JP2006122759A - Electrostatic atomization apparatus - Google Patents

Electrostatic atomization apparatus Download PDF

Info

Publication number
JP2006122759A
JP2006122759A JP2004311510A JP2004311510A JP2006122759A JP 2006122759 A JP2006122759 A JP 2006122759A JP 2004311510 A JP2004311510 A JP 2004311510A JP 2004311510 A JP2004311510 A JP 2004311510A JP 2006122759 A JP2006122759 A JP 2006122759A
Authority
JP
Japan
Prior art keywords
liquid
voltage
discharge
water level
transport unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004311510A
Other languages
Japanese (ja)
Other versions
JP4321435B2 (en
Inventor
Kazutsugu Hayashi
和嗣 林
Tomonori Tanaka
友規 田中
Takayuki Nakada
隆行 中田
Hiroshi Suda
洋 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004311510A priority Critical patent/JP4321435B2/en
Publication of JP2006122759A publication Critical patent/JP2006122759A/en
Application granted granted Critical
Publication of JP4321435B2 publication Critical patent/JP4321435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize the amount of atomization even when the water level in a liquid storing part is changed. <P>SOLUTION: The electrostatic atomization apparatus 6 is provided with a transportation part 2 having a sharpened tip part to transport a liquid W from a liquid storing part 1, a counter electrode 3 arranged to be opposed to the transporting direction of the transportation part 2 and a voltage impressing part 5 for impressing the voltage between the transportation part 2 and the counter electrode 3. The liquid W transported to the tip part of the transportation part2 is formed into a tailer cone T shape having a sharpened tip and the the liquid W formed into the tailer cone T shape is atomized to produce ion mist by impressing high voltage between the transportation part 2 and the counter electrode 3. An atomization amount keeping means for keeping the amount of the nanometer sized ion mist atomized by impressing the high voltage unchanged even when the water level in the liquid storing part 1 is changed is provided in the electrostatic atomization apparatus 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液体をナノメータサイズに静電霧化するための静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer for electrostatic atomizing a liquid to a nanometer size.

従来から静電霧化装置として、例えば特許文献1が知られている。この特許文献1に示された従来例にあっては、搬送部が多孔体で構成してあり、多孔体で構成した搬送部で液溜め部の水を毛細管現象により搬送し、搬送した水を静電霧化するようになっている。   For example, Patent Document 1 is known as an electrostatic atomizer. In the conventional example shown in Patent Document 1, the transport unit is formed of a porous body, and the water in the liquid reservoir is transported by a capillary phenomenon in the transport unit configured of the porous body. It is designed to be atomized electrostatically.

図14には静電霧化の原理図が示してあり、図中1は水を溜める液溜め部、2は多孔体よりなる搬送部、3は対向電極、4は印加電極、5は印加電極4と対向電極3の間に高電圧を印加する電圧印加部であり、電圧印加部5により印加電極4と対向電極3の間に高電圧を印加することで、搬送部2の上端に搬送した液体Wを静電霧化してイオンミストを発生するものである。   FIG. 14 shows a principle diagram of electrostatic atomization. In the figure, 1 is a liquid reservoir for storing water, 2 is a transport unit made of a porous material, 3 is a counter electrode, 4 is an applied electrode, and 5 is an applied electrode. 4 is a voltage application unit that applies a high voltage between the counter electrode 3 and the voltage application unit 5, and a high voltage is applied between the application electrode 4 and the counter electrode 3, thereby conveying the voltage to the upper end of the conveyance unit 2. The liquid W is electrostatically atomized to generate ion mist.

この静電霧化装置6によるナノメータサイズのイオンミストの発生のメカニズムは、搬送部2と対向電極3との間にかけられた電圧により搬送部2の先端部に供給された水のような液体Wが帯電し、帯電した液体Wにクーロン力が働き、搬送部2の先端に供給された液体Wの液面が局所的に先端が尖った錐状に盛り上がる(テイラーコーン)。このクーロン力が液体Wの表面張力を超えると液体Wが分裂、飛散し(レイリー分裂)、ナノメータサイズのイオンミストが発生するのである。   The mechanism of generation of nanometer-sized ion mist by the electrostatic atomizer 6 is that the liquid W such as water supplied to the tip of the transport unit 2 by the voltage applied between the transport unit 2 and the counter electrode 3. Is charged, and the Coulomb force acts on the charged liquid W, and the liquid level of the liquid W supplied to the tip of the transport unit 2 rises locally in a cone shape with a sharp tip (Taylor cone). When this Coulomb force exceeds the surface tension of the liquid W, the liquid W is split and scattered (Rayleigh split), and nanometer-sized ion mist is generated.

ところが、従来にあっては液溜め部1の水位の変化に関係なく搬送部2と対向電極3との間に一定電圧をかけて静電霧化をおこなっていた。   However, conventionally, electrostatic atomization has been performed by applying a constant voltage between the transport unit 2 and the counter electrode 3 regardless of the change in the water level of the liquid reservoir 1.

このように同じ高電圧を印加した場合における液溜め部1内における液体Wの水位(液溜め部1内における液体W残量)及び液溜め部1内の液体Wの液面と搬送部2の先端部との水頭差と、放電電流(静電霧化量)との関係は図3に示すようなものである。すなわち、テイラーコーンTによる放電領域において、液体Wの水位が高いと(液体Wが多いと)、液面と搬送部2の先端部との水頭差が小さく、液体Wによる尖った形状(テイラーコーンT)の高さが高くなり、テイラーコーンTの先端と対向電極3との間の距離が短くなり放電電流が増加し、静電霧化量も多い。一方、テイラーコーンTによる放電領域において、液体Wの水位が低下すると(残量が減少すると)、液面と搬送部2の先端部との水頭差が大きくなり、液体Wによる尖った形状(テイラーコーンT)の高さが低くなり、テイラーコーンTの先端と対向電極3との間の距離が長くなり放電電流が減少し、静電霧化量も減少する。また、水位が一定以下に低下すると(液体W残量が所定量以下になると)、テイラーコーンTによる放電領域を外れて液体Wによる尖った形状(テイラーコーンT)が非常に小さくなり、放電自体ができず、静電霧化がしなくなる。   Thus, when the same high voltage is applied, the level of the liquid W in the liquid reservoir 1 (the remaining amount of the liquid W in the liquid reservoir 1), the liquid level of the liquid W in the liquid reservoir 1 and the transport unit 2 The relationship between the water head difference from the tip and the discharge current (electrostatic atomization amount) is as shown in FIG. That is, in the discharge region by the Taylor cone T, when the level of the liquid W is high (the liquid W is large), the water head difference between the liquid surface and the tip of the transport unit 2 is small, and the sharp shape due to the liquid W (Taylor cone) T) becomes high, the distance between the tip of the Taylor cone T and the counter electrode 3 becomes short, the discharge current increases, and the amount of electrostatic atomization is large. On the other hand, in the discharge region by the Taylor cone T, when the water level of the liquid W decreases (when the remaining amount decreases), the water head difference between the liquid surface and the tip of the transport unit 2 increases, and the sharp shape (Taylor) due to the liquid W increases. The height of the cone T) decreases, the distance between the tip of the Taylor cone T and the counter electrode 3 increases, the discharge current decreases, and the electrostatic atomization amount also decreases. Further, when the water level drops below a certain level (when the remaining amount of the liquid W becomes less than a predetermined amount), the sharp shape (Taylor cone T) by the liquid W outside the discharge area by the Taylor cone T becomes very small, and the discharge itself. Can not be electrostatic atomization.

したがって、液溜め部1の水位の変化に関係なく搬送部2と対向電極3との間に一定電圧をかけて静電霧化を行っていた従来例にあっては、液溜め部1内の液体Wの水位が変化するとナノメータサイズのイオンミストの霧化量が変化し、安定した霧化量とすることができず、また、霧化量の調整もできないという問題があった。   Therefore, in the conventional example in which electrostatic atomization is performed by applying a constant voltage between the transport unit 2 and the counter electrode 3 regardless of the change in the water level of the liquid reservoir 1, When the water level of the liquid W changes, the atomization amount of the nanometer-sized ion mist changes, and there is a problem that the atomization amount cannot be made stable and the atomization amount cannot be adjusted.

また、静電霧化のために使用する液体Wとしては、例えば、水道水、電解水、pH調整水、ミネラルウォータ、ビタミンC・アミノ酸等の有用成分が入った水、アロマオイルや芳香剤や消臭材等が入った水が使用されている。これらの液体W中にCa、Na等のミネラル成分が入ったものを使用すると、多孔体よりなる搬送部2を毛細管現象で水が先端部に引き上げられ、空気中のCOが液体Wに溶け込んでできる炭酸イオンと反応し、搬送部2の先端部にCaCOやNaHCOやCaSO等を生成し、静電霧化や自然蒸発による水の消費により搬送部2の先端部では飽和溶解濃度以上に濃くなり、個々の成分が析出して堆積する。特に、一定周期で放電電圧を印加し静電霧化させているため、放電電圧を印加してないときは搬送部2の先端部に十分に液体Wを保持できず、この場合、搬送部2の先端部で飽和溶解濃度以上に濃くなり、搬送部2の先端部に上記析出物が析出付着して搬送部2を構成する多孔体を目詰まりさせるという問題があった。このように多孔体が目詰まりすると毛細管現象による液体Wの搬送を阻害し、静電霧化が起こり難くなり、長期間にわたり安定して静電霧化ができず、このため、搬送部2に析出付着して目詰まりしている析出物等を除去するメンテナンスを行ったり、あるいは、搬送部2を交換したりするというメンテナンスを行う必要があった。
特許第3260150号公報
Examples of the liquid W used for electrostatic atomization include tap water, electrolyzed water, pH-adjusted water, mineral water, water containing useful components such as vitamin C / amino acid, aroma oil, fragrance, etc. Water containing deodorant is used. If these liquids W contain minerals such as Ca and Na, water is pulled up to the tip of the transport unit 2 made of porous material by capillary action, and CO 2 in the air dissolves in the liquid W. It reacts with carbonate ions that can be produced at the leading end of the transport unit 2 to produce CaCO 3 , NaHCO 3 , CaSO 3, etc. It becomes thicker than this, and individual components are deposited and deposited. In particular, since the discharge voltage is applied at a constant period and electrostatic atomization is performed, the liquid W cannot be sufficiently held at the tip of the transport unit 2 when the discharge voltage is not applied. In this case, the transport unit 2 There is a problem that the concentration becomes higher than the saturated dissolution concentration at the tip of the material, and the precipitate deposits and adheres to the tip of the transport unit 2 to clog the porous body constituting the transport unit 2. When the porous body is clogged in this way, the transportation of the liquid W due to the capillary phenomenon is hindered, and the electrostatic atomization is difficult to occur, and the electrostatic atomization cannot be stably performed over a long period of time. There has been a need to perform maintenance to remove deposits and the like clogged due to deposition, or to replace the transport unit 2.
Japanese Patent No. 3260150

本発明は上記の従来の問題点に鑑みて発明したものであって、液溜め部の水位が変化しても、ナノメータサイズのイオンミストの霧化量を所定の霧化量にできて霧化を安定化でき、また、搬送部の先端部に金属イオンが析出付着することがなく、長期間にわたり安定して静電霧化ができる静電霧化装置を提供することを課題とするものである。   The present invention has been invented in view of the above-mentioned conventional problems, and even when the water level of the liquid reservoir changes, the atomization amount of the nanometer-sized ion mist can be made to be a predetermined atomization amount, and the atomization can be achieved. It is an object of the present invention to provide an electrostatic atomizing device that can stably stabilize electrostatic atomization over a long period of time without metal ions being deposited and adhering to the tip of the transport unit. is there.

上記課題を解決するために本発明に係る静電霧化装置は、液溜め部1に溜まった液体Wを搬送するための尖った先端形状を有する搬送部2と、搬送部2の搬送方向に対向するように配置された対向電極3と、搬送部2と対向電極3との間に高電圧を印加する電圧印加部5とを備えて、前記搬送部2と対向電極3との間に高電圧を印加することにより搬送部2の先端部に搬送された液体Wが先端が尖ったテイラーコーンTとなると共に該テイラーコーンTとなった液体Wが霧化してナノメータサイズのイオンミストを発生させる静電霧化装置6において、液溜め部1の水位が変化しても高電圧の印加によって生成するナノメータサイズのイオンミストの霧化量が液溜め部1の水位の変化により変わらないように維持するための霧化量維持手段を設けて成ることを特徴とするものである。   In order to solve the above problems, the electrostatic atomizer according to the present invention includes a transport unit 2 having a pointed tip shape for transporting the liquid W accumulated in the liquid reservoir 1 and a transport direction of the transport unit 2. A counter electrode 3 disposed so as to be opposed to each other and a voltage applying unit 5 that applies a high voltage between the transport unit 2 and the counter electrode 3 are provided, and a high voltage is provided between the transport unit 2 and the counter electrode 3. By applying a voltage, the liquid W transported to the tip of the transport unit 2 becomes a Taylor cone T having a sharp tip, and the liquid W that has become the Taylor cone T is atomized to generate nanometer-sized ion mist. In the electrostatic atomizer 6, even when the water level of the liquid reservoir 1 changes, the atomization amount of the nanometer-sized ion mist generated by applying a high voltage is maintained so as not to change due to the change of the water level of the liquid reservoir 1. Atomization amount maintenance means to Only those characterized by comprising.

このような構成とすることで、液溜め部1の水位が変化しても、霧化量維持手段により静電霧化によるナノメータサイズのイオンミストの霧化量が所定の霧化量となるようにできる。   By setting it as such a structure, even if the water level of the liquid storage part 1 changes, the atomization amount maintenance means will make the atomization amount of the nanometer size ion mist by electrostatic atomization become predetermined atomization amount. Can be.

また、霧化量維持手段が、液溜め部1の水位に応じて水位が低下すると搬送部2と対向電極3との間に印加する電圧の印加時間を長くすると共に水位が高くなると搬送部2と対向電極3との間に印加する電圧の印加時間を短くするように制御するものであることが好ましい。   Further, when the atomization amount maintaining means decreases the water level according to the water level of the liquid reservoir 1, the application time of the voltage applied between the transport unit 2 and the counter electrode 3 is lengthened, and when the water level is increased, the transport unit 2. It is preferable that the voltage applied between the electrode and the counter electrode 3 is controlled to be shortened.

すなわち、液溜め部1の水位が低下して液面と搬送部2の先端部との水頭差が大きくなることで搬送部2の先端部に形成されるテイラーコーンTの高さが低くなってテイラーコーンTの先端と対向電極との間の距離が長くなったり、あるいは、液溜め部1の水位が高くなって液面と搬送部2の先端部との水頭差が小さくなることで搬送部2の先端部に形成されるテイラーコーンTの高さが高くなってテイラーコーンTの先端と対向電極3との間の距離が短くなっても、水位が高くなると搬送部2と対向電極3との間に印加する電圧の印加時間を短くし、水位が低くなると搬送部2と対向電極3との間に印加する電圧の印加時間を同じにすることで、水位の変化にかかわらず搬送部2の先端部に形成されるテイラーコーンT先端と対向電極との間を流れる放電電流をほぼ同じにして霧化量を安定化できる。   That is, the height of the Taylor cone T formed at the front end portion of the transport portion 2 is reduced by lowering the water level of the liquid reservoir 1 and increasing the water head difference between the liquid level and the front end portion of the transport portion 2. The distance between the tip of the tailor cone T and the counter electrode is increased, or the water level of the liquid reservoir 1 is increased and the water head difference between the liquid surface and the tip of the conveyor 2 is reduced. 2, the height of the Taylor cone T formed at the front end of the roller 2 increases and the distance between the tip of the Taylor cone T and the counter electrode 3 decreases, but if the water level increases, the transport unit 2 and the counter electrode 3 The application time of the voltage to be applied is shortened, and when the water level is lowered, the application time of the voltage applied between the conveyance unit 2 and the counter electrode 3 is made the same, so that the conveyance unit 2 regardless of the change in the water level. Between the tip of the Taylor cone T formed at the tip of the counter electrode and the counter electrode It can be stabilized atomized amount is substantially the same discharge current flowing.

また、霧化量維持手段が、液溜め部1の水位に応じて水位が低下すると搬送部2と対向電極3との間に印加する電圧を高くすると共に水位が高くなると搬送部2と対向電極3との間に印加する電圧を低くするように電圧値を変えるように制御するものであることが好ましい。   Further, when the atomization amount maintaining means lowers the water level according to the water level of the liquid reservoir 1, the voltage applied between the transport unit 2 and the counter electrode 3 is increased, and when the water level is increased, the transport unit 2 and the counter electrode 3 is preferably controlled so as to change the voltage value so as to lower the voltage applied between the two.

すなわち、液溜め部1の水位が低下して液面と搬送部2の先端部との水頭差が大きくなることで搬送部2の先端部に形成されるテイラーコーンTの高さが低くなってテイラーコーンTの先端と対向電極との間の距離が長くなったり、あるいは、液溜め部1の水位が高くなって液面と搬送部2の先端部との水頭差が小さくなることで搬送部2の先端部に形成されるテイラーコーンTの高さが高くなってテイラーコーンTの先端と対向電極3との間の距離が短くなっても、水位が高くなると搬送部2と対向電極3との間に印加する電圧を低くし、水位が低くなると搬送部2と対向電極3との間に印加する電圧を高くすることで、水位の変化にかかわらず搬送部2の先端部に形成されるテイラーコーンT先端と対向電極3との間を流れる放電電流をほぼ同じにして霧化量を安定化できる。   That is, the height of the Taylor cone T formed at the front end portion of the transport portion 2 is reduced by lowering the water level of the liquid reservoir 1 and increasing the water head difference between the liquid level and the front end portion of the transport portion 2. The distance between the tip of the tailor cone T and the counter electrode is increased, or the water level of the liquid reservoir 1 is increased and the water head difference between the liquid surface and the tip of the conveyor 2 is reduced. 2, the height of the Taylor cone T formed at the front end of the roller 2 increases and the distance between the tip of the Taylor cone T and the counter electrode 3 decreases, but if the water level increases, the transport unit 2 and the counter electrode 3 When the water level is lowered and the water level is lowered, the voltage applied between the transport unit 2 and the counter electrode 3 is increased to form the tip of the transport unit 2 regardless of the change in the water level. The discharge current flowing between the tip of the Taylor cone T and the counter electrode 3 URN can be stabilized atomized amount in the same.

また、静電霧化の運転中に、テイラーコーンTとなった液体Wが放電する放電電圧を一定周期で印加すると共に、放電電圧の非印加時に搬送部2の先端部に供給された液体Wを先端が尖ったテイラーコーンT形状に形成できるが該形成されたテイラーコーンTが放電を開始する電圧よりも低い電圧を搬送部2と対向電極3との間に常時印加することが好ましい。   Further, during the operation of electrostatic atomization, a discharge voltage discharged by the liquid W that has become the Taylor cone T is applied at a constant period, and the liquid W supplied to the leading end of the transport unit 2 when no discharge voltage is applied. However, it is preferable to always apply a voltage lower than the voltage at which the formed Taylor cone T starts to discharge between the transport unit 2 and the counter electrode 3.

このように放電電圧の非印加時に、搬送部2の先端部に供給された液体Wが先端が尖ったテイラーコーンTが形成できるが放電開始する電圧よりも低い電圧を搬送部2と対向電極3との間に常時印加することで、搬送部2の先端部に搬送された液体Wを放電開始前にテイラーコーンTとして形成して放電し始める前の状態を維持でき、放電電圧をかけた際に放電霧化開始までの時間を近くし、放電電圧の印加時間、印加する放電電圧により正確に霧化量を調整することができる。また、放電電圧をかけていない時も搬送部2の先端部に常に放電には到らないがテイラーコーンTが形成されて液体Wが十分に保持されることになり、長時間使用においても、搬送部2の先端部において液体Wが飽和溶解濃度以上に濃くなることがなく、搬送部2の先端部において金属イオンなどの析出が低減し、放電電流低下や静電霧化量の低下も少なくできる。   As described above, when the discharge voltage is not applied, the liquid W supplied to the tip of the transport unit 2 can form a Taylor cone T having a sharp tip, but a voltage lower than the voltage at which discharge starts is applied to the transport unit 2 and the counter electrode 3. When the discharge voltage is applied, the liquid W transported to the front end of the transport unit 2 can be formed as a Taylor cone T before the start of discharge to maintain the state before starting the discharge. Thus, the time until the start of discharge atomization is reduced, and the atomization amount can be accurately adjusted by the application time of the discharge voltage and the applied discharge voltage. Further, even when the discharge voltage is not applied, the tip end of the transport unit 2 does not always reach the discharge, but the Taylor cone T is formed and the liquid W is sufficiently held. The liquid W does not become thicker than the saturated dissolution concentration at the front end of the transport unit 2, the precipitation of metal ions and the like is reduced at the front end of the transport unit 2, and the decrease in discharge current and electrostatic atomization amount are small. it can.

また、静電霧化の運転中に、テイラーコーンTとなった液体Wが放電する放電電圧を一定周期で印加すると共に、該一定周期で印加する放電電圧の印加直前に該放電電圧の印加の直前に該放電電圧よりも少し高い又は少し低い電圧を印加することが好ましい。   In addition, during the electrostatic atomization operation, a discharge voltage that discharges the liquid W that has become the Taylor cone T is applied at a constant period, and the discharge voltage is applied immediately before the application of the discharge voltage that is applied at the constant period. It is preferable to apply a voltage slightly higher or lower than the discharge voltage immediately before.

このように放電電圧の印加の直前に該放電電圧よりも少し高い又は少し低い電圧を印加することで、液体Wが供給される搬送部2の先端部に形成される液体Wによる尖った形状であるテイラーコーンTができる時間を短縮し、放電開始までの時間を短縮できるものであり、放電電圧をかけた際に放電霧化開始までの時間を近くし、放電電圧の印加時間、印加する放電電圧により正確に霧化量を調整することができる。   In this way, by applying a voltage slightly higher or lower than the discharge voltage immediately before the application of the discharge voltage, it has a sharp shape due to the liquid W formed at the tip of the transport unit 2 to which the liquid W is supplied. The time required for a certain Taylor cone T can be shortened, and the time until the start of discharge can be shortened. When the discharge voltage is applied, the time until the start of discharge atomization is reduced, and the discharge voltage application time and the applied discharge are reduced. The atomization amount can be accurately adjusted by the voltage.

本発明は、液溜め部の水位が変化しても静電霧化によるナノメータサイズのイオンミストの霧化量を所定の霧化量にできて、霧化が安定化するという効果がある。   The present invention has an effect that the atomization amount of the nanometer-sized ion mist by electrostatic atomization can be set to a predetermined atomization amount even when the water level of the liquid reservoir changes, and the atomization is stabilized.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

図1には本発明の静電霧化装置6の概略構成図が示してあり、図2には断面図が示してある。この図1、図2に示すように、静電霧化装置6は、水を収容したタンクよりなる液溜め部1と、下端が液溜め部1内に入れられた液体Wに浸される多孔質セラミックよりなる棒状の搬送部2と、これら搬送部2の保持及び液体Wに対する電圧の印加のための印加電極4と、絶縁体からなる保持部8によって保持されていると共に上記搬送部2の先端部と対向する対向部を備えている対向電極3と、上記印加電極4と対向電極3との間に高電圧を印加する電圧印加部5とからなるもので、対向電極3と印加電極4は共にカーボンのような導電材を混入した合成樹脂やSUSのような金属で形成してある。   FIG. 1 shows a schematic configuration diagram of an electrostatic atomizer 6 of the present invention, and FIG. 2 shows a cross-sectional view. As shown in FIGS. 1 and 2, the electrostatic atomizer 6 includes a liquid reservoir 1 composed of a tank containing water, and a porous body immersed in a liquid W whose lower end is placed in the liquid reservoir 1. A rod-shaped transport unit 2 made of a quality ceramic, an application electrode 4 for holding the transport unit 2 and applying a voltage to the liquid W, and a holding unit 8 made of an insulator, and holding the transport unit 2 The counter electrode 3 includes a counter electrode 3 having a counter portion facing the tip portion, and a voltage application unit 5 that applies a high voltage between the application electrode 4 and the counter electrode 3. Both are made of a synthetic resin mixed with a conductive material such as carbon or a metal such as SUS.

搬送部2は棒状をした多孔質セラミックにより構成してあって、搬送部2の上端は尖った針状霧化部11となっており、更に搬送部2の中央に下端面から針状霧化部11の先端に到る孔2aが上下に貫通して形成してあり、該孔2aは例えばφ0.05〜0.7mm程度となっている。この搬送部2の一部(外周部)は非透水性のPtやCなどの導電性材料で構成した導電部50となっており、添付図面においては搬送部2の外周に導電部5を形成してある。   The transport unit 2 is made of a rod-shaped porous ceramic, and the upper end of the transport unit 2 is a sharp needle-shaped atomizing unit 11, and the needle unit is atomized from the lower end surface to the center of the transport unit 2. A hole 2a reaching the tip of the portion 11 is formed so as to penetrate vertically, and the hole 2a has a diameter of about 0.05 to 0.7 mm, for example. A part (outer peripheral part) of the transport part 2 is a conductive part 50 made of a conductive material such as non-permeable Pt or C, and the conductive part 5 is formed on the outer periphery of the transport part 2 in the attached drawings. It is.

この搬送部2は、液溜め部1を構成するタンクの上開口部に取付けられた印加電極4を嵌装して設けてあり、搬送部2の上部が印加電極4よりも上方に突出し、下部が印加電極4から下方に突出して上記液溜め部1内に入れられた液体Wと接触するようになっている。   The transport unit 2 is provided by fitting an application electrode 4 attached to an upper opening of a tank constituting the liquid storage unit 1, and an upper part of the transport unit 2 projects upward from the application electrode 4, and a lower part Protrudes downward from the application electrode 4 and comes into contact with the liquid W placed in the liquid reservoir 1.

液溜め部1の上開口部に取付けられた印加電極4には円筒状のスカート9が下方に突設してあって、上記搬送部2の外側を囲んでいると共に、その下端は搬送部2の下端より下方に位置している。印加電極におけるこのスカート9は、液溜め部1内に入れられた水と接触することで水に高電圧を印加すると同時に搬送部2の保護を行うようになっている。   A cylindrical skirt 9 protrudes downward from the application electrode 4 attached to the upper opening of the liquid reservoir 1 and surrounds the outside of the transport unit 2, and its lower end is the transport unit 2. It is located below the lower end. This skirt 9 in the application electrode is adapted to protect the transport unit 2 at the same time as applying a high voltage to the water by contacting the water stored in the liquid reservoir 1.

図2に示すように、液溜め部1の上部には絶縁体からなる筒状をした保持部8の下部が取付けられ、該保持部8の上端開口を閉じるように対向電極3が配置され、これにより対向電極3が搬送部2の搬送方向の先端(つまり搬送部2の上端部)と対向するように配置される。対向電極3の中央には開口部12が設けてある。対向電極3を接地し、印加電極4に電圧印加部5を接続して高電圧を印加すると共に、多孔質セラミックで形成されている搬送部2が毛細管現象により液溜め部1に入れてある液体Wを吸い上げている時、搬送部2の上端の針状霧化部11が印加電極4側の実質的な電極として機能する。   As shown in FIG. 2, the lower part of the cylindrical holding part 8 made of an insulator is attached to the upper part of the liquid reservoir part 1, and the counter electrode 3 is arranged so as to close the upper end opening of the holding part 8, Accordingly, the counter electrode 3 is disposed so as to face the front end of the transport unit 2 in the transport direction (that is, the upper end of the transport unit 2). An opening 12 is provided in the center of the counter electrode 3. The counter electrode 3 is grounded, the voltage application unit 5 is connected to the application electrode 4 to apply a high voltage, and the transport unit 2 made of porous ceramic is placed in the liquid storage unit 1 by capillary action. When sucking W, the needle-like atomizing portion 11 at the upper end of the conveying portion 2 functions as a substantial electrode on the application electrode 4 side.

上記液溜め部1内に溜められた水のような液体Wは搬送部2内の孔2a及び多孔質部分を毛細管現象により上端部の針状霧化部11側へと搬送される。   The liquid W such as water stored in the liquid reservoir 1 is transported through the hole 2a and the porous portion in the transport section 2 to the needle-like atomizing section 11 side at the upper end by capillary action.

そして、電圧印加部5により印加電極4と対向電極3との間に高電圧を印加すると、多孔質セラミックよりなる搬送部2の先端の針状霧化部11が実質的な電極となり、搬送部2と対向電極3との間にかけられた電圧により針状霧化部11に達した液体Wが帯電し、帯電した液体Wにクーロン力が働き、液体Wの液面が局所的に先端が尖った錐状に盛り上がる(テイラーコーンT)。この時印加される電圧が液体Wの表面張力を超えて分裂、飛散(レイリー分裂)を起こさせることができる高電圧であれば、搬送部2の上端に達した液体WはテイラーコーンT形状となってレイリー分裂を起こしてナノメータサイズのイオンミストが発生するという静電霧化がなされる。   When a high voltage is applied between the application electrode 4 and the counter electrode 3 by the voltage application unit 5, the needle-like atomization unit 11 at the tip of the conveyance unit 2 made of porous ceramic becomes a substantial electrode, and the conveyance unit The liquid W that has reached the needle-like atomization unit 11 is charged by the voltage applied between the counter electrode 3 and the counter electrode 3, and the Coulomb force acts on the charged liquid W, and the liquid surface of the liquid W has a locally sharp tip. It rises like a cone (Taylor Cone T). If the voltage applied at this time exceeds the surface tension of the liquid W and is a high voltage that can cause splitting and scattering (Rayleigh splitting), the liquid W that has reached the upper end of the transport unit 2 has a Taylor cone T shape. Then, electrostatic atomization is performed in which Rayleigh splitting occurs and nanometer-sized ion mist is generated.

このようにして発生してたナノメータサイズのイオンミスト(マイナスイオンミスト)は活性種(ヒドロキシラジカル、スパーオキサイド等)を持ったナノメータサイズのイオンミストであるため、これを室内に放出することで、室内の空気の脱臭のみならず、室内壁面等に付着した臭いを除去することことができる。   The nanometer-sized ion mist (negative ion mist) generated in this way is a nanometer-sized ion mist with active species (hydroxy radicals, superoxide, etc.). Not only the deodorization of the indoor air but also the odor adhering to the indoor wall surface can be removed.

上記のような構成の静電霧化装置6において、本発明は液溜め部1の水位が変化しても高電圧の印加によって生成するナノメータサイズのイオンミストの霧化量が液溜め部1の水位の変化により変わらないように維持するための霧化量維持手段を設けたことを特徴としている。   In the electrostatic atomizer 6 having the above-described configuration, the present invention is configured so that the amount of atomized nanometer-sized ion mist generated by application of a high voltage is different from that of the liquid reservoir 1 even when the water level of the liquid reservoir 1 changes. It is characterized by providing an atomization amount maintaining means for maintaining the water level so as not to change.

図3に示すように、同じ高電圧印加状態においては、液溜め部1の液体Wの水位(液体Wの残量)により搬送部2の先端部への液体Wの供給能力が微妙に変化する。すなわち、テイラーコーンTによる放電領域において、液体Wの水位が高いと(液体Wが多いと)、液面と搬送部2の先端部との水頭差が小さく、液体Wによる尖った形状(テイラーコーンT)の高さが高くなり、テイラーコーンTの先端と対向電極3との間の距離が短くなり放電電流が増加し、静電霧化量も多い。一方、テイラーコーンTによる放電領域において、液体Wの水位が低下すると(残量減少すると)、液面と搬送部2の先端部との水頭差が大きくなり、液体Wによる尖った形状(テイラーコーンT)の高さが低くなり、テイラーコーンTの先端と対向電極3との間の距離が長くなり放電電流が減少し、静電霧化量も減少する。また、水位が一定以下に低下すると(液体残量が所定量以下になると)、テイラーコーンTによる放電領域を外れて液体Wによる尖った形状(テイラーコーンT)が非常に小さくなり、放電自体ができず、静電霧化がしなくなる。図3はこの液溜め部1内における液体Wの水位(液溜め部1内における液体残量)及び液溜め部1内の液体Wの液面と搬送部2の先端部との水頭差と、放電電流(静電霧化量)との関係を、同じ高電圧を印加した場合をモデルとして示している。   As shown in FIG. 3, in the same high voltage application state, the supply capability of the liquid W to the tip of the transport unit 2 slightly changes depending on the level of the liquid W in the liquid reservoir 1 (the remaining amount of the liquid W). . That is, in the discharge region by the Taylor cone T, when the level of the liquid W is high (the liquid W is large), the water head difference between the liquid surface and the tip of the transport unit 2 is small, and the sharp shape due to the liquid W (Taylor cone) T) becomes high, the distance between the tip of the Taylor cone T and the counter electrode 3 becomes short, the discharge current increases, and the amount of electrostatic atomization is large. On the other hand, when the water level of the liquid W decreases (when the remaining amount decreases) in the discharge region due to the Taylor cone T, the water head difference between the liquid surface and the tip of the transport unit 2 increases, and the sharp shape (Taylor cone) due to the liquid W increases. T) is lowered, the distance between the tip of the Taylor cone T and the counter electrode 3 is increased, the discharge current is reduced, and the amount of electrostatic atomization is also reduced. Further, when the water level drops below a certain level (when the liquid remaining amount becomes a predetermined amount or less), the pointed shape (Taylor cone T) caused by the liquid W deviates from the discharge area by the Taylor cone T, and the discharge itself is reduced. It cannot be done and electrostatic atomization stops. FIG. 3 shows the water level of the liquid W in the liquid reservoir 1 (the remaining amount of liquid in the liquid reservoir 1) and the water head difference between the liquid level of the liquid W in the liquid reservoir 1 and the tip of the transport unit 2. The relationship between the discharge current (electrostatic atomization amount) and the case where the same high voltage is applied is shown as a model.

そこで、本発明においては、上記のように液溜め部1の水位が、テイラーコーンTによる放電領域において、水位が変化しても高電圧の印加によって生成するナノメータサイズのイオンミストの霧化量が液溜め部1の水位の変化により変わらないように維持するための霧化量維持手段を設け、液溜め部1の水位が変化しても、霧化量維持手段により静電霧化によるナノメータサイズのイオンミストの霧化量が所定の霧化量となるようしている。   Therefore, in the present invention, the amount of atomization of nanometer-sized ion mist generated by the application of a high voltage even when the water level changes in the discharge region by the Taylor cone T as described above. An atomization amount maintaining means is provided for maintaining the liquid level of the liquid reservoir 1 so as not to change due to a change in the water level. Even if the water level of the liquid reservoir 1 changes, the nanometer size by electrostatic atomization by the atomization amount maintaining means is provided. The ionization amount of the ion mist is set to a predetermined atomization amount.

すなわち、霧化量維持手段としては、液溜め部1の水位に応じて水位が低下すると搬送部2と対向電極3との間に印加する電圧の印加時間を長くすると共に水位が高くなると搬送部2と対向電極3との間に印加する電圧の印加時間を短くするように制御するものを挙げることができる。   That is, as the atomization amount maintaining means, when the water level decreases according to the water level of the liquid reservoir 1, the application time of the voltage applied between the transport unit 2 and the counter electrode 3 is lengthened and the water level increases. 2 and the counter electrode 3 can be controlled so as to shorten the application time of the voltage applied.

この場合、図6に示すように、一定周期で所定の電圧値の放電電圧Vを印加するのであるが、この一定周期で印加する放電電圧Vの印加の時間(デューティ)を、図3、図4のテイラーコーンTによる放電領域における水位が低い(液体残量が少ない)場合には長く、水位が高い(液体残量が多い)場合には短くなるように制御部により制御し、図6に示すように放電電流、霧化量を一定にするのである。 In this case, as shown in FIG. 6, the discharge voltage V 1 having a predetermined voltage value is applied at a constant cycle. The application time (duty) of the discharge voltage V 1 applied at the constant cycle is shown in FIG. 4 is controlled by the control unit so that it is long when the water level in the discharge region by the Taylor cone T in FIG. 4 is low (low amount of liquid) and short when the water level is high (high amount of liquid). As shown in FIG. 6, the discharge current and the amount of atomization are made constant.

水位の変化を検知する水位検知手段としては、例えば、放電電流を測定することで水位を検知できる。すなわち、水位が低下すると、テイラーコーンTの先端から対向電極3までの距離が長くなるので、放電電流が減少し、水位が高くなるとテイラーコーンTの先端から対向電極3までの距離が短くなるので、放電電流が増える。このように、水位と放電電流との間には相関関係があるので、放電電流を測定することで、水位を知ることができ、放電電流の測定値を制御部に入力し、この放電電流の測定値に基づいて放電電流が所定値よりも低下すると一定周期で印加する所定値の放電電圧Vの印加の時間(デューティ)を長くし、放電電流が所定値よりも高くなると一定周期で印加する所定値の放電電圧Vの印加の時間(デューティ)を短くするようにフィードバック制御し、これによりテイラーコーンTによる放電領域における満水(放電領域における最大の液体残量)状態から放電領域における最低水位(放電領域における最小の液体残量)までの間で、水位が変化しても図6に示す放電電流を一定にし、水位の変化にかかわらず霧化量を一定にする(図6における霧化量(面積)を一定にする)のである。 As a water level detection means for detecting a change in the water level, for example, the water level can be detected by measuring a discharge current. That is, when the water level decreases, the distance from the tip of the Taylor cone T to the counter electrode 3 increases, so the discharge current decreases, and when the water level increases, the distance from the tip of the Taylor cone T to the counter electrode 3 decreases. , Discharge current increases. Thus, since there is a correlation between the water level and the discharge current, the water level can be known by measuring the discharge current, and the measured value of the discharge current is input to the control unit. discharge current based on the measured value is longer discharge voltage V 1 of the application time of the predetermined value (duty) is applied at a fixed period and lower than a predetermined value, applied in a predetermined cycle discharge current becomes higher than a predetermined value to be feedback controlled so as to shorten the time (duty) of the application of the discharge voltage V 1 of the predetermined value, a minimum in the discharge region thereby from (maximum liquid remaining in the discharge region) state-full level in the discharge area by the Taylor cone T The discharge current shown in FIG. 6 is made constant even if the water level changes up to the water level (minimum liquid remaining amount in the discharge region), and the atomization amount is made constant regardless of the change in the water level (FIG. 6). Is the definitive atomization amount to the (area) constant).

ここで、一定周期で印加する放電電圧Vは図3、図4のテイラーコーンTによる放電領域における最低水位(放電領域における最小の液体残量)の場合に放電して静電霧化を可能とする電圧と、満水(放電領域における最大の液体残量)の場合に放電して静電霧化を可能とする電圧との間の任意の電圧が設定される。 Here, the discharge voltage V 1 applied at a constant period is discharged and electrostatic atomization is possible in the case of the lowest water level (minimum liquid remaining amount in the discharge area) in the discharge area by the Taylor cone T of FIGS. And an arbitrary voltage between the voltage that discharges and enables electrostatic atomization in the case of full water (maximum remaining liquid amount in the discharge region).

また、霧化量維持手段としては、液溜め部1の水位に応じて水位が低下すると搬送部2と対向電極3との間に印加する電圧を高くすると共に水位が高くなると搬送部2と対向電極3との間に印加する電圧を低くするように電圧値を変えるように制御するものであってもよい。   Further, as the atomization amount maintaining means, when the water level decreases according to the water level of the liquid reservoir 1, the voltage applied between the transport unit 2 and the counter electrode 3 is increased, and when the water level increases, the transport unit 2 is opposed. It may be controlled to change the voltage value so that the voltage applied to the electrode 3 is lowered.

この場合、図7に示すように、一定周期で放電電圧を印加するのであるが、この一定周期で印加する放電電圧の放電時間(デューテイ)は同じで、且つ、放電電圧の電圧値を、図3、図5のテイラーコーンTによる放電領域における水位が低い(液体残量が少ない)場合には高い放電電圧V、水位が高い(液体残量が多い)場合には上記Vよりも低い放電電圧Vとなるように制御部により制御し、これにより図7に示すように放電電流、霧化量を一定にするのである。ここで、上記放電電圧V>放電電圧Vであり、また、放電電圧Vは図3、図5のテイラーコーンTによる放電領域における満水(放電領域における最大の液体残量)の場合に放電して静電霧化を可能とする電圧よりも大きく、放電電圧Vは図3、図5のテイラーコーンTによる放電領域における最低水位(放電領域における最小の液体残量)の場合に放電して静電霧化を可能とする電圧よりも小さい。 In this case, as shown in FIG. 7, the discharge voltage is applied at a constant cycle, but the discharge time (duty) of the discharge voltage applied at the constant cycle is the same, and the voltage value of the discharge voltage is shown in FIG. 3, high discharge voltage V 2, (often remaining liquid amount) level is high when the Taylor cone water level is low in the discharge region by T in FIG. 5 (less liquid remaining amount) lower than the V 2 in the case controlled by the control unit so that the discharge voltage V 3, thereby the discharge current as shown in FIG. 7, it is to a constant atomization amount. Here, the discharge voltage V 3 > the discharge voltage V 2 , and the discharge voltage V 2 is full in the discharge region (maximum liquid remaining amount in the discharge region) by the Taylor cone T in FIGS. discharge larger than the voltage that enables the electrostatic atomization, discharge voltage V 3 is 3, the discharge in the case of low water (minimum remaining liquid amount in the discharge region) in the discharge area by the Taylor cone T of FIG. 5 The voltage is smaller than the voltage that enables electrostatic atomization.

水位の変化を検知する水位検知手段としては、上記のように放電電流を測定することで水位を検知するものであり、放電電流の測定値を制御部に入力し、この放電電流の測定値に基づいて放電電流が所定値よりも低下すると一定周期で印加する放電電圧の電圧値が高くなるように、また、放電電流が所定値よりも高くなると一定周期で印加する所定値の放電電圧の電圧値が低くなるようにフィードバック制御し、これにより図5のテイラーコーンTによる放電領域における満水(放電領域における最大の液体残量)状態から放電領域における最低水位(放電領域における最小の液体残量)までの間で、水位が変化しても図7に示す放電電流を一定にし、水位の変化にかかわらず霧化量を一定にするのである。   As the water level detection means for detecting the change in the water level, the water level is detected by measuring the discharge current as described above, and the measured value of the discharge current is input to the control unit, and the measured value of the discharge current is used. When the discharge current is lower than the predetermined value, the voltage value of the discharge voltage applied at a constant cycle is increased. When the discharge current is higher than the predetermined value, the voltage of the discharge voltage is applied at a predetermined cycle. Feedback control is performed so that the value becomes lower, and thereby, the water level in the discharge region (maximum remaining liquid amount in the discharge region) by the Taylor cone T in FIG. In the meantime, even if the water level changes, the discharge current shown in FIG. 7 is made constant, and the atomization amount is made constant regardless of the change in the water level.

水位検知手段として前述の各実施形態では放電電流値を測定し、この放電電流値の変化で水位の変化を測定するようにした例を示したが、液溜め部1に水位センサを設け、水位センサで求めた水位の信号を制御部に入力し、水位に応じて前述のように一定周期で印加する放電電圧の放電時間(デューテイ)を変化させたり、放電電圧を変化させるように制御してもよいものである。   In each of the embodiments described above as the water level detection means, the discharge current value is measured, and the change in the water level is measured by the change in the discharge current value. However, a water level sensor is provided in the liquid reservoir 1, and the water level is detected. The signal of the water level obtained by the sensor is inputted to the control unit, and the discharge time (duty) of the discharge voltage applied at a constant cycle is changed according to the water level as described above, or the discharge voltage is controlled to change. Is also good.

また、本発明においては、液溜め部1内の液体Wの水位が放電可能な放電領域以下となった場合は、放電電圧の印加を停止するように制御するものであり、搬送部2の先端部と対向電極3との間で直接放電がなされないようする。これにより、直接放電による搬送部2の先端部の磨耗、劣化を防止するようになっている。   Further, in the present invention, when the water level of the liquid W in the liquid reservoir 1 becomes equal to or lower than the dischargeable discharge region, the application of the discharge voltage is controlled to stop, and the tip of the transport unit 2 So that no direct discharge occurs between the electrode and the counter electrode 3. This prevents wear and deterioration of the front end portion of the transport unit 2 due to direct discharge.

この場合、例えば、図1、図2に示すように搬送部2の外側に液体Wに浮く磁石を備えたフロート30を移動自在に被嵌し、水位が放電可能な放電領域以下に低下すると該磁石を備えたフロート30が下降し、フロート30の磁石により液溜め部1の底部下面に設けた磁石連動スイッチ31が動作し、電圧印加部5による放電電圧の印加を停止するように制御する。   In this case, for example, as shown in FIGS. 1 and 2, when a float 30 having a magnet floating on the liquid W is movably fitted outside the transport unit 2 and the water level falls below a dischargeable discharge region, The float 30 provided with the magnet descends, and the magnet interlocking switch 31 provided on the bottom lower surface of the liquid reservoir 1 is operated by the magnet of the float 30 to control the application of the discharge voltage by the voltage application unit 5 to stop.

次に、本発明の他の実施形態につき図8に基づいて説明する。   Next, another embodiment of the present invention will be described with reference to FIG.

本実施形態においては、前述のように液溜め部1における水位が放電領域にある場合に、水位が変化しても、テイラーコーンTとなった液体Wが放電する所定値の高電圧を一定周期で印加して静電霧化によるナノメータサイズのイオンミストの霧化量が一定となるように制御する当たって、一定周期で印加する放電電圧の印加の時間(デューティ)を、図3、図4のテイラーコーンTによる放電領域における水位が低い(液体残量が少ない)場合には長く、水位が高い(液体残量が多い)場合には短くなるように制御部により制御することで、水位の変化に関係なく放電霧化量を一定にするように制御することは前述の図6で説明した実施形態と同じであるが、本実施形態においては更に、上記のように静電霧化の運転中に、テイラーコーンTとなった液体Wが放電する放電電圧Vを一定周期で印加すると共に、放電電圧Vの非印加時に搬送部2の先端部に供給された液体Wを先端が尖ったテイラーコーンT形状に形成できるが該形成されたテイラーコーンTが放電を開始する電圧よりも低い電圧Vを搬送部2と対向電極3との間に常時印加するように制御部により制御している。 In the present embodiment, as described above, when the water level in the liquid reservoir 1 is in the discharge region, even if the water level changes, a high voltage of a predetermined value that discharges the liquid W that has become the Taylor cone T is discharged at a constant period. 3 and 4, the discharge voltage application time (duty) applied at a constant period is controlled so that the atomization amount of nanometer-sized ion mist by electrostatic atomization is constant. The control unit controls the water level so that it is long when the water level in the discharge region by the Taylor cone T is low (low liquid level) and short when the water level is high (high liquid level). The control to make the discharge atomization amount constant irrespective of the change is the same as that in the embodiment described with reference to FIG. 6, but in this embodiment, the operation of electrostatic atomization is further performed as described above. Inside the Taylor corn And with it the liquid W is applied to the discharge voltages V 1 to be discharged at a predetermined period, the liquid W supplied to the tip portion of the conveying section 2 at the time of non-application of the discharge voltages V 1 to the Taylor cone T shape having a sharp tip Although it can be formed, the control unit controls so that the voltage V 0 lower than the voltage at which the formed Taylor cone T starts discharging is always applied between the transport unit 2 and the counter electrode 3.

ここで、搬送部2の先端部に供給された液体Wが先端が尖ったテイラーコーンTが形成できるが放電開始する電圧よりも低い電圧Vとは、上記液溜め部1における水位が放電領域における最高水位、つまり、満水の時に搬送部2の先端部に供給された液体Wが先端が尖ったテイラーコーンTが形成され且つ放電を開始する電圧よりも低い電圧Vである。当然電圧Vは上記放電電圧Vよりも小さい。 Here, the liquid V supplied to the tip of the transport unit 2 can form a Taylor cone T having a sharp tip, but the voltage V 0 lower than the voltage at which discharge starts is that the water level in the liquid reservoir 1 is the discharge region. Is the voltage V 0 lower than the voltage at which the Taylor cone T having a sharp tip is formed and discharge is started. Naturally, the voltage V 0 is smaller than the discharge voltage V 1 .

このように、一定周期で印加する放電電圧Vの非印加時に、搬送部2の先端部に供給された液体Wが先端が尖ったテイラーコーンTが形成できるが放電開始する電圧よりも低い電圧Vを搬送部2と対向電極3との間に常時印加することで、搬送部2の先端部に搬送された液体Wを放電開始前にテイラーコーンTとして形成して放電し始める前の状態を維持でき、一定周期で放電電圧をかけた際に放電霧化開始までの時間を近くすることができ、これにより、放電電圧の印加時間、印加する放電電圧により正確に霧化量を調整することができる。また、一定周期で印加する放電電圧Vの非印加時に、搬送部2の先端部に供給された液体Wが先端が尖ったテイラーコーンTが形成できるが放電開始する電圧よりも低い電圧Vを搬送部2と対向電極3との間に常時印加しているので、放電電圧Vをかけていない時も搬送部2の先端部に常に放電には到らないがテイラーコーンTが形成されて液体Wが十分に保持されることになる。したがって、長時間使用においても、運転中搬送部2の先端部において放電時も非放電時も常にほぼ所定量の液体Wが存在することになり、これにより液体Wが放電や自然蒸発で飽和溶解濃度以上に濃くなることがなく、これにより搬送部2の先端部において金属イオンなどの析出が低減し、放電電流低下や静電霧化量の低下も少なくできる。 Thus, a constant period at the time of non-application of the discharge voltages V 1 to be applied, the lower than the voltage but the liquid W supplied to the tip portion of the conveying unit 2 can be formed Taylor cone T having a sharp tip to start discharge voltage The state before the liquid W transported to the front end of the transport unit 2 is formed as a Taylor cone T before the discharge starts and starts discharging by constantly applying V 0 between the transport unit 2 and the counter electrode 3. When the discharge voltage is applied at a constant period, the time until the start of discharge atomization can be reduced, and the atomization amount can be adjusted accurately according to the discharge voltage application time and the applied discharge voltage. be able to. In addition, when the discharge voltage V 1 applied at a constant period is not applied, the liquid W supplied to the tip of the transport unit 2 can form a Taylor cone T having a sharp tip, but the voltage V 0 is lower than the voltage at which discharge starts. Is always applied between the transport unit 2 and the counter electrode 3, so that even when the discharge voltage V 1 is not applied, the tip end of the transport unit 2 does not always discharge but the Taylor cone T is formed. As a result, the liquid W is sufficiently retained. Therefore, even when used for a long time, there is always a predetermined amount of liquid W at the leading end of the transporting section 2 during operation, both during discharge and during non-discharge, so that the liquid W is saturated and dissolved by discharge and natural evaporation. It does not become darker than the concentration, and this reduces the precipitation of metal ions and the like at the tip of the transport unit 2 and can also reduce the discharge current and the electrostatic atomization amount.

すなわち、搬送部2に電圧を印加した場合に、搬送部2の下端部と先端部(上端部)とでは電位差が大きいため、搬送部2内の液体(水)Wが電気分解してpH分離が起こり、液体(水)中に含まれるカルシウムイオン、ナトリウムイオンなどと空気中の二酸化炭素(CO)等が反応し、炭酸カルシウム(CaCO)や炭酸水素ナトリウム(NaHCO)や炭酸マグネシウム(MgCO)などを生成し、静電霧化や自然蒸発による液体Wの消費で搬送部2の先端で液体Wが飽和溶解濃度以上に濃くなり、搬送部2の先端部に上記成分が析出、堆積し、これにより搬送部2における液体Wの搬送能力が低下し、静電霧化量が減少するが、本実施形態のように、一定周期で印加する放電電圧Vの非印加時に、搬送部2の先端部に供給された液体Wが先端が尖ったテイラーコーンTが形成できるが放電開始する電圧よりも低い電圧Vを搬送部2と対向電極3との間に常時印加して、運転中搬送部2の先端部において放電時も非放電時も常にほぼ所定量の液体Wが存在するようにすることで、液体Wが放電や自然蒸発で飽和溶解濃度以上に濃くなるのを防ぐことができ、いっそう静電霧化量を一定に安定化することができる。 That is, when a voltage is applied to the transport unit 2, the potential difference between the lower end and the front end (upper end) of the transport unit 2 is large, so the liquid (water) W in the transport unit 2 is electrolyzed and pH is separated. Occurs, and calcium ions, sodium ions, etc. contained in the liquid (water) react with carbon dioxide (CO 2 ) in the air, and calcium carbonate (CaCO 3 ), sodium bicarbonate (NaHCO 3 ), magnesium carbonate ( MgCO 3 ) and the like, and the consumption of the liquid W due to electrostatic atomization and natural evaporation causes the liquid W to become thicker than the saturated dissolution concentration at the tip of the transport unit 2, and the above components are deposited at the tip of the transport unit 2, deposited, thereby reduces the conveying capacity of the liquid W in the conveying unit 2, although the electrostatic atomization amount is reduced, as in the present embodiment, at the time of non-application of the discharge voltages V 1 to be applied at a fixed period, the transport At the tip of part 2 Feeding liquid W is constantly applied between the transport section 2 and the counter electrode 3 a voltage V 0 is lower than the voltage can be formed Taylor cone T having a sharp tip to start discharge, the transport unit 2 during operation By ensuring that a predetermined amount of liquid W is always present at the tip during both discharge and non-discharge, it is possible to prevent the liquid W from becoming thicker than the saturated dissolution concentration due to discharge or natural evaporation. The amount of atomization can be stabilized.

図9には更に他の実施形態が示してある。   FIG. 9 shows still another embodiment.

本実施形態においては、前述のように液溜め部1における水位が放電領域にある場合に、水位が変化しても、一定周期で印加する放電電圧の放電時間(デューテイ)は同じで、且つ、放電電圧の電圧値を、図3、図5のテイラーコーンTによる放電領域における水位が低い(液体残量が少ない)場合には高い電圧Vとし、水位が高い(液体残量が多い)場合には上記Vよりも低い電圧Vとなるように制御部により制御し、放電電流、霧化量を一定にするように制御することは前述の図7で説明した実施形態と同じであるが、本実施形態においては更に、上記のようにテイラーコーンTとなった液体Wが放電する高電圧を上記のように水位に応じて一定周期で変化させて印加して静電霧化させる動作時に、搬送部2の先端部に供給された液体Wが先端が尖ったテイラーコーンTが形成できるが放電開始する電圧よりも低い電圧Vを搬送部2と対向電極3との間に常時印加するようにしている。 In the present embodiment, as described above, when the water level in the liquid reservoir 1 is in the discharge region, even if the water level changes, the discharge time (duty) of the discharge voltage applied at a constant period is the same, and the voltage value of the discharge voltage, Fig. 3, the high voltage V 2 when the water level is low (liquid level is low) in the discharge area by the Taylor cone T of FIG. 5, (often remaining liquid amount) level is high if Is the same as the embodiment described with reference to FIG. 7 described above, in which the control unit controls the voltage V 3 to be lower than V 2 and controls the discharge current and the atomization amount to be constant. However, in the present embodiment, the operation of causing electrostatic atomization by applying the high voltage discharged from the liquid W, which has become the Taylor cone T as described above, is applied at a constant cycle according to the water level as described above. Sometimes supplied to the tip of the transport unit 2 Liquid W is to be constantly applied between the transport section 2 and the counter electrode 3 a voltage V 0 is lower than the voltage can be formed Taylor cone T having a sharp tip to start discharge.

本実施形態においても、前述の図8に示す実施形態と同様に、搬送部2の先端部に搬送された液体Wを放電開始前にテイラーコーンTとして形成して放電し始める前の状態を維持でき、一定周期で放電電圧をかけた際に放電霧化開始までの時間を近くすることができ、これにより、放電電圧の印加時間、印加する放電電圧により正確に霧化量を調整することができる。また、長時間使用においても、運転中搬送部2の先端部において放電時も非放電時も常にほぼ所定量の液体Wが存在することになり、これにより液体Wが放電や自然蒸発で飽和溶解濃度以上に濃くなることがなく、これにより搬送部2の先端部において金属イオンなどの析出が低減し、放電電流低下や静電霧化量の低下も少なくできる。   Also in the present embodiment, as in the embodiment shown in FIG. 8 described above, the liquid W transported to the front end of the transport section 2 is formed as a Taylor cone T before the start of discharge, and the state before starting to discharge is maintained. When the discharge voltage is applied at a fixed period, the time until the start of discharge atomization can be reduced, and this makes it possible to adjust the atomization amount accurately according to the discharge voltage application time and the applied discharge voltage. it can. In addition, even when used for a long time, there is always almost a predetermined amount of liquid W at the leading end of the transporting unit 2 during operation, both during discharge and during non-discharge. It does not become darker than the concentration, and this reduces the precipitation of metal ions and the like at the tip of the transport unit 2 and can also reduce the discharge current and the electrostatic atomization amount.

次に、本発明の更に他の実施形態につき図10に基づいて説明する。   Next, still another embodiment of the present invention will be described with reference to FIG.

本実施形態においては、前述のように液溜め部1における水位が放電領域にある場合に、水位が変化しても、テイラーコーンTとなった液体Wが放電する所定値の放電電圧Vを一定周期で印加して静電霧化によるナノメータサイズのイオンミストの霧化量が一定となるように制御する当たって、一定周期で印加する放電電圧Vの印加の時間(デューティ)を、図3、図4のテイラーコーンTによる放電領域における水位が低い(液体残量が少ない)場合には長く、水位が高い(液体残量が多い)場合には短くなるように制御部により制御することで、水位の変化に関係なく放電霧化量を一定にするように制御することは前述の図6で説明した実施形態と同じであるが、本実施形態においては更に、上記のようにテイラーコーンTとなった液体Wが放電する高電圧を一定周期で印加して静電霧化させる動作時に、テイラーコーンTとなった液体Wが放電するための放電電圧Vを一定周期で印加すると共に、該放電電圧Vの印加の直前に該放電電圧Vよりも少し高い電圧Vを印加するように制御部により制御している。 In the present embodiment, as described above, when the water level in the liquid reservoir 1 is in the discharge region, even if the water level changes, the discharge voltage V 1 having a predetermined value at which the liquid W that has become the Taylor cone T is discharged. hit control such atomization amount of ion mist nanometer size by electrostatic atomization is constant is applied at a constant period, the application of discharge voltages V 1 to be applied in a constant cycle time (duty), FIG. 3. Control by the control unit to be long when the water level in the discharge region by the Taylor cone T in FIG. 4 is low (low liquid level) and short when the water level is high (high liquid level). Thus, the control to make the discharge atomization amount constant regardless of the change in the water level is the same as that in the embodiment described with reference to FIG. 6, but in this embodiment, the Taylor cone is further changed as described above. T A high voltage liquid W is discharged during operation for electrostatic atomization is applied at a fixed period, applies a discharge voltage V 1 of the for liquid W became Taylor cone T is discharged at a constant cycle, the discharge voltage is controlled by the control unit so as to apply a slightly higher voltage V 4 than the discharge voltages V 1 immediately before the application of V 1.

このように放電電圧の印加Vの直前に該放電電圧Vよりも少し高い電圧Vを印加するように制御することで、液体Wが供給される搬送部2の先端部に形成される液体Wによる尖った形状であるテイラーコーンTができる時間を短縮し、放電開始までの時間を短縮できる。これにより放電電圧Vをかけた際に放電霧化開始までの時間を近くし、放電電圧Vの印加時間、印加する放電電圧Vにより正確に霧化量を調整することができる。ここで、電圧Vは前記のテイラーコーンTによる放電領域で放電可能な電圧である。 By controlling to apply in this way immediately before the application V 1 of the discharge voltage the discharge voltage slightly higher voltage V 4 than V 1, is formed at the distal end portion of the conveyance unit 2 in which the liquid W is fed The time required for the Taylor cone T having a sharp shape with the liquid W can be reduced, and the time until the start of discharge can be reduced. Thus the discharge voltage near the time to start discharge atomization when multiplied by V 1, the application time of the discharge voltages V 1, can be adjusted accurately atomized amount by discharge voltages V 1 to be applied. Here, the voltage V 4 is a voltage that can be discharged in the discharge region by the Taylor cone T.

図11には更に他の実施形態が示してある。   FIG. 11 shows still another embodiment.

本実施形態においては、前述のように液溜め部1における水位が放電領域にある場合に、水位が変化しても、一定周期で印加する放電電圧の放電時間(デューテイ)は同じで、且つ、放電電圧の電圧値を、図3、図5のテイラーコーンTによる放電領域における水位が低い(液体残量が少ない)場合には高い電圧Vとし、水位が高い(液体残量が多い)場合には上記Vよりも低い電圧Vとなるように制御部により制御し、放電電流、霧化量を一定にするように制御することは前述の図7で説明した実施形態と同じであるが、本実施形態においては更に、上記のようにテイラーコーンTとなった液体Wが放電する放電電圧を上記のように水位に応じて一定周期で変化させて印加して静電霧化させる動作時に、テイラーコーンTとなった液体Wが放電するための放電用の電圧を一定周期で印加すると共に、水位が低い(液体残量が少ない)場合には上記放電電圧Vの印加の直前に該放電電圧Vよりも少し低い電圧Vを一定時間印加し、水位が低い(液体残量が少ない)場合には上記放電電圧Vの印加の直前に該放電電圧Vよりも少し高い電圧Vで且つ放電可能な電圧を一定時間印加するように制御部により制御している。 In the present embodiment, as described above, when the water level in the liquid reservoir 1 is in the discharge region, even if the water level changes, the discharge time (duty) of the discharge voltage applied at a constant period is the same, and the voltage value of the discharge voltage, Fig. 3, the high voltage V 2 when the water level is low (liquid level is low) in the discharge area by the Taylor cone T of FIG. 5, (often remaining liquid amount) level is high if Is the same as the embodiment described with reference to FIG. 7 described above, in which the control unit controls the voltage V 3 to be lower than V 2 and controls the discharge current and the atomization amount to be constant. However, in the present embodiment, the operation of changing the discharge voltage discharged from the liquid W, which has become the Taylor cone T as described above, at a constant cycle according to the water level and applying the electrostatic atomization as described above. Sometimes it became Taylor Corn T Applies a voltage for discharge for the body W is discharged in a constant cycle, water level (less liquid remaining amount) lower when a little than the discharge voltage V 2 immediately before application of the discharge voltage V 2 is the low voltage V 5 is applied a predetermined time, (less liquid remaining amount) level is lower case a and dischargeable at a slightly higher voltage V 5 than the discharge voltage V 3 just before the application of the discharge voltage V 3 Control is performed by the control unit so that the voltage is applied for a certain period of time.

本実施形態においても、前述の実施形態と同様に、液体Wが供給される搬送部2の先端部に形成される液体Wによる尖った形状であるテイラーコーンTができる時間を短縮し、放電開始までの時間を短縮できる。これにより放電電圧をかけた際に放電霧化開始までの時間を近くし、放電電圧の印加時間、印加する放電電圧により正確に霧化量を調整することができる。ここで、電圧Vは前記のテイラーコーンTによる放電領域で放電可能な電圧である。 Also in the present embodiment, as in the above-described embodiment, the time required for the tailor cone T having a sharp shape formed by the liquid W formed at the tip of the transport unit 2 to which the liquid W is supplied is shortened, and discharge starts. Can be shortened. As a result, when the discharge voltage is applied, the time until the start of discharge atomization is reduced, and the amount of atomization can be accurately adjusted by the application time of the discharge voltage and the applied discharge voltage. Here, the voltage V 5 is a voltage that can be discharged in a discharge region by the Taylor cone T.

図12、図13には前述のような構成の静電霧化装置6を空気浄化装置20に内装した例を示している。空気浄化装置20空気浄化部21と、静電霧化装置6とが内装してある。空気浄化部21は、室内空気を吸入するための吸込み口22と、ろ過した空気を室内に吐出するための吐出口23と、吸込み口22から吐出口23に到る風路26内に設けた不織布や活性炭等のフィルタ24と、ファン25とを備えたもので、室内空気を吸込み口22から吸い込んでフィルタ24でろ過して清浄な空気として吐出口23から室内に吐出するようになっており、いわゆるフィルタ24でろ過する方式(フィルタレーション方式)により室内に浮遊しているほこり等を除去するようになっている。この空気浄化装置20に内装した静電霧化装置6は前述のような構成のもので、静電霧化装置6は前記風路26のフィルタ24を設けた部分よりも下流側に配置してあり、フィルタ24で清浄化された空気流に乗って静電霧化装置6で発生したナノメータサイズのイオンミストが吐出口23から室内に放出され、室内の脱臭を行うものである。ここで、清浄化された空気が静電霧化装置6を通過することで、静電霧化装置6の電圧が印加されている部分に室内の埃等が付着することがなく、埃の付着が原因で静電霧化が生じ難くなることを防止している。   FIGS. 12 and 13 show an example in which the electrostatic atomizer 6 having the above-described configuration is housed in the air purification device 20. Air purifier 20 Air purifier 21 and electrostatic atomizer 6 are internally provided. The air purification unit 21 is provided in a suction port 22 for sucking room air, a discharge port 23 for discharging filtered air into the room, and an air passage 26 extending from the suction port 22 to the discharge port 23. It is equipped with a filter 24 such as a nonwoven fabric or activated carbon and a fan 25. It sucks indoor air from the suction port 22, filters it through the filter 24, and discharges it as clean air from the discharge port 23 into the room. The so-called filter 24 (filtering method) is used to remove dust and the like floating in the room. The electrostatic atomizer 6 incorporated in the air purification device 20 has the above-described configuration, and the electrostatic atomizer 6 is disposed downstream of the portion of the air passage 26 where the filter 24 is provided. In addition, nanometer-sized ion mist generated in the electrostatic atomizer 6 on the air flow cleaned by the filter 24 is discharged into the room from the discharge port 23 to deodorize the room. Here, since the cleaned air passes through the electrostatic atomizer 6, indoor dust or the like does not adhere to the portion to which the voltage of the electrostatic atomizer 6 is applied, and the dust adheres. This prevents electrostatic atomization from occurring easily.

本発明の静電霧化装置の概略構成図である。It is a schematic block diagram of the electrostatic atomizer of this invention. (a)は同上の縦断面図であり、(b)は同上の横断面図である。(A) is a longitudinal cross-sectional view same as the above, (b) is a cross-sectional view same as the above. 同上の同じ高電圧を印加した場合における液溜め部内における液体の水位(液溜め部内における液体残量)及び液溜め部内の液体の液面と搬送部の先端部との水頭差と、放電電流との関係を示すグラフである。When the same high voltage as described above is applied, the liquid level in the liquid reservoir (the amount of liquid remaining in the liquid reservoir), the water head difference between the liquid level in the liquid reservoir and the tip of the transport unit, the discharge current, It is a graph which shows the relationship. 同上の同じ高電圧を印加した場合における液溜め部内における液体の水位(液溜め部内における液体残量)及び液溜め部内の液体の液面と搬送部の先端部との水頭差の変化に対応して印加時間を変化させることを説明するグラフである。Corresponding to the change in the water level of the liquid in the liquid reservoir (the remaining amount of liquid in the liquid reservoir) and the difference in water head between the liquid level of the liquid in the liquid reservoir and the tip of the transport section when the same high voltage is applied. It is a graph explaining changing application time. 同上の液溜め部内における液体の水位(液溜め部内における液体残量)及び液溜め部内の液体の液面と搬送部の先端部との水頭差の変化に対応して印加電圧を変化させることを説明するグラフである。The applied voltage is changed in accordance with the change in the liquid level in the liquid reservoir (the remaining amount of liquid in the liquid reservoir) and the water head difference between the liquid level in the liquid reservoir and the tip of the transport unit. It is a graph to explain. 本発明の一実施形態の制御のタイムチャートである。It is a time chart of control of one embodiment of the present invention. 同上の他の実施形態の制御のタイムチャートである。It is a time chart of control of other embodiments same as the above. 同上の更に他の実施形態の制御のタイムチャートである。It is a time chart of control of further another embodiment same as the above. 同上の更に他の実施形態の制御のタイムチャートである。It is a time chart of control of further another embodiment same as the above. 同上の更に他の実施形態の制御のタイムチャートである。It is a time chart of control of further another embodiment same as the above. 同上の更に他の実施形態の制御のタイムチャートである。It is a time chart of control of further another embodiment same as the above. 同上の静電霧化装置を搭載した空気浄化装置の側面断面図である。It is side surface sectional drawing of the air purification apparatus carrying an electrostatic atomizer same as the above. 同上の静電霧化装置を搭載した空気浄化装置の正面断面図である。It is front sectional drawing of the air purification apparatus carrying an electrostatic atomizer same as the above. 従来例を示す概略構成図である。It is a schematic block diagram which shows a prior art example.

符号の説明Explanation of symbols

1 液溜め部
2 搬送部
3 対向電極
5 電圧印加部
6 静電霧化装置
DESCRIPTION OF SYMBOLS 1 Liquid storage part 2 Conveying part 3 Counter electrode 5 Voltage application part 6 Electrostatic atomizer

Claims (5)

液溜め部に溜まった液体を搬送するための尖った先端形状を有する搬送部と、搬送部の搬送方向に対向するように配置された対向電極と、搬送部と対向電極との間に高電圧を印加する電圧印加部とを備えて、前記搬送部と対向電極との間に高電圧を印加することにより搬送部の先端部に搬送された液体が先端が尖ったテイラーコーンとなると共に該テイラーコーンとなった液体が霧化してナノメータサイズのイオンミストを発生させる静電霧化装置において、液溜め部の水位が変化しても高電圧の印加によって生成するナノメータサイズのイオンミストの霧化量が液溜め部の水位の変化により変わらないように維持するための霧化量維持手段を設けて成ることを特徴とする静電霧化装置。   High voltage between the transport unit having a pointed tip shape for transporting the liquid accumulated in the liquid reservoir, the counter electrode arranged to face the transport direction of the transport unit, and the transport unit and the counter electrode And applying a high voltage between the transport unit and the counter electrode, the liquid transported to the tip of the transport unit becomes a Taylor cone with a sharp tip and the Taylor In an electrostatic atomizer that generates nanometer-sized ion mist by atomizing a cone-shaped liquid, the amount of atomized nanometer-sized ion mist generated by applying a high voltage even when the water level in the liquid reservoir changes Is provided with an atomization amount maintaining means for maintaining the liquid so as not to change due to a change in the water level of the liquid reservoir. 霧化量維持手段が、液溜め部の水位に応じて水位が低下すると搬送部と対向電極との間に印加する電圧の印加時間を長くすると共に水位が高くなると搬送部と対向電極との間に印加する電圧の印加時間を短くするように制御するものであることを特徴とする請求項1記載の静電霧化装置。   When the atomization amount maintaining means lowers the water level according to the water level of the liquid reservoir, the application time of the voltage applied between the transport unit and the counter electrode is lengthened, and when the water level is high, between the transport unit and the counter electrode The electrostatic atomizer according to claim 1, wherein the electrostatic atomizer is controlled so as to shorten an application time of the voltage applied to. 霧化量維持手段が、液溜め部の水位に応じて水位が低下すると搬送部と対向電極との間に印加する電圧を高くすると共に水位が高くなると搬送部と対向電極との間に印加する電圧を低くするように電圧値を変えるように制御するものであることを特徴とする請求項1記載の静電霧化装置。   The atomization amount maintaining means increases the voltage applied between the transport unit and the counter electrode when the water level decreases according to the water level of the liquid reservoir, and applies between the transport unit and the counter electrode when the water level increases. 2. The electrostatic atomizer according to claim 1, wherein the electrostatic atomizer is controlled so as to change a voltage value so as to lower the voltage. 静電霧化の運転中に、テイラーコーンとなった液体が放電する放電電圧を一定周期で印加すると共に、放電電圧の非印加時に搬送部の先端部に供給された液体を先端が尖ったテイラーコーン形状に形成できるが該形成されたテイラーコーンが放電を開始する電圧よりも低い電圧を搬送部と対向電極との間に常時印加することを特徴とする請求項1乃至請求項3のいずれかに記載の静電霧化装置。   During electrostatic atomization operation, a tailor cone is applied with a discharge voltage that discharges the liquid that has become a Taylor cone at a certain period, and the liquid supplied to the tip of the transport unit when no discharge voltage is applied. 4. A voltage which can be formed in a cone shape but is lower than a voltage at which the formed Taylor cone starts discharging is always applied between the transport portion and the counter electrode. The electrostatic atomizer described in 1. 静電霧化の運転中に、テイラーコーンとなった液体が放電する放電電圧を一定周期で印加すると共に、該一定周期で印加する放電電圧の印加直前に該放電電圧よりも少し高い又は少し低い電圧を印加することを特徴とする請求項1乃至請求項3のいずれかに記載の静電霧化装置。   During the operation of electrostatic atomization, a discharge voltage that discharges the liquid that has become the Taylor cone is applied at a certain period, and slightly higher or slightly lower than the discharge voltage immediately before the application of the discharge voltage applied at the certain period. The electrostatic atomizer according to claim 1, wherein a voltage is applied.
JP2004311510A 2004-10-26 2004-10-26 Electrostatic atomizer Expired - Fee Related JP4321435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311510A JP4321435B2 (en) 2004-10-26 2004-10-26 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311510A JP4321435B2 (en) 2004-10-26 2004-10-26 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2006122759A true JP2006122759A (en) 2006-05-18
JP4321435B2 JP4321435B2 (en) 2009-08-26

Family

ID=36717996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311510A Expired - Fee Related JP4321435B2 (en) 2004-10-26 2004-10-26 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP4321435B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326057A (en) * 2006-06-08 2007-12-20 Matsushita Electric Works Ltd Electrostatic atomization apparatus
EP2065096A1 (en) * 2007-11-27 2009-06-03 Panasonic Electric Works Co., Ltd. Electrostatic atomizer with starting voltage control
EP2065095A1 (en) * 2007-11-27 2009-06-03 Panasonic Electric Works Co., Ltd Electrostatically atomizing device with starting voltage control
WO2011036873A1 (en) 2009-09-25 2011-03-31 Panasonic Electric Works Co., Ltd. Discharge device with electromagnetic shield
JP2011067739A (en) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus
JP2013027832A (en) * 2011-07-29 2013-02-07 Sumitomo Chemical Co Ltd Electrostatic atomizer and electrostatic atomization method using the electrostatic atomizer
JP2020032357A (en) * 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 Voltage application device and discharge device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326057A (en) * 2006-06-08 2007-12-20 Matsushita Electric Works Ltd Electrostatic atomization apparatus
JP4665839B2 (en) * 2006-06-08 2011-04-06 パナソニック電工株式会社 Electrostatic atomizer
US8448883B2 (en) 2006-06-08 2013-05-28 Panasonic Corporation Electrostatically atomizing device
EP2065096A1 (en) * 2007-11-27 2009-06-03 Panasonic Electric Works Co., Ltd. Electrostatic atomizer with starting voltage control
EP2065095A1 (en) * 2007-11-27 2009-06-03 Panasonic Electric Works Co., Ltd Electrostatically atomizing device with starting voltage control
US8056839B2 (en) 2007-11-27 2011-11-15 Panasonic Electric Works Co., Ltd. Electrostatic atomizer
JP2011067739A (en) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus
WO2011036873A1 (en) 2009-09-25 2011-03-31 Panasonic Electric Works Co., Ltd. Discharge device with electromagnetic shield
JP2013027832A (en) * 2011-07-29 2013-02-07 Sumitomo Chemical Co Ltd Electrostatic atomizer and electrostatic atomization method using the electrostatic atomizer
JP2020032357A (en) * 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 Voltage application device and discharge device
CN112584935A (en) * 2018-08-29 2021-03-30 松下知识产权经营株式会社 Voltage applying device and discharging device
EP3845312A4 (en) * 2018-08-29 2021-10-27 Panasonic Intellectual Property Management Co., Ltd. Voltage application device and discharge device

Also Published As

Publication number Publication date
JP4321435B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4816275B2 (en) Electrostatic atomizer
JP6039813B2 (en) Inkjet delivery system comprising an improved perfume mixture
US9267277B2 (en) Urinal with sanitation device
US9211356B2 (en) Ink jet delivery system comprising an improved fluid mixture
JP4674541B2 (en) Electrostatic atomization device and food storage equipped with electrostatic atomization device
US20070290080A1 (en) Electrostatic Spraying Device
JP4333339B2 (en) Toilet seat device
US20140352048A1 (en) Urinal with sanitation device
JP4321435B2 (en) Electrostatic atomizer
JP2007260627A (en) Electrostatic atomizing device
JP4325730B2 (en) Electrostatic atomizer and air cleaner using the same
JP4349261B2 (en) Electrostatic atomizer
WO2007111121A1 (en) Electrostatic atomization device
JP4936200B2 (en) Electrostatic atomizer and air cleaner equipped with electrostatic atomizer
JP5302829B2 (en) Toilet equipment with electrostatic atomizer
JP4300918B2 (en) Electrostatic atomizer and air conditioner equipped with the same
JP4645502B2 (en) Electrostatic atomizer
JP2005155150A (en) Toilet seat apparatus
JP4325729B2 (en) Electrostatic atomizer and air cleaner provided with the same
JP2004351276A (en) Electrostatic atomization device and air cleaner provided with this
JP4669248B2 (en) Toilet equipment with electrostatic atomizer
JP2006007195A (en) Electrostatic atomizer and air conditioning machine equipped with this
JP4300917B2 (en) Electrostatic atomizer and air conditioner equipped with the same
JP2006035171A (en) Electrostatic atomization apparatus and air cleaner provided with electrostatic atomization apparatus
JP4324051B2 (en) Electrostatic atomizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees