WO2007111121A1 - Electrostatic atomization device - Google Patents

Electrostatic atomization device Download PDF

Info

Publication number
WO2007111121A1
WO2007111121A1 PCT/JP2007/054908 JP2007054908W WO2007111121A1 WO 2007111121 A1 WO2007111121 A1 WO 2007111121A1 JP 2007054908 W JP2007054908 W JP 2007054908W WO 2007111121 A1 WO2007111121 A1 WO 2007111121A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge electrode
high voltage
electrostatic atomizer
negative
mist
Prior art date
Application number
PCT/JP2007/054908
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Suda
Takayuki Nakada
Masaharu Machi
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006092197A external-priority patent/JP4645502B2/en
Priority claimed from JP2006092198A external-priority patent/JP4645503B2/en
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Publication of WO2007111121A1 publication Critical patent/WO2007111121A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • B05B5/1691Apparatus to be carried on or by a person or with a container fixed to the discharge device

Definitions

  • the present invention relates to an electrostatic atomizer that discharges a mist of negatively charged liquid fine particles, and more specifically, an electrostatic atomizer that can stably provide a negatively charged mist to a target space. It is about.
  • JP-A-2005-131549 discloses an electrostatic atomizer that generates negatively charged fine particle water mist by electrostatically atomizing water.
  • the water supplied to the discharge electrode forms a tiller cone at the tip of the discharge electrode, which causes the Rayleigh splitting to atomize and atomize the nanometer order negative ion charged fine particle water.
  • Mist negative ion mist
  • This mist contains radicals and has a long life, can diffuse a large amount into the space, adheres to and penetrates the objects present in the release space, and effectively sterilizes and deodorizes. Can do.
  • the present invention has been invented in view of the above problems, and can negatively charge fine particle mist stably over a long period of time without being affected by the negative charge remaining in the target space.
  • An object of the present invention is to provide an electrostatic atomizer.
  • An electrostatic atomizer includes a discharge electrode and a liquid for supplying a liquid to the discharge electrode.
  • a feature of the present invention is that it includes a controller that controls a high voltage source so that a high voltage of a negative potential is intermittently applied to the discharge electrode. For this reason, during the rest period in which no negative potential is applied to the discharge electrode, negative charges existing in the target space are spontaneously discharged, and negatively charged fine particle mist can be stably discharged over a long period of time.
  • the electrostatic atomizer of the present invention is provided with humidity detecting means for detecting the ambient absolute humidity.
  • the controller applies a negative potential as the absolute humidity increases.
  • the ratio of the idle period during which no negative potential is applied is configured to be small.
  • the negative charge existing in the target space increases the amount of spontaneous discharge per unit time as the absolute humidity rises.Therefore, depending on the situation of the target space, the negative charge fine particle mist is set to the optimum value for the rest period. It can be generated efficiently.
  • the controller may be configured to alternately repeat a first operation mode in which the discharge electrode has a negative potential and a second mode in which the discharge electrode has a positive potential. In this case, by discharging the positively charged charged fine particles during the rest period in which no negative potential is applied, the negative charge existing in the target space can be neutralized, and the discharge of the negatively charged fine particle mist is stabilized. Can continue.
  • the electrostatic atomizer of the present invention may include an ionization needle to which a positive potential is applied.
  • the controller is configured to generate a positive ion from the tip of the ionization needle by applying a high voltage to the ionization needle during a period when the discharge electrode is not applied negatively, and exists in the target space. Neutralize negative charges and release stable negative charged mist.
  • the ratio of the period during which positive ions are released from the discharge electrode ionization needle to the operation period during which negative charged fine particle mist is generated is set smaller by the controller as the absolute humidity increases. It is preferable.
  • FIG. 1 is a schematic diagram showing an electrostatic atomizer according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view showing one usage pattern of the electrostatic atomizer.
  • FIG. 3 is an explanatory diagram showing the operation of the electrostatic atomizer described above.
  • FIG. 4 is a perspective view of the electrostatic atomizer described above.
  • FIG. 5 is a perspective view with the cover removed.
  • FIG. 6 is an explanatory view showing the operation in a modified embodiment of the electrostatic atomizer.
  • FIG. 7 is a schematic view showing an electrostatic atomizer according to another embodiment of the present invention.
  • FIG. 8 is an explanatory view showing the operation of the electrostatic atomizer described above.
  • the electrostatic atomizer according to the present invention generates a mist in which negatively charged fine particles of nanometer order and negatively charged fine particles of micron order are mixed. By discharging this mist to the target space, the target is obtained. It is used to deodorize, sterilize, and decompose substances present in the space and to provide appropriate humidity.
  • the active species contained in nanometer-order negatively charged fine particle mist sterilize food and decompose harmful substances attached to food.
  • the freshness is maintained by keeping the humidity in the storage 90 at an appropriate value with minus-charged fine particle mist of micron order.
  • an electrostatic atomizer includes a foggy horned nose 10 whose tip is a discharge electrode 20, and a counter electrode disposed to face the discharge electrode 20. 30, a high voltage source 60 that applies a high voltage between the discharge electrode 20 and the counter electrode 30, and a controller 70 that controls the value of the high voltage.
  • a pressure tank 40 is connected to the rear end of the atomization nozzle 10, and a liquid, for example, water stored in the pressure tank 40 is supplied to the tip of the discharge electrode 20 through the atomization nozzle 10.
  • This pressurized tank 40 forms a liquid supply means for supplying liquid to the discharge electrode 20.
  • the electrostatic atomizer of the present invention can use various liquids in addition to water, but in the present embodiment, description will be made based on an example in which water is used as the liquid.
  • the water supplied to the tip of the discharge electrode 20 becomes a liquid ball due to surface tension, and by applying a high voltage, for example, a negative potential of 8 kV, to the discharge electrode 20, the discharge end at the tip of the discharge electrode 20 and the counter electrode A high voltage electric field is generated between 30 and this liquid ball is charged with static electricity, Discharged from the tip of the discharge electrode as mist M of charged fine particles of water charged negatively.
  • a high voltage is applied between the discharge electrode 20 and the counter electrode 30
  • a Coulomb force acts between the water held at the tip of the discharge electrode 20 and the counter electrode 30, and the surface of the water is localized.
  • the tiller cone TC is formed.
  • the electric charge is concentrated at the tip of the tiller cone TC, and the electric field strength in this portion increases, and the Coulomb force generated in this portion increases, and the tiller cone TC is further grown.
  • the tiller cone repeats splitting (Rayleigh splitting), generating a large amount of nanometer-order charged fine particle water mist. This mist is released in such a way that it passes through the counter electrode 30 in the air flow caused by the ion wind flowing from the discharge electrode 20 toward the counter electrode 30.
  • the atomizing nozzle 10 is formed of a tubular body, and the tip portion forming the discharge electrode 20 becomes a capillary tube, and the inner diameter of the portion from the pressure tank 40 at the rear end to the discharge electrode 20 at the tip causes capillary action. It is set so as not to rub, and the water head pressure acts on the liquid droplets of water supplied to the tip of the discharge electrode 20.
  • the inner diameter of the atomizing nozzle 10 gradually decreases toward the tip portion that becomes a capillary, and water becomes a liquid ball due to surface tension at the tip of the discharge electrode that is a capillary.
  • This hydraulic head pressure is set to a value that does not hinder the formation of liquid balls due to surface tension, and this hydraulic head pressure acts on the tiller cone TC that is formed when a high voltage is applied.
  • the force that maintains the shape of the Tiller Cone TC by the surface tension is applied to the Tiller Cone TC
  • the Tiller Cone can be applied to the surface other than the most advanced surface where charges are concentrated by applying a high voltage. A part of the surface is torn, splits and scatters. In other parts of the tiller cone, the charge is not concentrated as much as the leading edge, so the energy that breaks up the water is also reduced, and as a result, negatively charged fine particle mist of the order of microns is generated. . Therefore, pressurized water is supplied to the tip of the discharge electrode 20.
  • the nanometer-order negatively charged fine particle mist contains active species (radicals), and these radicals sterilize and deodorize substances present in the space or decompose harmful substances. Micron-order negatively charged fine particles are diffused into the space and humidified
  • the nanometer order is a range of 3 nm or more and lOOnm or less
  • the micron order is a range of more than 0.1 / im and 10 ⁇ or less.
  • the controller 70 is configured to intermittently generate mist of negative charged fine particles from the tip of the discharge electrode 20, and the power switch 94 is turned on. As shown in FIG. 3, the controller 70 alternately repeats the operation period T1 in which the high voltage V1 having a negative potential is applied to the discharge electrode 20 and the pause period T2 in which no voltage is applied. During the rest period T2, the release of mist of negatively charged fine particles is interrupted, so that negative charges attached to the wall surface of the target space and the surface of the substance in the target space are extinguished by natural discharge.
  • the tiller cone formed at the tip of the discharge electrode 20 can maintain a stable shape that is not affected by a strong negative charge from the target space, and the mist of the negatively charged fine particles can be stably maintained over a long period of time. Can be released into the target space.
  • the operation period Tl and the pause time T2 are appropriately set so that the negative charge in the target space disappears to such an extent that the shape of the tiller cone does not become unstable due to natural discharge during the pause period.
  • Tl / T2 ⁇ 6/1 .
  • the electrostatic atomizer of the present embodiment is provided with a humidity sensor 72 that is a humidity detecting means for detecting the absolute humidity in the target space, and the controller 70 operates as the absolute humidity increases. It is configured to reduce the ratio of the rest period ⁇ 2 to the period T1.
  • a humidity sensor 72 that is a humidity detecting means for detecting the absolute humidity in the target space
  • the controller 70 operates as the absolute humidity increases. It is configured to reduce the ratio of the rest period ⁇ 2 to the period T1.
  • each component constituting the electrostatic atomizer is incorporated in the housing 100.
  • the housing 100 includes a base 110 and a cover 120 covering the base 110, and an atomizing nozzle 10, a replenishing tank 50, and a pump 52, which are integrated with the pressurized tank 40, are attached to the base 110.
  • the discharge electrode 20 and the counter electrode 30 are exposed to the outside of the housing 100.
  • the electrical components constituting the high-voltage power supply 60 and the controller 70 are accommodated in the housing 100.
  • a window 122 is formed on the cover 120, and the water level in the replenishing tank 50 formed of a transparent material can be confirmed through the window 122.
  • the supply tank 50 is provided with a cap 54 to add water as needed.
  • the force shown in the example in which the counter electrode 30 is provided in front of the discharge electrode 20 and a high voltage is applied between the discharge electrode 20 and the counter electrode 30 is not necessarily limited to the present invention.
  • the electrostatic atomizer of the present invention when incorporated in a food storage 90 for storing food such as vegetables, it is used as an active species contained in nano-order charged fine particle mist. (Radical) sterilization of food, deodorization, and harmful substances such as agricultural chemicals contained in food In addition to being decomposed, it is possible to maintain the internal humidity at an appropriate level with micron-order charged fine particle mist.
  • freshness of the vegetables can be maintained by supplying a large amount of micron-order charged fine particles into the vegetable tissue through the pores of the vegetables.
  • the food storage 90 includes a temperature adjusting unit 92 for maintaining the inside at a predetermined temperature, and a power switch 94 and a temperature adjusting button 95 are provided on the outer surface.
  • the electrostatic atomizer is operated by a power switch 94, and charged particles mist of nanometer order and charged particle mist of micron order are discharged into the storage chamber 91.
  • leafy vegetables cannot maintain their freshness by simply humidifying the surface of the leaves, but can maintain freshness by supplying moisture into the leaf tissue from the pores of the leaves.
  • the stomata of leafy vegetables is about 100-200111 on the long side and about 10 ⁇ on the short side.
  • Nanometer-order charged fine particles can penetrate into leaf tissue from leafy vegetable pores
  • Nanometer-order charged fine particle mist has a very small particle size, so the amount of water necessary to maintain the freshness of leafy vegetables Insufficient supply inside the organization.
  • micron-order charged microparticles retain more water than nanometer-order charged microparticles mist, so that a sufficient amount of water can be replenished by entering the leaf tissue through the pores. Can maintain freshness.
  • the peak of the particle size distribution of the number of generation of micron-order charged fine particles is ⁇ ⁇ ⁇ or less, preferably 0.5 / im to 1.5 / Adjust the applied pressure and applied voltage so as to be im.
  • Nanometer-order charged fine particle mist sterilizes and deodorizes the surface of leafy vegetables and removes harmful substances such as pesticides adhering to leafy vegetables from the pores. Can be sterilized, deodorized in the tissue, and decomposed inside the pesticides.
  • the particle size distribution peak of the number of charged fine particle mist of nanometer order is 3 nm to 50 nm. Adjust the applied pressure and applied voltage so that
  • FIG. 6 shows a modification of the above-described embodiment.
  • Controller 70 is configured to release positively charged particulate mist.
  • the counter electrode 30 is set to the ground potential (0 V) during the operation period T1 and the rest period T2, and positive and negative high voltages are alternately applied to the discharge electrode 20.
  • the positively charged fine particles generated during the rest period T2 neutralize the negative charge remaining in the target space S, so that a mist of negatively charged fine particles is released into the target space over a long period of time.
  • FIG. 7 shows an electrostatic atomizer according to a second embodiment of the present invention.
  • This electrostatic atomizer has basically the same configuration as that of the first embodiment except that an ionization needle 80 that emits positive ions is added to the target space S, and the same members have the same numbers. Indicated by
  • a positive voltage of about +8 kV is applied to the ionization needle 40 from a high voltage source 62 provided separately from the high voltage source 60 for applying a negative voltage to the discharge electrode 20 under the control of the controller 70.
  • the controller 70 applies a negative high voltage VI to the discharge electrode 20 during the operation period T1 to generate mist of negatively charged fine particles, and during the rest period T2, the ionization needle 80 Apply positive voltage V2 of Heplus potential to generate positive ions. Since these positive ions neutralize the negative charge remaining in the target space S, a mist of negatively charged fine particles is continuously generated.
  • the high voltage applied to the ionization needle 80 can be taken out from the high voltage source 60 without using another high voltage source 62.
  • the humidity sensor 72 that detects the absolute humidity of the target space S is used, and the controller 70 reduces the ratio of the pause period T2 to the operation period T1 as the absolute humidity increases. Composed.
  • an optimum static elimination effect can be obtained according to the humidity condition of the target space.
  • the neutralization of positive ions can be effectively combined with the neutralization of positive ions by utilizing the fact that spontaneous discharge of negative charges remaining in the target space is promoted when the humidity in the target space increases.
  • various types of humidity sensor 72 can be applied. For example, it is acceptable to use an object that calculates the absolute temperature from the temperature and relative humidity in the target space S. Also electrostatic The absolute temperature is changed from the relative temperature on the condition that the target space S is maintained at a substantially constant temperature as in the case where the atomizer is used for a device that is maintained at a constant temperature such as a food storage.
  • the detection format can be used. Further, a type that detects the absolute temperature from the temperature can be used as long as the target space S is maintained at a substantially constant humidity.
  • the electrostatic atomizer of the present invention is used in the food storage 90 is illustrated, but other than this, for example, it can be applied to a washing machine, a clothes dryer, and a tableware dryer. Is possible.
  • the force showing the configuration for generating negatively charged fine particle mist of nanometer order and negatively charged fine particle mist of micron order from the discharge electrode 20 The present invention is not necessarily limited to this. A configuration that generates only nanometer-order charged fine particle mist may be adopted.
  • the liquid to be electrostatically atomized in addition to water, for example, a liquid made of an antibacterial agent or a disinfectant can be used.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

A high voltage is applied to a liquid fed to a discharge electrode, thereby to charge the liquid into minus, so that the mist of minus-charged fine particles is released from the discharge electrode into a target space. A minus high voltage is intermittently applied to the discharge electrode, and the minus charge left in the target space is eliminated for a quiescent period of no minus potential application, so that the mist of minus-charged fine particles is continuously released into the target space.

Description

明 細 書  Specification
静電霧化装置  Electrostatic atomizer
技術分野  Technical field
[0001] 本発明は、マイナスに帯電した液体微粒子のミストを放出する静電霧化装置、更に 詳しくは、対象となる空間へ安定してマイナス帯電のミストを与えることができる静電 霧化装置に関するものである。  The present invention relates to an electrostatic atomizer that discharges a mist of negatively charged liquid fine particles, and more specifically, an electrostatic atomizer that can stably provide a negatively charged mist to a target space. It is about.
背景技術  Background art
[0002] 日本特許公開公報(特開 2005— 131549号)は、水を静電霧化することでマイナ スに帯電した微粒子水ミストを発生させる静電霧化装置を開示している。この装置で は、放電電極に供給された水が放電電極の先端でティラーコーンを形成し、このティ ラーコーンコーンにレイリー分裂を生じさせて霧化させることによってナノメータォー ダ一のマイナスイオン帯電微粒子水のミスト(マイナスイオンミスト)を発生させる。この ミストはラジカルを含んでいるとともに長寿命であって、空間内への拡散を大量に行う ことができ、放出空間内に存在する物に付着浸透して効果的に殺菌、脱臭を行なうこ とができる。  [0002] Japanese Patent Publication (JP-A-2005-131549) discloses an electrostatic atomizer that generates negatively charged fine particle water mist by electrostatically atomizing water. In this device, the water supplied to the discharge electrode forms a tiller cone at the tip of the discharge electrode, which causes the Rayleigh splitting to atomize and atomize the nanometer order negative ion charged fine particle water. Mist (negative ion mist) is generated. This mist contains radicals and has a long life, can diffuse a large amount into the space, adheres to and penetrates the objects present in the release space, and effectively sterilizes and deodorizes. Can do.
[0003] ところ力 この静電霧化装置を、例えば食品保管庫といった狭い対象空間内に設 置し、この対象空間内にマイナスイオンミストを長時間に亘つて放出させようとするよう な場合には、このマイナスイオンが安定的に生成され難くなるといった問題が生じる。 これは、対象空間を囲む食品保管庫のハウジングの内壁や、ここに収納される物質 の表面にマイナス帯電の微粒子が付着することで、放電電極の先端の上記ティラー コーンがこのマイナス電位の影響を受けて、安定したティラーコーンが形成され難く なることが原因であると考えられる。  [0003] However, when this electrostatic atomizer is installed in a narrow target space such as a food storage, for example, negative ion mist is released into the target space over a long period of time. Causes a problem that it is difficult to stably generate the negative ions. This is because negatively charged fine particles adhere to the inner wall of the food storage housing that surrounds the target space and the surface of the substance stored here, and the above-mentioned tiller cone at the tip of the discharge electrode influences this negative potential. In view of this, it is considered that the cause is that it is difficult to form a stable tiller cone.
発明の開示  Disclosure of the invention
[0004] 本発明は上記の課題に鑑みて発明したものであって、対象空間に残るマイナス電 荷の影響を受けることなくマイナス帯電微粒子ミストを長時間に亘つて安定的に生じ させることのできる静電霧化装置を提供することを課題とするものである。  [0004] The present invention has been invented in view of the above problems, and can negatively charge fine particle mist stably over a long period of time without being affected by the negative charge remaining in the target space. An object of the present invention is to provide an electrostatic atomizer.
[0005] 本発明に係る静電霧化装置は、放電電極と、上記放電電極へ液体を供給する液 体供給手段と、上記放電電極に高電圧を印加して上記放電電極の先端に送り出さ れた液体をマイナス極に帯電させて上記放電電極の先端からマイナスに帯電した微 粒子ミストを放出させる高電圧源とを備える。本発明の特徴とするところは、上記放電 電極へマイナス電位の高電圧が間欠的に印加されるように高電圧源を制御するコン トローラとを備えたことである。このため、放電電極にマイナス電位が印加されない休 止期間中に、対象空間内に存在するマイナス電荷が自然放電し、長期に亘つて安定 してマイナス帯電微粒子ミストを放出することができる。 [0005] An electrostatic atomizer according to the present invention includes a discharge electrode and a liquid for supplying a liquid to the discharge electrode. A body supply means and a high voltage that applies a high voltage to the discharge electrode to charge the liquid sent to the tip of the discharge electrode to the negative electrode and release a negatively charged fine particle mist from the tip of the discharge electrode Source. A feature of the present invention is that it includes a controller that controls a high voltage source so that a high voltage of a negative potential is intermittently applied to the discharge electrode. For this reason, during the rest period in which no negative potential is applied to the discharge electrode, negative charges existing in the target space are spontaneously discharged, and negatively charged fine particle mist can be stably discharged over a long period of time.
[0006] 好ましくは、本発明の静電霧化装置に、周囲の絶対湿度を検出する湿度検出手段 が備えられ、上記コントローラは絶対湿度の上昇に伴って、マイナス電位を印加する 動作期間に対して、マイナス電位を印加しない休止期間の比率を小さくするように構 成される。対象空間に存在するマイナス電荷は、絶対湿度が上昇する従って、単位 時間あたりの自然放電量が多くなるため、対象空間の状況に応じて、休止期間を最 適な値として、マイナス帯電微粒子ミストを効率よく発生させることができる。  [0006] Preferably, the electrostatic atomizer of the present invention is provided with humidity detecting means for detecting the ambient absolute humidity. The controller applies a negative potential as the absolute humidity increases. Thus, the ratio of the idle period during which no negative potential is applied is configured to be small. The negative charge existing in the target space increases the amount of spontaneous discharge per unit time as the absolute humidity rises.Therefore, depending on the situation of the target space, the negative charge fine particle mist is set to the optimum value for the rest period. It can be generated efficiently.
[0007] また、上記コントローラを、上記放電電極がマイナス電位となる第 1動作モード、上 記放電電極がプラス電位となる第 2モードとを交互に繰り返すように構成することも可 能である。この場合、マイナス電位を印加しない休止期間中に、プラスに帯電した帯 電微粒子を放出することで、対象空間に存在するマイナス電荷を中和することができ 、マイナス帯電微粒子ミストの放出を安定して継続することが出来る。  [0007] Further, the controller may be configured to alternately repeat a first operation mode in which the discharge electrode has a negative potential and a second mode in which the discharge electrode has a positive potential. In this case, by discharging the positively charged charged fine particles during the rest period in which no negative potential is applied, the negative charge existing in the target space can be neutralized, and the discharge of the negatively charged fine particle mist is stabilized. Can continue.
[0008] この他、本発明の静電霧化装置に、プラス電位が与えられるイオン化針を備えるこ ともできる。この場合、上記のコントローラは、放電電極をマイナスに印加しない期間 に、上記イオンィ匕針に高電圧を印加して、イオン化針の先端からプラスイオンを発生 させるように構成され、対象空間に存在するマイナス電荷を中和して、安定したマイ ナス帯電ミストの放出が行える。  [0008] In addition, the electrostatic atomizer of the present invention may include an ionization needle to which a positive potential is applied. In this case, the controller is configured to generate a positive ion from the tip of the ionization needle by applying a high voltage to the ionization needle during a period when the discharge electrode is not applied negatively, and exists in the target space. Neutralize negative charges and release stable negative charged mist.
[0009] 更に、マイナスの帯電微粒子ミストを発生させる動作期間に対して、放電電極ゃィ オン化針からプラスイオンを放出する期間の比率は、コントローラによって絶対湿度 の上昇に伴って小さく設定されることが好ましい。  [0009] Furthermore, the ratio of the period during which positive ions are released from the discharge electrode ionization needle to the operation period during which negative charged fine particle mist is generated is set smaller by the controller as the absolute humidity increases. It is preferable.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明の一実施形態に係る静電霧化装置を示す概略図。 [図 2]同上の静電霧化装置の一使用形態を示す説明図。 FIG. 1 is a schematic diagram showing an electrostatic atomizer according to an embodiment of the present invention. FIG. 2 is an explanatory view showing one usage pattern of the electrostatic atomizer.
[図 3]同上の静電霧化装置の動作を示す説明図。  FIG. 3 is an explanatory diagram showing the operation of the electrostatic atomizer described above.
[図 4]同上の静電霧化装置の斜視図。  FIG. 4 is a perspective view of the electrostatic atomizer described above.
[図 5]同上のカバーを外した状態の斜視図である。  FIG. 5 is a perspective view with the cover removed.
[図 6]同上の静電霧化装置の変更態様における動作を示す説明図。  FIG. 6 is an explanatory view showing the operation in a modified embodiment of the electrostatic atomizer.
[図 7]本発明の他の実施形態に係る静電霧化装置を示す概略図。  FIG. 7 is a schematic view showing an electrostatic atomizer according to another embodiment of the present invention.
[図 8]同上の静電霧化装置の動作を示す説明図。  FIG. 8 is an explanatory view showing the operation of the electrostatic atomizer described above.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明に係る静電霧化装置は、ナノメータオーダーのマイナス帯電微粒子とミクロ ンオーダーのマイナス帯電微粒子が混在したミストを発生させるもので、このミストを 対象空間に放出することで、対象空間内に存在する物質の脱臭、殺菌、分解を行う と共に、適度な湿度を与えるように使用される。例えば、図 2に示すような食品保管庫 90に組み込まれて使用されると、ナノメータオーダーのマイナス帯電微粒子ミストに 含まれる活性種によって食品の殺菌や食品に付着している有害物質の分解を行うと 共に、ミクロンオーダーのマイナス帯電微粒子ミストによって保管庫 90内の湿度を適 切な値に保つことで鮮度を維持する。  [0011] The electrostatic atomizer according to the present invention generates a mist in which negatively charged fine particles of nanometer order and negatively charged fine particles of micron order are mixed. By discharging this mist to the target space, the target is obtained. It is used to deodorize, sterilize, and decompose substances present in the space and to provide appropriate humidity. For example, when incorporated in a food storage 90 as shown in Fig. 2, the active species contained in nanometer-order negatively charged fine particle mist sterilize food and decompose harmful substances attached to food. At the same time, the freshness is maintained by keeping the humidity in the storage 90 at an appropriate value with minus-charged fine particle mist of micron order.
[0012] 図 1に示すように、本発明の一実施形態に係る静電霧化装置は、先端が放電電極 20となった霧ィヒノズノレ 10と、放電電極 20に対向して配置された対向電極 30と、放電 電極 20と対向電極 30との間に高電圧を印加する高電圧源 60、及び高電圧の値を 制御するコントローラ 70とで構成される。霧化ノズル 10の後端には加圧タンク 40が接 続され、加圧タンク 40に貯えた液体、例えば水が霧化ノズノレ 10を通して放電電極 20 の先端に供給される。この加圧タンク 40が液体を放電電極 20へ供給する液体供給 手段を形成する。本発明の静電霧化装置は、水以外にも各種の液体を使用すること が可能であるが、本実施形態においては、液体として水を使用した例に基づいて説 明する。  As shown in FIG. 1, an electrostatic atomizer according to an embodiment of the present invention includes a foggy horned nose 10 whose tip is a discharge electrode 20, and a counter electrode disposed to face the discharge electrode 20. 30, a high voltage source 60 that applies a high voltage between the discharge electrode 20 and the counter electrode 30, and a controller 70 that controls the value of the high voltage. A pressure tank 40 is connected to the rear end of the atomization nozzle 10, and a liquid, for example, water stored in the pressure tank 40 is supplied to the tip of the discharge electrode 20 through the atomization nozzle 10. This pressurized tank 40 forms a liquid supply means for supplying liquid to the discharge electrode 20. The electrostatic atomizer of the present invention can use various liquids in addition to water, but in the present embodiment, description will be made based on an example in which water is used as the liquid.
[0013] 放電電極 20の先端に供給された水は表面張力によって液玉となり、高電圧、例え ば、 8kVのマイナス電位を放電電極 20に与えることで、放電電極 20先端の放電 端と対向電極 30のとの間に高電圧電界が発生し、この液玉を静電気で帯電させて、 放電電極の先端からマイナスに帯電した水の帯電微粒子のミスト Mとして放出する。 放電電極 20と対向電極 30との間に高電圧が印加されると、放電電極 20の先端に保 持された水と対向電極 30との間にクーロン力が働いて、水の表面が局所的に盛り上 力つてティラーコーン TCが形成される。すると、ティラーコーン TCの先端に電荷が集 中してこの部分における電界強度が大きくなつて、この部分に生じるクーロン力が大 きくなり、更にティラーコーン TCを成長させる。その後、クーロン力が水 Wの表面張力 を超えると、ティラーコーンが分裂(レイリー分裂)を繰り返し、ナノメータオーダーの 帯電微粒子水のミストを大量に生成させるものである。このミストは、放電電極 20から 対向電極 30に向けて流れるイオン風によって引き起こされる空気流に乗って対向電 極 30を通過する形で放出される。 [0013] The water supplied to the tip of the discharge electrode 20 becomes a liquid ball due to surface tension, and by applying a high voltage, for example, a negative potential of 8 kV, to the discharge electrode 20, the discharge end at the tip of the discharge electrode 20 and the counter electrode A high voltage electric field is generated between 30 and this liquid ball is charged with static electricity, Discharged from the tip of the discharge electrode as mist M of charged fine particles of water charged negatively. When a high voltage is applied between the discharge electrode 20 and the counter electrode 30, a Coulomb force acts between the water held at the tip of the discharge electrode 20 and the counter electrode 30, and the surface of the water is localized. As a result, the tiller cone TC is formed. Then, the electric charge is concentrated at the tip of the tiller cone TC, and the electric field strength in this portion increases, and the Coulomb force generated in this portion increases, and the tiller cone TC is further grown. After that, when the Coulomb force exceeds the surface tension of the water W, the tiller cone repeats splitting (Rayleigh splitting), generating a large amount of nanometer-order charged fine particle water mist. This mist is released in such a way that it passes through the counter electrode 30 in the air flow caused by the ion wind flowing from the discharge electrode 20 toward the counter electrode 30.
[0014] 加圧タンク 40には補給タンク 50から水がポンプ 52によって補給され、加圧タンク 40 内の水位が常に一定となるように制御されて、放電電極 20先端に供給される水に一 定の水頭圧を作用させている。このため、加圧タンク 40にはレベルセンサー 42が設 けられ、レベルセンサー 42で検知する水位が常に一定となるようにポンプ 52がコント ローラ 70によって制御される。  [0014] Water is supplied to the pressurization tank 40 from the replenishment tank 50 by the pump 52, and the water level in the pressurization tank 40 is controlled to be always constant, so that the water supplied to the tip of the discharge electrode 20 is equal. A constant water head pressure is applied. For this reason, the pressurized tank 40 is provided with a level sensor 42 and the pump 52 is controlled by the controller 70 so that the water level detected by the level sensor 42 is always constant.
[0015] 霧化ノズル 10は管体で形成され、放電電極 20を形成する先端部は毛細管となり、 後端の加圧タンク 40から先端の放電電極 20に至る部分の内径は、毛細管現象を起 こさないように設定され、放電電極 20先端に供給される水の液玉に、水頭圧が作用 するようになつている。霧化ノズル 10の内径は毛細管となる先端部分に向けて次第 に小さくなり、毛細管である放電電極先端では水が表面張力によって液玉となる。こ の水頭圧は、表面張力によって液玉が形成されるのを阻害しない値に設定され、高 電圧が印加されることにより形成されるティラーコーン TCにこの水頭圧が作用する。  [0015] The atomizing nozzle 10 is formed of a tubular body, and the tip portion forming the discharge electrode 20 becomes a capillary tube, and the inner diameter of the portion from the pressure tank 40 at the rear end to the discharge electrode 20 at the tip causes capillary action. It is set so as not to rub, and the water head pressure acts on the liquid droplets of water supplied to the tip of the discharge electrode 20. The inner diameter of the atomizing nozzle 10 gradually decreases toward the tip portion that becomes a capillary, and water becomes a liquid ball due to surface tension at the tip of the discharge electrode that is a capillary. This hydraulic head pressure is set to a value that does not hinder the formation of liquid balls due to surface tension, and this hydraulic head pressure acts on the tiller cone TC that is formed when a high voltage is applied.
[0016] ところで、ティラーコーン TCは表面張力によってその形状が保持されている力 ここ に上記の水頭圧が作用すると、電荷が集中する最先端以外の表面においても、高電 圧の印加によりティラーコーンの表面の一部が破れて、分裂'飛散する。ティラーコ ーンの最先端以外の部分では、電荷が最先端ほど集中していないので水を分裂さ せるエネルギーも小さくなり、この結果、主としてミクロンオーダーのマイナス帯電微粒 子ミストが生成されると考えられる。従って、放電電極 20先端に供給される水に加圧 力を作用させた状態で、ここに高電圧を印加することにより、上述したように、ティラー コーン TCの先端から分裂してできるナノメータオーダーのマイナス帯電微粒子のミス トと、ティラーコーン TCの先端以外の部分から分裂してできるミクロンオーダーのマイ ナス帯電微粒子のミストが生成される。これらマイナス帯電微粒子が混在するミストは それぞれ拡散した状態で空間内に放出され、放電電極 20には加圧力によって水が 供給され続けられるため、ミストは連続して生成される。 [0016] By the way, the force that maintains the shape of the Tiller Cone TC by the surface tension. When the above-mentioned hydraulic head pressure is applied to the Tiller Cone TC, the Tiller Cone can be applied to the surface other than the most advanced surface where charges are concentrated by applying a high voltage. A part of the surface is torn, splits and scatters. In other parts of the tiller cone, the charge is not concentrated as much as the leading edge, so the energy that breaks up the water is also reduced, and as a result, negatively charged fine particle mist of the order of microns is generated. . Therefore, pressurized water is supplied to the tip of the discharge electrode 20. By applying a high voltage to the tip while applying a force, as described above, negatively charged fine particle mists that are split from the tip of the Tiller Cone TC and other than the tip of the Tiller Cone TC A mist of negatively charged fine particles of micron order, which is generated by splitting from this part, is generated. The mist mixed with these negatively charged fine particles is discharged into the space in a diffused state, and water is continuously supplied to the discharge electrode 20 by the applied pressure, so that the mist is generated continuously.
[0017] ナノメータオーダーのマイナス帯電微粒子ミストには活性種 (ラジカル)が含まれ、こ のラジカルによって、空間内に存在する物質の殺菌や脱臭、或いは有害物質の分解 が行われる。ミクロンオーダーのマイナス帯電微粒子は空間に拡散されて加湿を行う [0017] The nanometer-order negatively charged fine particle mist contains active species (radicals), and these radicals sterilize and deodorize substances present in the space or decompose harmful substances. Micron-order negatively charged fine particles are diffused into the space and humidified
[0018] 放電電極 20に加える加圧力を変化させることで、ナノメータオーダーのマイナス帯 電微粒子ミスト、ミクロンオーダーのマイナス帯電微粒子ミストの粒径分布の調整や、 ナノメータオーダーのマイナス帯電微粒子ミストの発生量とミクロンオーダーのマイナ ス帯電微粒子ミストの発生量の割合を調整できる。即ち、加圧タンク 40内の水位によ る水頭圧を調整することで、粒度分布や発生量の割合を選択することができ、使用用 途に応じてナノオーダーとミクロンオーダーの帯電微粒子とを最適に組み合わせた 混合ミストを発生させることが出来る。 [0018] By changing the pressure applied to the discharge electrode 20, adjustment of the particle size distribution of the negatively charged fine particle mist of the nanometer order and the negatively charged fine particle mist of the micron order and the generation amount of the negatively charged fine particle mist of the nanometer order And the ratio of the generation amount of negatively charged fine particle mist on the order of microns can be adjusted. That is, by adjusting the water head pressure depending on the water level in the pressurized tank 40, the particle size distribution and the ratio of the generated amount can be selected, and the charged fine particles of nano order and micron order can be selected depending on the usage. It is possible to generate mixed mist that is optimally combined.
[0019] 本発明においては、ナノメータオーダーとは、 3nm以上で lOOnm以下の範囲のこ とであり、ミクロンオーダーとは、 0. 1 /i mを超え 10 μ ΐη以下の範囲を規定している。  In the present invention, the nanometer order is a range of 3 nm or more and lOOnm or less, and the micron order is a range of more than 0.1 / im and 10 μΐη or less.
[0020] 本発明の静電霧化装置では、コントローラ 70が、放電電極 20先端からマイナス帯 電微粒子のミストを間欠的に発生させるように構成され、電源スィッチ 94がオンとされ ると、図 3に示すように、コントローラ 70は、放電電極 20へマイナスの電位の高電圧 V 1を印加する動作期間 T1と、電圧を印加しない休止期間 T2とを交互に繰り返す。休 止期間 T2では、マイナス帯電微粒子のミストが放出されることが中断されるため、対 象空間の壁面や対象空間内の物質の表面に付着してレ、るマイナス電荷が自然放電 により消滅される。このため、放電電極 20先端に形成されるティラーコーンは、対象 空間から強いマイナス電荷の影響を受けることが無ぐ安定した形状が維持できて、 マイナス帯電微粒子のミストを長期に亘つて安定して対象空間へ放出することができ る。 [0020] In the electrostatic atomizer of the present invention, the controller 70 is configured to intermittently generate mist of negative charged fine particles from the tip of the discharge electrode 20, and the power switch 94 is turned on. As shown in FIG. 3, the controller 70 alternately repeats the operation period T1 in which the high voltage V1 having a negative potential is applied to the discharge electrode 20 and the pause period T2 in which no voltage is applied. During the rest period T2, the release of mist of negatively charged fine particles is interrupted, so that negative charges attached to the wall surface of the target space and the surface of the substance in the target space are extinguished by natural discharge. The For this reason, the tiller cone formed at the tip of the discharge electrode 20 can maintain a stable shape that is not affected by a strong negative charge from the target space, and the mist of the negatively charged fine particles can be stably maintained over a long period of time. Can be released into the target space. The
[0021] 動作期間 Tlと休止時間 T2は、休止期間中の自然放電により、対象空間のマイナ ス電荷がティラーコーンの形状を不安定にさせない程度にまで消滅するように適宜 設定するのであるが、例えば体積固有抵抗が 1016〜: 102° ( Ω ' cm)のポリスチレン製 のハウジングにより容積 70Lの対象空間を形成してある場合には、 Tl/T2< =6/ 1とすることが好ましい。 [0021] The operation period Tl and the pause time T2 are appropriately set so that the negative charge in the target space disappears to such an extent that the shape of the tiller cone does not become unstable due to natural discharge during the pause period. For example, when a target space with a volume of 70 L is formed by a polystyrene housing having a volume resistivity of 10 16 to 10 2 ° (Ω 'cm), it is preferable that Tl / T2 <= 6/1 .
[0022] また、本実施形態の静電霧化装置には、対象空間内の絶対湿度を検知する湿度 検出手段である湿度センサー 72が備えられ、コントローラ 70は、絶対湿度が増加す るにつれて動作期間 T1に対する休止期間 Τ2の比率を小さくするように構成される。 絶対湿度が高くなると、対象空間 S内のマイナス電荷の自然放電が促進されることか ら、対象空間の状況に応じて休止期間 Τ2を最適な値として、マイナス帯電微粒子の ミストを効率よく発生することが出来る。  In addition, the electrostatic atomizer of the present embodiment is provided with a humidity sensor 72 that is a humidity detecting means for detecting the absolute humidity in the target space, and the controller 70 operates as the absolute humidity increases. It is configured to reduce the ratio of the rest period Τ2 to the period T1. When absolute humidity increases, spontaneous discharge of negative charges in the target space S is promoted, so that a mist of negatively charged fine particles is efficiently generated with an optimal period of Τ2 according to the conditions of the target space. I can do it.
[0023] 上記の静電霧化装置を構成する各部品は、図 4及び図 5に示すように、ハウジング 100に組み込まれる。ハウジング 100は、ベース 110とこれを覆うカバー 120とで構成 され、加圧タンク 40と一体となった霧化ノズル 10、補給タンク 50、ポンプ 52がベース 110に取り付けられ、カバー 120に対向電極 30が保持され、放電電極 20及び対向 電極 30がハウジング 100の外部に露出する。高圧電源 60、コントローラ 70を構成す る電気部品は、ハウジング 100内に収められる。カバー 120には窓 122が形成され、 この窓 122を通して透明材料で形成された補給タンク 50内の水位が確認できる。補 給タンク 50にはキャップ 54が設けられ、必要に応じて水を追加する。  [0023] As shown in FIGS. 4 and 5, each component constituting the electrostatic atomizer is incorporated in the housing 100. The housing 100 includes a base 110 and a cover 120 covering the base 110, and an atomizing nozzle 10, a replenishing tank 50, and a pump 52, which are integrated with the pressurized tank 40, are attached to the base 110. The discharge electrode 20 and the counter electrode 30 are exposed to the outside of the housing 100. The electrical components constituting the high-voltage power supply 60 and the controller 70 are accommodated in the housing 100. A window 122 is formed on the cover 120, and the water level in the replenishing tank 50 formed of a transparent material can be confirmed through the window 122. The supply tank 50 is provided with a cap 54 to add water as needed.
[0024] 図示の実施形態においては、対向電極 30を放電電極 20の前方に設けて、高電圧 を放電電極 20と対向電極 30との間に印加した例を示した力 本発明は必ずしも、こ れのみに限定されるものではなぐ例えば、ハウジング 100の一部をアース電極とし て高電圧を放電電極 20に印加することも可能である、この場合、周囲の空気がダラ ンド電位となり、帯電微粒子ミストを放電電極 20の先端から放出することができる。  In the illustrated embodiment, the force shown in the example in which the counter electrode 30 is provided in front of the discharge electrode 20 and a high voltage is applied between the discharge electrode 20 and the counter electrode 30 is not necessarily limited to the present invention. For example, it is possible to apply a high voltage to the discharge electrode 20 by using a part of the housing 100 as a ground electrode. In this case, the surrounding air becomes a dotted potential, and the charged fine particles Mist can be discharged from the tip of the discharge electrode 20.
[0025] 図 2に示すように、本発明の静電霧化装置が野菜などの食品を保管する食品保管 庫 90に組み込まれて使用した場合、ナノオーダーの帯電微粒子ミストに含まれる活 性種 (ラジカル)によって食品の殺菌、脱臭、食品に含まれる農薬などの有害物質の 分解を行うと共に、ミクロンオーダーの帯電微粒子ミストによって内部を適切な湿度に 保持すること力 Sできる。特に、野菜を保管する場合は、野菜の気孔を通して、ミクロン オーダーの帯電微粒子が多量に野菜の組織内に供給されることで、野菜の鮮度を 保つことが出来る。 [0025] As shown in FIG. 2, when the electrostatic atomizer of the present invention is incorporated in a food storage 90 for storing food such as vegetables, it is used as an active species contained in nano-order charged fine particle mist. (Radical) sterilization of food, deodorization, and harmful substances such as agricultural chemicals contained in food In addition to being decomposed, it is possible to maintain the internal humidity at an appropriate level with micron-order charged fine particle mist. In particular, when storing vegetables, freshness of the vegetables can be maintained by supplying a large amount of micron-order charged fine particles into the vegetable tissue through the pores of the vegetables.
[0026] 食品保管庫 90には、内部を所定の温度に維持するための温度調整部 92を備え、 外面に電源スィッチ 94、温度調整ボタン 95が設けられている。静電霧化装置は電源 スィッチ 94により動作し、保管室 91内にナノメータオーダーの帯電微粒子ミストとミク ロンオーダーの帯電微粒子ミストとが放出される。  [0026] The food storage 90 includes a temperature adjusting unit 92 for maintaining the inside at a predetermined temperature, and a power switch 94 and a temperature adjusting button 95 are provided on the outer surface. The electrostatic atomizer is operated by a power switch 94, and charged particles mist of nanometer order and charged particle mist of micron order are discharged into the storage chamber 91.
[0027] 食品の中で葉野菜は、単に葉の表面を加湿するだけでは鮮度を維持できず、葉の 気孔から葉の組織内に水分が供給されることで鮮度を維持することができることが知 られている。葉野菜の葉の気孔は、長辺側カ約100〜200 111、短辺側が約 10 μ ΐη である。ナノメータオーダーの帯電微粒子は葉野菜の気孔から葉の組織内に浸入す る力 ナノメータオーダーの帯電微粒子ミストは粒径が極めて小さいため、葉野菜の 鮮度を維持するために必要な水分量を気孔力 組織内部に十分供給できない。しか しながら、ミクロンオーダーの帯電微粒子はナノメータオーダーの帯電微粒子ミストよ りも多くの水分を保持しているため、気孔を通して葉の組織内に侵入させることで、十 分な量の水分を補給して鮮度を維持できる。このため、食品保管庫に静電霧化装置 を組み込む場合は、ミクロンオーダーの帯電微粒子の発生個数の粒径分布のピーク を ΙΟ μ ΐη以下、好ましくは、 0. 5 /i m〜l . 5 /i mとなるように加圧力や印加電圧を調 整する。  [0027] In vegetables, leafy vegetables cannot maintain their freshness by simply humidifying the surface of the leaves, but can maintain freshness by supplying moisture into the leaf tissue from the pores of the leaves. Are known. The stomata of leafy vegetables is about 100-200111 on the long side and about 10 μΐη on the short side. Nanometer-order charged fine particles can penetrate into leaf tissue from leafy vegetable pores Nanometer-order charged fine particle mist has a very small particle size, so the amount of water necessary to maintain the freshness of leafy vegetables Insufficient supply inside the organization. However, micron-order charged microparticles retain more water than nanometer-order charged microparticles mist, so that a sufficient amount of water can be replenished by entering the leaf tissue through the pores. Can maintain freshness. For this reason, when an electrostatic atomizer is installed in a food storage, the peak of the particle size distribution of the number of generation of micron-order charged fine particles is 以下 μ ΐη or less, preferably 0.5 / im to 1.5 / Adjust the applied pressure and applied voltage so as to be im.
[0028] また、ナノメータオーダーの帯電微粒子ミストは葉野菜の表面の殺菌や脱臭を行い 、葉野菜に付着している農薬のような有害物質の分解を行なうだけでなぐ気孔から 葉野菜の組織内に浸入し組織内の殺菌、脱臭、内部に浸透している農薬の分解も 行なうことができるものであり、この場合ナノメータオーダーの帯電微粒子ミストの発生 個数の粒径分布のピークが 3nm〜50nmとなるように、加圧力や印加電圧を調整す る。  [0028] Nanometer-order charged fine particle mist sterilizes and deodorizes the surface of leafy vegetables and removes harmful substances such as pesticides adhering to leafy vegetables from the pores. Can be sterilized, deodorized in the tissue, and decomposed inside the pesticides. In this case, the particle size distribution peak of the number of charged fine particle mist of nanometer order is 3 nm to 50 nm. Adjust the applied pressure and applied voltage so that
[0029] 図 6は、上記の実施形態の変更態様を示すもので、マイナス帯電微粒子を放出し ない休止期間 T2に、放電電極 20ヘプラス電位 (例えば、 + 8kV)を印加することで、 プラス帯電の微粒子ミストを放出するようにコントローラ 70が構成される。この場合、 対向電極 30は動作期間 T1及び休止期間 T2はグランド電位(0V)とされ、放電電極 20へ、プラスとマイナスの高電圧が交互に印加される。休止期間 T2中に発生される プラス帯電の微粒子は、対象空間 Sに残留するマイナス電荷を中和することで、マイ ナス帯電微粒子のミストが長期に亘つて対象空間に放出される。 [0029] FIG. 6 shows a modification of the above-described embodiment. By applying a positive potential (for example, +8 kV) to the discharge electrode 20 in a rest period T2 in which negatively charged fine particles are not released, Controller 70 is configured to release positively charged particulate mist. In this case, the counter electrode 30 is set to the ground potential (0 V) during the operation period T1 and the rest period T2, and positive and negative high voltages are alternately applied to the discharge electrode 20. The positively charged fine particles generated during the rest period T2 neutralize the negative charge remaining in the target space S, so that a mist of negatively charged fine particles is released into the target space over a long period of time.
[0030] 図 7は、本発明の第 2の実施形態に係る静電霧化装置を示す。この静電霧化装置 は、対象空間 Sにプラスイオンを放出するイオン化針 80が追加された以外は、基本 的に第 1の実施形態と同一の構成であり、同一の部材については同一の番号で示す [0030] FIG. 7 shows an electrostatic atomizer according to a second embodiment of the present invention. This electrostatic atomizer has basically the same configuration as that of the first embodiment except that an ionization needle 80 that emits positive ions is added to the target space S, and the same members have the same numbers. Indicated by
[0031] イオン化針 40には、放電電極 20にマイナス電圧を印加するための高電圧源 60と は別に設けられた高電圧源 62からコントローラ 70の制御により、 + 8kV程度のプラス 電圧を印加されて、コロナ放電を発生させ、これにより対象空間 S内にプラスイオンを 放出させるようになつている。コントローラ 70は、図 8に示すように、動作期間 T1にお いて、マイナス電位の高電圧 VIを放電電極 20へ印加してマイナス帯電微粒子のミ ストを発生させ、休止期間 T2において、イオン化針 80ヘプラス電位の高電圧 V2を 印加してプラスイオンを発生させる。このプラスイオンは、対象空間 Sに残存するマイ ナス電荷を中和するため、マイナス帯電微粒子のミストが継続して発生されることにな る。尚、イオン化針 80に印加する高電圧は、別の高電圧源 62を用いずとも、高電圧 源 60から取り出すことも可能である。 [0031] A positive voltage of about +8 kV is applied to the ionization needle 40 from a high voltage source 62 provided separately from the high voltage source 60 for applying a negative voltage to the discharge electrode 20 under the control of the controller 70. Thus, corona discharge is generated, and thereby positive ions are released into the target space S. As shown in FIG. 8, the controller 70 applies a negative high voltage VI to the discharge electrode 20 during the operation period T1 to generate mist of negatively charged fine particles, and during the rest period T2, the ionization needle 80 Apply positive voltage V2 of Heplus potential to generate positive ions. Since these positive ions neutralize the negative charge remaining in the target space S, a mist of negatively charged fine particles is continuously generated. The high voltage applied to the ionization needle 80 can be taken out from the high voltage source 60 without using another high voltage source 62.
[0032] 本実施形態においても、対象空間 Sの絶対湿度を検知する湿度センサー 72が使 用され、絶対湿度が上昇するに従って、動作期間 T1に対する休止期間 T2の比率を 低下させるようにコントローラ 70が構成される。これによつて、対象空間の湿度条件に 応じて、最適な除電効果が得られる。即ち、対象空間内の湿度が高くなると、対象空 間内に残存するマイナス電荷の自然放電が促進されることを利用して、プラスイオン の中和作用による除電を効果的に組み合わせることが出来て、マイナス帯電微粒子 のミストの放出を継続して安定的に行うことが可能となる。  [0032] Also in this embodiment, the humidity sensor 72 that detects the absolute humidity of the target space S is used, and the controller 70 reduces the ratio of the pause period T2 to the operation period T1 as the absolute humidity increases. Composed. As a result, an optimum static elimination effect can be obtained according to the humidity condition of the target space. In other words, the neutralization of positive ions can be effectively combined with the neutralization of positive ions by utilizing the fact that spontaneous discharge of negative charges remaining in the target space is promoted when the humidity in the target space increases. In addition, it becomes possible to continuously and stably release the mist of the negatively charged fine particles.
[0033] 尚、湿度センサー 72としては、各種の形式のものが適用可能である。例えば、対象 空間 S内の温度と相対湿度から絶対温度を算出するものを用いても良レ、。また、静電 霧化装置を食品保管庫のような一定の温度に維持される機器に使用する場合のよう に、対象空間 S内が略一定の温度に保持されることを条件として、相対温度から絶対 温度を検出する形式のものが使用できる。更に、対象空間 S内が略一定の湿度に保 持される条件下であれば、温度から絶対温度を検出する形式のものが使用できる。 Note that various types of humidity sensor 72 can be applied. For example, it is acceptable to use an object that calculates the absolute temperature from the temperature and relative humidity in the target space S. Also electrostatic The absolute temperature is changed from the relative temperature on the condition that the target space S is maintained at a substantially constant temperature as in the case where the atomizer is used for a device that is maintained at a constant temperature such as a food storage. The detection format can be used. Further, a type that detects the absolute temperature from the temperature can be used as long as the target space S is maintained at a substantially constant humidity.
[0034] 上記の実施形態では、本発明の静電霧化装置を食品保管庫 90に使用する場合を 例示したが、これ以外に、例えば洗濯機、衣類乾燥機、食器乾燥機に適用すること が可能である。  [0034] In the above embodiment, the case where the electrostatic atomizer of the present invention is used in the food storage 90 is illustrated, but other than this, for example, it can be applied to a washing machine, a clothes dryer, and a tableware dryer. Is possible.
[0035] 更に、上記の実施形態では、放電電極 20からナノメータオーダーのマイナス帯電 微粒子ミストとミクロンオーダーのマイナス帯電微粒子ミストを発生する構成を示して いる力 本発明は必ずしもこれに限定されるものではなぐナノメータオーダーの帯電 微粒子ミストのみを発生する構成を採用しても良い。更に、静電霧化される液体とし ては、水以外にも、例えば抗菌剤や殺菌剤から成る液体が使用できる。  [0035] Furthermore, in the above-described embodiment, the force showing the configuration for generating negatively charged fine particle mist of nanometer order and negatively charged fine particle mist of micron order from the discharge electrode 20 The present invention is not necessarily limited to this. A configuration that generates only nanometer-order charged fine particle mist may be adopted. Furthermore, as the liquid to be electrostatically atomized, in addition to water, for example, a liquid made of an antibacterial agent or a disinfectant can be used.

Claims

請求の範囲 The scope of the claims
[1] 放電電極と、  [1] a discharge electrode;
上記放電電極へ液体を供給する液体供給手段と、  Liquid supply means for supplying a liquid to the discharge electrode;
上記放電電極に高電圧を印加して上記放電電極の先端に送り出された液体をマイ ナス極に帯電させて上記放電電極の先端力 マイナスに帯電した帯電微粒子ミスト を放出させる高電圧源と、  A high voltage source for applying a high voltage to the discharge electrode to charge the liquid sent to the tip of the discharge electrode to a negative electrode and discharging charged particle mist charged negatively at the tip force of the discharge electrode;
上記放電電極へマイナス電位の高電圧が間欠的に印加されるように高電圧源を制 御するコントローラとを備えたことを特徴とする静電霧化装置。  An electrostatic atomizer, comprising: a controller that controls a high voltage source so that a negative high voltage is intermittently applied to the discharge electrode.
[2] 周囲の絶対湿度を検出する湿度検出手段を備え、上記コントローラは絶対湿度の上 昇に伴って、上記放電電極へマイナス電位を印加する動作期間に対して、マイナス 電位を印加しない休止期間の比率を小さくすることを特徴とする請求項 1に記載の静 電霧化装置。  [2] Humidity detection means for detecting the absolute humidity of the surroundings is provided, and the controller does not apply a negative potential to the operating period in which a negative potential is applied to the discharge electrode as the absolute humidity increases. The electrostatic atomizer according to claim 1, wherein the ratio of is reduced.
[3] 上記コントローラは、上記放電電極がマイナス電位となる第 1動作モード、上記放電 電極がプラス電位となる第 2モードとを交互に繰り返すことを特徴とする請求項 1に記 載の静電霧化装置。  [3] The electrostatic controller according to claim 1, wherein the controller alternately repeats a first operation mode in which the discharge electrode has a negative potential and a second mode in which the discharge electrode has a positive potential. Atomization device.
[4] 周囲の絶対湿度を検出する湿度検出手段を備え、上記コントローラは絶対湿度の上 昇に伴って、第 1モードの期間に対する上記第 2モードの期間の比率を小さくするこ とを特徴とする請求項 3に記載の静電霧化装置。  [4] Humidity detection means for detecting ambient absolute humidity is provided, and the controller reduces the ratio of the second mode period to the first mode period as the absolute humidity increases. The electrostatic atomizer according to claim 3.
[5] プラス電位が与えられるイオン化針を備え、上記の放電電極をマイナスに印加しない 期間に、上記イオンィ匕針に高電圧を印加して、上記イオン化針の先端力もプラスィォ ンを発生させることを特徴とする請求項 1に記載の静電霧化装置。  [5] An ionization needle to which a positive potential is applied is provided, and a high voltage is applied to the ionization needle during a period in which the discharge electrode is not applied to the negative, so that the tip force of the ionization needle also generates positiveness. The electrostatic atomizer according to claim 1, wherein the apparatus is an electrostatic atomizer.
[6] 周囲の絶対湿度を検出する湿度検出手段を備え、上記コントローラは絶対湿度の上 昇に伴って、上記放電電極へマイナス電位を印加する動作期間に対して、上記ィォ ン化針をプラス電位に印加する期間の比率を小さくすることを特徴とする請求項 5に 記載の静電霧化装置。  [6] Humidity detection means for detecting the ambient absolute humidity is provided, and the controller moves the ionization needle during the operation period in which a negative potential is applied to the discharge electrode as the absolute humidity increases. 6. The electrostatic atomizer according to claim 5, wherein a ratio of a period for applying the positive potential is reduced.
PCT/JP2007/054908 2006-03-29 2007-03-13 Electrostatic atomization device WO2007111121A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006092197A JP4645502B2 (en) 2006-03-29 2006-03-29 Electrostatic atomizer
JP2006092198A JP4645503B2 (en) 2006-03-29 2006-03-29 Electrostatic atomizer
JP2006-092197 2006-03-29
JP2006-092198 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007111121A1 true WO2007111121A1 (en) 2007-10-04

Family

ID=38541042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054908 WO2007111121A1 (en) 2006-03-29 2007-03-13 Electrostatic atomization device

Country Status (2)

Country Link
TW (1) TWI324088B (en)
WO (1) WO2007111121A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226127A1 (en) * 2007-12-25 2010-09-08 Panasonic Electric Works Co., Ltd Apparatus for generating oxidation and reduction fine particle
WO2011136044A1 (en) * 2010-04-30 2011-11-03 パナソニック電工株式会社 Electrostatic atomizing device
JP2012075483A (en) * 2010-09-30 2012-04-19 Panasonic Corp Ion generator and electric device having the same
WO2013031472A1 (en) * 2011-08-31 2013-03-07 シャープ株式会社 Air-conditioning device
WO2013031357A1 (en) * 2011-08-30 2013-03-07 シャープ株式会社 Ion feeder, and air conditioner and hairdressing appliance both equipped therewith
WO2013047168A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Electrostatic atomizing device
CN104748144A (en) * 2015-03-11 2015-07-01 江苏大学 Gas-liquid coaxial ejection liquid fuel electrostatic atomization nozzle
CN111542398A (en) * 2017-12-29 2020-08-14 萨诺科技360有限责任公司 Electrostatic spraying machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902721B2 (en) * 2018-08-29 2021-07-14 パナソニックIpマネジメント株式会社 Voltage application device and discharge device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587018A (en) * 1991-03-01 1993-04-06 Robert Bosch Gmbh Electrostatic type spraying device for liquid
JPH0760166A (en) * 1993-08-24 1995-03-07 Sanden Corp Liquid spraying device
JP2001096201A (en) * 1999-09-30 2001-04-10 Trinity Ind Corp Electrostatic coating device
JP2003144985A (en) * 2001-11-16 2003-05-20 Nippon Parkerizing Co Ltd Powder coating apparatus and method
JP2004165587A (en) * 2002-02-21 2004-06-10 National Institute Of Advanced Industrial & Technology Superfine fluid jet device
JP2005164139A (en) * 2003-12-03 2005-06-23 Matsushita Electric Ind Co Ltd Humidifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587018A (en) * 1991-03-01 1993-04-06 Robert Bosch Gmbh Electrostatic type spraying device for liquid
JPH0760166A (en) * 1993-08-24 1995-03-07 Sanden Corp Liquid spraying device
JP2001096201A (en) * 1999-09-30 2001-04-10 Trinity Ind Corp Electrostatic coating device
JP2003144985A (en) * 2001-11-16 2003-05-20 Nippon Parkerizing Co Ltd Powder coating apparatus and method
JP2004165587A (en) * 2002-02-21 2004-06-10 National Institute Of Advanced Industrial & Technology Superfine fluid jet device
JP2005164139A (en) * 2003-12-03 2005-06-23 Matsushita Electric Ind Co Ltd Humidifier

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226127A1 (en) * 2007-12-25 2010-09-08 Panasonic Electric Works Co., Ltd Apparatus for generating oxidation and reduction fine particle
EP2226127A4 (en) * 2007-12-25 2013-11-06 Panasonic Corp Apparatus for generating oxidation and reduction fine particle
WO2011136044A1 (en) * 2010-04-30 2011-11-03 パナソニック電工株式会社 Electrostatic atomizing device
JP2011229818A (en) * 2010-04-30 2011-11-17 Panasonic Electric Works Co Ltd Electrostatic atomizing device
CN102844052A (en) * 2010-04-30 2012-12-26 松下电器产业株式会社 Electrostatic atomizing device
EP2564879A1 (en) * 2010-04-30 2013-03-06 Panasonic Corporation Electrostatic atomizing device
EP2564879A4 (en) * 2010-04-30 2013-03-06 Panasonic Corp Electrostatic atomizing device
US8471216B2 (en) 2010-04-30 2013-06-25 Panasonic Corporation Electrostatic atomizing device
JP2012075483A (en) * 2010-09-30 2012-04-19 Panasonic Corp Ion generator and electric device having the same
JP2013048700A (en) * 2011-08-30 2013-03-14 Sharp Corp Ion feeder, and air conditioner and hairdressing appliance both equipped therewith
WO2013031357A1 (en) * 2011-08-30 2013-03-07 シャープ株式会社 Ion feeder, and air conditioner and hairdressing appliance both equipped therewith
JP2013050288A (en) * 2011-08-31 2013-03-14 Sharp Corp Air-conditioning device
WO2013031472A1 (en) * 2011-08-31 2013-03-07 シャープ株式会社 Air-conditioning device
WO2013047168A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Electrostatic atomizing device
JP2013075265A (en) * 2011-09-30 2013-04-25 Panasonic Corp Electrostatic atomizing device
CN103781555A (en) * 2011-09-30 2014-05-07 松下电器产业株式会社 Electrostatic atomizing device
EP2762236A1 (en) * 2011-09-30 2014-08-06 Panasonic Corporation Electrostatic atomizing device
EP2762236A4 (en) * 2011-09-30 2015-03-25 Panasonic Corp Electrostatic atomizing device
CN104748144A (en) * 2015-03-11 2015-07-01 江苏大学 Gas-liquid coaxial ejection liquid fuel electrostatic atomization nozzle
CN111542398A (en) * 2017-12-29 2020-08-14 萨诺科技360有限责任公司 Electrostatic spraying machine

Also Published As

Publication number Publication date
TWI324088B (en) 2010-05-01
TW200800405A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
EP1964614B1 (en) Electrostatic atomizer and food preserving cabinet with electrostatic atomizer
WO2007111121A1 (en) Electrostatic atomization device
TWI342800B (en) Electrostatically atomizing device
US8282027B2 (en) Electrostatically atomizing device
US9211356B2 (en) Ink jet delivery system comprising an improved fluid mixture
JP4089184B2 (en) Ion supply device
JP4645503B2 (en) Electrostatic atomizer
US8471216B2 (en) Electrostatic atomizing device
WO2009107513A1 (en) Electrostatic atomizer
JP2006204968A (en) Atomizer
TWI693102B (en) Device for negatively discharging micronized liquid
JP4645502B2 (en) Electrostatic atomizer
JP2010062159A (en) Ion generating device
JP4821826B2 (en) Electrostatic atomizer
JP2008238019A (en) Dehumidifier
JP2011073003A (en) Electrostatic atomizing device
JP2007021369A (en) Electrostatic atomizer
KR101339813B1 (en) Moisturizing apparatus for skin
JP2008055264A (en) Useful substance-spraying system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738380

Country of ref document: EP

Kind code of ref document: A1