント以上という条件は満たしているもののT140が80パーセント以上という条件やT140/T190が0.9以上であるという条件を満たしていない。従って、本実施形態に係るフッ化カルシウム単結晶の選別方法では、上記特許文献1の単結晶を排除することができる。 Further, the transmittance of the calcium fluoride single crystal shown in FIG. 9 of Patent Document 1 is drooping in the vicinity of 160 nm, and the condition that T 190 is 80% or more is satisfied, but T 140 is 80% or more. The condition that T 140 / T 190 is 0.9 or more is not satisfied. Therefore, in the calcium fluoride single crystal selection method according to the present embodiment, the single crystal of Patent Document 1 can be eliminated.

一方、図2中Cは、固有の不純物が少ない原料を用い好適なスカベンジャーを添加して育成させたフッ化カルシウム単結晶について示したものである。同図によれば、単結晶Cの透過率は125nm付近まで高い透過率を保持しており、T140及びT190が共に80パーセント以上であって、T140とT190との比であるT140/T190が0.9以上である条件を満たしている。従って、本実施形態に係るフッ化カルシウム単結晶の選別方法では、この単結晶Cを不純物による欠陥が少なく総合特性の高いものとして選別することができる。 On the other hand, C in FIG. 2 shows a calcium fluoride single crystal grown by adding a suitable scavenger using a raw material with few intrinsic impurities. According to the figure, the transmittance of the single crystal C maintains a high transmittance up to about 125 nm, both T 140 and T 190 are 80% or more, and T is the ratio of T 140 and T 190. The condition that 140 / T 190 is 0.9 or more is satisfied. Therefore, in the method for selecting a calcium fluoride single crystal according to the present embodiment, the single crystal C can be selected as one having few defects due to impurities and high overall characteristics.

以上説明したように、本実施形態に係るフッ化カルシウム単結晶の選別方法によれば、不純物による欠陥が少なく短波長光源に用いる光学素子材料としてより好適な総合特性を持つものとして選別することができる。なお、上記実施形態ではフッ化カルシウム単結晶を例に挙げて説明したが、他のフッ化物単結晶について応用することができる。   As described above, according to the calcium fluoride single crystal sorting method according to the present embodiment, it is possible to sort as having an overall characteristic more suitable as an optical element material used in a short wavelength light source with few defects due to impurities. it can. In the above embodiment, the calcium fluoride single crystal has been described as an example, but the present invention can be applied to other fluoride single crystals.

本実施形態に係るフッ化カルシウム単結晶の選別方法を説明するフローチャートである。It is a flowchart explaining the selection method of the calcium fluoride single crystal which concerns on this embodiment. ガンマ線照射後のフッ化カルシウム単結晶について、波長と透過率との関係を示すグラフである。It is a graph which shows the relationship between a wavelength and the transmittance | permeability about the calcium fluoride single crystal after gamma ray irradiation.

Claims (4)

線量1×10rad/hのガンマ線を1時間照射した後の波長140nmにおける透過率T140及び波長190nmにおける透過率T190が共に80パーセント以上であって、T140/T190が0.9以上であることを特徴とするフッ化物単結晶。 The transmittance T 140 at a wavelength of 140 nm and the transmittance T 190 at a wavelength of 190 nm after irradiation with gamma rays with a dose of 1 × 10 5 rad / h for 1 hour are both 80% or more, and T 140 / T 190 is 0.9 A fluoride single crystal characterized by the above. 線量1×10rad/hのガンマ線を1時間照射した後の波長140nmにおける透過率T140及び波長190nmにおける透過率T190が共に80パーセント以上であって、T140/T190が0.9以上であることを特徴とするフッ化カルシウム単結晶。 The transmittance T 140 at a wavelength of 140 nm and the transmittance T 190 at a wavelength of 190 nm after irradiation with gamma rays with a dose of 1 × 10 5 rad / h for 1 hour are both 80% or more, and T 140 / T 190 is 0.9 A calcium fluoride single crystal characterized by the above. フッ化物単結晶に線量1×10rad/hのガンマ線を1時間照射した後、波長140nmにおける透過率T140及び波長190nmにおける透過率T190を測定し、T140及びT190が共に80パーセント以上であって、T140/T190が0.9以上であるものを選別することを特徴とするフッ化物単結晶の選別方法。 After irradiating a fluoride single crystal with a dose of 1 × 10 5 rad / h of gamma rays for 1 hour, the transmittance T 140 at a wavelength of 140 nm and the transmittance T 190 at a wavelength of 190 nm are measured, and both T 140 and T 190 are 80%. A method for screening a fluoride single crystal, characterized in that a screen having T 140 / T 190 of 0.9 or more is selected. フッ化カルシウム単結晶に線量1×10rad/hのガンマ線を1時間照射した後、波長140nmにおける透過率T140及び波長190nmにおける透過率T190を測定し、T140及びT190が共に80パーセント以上であって、T140/T190が0.9以上であるものを選別することを特徴とするフッ化カルシウム単結晶の選別方法。 After irradiating the calcium fluoride single crystal with gamma rays with a dose of 1 × 10 5 rad / h for 1 hour, the transmittance T 140 at a wavelength of 140 nm and the transmittance T 190 at a wavelength of 190 nm are measured, and both T 140 and T 190 are 80 A method for selecting a calcium fluoride single crystal, characterized in that those having a percentage of T 140 / T 190 of 0.9 or more are selected.
JP2004316294A 2004-10-29 2004-10-29 Fluoride single crystal, calcium fluoride single crystal and its sorting method Pending JP2006124242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004316294A JP2006124242A (en) 2004-10-29 2004-10-29 Fluoride single crystal, calcium fluoride single crystal and its sorting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004316294A JP2006124242A (en) 2004-10-29 2004-10-29 Fluoride single crystal, calcium fluoride single crystal and its sorting method

Publications (1)

Publication Number Publication Date
JP2006124242A true JP2006124242A (en) 2006-05-18

Family

ID=36719328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004316294A Pending JP2006124242A (en) 2004-10-29 2004-10-29 Fluoride single crystal, calcium fluoride single crystal and its sorting method

Country Status (1)

Country Link
JP (1) JP2006124242A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330114A (en) * 1997-03-31 1998-12-15 Canon Inc Fluoride crystal and optical part and production
JP2003206197A (en) * 2002-01-07 2003-07-22 Canon Inc Method for inspecting and producing calcium fluoride crystal and optical element produced from the calcium fluoride crystal
JP2003221297A (en) * 2002-01-31 2003-08-05 Canon Inc Method for producing calcium fluoride crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330114A (en) * 1997-03-31 1998-12-15 Canon Inc Fluoride crystal and optical part and production
JP2003206197A (en) * 2002-01-07 2003-07-22 Canon Inc Method for inspecting and producing calcium fluoride crystal and optical element produced from the calcium fluoride crystal
JP2003221297A (en) * 2002-01-31 2003-08-05 Canon Inc Method for producing calcium fluoride crystal

Similar Documents

Publication Publication Date Title
US6699408B2 (en) Method of making a fluoride crystalline optical lithography lens element blank
JP4540636B2 (en) Method for measuring irreversible radiation damage of optical materials
US20060110604A1 (en) Synthetic quartz member, exposure apparatus, and method of manufacturing exposure apparatus
JP2010107506A (en) Method of determining laser stabilities of optical material, crystals obtained with this method, and uses of the crystals
TWI268399B (en) Photomask, photomask manufacturing method and semiconductor device manufacturing method using photomask
US6603547B2 (en) Method for determination of the radiation stability of crystals
JPH1059799A (en) Photolithographic device
JP2006124242A (en) Fluoride single crystal, calcium fluoride single crystal and its sorting method
JP4706354B2 (en) Selection method of fluoride single crystal and calcium fluoride single crystal
US8257675B2 (en) Artificial quartz member, process for producing the same, and optical element comprising the same
US20080043221A1 (en) Method of determining laser stabilities of optical materials, crystals selected according to said method, and uses of said selected crystals
US20040026631A1 (en) Detection and making of ultralow lead contaminated UV optical fluoride crystals for &lt; 200nm lithography
JP3823408B2 (en) Optical element manufacturing method and optical element cleaning method
JP3083952B2 (en) Fluorite for UV optics with excellent UV resistance and method for testing transmittance of fluorite
JP2005289693A (en) Artificial quartz member, optical element, optical system, projection aligner, and method for selecting artificial quartz member
JP4772172B2 (en) Method for evaluating synthetic quartz glass
RU2310829C2 (en) Method of analyzing admixtures in fluoride and producing material for growing monocrystal
JP2011185718A (en) Method for evaluating laser durability of metal fluoride single crystal, and method for manufacturing glass material for optical member
JP2012032336A (en) Evaluation method for laser durability of metal fluoride single crystal and method for producing glass material for optical member
JP2001021494A (en) Method and apparatus for detecting impurity element of quartz glass material
US20040200405A1 (en) Crystallization method
JP3421629B2 (en) Fluorite transmittance inspection method
JP2005061903A (en) Evaluate method and evaluate device for fluorite, and fluorite
KR100801728B1 (en) Hard pellicle for improving the resolution
JP2004294198A (en) Method for evaluating ultraviolet resistance of silica glass and ultraviolet-resistant silica glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125