WO2013031472A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2013031472A1
WO2013031472A1 PCT/JP2012/069699 JP2012069699W WO2013031472A1 WO 2013031472 A1 WO2013031472 A1 WO 2013031472A1 JP 2012069699 W JP2012069699 W JP 2012069699W WO 2013031472 A1 WO2013031472 A1 WO 2013031472A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
particles
charged
charged particles
positive
Prior art date
Application number
PCT/JP2012/069699
Other languages
French (fr)
Japanese (ja)
Inventor
茂幸 原田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013031472A1 publication Critical patent/WO2013031472A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning

Definitions

  • the present invention relates to an air conditioner that performs air conditioning by discharging charged particles into the air.
  • an air conditioner that purifies air by generating and releasing charged particles in the air has been used.
  • a method of generating charged particles water is condensed on the tip of the discharge electrode, and a high voltage is applied to the tip of the discharge electrode, thereby causing an electrostatic atomization phenomenon in which charged water particles are ejected from the discharge electrode by electrostatic force.
  • As another method of generating charged particles there is a method of generating air ions such as H + (H 2 O) m or O 2 ⁇ (H 2 O) n by discharging in air.
  • m and n are arbitrary natural numbers.
  • Patent Document 1 discloses an air conditioner that discharges negative charged water particles generated by an electrostatic atomization phenomenon into the air.
  • both positive and negative charged particles are generated in a narrow space inside, so that the generated positive and negative charged particles are combined with each other. Almost disappear. For this reason, the amount of charged particles actually released from the air conditioner is smaller than the amount of charged particles generated inside, and is used to clean the air within the generated charged particles. There is a problem that only a part of the charged particles can be formed.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to improve the ability to clean air by alternately generating positive and negative charged particles. To provide an apparatus.
  • An air conditioner includes means for generating charged particles in the air, and positively and negatively charged particles are separately generated in an air conditioner that discharges air containing charged particles generated by the means. And a control unit that alternately generates positive and negative charged particles in the charged particle generating unit at predetermined intervals.
  • an air conditioner that discharges air containing charged particles generated inside generates positive and negative charged particles alternately while sandwiching a rest period in which charged particles are not generated.
  • the positive and negative charged particles are not generated at the same time, and it is difficult for the positive and negative charged particles generated inside the air conditioner to combine and disappear.
  • the charged particle generation unit is configured to generate positive and negative charged particles having different moving speeds in the air, and the control means is generated in the charged particle generation unit.
  • the rest period when the charged particles to be changed are changed from the charged particles having the lower moving speed to the charged particles having the higher speed, and the rest period when the charged particles having the higher moving speed are changed to the charged particles having the lower moving speed. It is characterized by having a structure that is longer than that.
  • the air conditioner generates positive and negative charged particles having different moving speeds in the air and moves the generated charged particles in the air from charged particles having a low moving speed in the air.
  • the rest period when changing to charged particles having a high speed is made longer than the rest period when changing charged particles to be generated. It takes a long time for the charged particles having a high moving speed to catch up with the charged particles having a low moving speed and combine with each other, and the charged particles are hardly lost.
  • the air conditioner according to the present invention further includes a blower that causes the air to be discharged to flow, and the control means adjusts the flow rate of the air that the blower flows, and the charged particles that are generated as the flow rate is lower.
  • the air conditioner can change the flow rate of air, and changes the generated charged particles from charged particles having a low moving speed in air to charged particles having a high moving speed in air.
  • the length of the rest period is adjusted so as to increase as the air flow rate decreases. It takes a long time for the charged particles having a high moving speed to catch up with the charged particles having a low moving speed and to bond with each other.
  • the air conditioning apparatus is characterized in that the charged particle generation unit includes means for generating positive air ions by corona discharge and means for generating negative charged water particles by an electrostatic atomization phenomenon.
  • the air conditioner generates negative charged water particles and positive air ions to clean the air.
  • the rate at which positive and negative charged particles generated inside the air conditioner combine and disappear is reduced, and the amount of charged particles released from the air conditioner mixed with air is reduced. Reduction is suppressed. Therefore, the present invention has excellent effects such that more charged particles are released from the air conditioner than before, and the ability of the air conditioner to clean the air is improved.
  • FIG. 2 is a block diagram showing an electrical configuration of the air-conditioning apparatus according to Embodiment 1.
  • FIG. It is a flowchart which shows the procedure of the process which an air conditioning apparatus performs.
  • FIG. 6 is a block diagram illustrating an electrical configuration of an air-conditioning apparatus according to Embodiment 2.
  • FIG. 1 is a schematic perspective view showing an example of the appearance of an air conditioner.
  • the air conditioner is generally formed in a substantially rectangular parallelepiped shape, and includes a housing 11 whose upper surface is inclined. On the upper surface of the housing 11, a discharge port 12 for discharging air is formed. In addition, a suction port 13 for sucking air is formed on the back surface of the air conditioner. The air conditioner sucks air from the suction port 13, generates charged particles therein, and discharges air containing the generated charged particles from the discharge port 12.
  • negative charged water particles are used as the negative charged particles
  • positive air ions are used as the positive charged particles.
  • FIG. 2 is a schematic cross-sectional view of the air conditioner.
  • FIG. 2 the figure which looked at the cross section of the air conditioning apparatus from the side surface side is shown, the right side of FIG. 2 is the back side of an air conditioning apparatus, and the left side is a front side.
  • a cavity 17 connected to the suction port 13 is formed in the housing 11.
  • the cavity 17 is formed from the suction port 13 toward the front side, and a dust collection filter 16 is disposed in the cavity 17.
  • An air passage 14 is formed in the housing 11 in the vertical direction.
  • the upper end of the flow path 14 is connected to the discharge port 12, and the cavity 17 is connected to the lower end portion of the flow path 14.
  • a blower 15 is disposed at the lower end of the flow path 14.
  • the blower 15 is a sirocco fan, for example.
  • the blower 15 is configured to suck air from the cavity 17 and release the air to the flow path 14.
  • air outside the air conditioner is sucked into the air conditioner from the suction port 13, and the sucked air is discharged from the discharge port 12 to the outside of the air conditioner through the passage 14.
  • an electrostatic atomizing unit 2 that generates negative charged water particles by an electrostatic atomization phenomenon is disposed.
  • FIG. 3 is a schematic diagram showing components of the air conditioner arranged in the flow path 14.
  • FIG. 3 the figure which looked at the inside of the flow path 14 from the front side is shown.
  • the upper end of the flow path 14 is connected to the discharge port 12, and the blower 15 is disposed at the lower end.
  • an electrostatic atomizer 2 and an air ion generator 3 for generating positive air ions are arranged in the middle of the flow path 14 from the blower 15 to the discharge port 12.
  • the electrostatic atomizer 2 and the air ion generator 3 are disposed at substantially the same position.
  • the negative charged water particles generated by the electrostatic atomizer 2 and the positive air ions generated by the air ion generator 3 are mixed with the air flowing through the flow path 14, and the negative charged water particles and Air containing positive air ions is discharged from the discharge port 12.
  • the negative charged water particles and positive air ions contained in the released air clean the air outside the housing 11 by, for example, inactivating fungi in the air.
  • FIG. 4 is a cross-sectional view showing the internal configuration of the electrostatic atomizer 2.
  • the electrostatic atomizer 2 includes a protruding discharge electrode 21, and the discharge electrode 21 is in contact with the cooling side of the Peltier element 23.
  • a heat radiating fin 24 is in contact with the heat radiating side of the Peltier element 23.
  • On the tip side of the discharge electrode 21, an annular electrode 22 is disposed oppositely.
  • the center of the annular electrode 22 is on the extension of the central axis of the discharge electrode 21.
  • the discharge electrode 21 and the annular electrode 22 are insulated.
  • the discharge electrode 21 is cooled by the Peltier element 23, and water vapor condenses and water is condensed on the tip of the discharge electrode 21.
  • a voltage with the annular electrode 22 as a ground electrode and the discharge electrode 21 as a negative electrode is applied between the discharge electrode 21 and the annular electrode 22 with water condensing on the tip of the discharge electrode 21.
  • By applying voltage fine particles of water containing negative ions are ejected from the condensed water. This phenomenon is an electrostatic atomization phenomenon, and the fine particles of the ejected water are negatively charged charged water particles.
  • negative charged water particles are generated at the tip of the discharge electrode 21.
  • the generated negative charged water particles are released into the air flowing through the flow path 14.
  • air containing negative charged water particles flows downstream of the electrostatic atomizer 2.
  • FIG. 5 is a cross-sectional view showing the internal configuration of the air ion generator 3.
  • the air ion generator 3 includes a needle-like discharge electrode 31 and an annular induction electrode 32 surrounding the discharge electrode 31.
  • the induction electrode 32 is separated from the discharge electrode 31 by a certain distance, and the central axis of the discharge electrode 31 is the center of the induction electrode 32.
  • the discharge electrode 31 and the induction electrode 32 are insulated.
  • a voltage having the discharge electrode 31 as a positive electrode and the induction electrode 32 as a negative electrode is applied, and a corona discharge is generated between the discharge electrode 31 and the induction electrode 32.
  • Corona discharge generates positive air ions around the tip of the discharge electrode 31.
  • the generated positive air ions are released into the air flowing through the flow path 14. Downstream of the air ion generation unit 3, air containing positive air ions flows through the flow path 14.
  • FIG. 6 is a block diagram showing an electrical configuration of the air-conditioning apparatus according to Embodiment 1.
  • a voltage application circuit 42 that applies a voltage between the discharge electrode 21 and the annular electrode 22 is connected to the electrostatic atomizer 2.
  • the voltage application circuit 42 supplies power to the Peltier element 23.
  • a voltage application circuit 43 that applies a voltage between the discharge electrode 31 and the induction electrode 32 is connected to the air ion generator 3.
  • the electrostatic atomizer 2, the voltage application circuit 42, the air ion generator 3, and the voltage application circuit 43 correspond to the charged particle generator in the present invention.
  • the air conditioner includes a control unit 41 that controls the operation of the air conditioner, and the voltage application circuit 42 and the voltage application circuit 43 are connected to the control unit 41.
  • the control part 41 is comprised including the calculating part which performs the calculation for controlling an air conditioning apparatus, and the memory
  • the control unit 41 is connected to a time measuring unit 44 that measures time.
  • the air conditioner of the present invention performs a process of alternately generating negative charged water particles and positive air ions with a pause period during which no charged particles are generated.
  • FIG. 7 is a flowchart showing a procedure of processing executed by the air conditioner.
  • the air conditioner sucks air from the suction port 13 and discharges it from the discharge port 12.
  • the control unit 41 causes the electrostatic atomizer 2 and the voltage application circuit 42 to start generating negative charged water particles in a state where generation of positive air ions is stopped (S1). Thereafter, the voltage application circuit 42 supplies power to the Peltier element 23 and applies a voltage continuously or intermittently between the discharge electrode 21 and the annular electrode 22.
  • the electrostatic atomizer 2 generates negative charged water particles intermittently.
  • control unit 41 After the generation of the negative charged water particles is continued for a predetermined period, the control unit 41 causes the electrostatic atomizer 2 and the voltage application circuit 42 to stop generating the negative charged water particles (S2). In addition, the control part 41 may perform the process which stops generation
  • the control unit 41 determines whether or not a predetermined pause period T 1 has elapsed since the generation of the negative charged water particles was stopped based on the time measured by the time measuring unit 44 ( S3).
  • the control unit 41 repeats the determination of the passage of time as needed.
  • the control unit 41 causes the air ion generation unit 3 and the voltage application circuit 43 to generate positive air ions. Is started (S4).
  • the voltage application circuit 43 applies a voltage between the discharge electrode 31 and the induction electrode 32, and the air ion generator 3 generates air ions. After the generation of positive air ions is continued for a predetermined period, the control unit 41 causes the air ion generation unit 3 and the voltage application circuit 43 to stop generating positive air ions (S5). In addition, the control part 41 may perform the process which stops generation
  • control unit 41 determines whether or not a predetermined pause period T 2 has elapsed since the generation of positive air ions was stopped based on the time measured by the time measuring unit 44 (S6). ). If still idle period T 2 generation from the stop of the positive air ions has not elapsed (S6: NO), the control unit 41 repeats from time to time the determination of the time course. If positive rest period T 2 after stopping the generation of air ions has passed (S6: YES), the control unit 41 determines whether to end the processing (S7). In step S ⁇ b> 7, for example, the control unit 41 determines to end the process when a user inputs an instruction to end the process by operating an operation unit (not shown). Further, for example, the control unit 41 determines to end the process when the end time designated in advance is reached. In addition, you may perform the process of step 7 at another timing.
  • step S7 If it is determined in step S7 that the process has not yet ended (S7: NO), the control unit 41 returns the process to step S1 to start generation of negative charged water particles.
  • the control part 41 is air, such as the air blower 15, the electrostatic atomization part 2, the voltage application circuit 42, the air ion generation part 3, and the voltage application circuit 43. Each part of a harmony device is stopped and processing is ended.
  • FIG. 8 is a conceptual diagram showing, on the time axis, a period in which the air conditioner generates negative charged water particles, a period in which positive air ions are generated, and a pause period.
  • the air conditioner pauses the generation of charged particles during the rest period T 1 and then generates positive air ions, between T 2 are suspended the generation of charged particles, to generate a negative charge water particles again, repeating this.
  • the lengths of the suspension period T 1 and the suspension period T 2 are determined in advance and stored in the control unit 41.
  • the length of the suspension period T 1 is set longer than the suspension period T 2 . Since air ions are smaller in size than charged water particles, the moving speed in air is higher for air ions than for charged water particles.
  • the length of the rest period T 1 is set to a length that prevents positive air ions from catching up with the negatively charged negative water particles generated before air is discharged from the discharge port 12.
  • the length of the pause period T 1 is 20 seconds to 100 seconds
  • the length of the pause period T 2 is 0 seconds to 1 second.
  • the length of the rest period T 1 is one of positive air ions.
  • the length may be such that the portion may catch up with some of the negatively charged water particles.
  • the length of the pause period T 1 may be shorter, for example, 0.1 to 10 seconds.
  • the air conditioner that discharges air containing charged particles generated inside has negative charged water particles and positive air while interposing a rest period in which charged particles are not generated. Ions are generated alternately. By alternately generating positive and negative charged particles without simultaneously generating them, it becomes difficult for the positive and negative charged particles generated inside the air conditioner to combine and disappear. Further, by providing a pause period in which charged particles are not generated between the period in which one charged particle is generated and the period in which the other charged particle is generated, the positive and negative charged particles may be combined and disappear. It becomes harder to happen.
  • the air conditioner generates a pause period T 1 when the charged particles to be generated are changed from negative charged water particles having a low moving speed in the air to positive air ions having a high moving speed in the air.
  • the charged particles are made longer than the rest period T 2 when changing the charged particles. Since it takes a certain amount of time for the positive air ions to catch up with the negative charged water particles generated earlier, the ratio of the negative charged water particles and the positive air ions binding and disappearing decreases and is mixed with the air. Thus, a decrease in the amount of charged particles emitted from the air conditioner is suppressed. Accordingly, more charged particles are released from the air conditioner than before, and the ability of the air conditioner to clean the air is improved.
  • FIG. 9 is a block diagram showing an electrical configuration of the air-conditioning apparatus according to Embodiment 2.
  • a blower 15 is connected to the control unit 41.
  • the control unit 41 performs a process of adjusting the flow rate of the air discharged from the discharge port 12 by controlling the rotational speed of the blower 15.
  • the control unit 41 is connected to an operation unit 45 that receives various instructions according to user operations.
  • the operation unit 45 is configured to receive an instruction to change the flow rate of the air discharged from the discharge port 12.
  • Other configurations of the air conditioner are the same as those of the first embodiment, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the control unit 41 performs processing for adjusting the air flow rate by controlling the rotational speed of the blower 15 in accordance with the instruction to change the air flow rate received by the operation unit 45. Further, the control unit 41 sets the length of the pause period T 1 when changing the generated charged particles from negative charged water particles having a low moving speed in the air to positive air ions having a high moving speed in the air. Is adjusted according to the flow rate. Specifically, the control unit 41 performs control to make the pause period T 1 longer as the air flow rate is lower.
  • the control unit 41 stores in advance data recording information for controlling the rotational speed of the blower 15 and the value of the pause period T 1 in association with information indicating each of a plurality of types of flow rates that can be changed.
  • the value of the rest period T 1 is determined so as to increase as the air flow rate decreases.
  • the control unit 41 according to the instructions received by the operation unit 45 controls the rotational speed of the blower 15 to adjust the flow rate of the air, processing is performed to set the value of the quiescent period T 1. Further, the control unit 41 executes the same processing as in the first embodiment shown in the flowchart of FIG.
  • the air conditioner alternately generates negative charged water particles and positive air ions while sandwiching a rest period in which charged particles are not generated, thereby negatively charged water particles. And release air containing positive air ions. Further, the air conditioner makes the pause period T 1 longer as the air flow rate is lower. When the flow velocity of the air flowing through the flow path 14 is low, the time until the generated negative charged water particles and positive air ions are released from the discharge port 12 becomes long, so that the positive air ions are negatively charged. It catches up with water particles and becomes easy to bond. Therefore, by making the rest period T 1 longer, the time until the positive air ions catch up with the negative charged water particles becomes longer, and the negative charged water particles and the positive air ions are combined and disappear. The rate decreases. Therefore, also in the present embodiment, a decrease in the amount of charged particles mixed with air and released from the air conditioner is suppressed, and more charged particles are discharged from the air conditioner than before, and the air conditioner Improves the ability to clean air.
  • the air conditioner may be configured to adjust the flow velocity of the air by adjusting the width of the flow path 14 instead of controlling the rotational speed of the blower 15.
  • the flow velocity of the air flowing through the flow path 14 decreases as the width of the flow path 14 increases, and increases as the width of the flow path 14 decreases.
  • the air conditioner has a configuration in which the width can be changed by moving the wall of the flow path 14, and the width of the flow path 14 is adjusted by the control of the control unit 41. Adjust the flow rate. Also in this form, it is possible to improve the capability of purifying the air of the air conditioner by performing control to make the pause period T 1 longer as the air flow rate is lower.
  • the air conditioner may be configured to use positive charged water particles as positive charged particles and negative air ions as negative charged particles.
  • the air conditioner generates a rest period when the charged particles to be generated are changed from positive charged water particles having a low moving speed in the air to negative air ions having a high moving speed in the air.
  • the charged particle to be used is made longer than the resting period when the particle is changed. Even in these forms, the reduction in the amount of charged particles mixed with air and discharged from the air conditioner is suppressed, and more charged particles are discharged from the air conditioner than before, and the air of the air conditioner is cleaned. Improves the ability to
  • the air conditioning apparatus of this invention is not limited to an air cleaner, Other forms may be used.
  • the air conditioner may be an air conditioner or a humidifier.
  • the air conditioner may be in a form incorporated in another electric device such as a refrigerator.

Abstract

Provided is an air-conditioning device in which positively and negatively charged particles are alternatingly generated, thereby improving air-cleaning performance. The air-conditioning device is provided with an electrostatic atomization unit (2) for generating negatively charged water particles, and an air-ion-generating unit (3) for generating positive air ions. The air-conditioning device alternatingly generates negatively charged water particles and positive air ions, and emits air containing negatively charged water particles and positive air ions on either side of an idle period. The idle period when the generated electrically charged particles are changed from negatively charged water particles that move slowly in air to positive air ions that move quickly in air is longer than the idle period when the generated electrically charged particles are changed in the opposite manner. The ratio of the positive air ions that reach and bond with the negatively charged water particles decreases, the reduction in the amount of electrically charged particles is minimized, and the air-cleaning performance of the air-conditioning device is improved.

Description

空気調和装置Air conditioner
 本発明は、空気中に帯電粒子を放出して空気調和を行う空気調和装置に関する。 The present invention relates to an air conditioner that performs air conditioning by discharging charged particles into the air.
 従来、空気中で帯電粒子を発生させて放出することによって空気を清浄化する空気調和装置が用いられている。帯電粒子を発生させる方法としては、放電電極の先端に水を結露させ、放電電極の先端に高電圧を印加することにより、静電気力によって帯電水粒子が放電電極から噴出する静電霧化現象を利用した方法がある。他に帯電粒子を発生させる方法として、空気中で放電を行ってH+ (H2 O)m 又はO2 -(H2 O)n 等の空気イオンを発生させる方法がある。ここで、m及びnは任意の自然数である。静電霧化現象により発生させた帯電水粒子と空中での放電により発生させた空気イオンとは、どちらも水分子を含むものの、帯電水粒子の方のサイズが大きい。このため、空気中の移動速度は空気イオンの方が高く帯電水粒子の方が低い。特許文献1には、静電霧化現象により発生させた負の帯電水粒子を空気中に放出する空気調和装置が開示されている。 Conventionally, an air conditioner that purifies air by generating and releasing charged particles in the air has been used. As a method of generating charged particles, water is condensed on the tip of the discharge electrode, and a high voltage is applied to the tip of the discharge electrode, thereby causing an electrostatic atomization phenomenon in which charged water particles are ejected from the discharge electrode by electrostatic force. There is a method used. As another method of generating charged particles, there is a method of generating air ions such as H + (H 2 O) m or O 2 (H 2 O) n by discharging in air. Here, m and n are arbitrary natural numbers. Both charged water particles generated by the electrostatic atomization phenomenon and air ions generated by discharge in the air contain water molecules, but the size of the charged water particles is larger. For this reason, the moving speed in the air is higher for air ions and lower for charged water particles. Patent Document 1 discloses an air conditioner that discharges negative charged water particles generated by an electrostatic atomization phenomenon into the air.
特開2011-33293号公報JP 2011-33293 A
 正及び負の帯電粒子の両方を利用する空気調和装置では、内部の狭い空間内で正及び負の帯電粒子の両方を発生させているので、発生させた正及び負の帯電粒子同士が結合して消滅し易い。このため、実際に空気調和装置から放出される帯電粒子の量は、内部で発生させた帯電粒子の量よりも減少しており、発生させた帯電粒子の内で空気を清浄化するために利用できる帯電粒子はごく一部にとどまってしまうという問題がある。 In an air conditioner using both positive and negative charged particles, both positive and negative charged particles are generated in a narrow space inside, so that the generated positive and negative charged particles are combined with each other. Easily disappear. For this reason, the amount of charged particles actually released from the air conditioner is smaller than the amount of charged particles generated inside, and is used to clean the air within the generated charged particles. There is a problem that only a part of the charged particles can be formed.
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、正及び負の帯電粒子を交互に発生させることにより、空気を清浄化する能力を向上させた空気調和装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to improve the ability to clean air by alternately generating positive and negative charged particles. To provide an apparatus.
 本発明に係る空気調和装置は、帯電粒子を空気中に発生させる手段を備え、該手段が発生させた帯電粒子を含む空気を放出する空気調和装置において、正及び負の帯電粒子を個別に発生させる帯電粒子発生部と、予め定められた休止期間を隔てて、前記帯電粒子発生部に正及び負の帯電粒子を交互に発生させる制御手段とを備えることを特徴とする。 An air conditioner according to the present invention includes means for generating charged particles in the air, and positively and negatively charged particles are separately generated in an air conditioner that discharges air containing charged particles generated by the means. And a control unit that alternately generates positive and negative charged particles in the charged particle generating unit at predetermined intervals.
 本発明においては、内部で発生した帯電粒子を含む空気を放出する空気調和装置は、帯電粒子を発生しない休止期間を挟みながら、正及び負の帯電粒子を交互に発生させる。正及び負の帯電粒子が同時に発生せず、空気調和装置の内部で発生した正及び負の帯電粒子同士が結合して消滅することが起こり難くなる。 In the present invention, an air conditioner that discharges air containing charged particles generated inside generates positive and negative charged particles alternately while sandwiching a rest period in which charged particles are not generated. The positive and negative charged particles are not generated at the same time, and it is difficult for the positive and negative charged particles generated inside the air conditioner to combine and disappear.
 本発明に係る空気調和装置は、前記帯電粒子発生部は、空気中での移動速度が互いに異なる正及び負の帯電粒子を発生させる構成としてあり、前記制御手段は、前記帯電粒子発生部に発生させる帯電粒子を前記移動速度が低い方の帯電粒子から高い方の帯電粒子へ変更する際の休止期間を、前記移動速度が高い方の帯電粒子から低い方の帯電粒子へ変更する際の休止期間よりも長くする構成としてあることを特徴とする。 In the air conditioner according to the present invention, the charged particle generation unit is configured to generate positive and negative charged particles having different moving speeds in the air, and the control means is generated in the charged particle generation unit. The rest period when the charged particles to be changed are changed from the charged particles having the lower moving speed to the charged particles having the higher speed, and the rest period when the charged particles having the higher moving speed are changed to the charged particles having the lower moving speed. It is characterized by having a structure that is longer than that.
 本発明においては、空気調和装置は、空気中での移動速度が互いに異なる正及び負の帯電粒子を発生させ、発生させる帯電粒子を空気中での移動速度が低い帯電粒子から空気中での移動速度が高い帯電粒子へ変更する際の休止期間を、発生させる帯電粒子を逆に変更する際の休止期間よりも長くする。移動速度の高い帯電粒子が移動速度の低い帯電粒子へ追いついて互いに結合するまでの時間が長くなり、帯電粒子の消滅が起こり難くなる。 In the present invention, the air conditioner generates positive and negative charged particles having different moving speeds in the air and moves the generated charged particles in the air from charged particles having a low moving speed in the air. The rest period when changing to charged particles having a high speed is made longer than the rest period when changing charged particles to be generated. It takes a long time for the charged particles having a high moving speed to catch up with the charged particles having a low moving speed and combine with each other, and the charged particles are hardly lost.
 本発明に係る空気調和装置は、放出すべき空気を流動させる送風機を更に備え、前記制御手段は、前記送風機が流動させる空気の流速を調整する手段と、前記流速が低いほど、発生させる帯電粒子を前記移動速度が低い方の帯電粒子から高い方の帯電粒子へ変更する際の休止期間をより長くするように、前記流速に応じて前記休止期間の長さを調整する手段とを有することを特徴とする。 The air conditioner according to the present invention further includes a blower that causes the air to be discharged to flow, and the control means adjusts the flow rate of the air that the blower flows, and the charged particles that are generated as the flow rate is lower. Means for adjusting the length of the pause period in accordance with the flow rate so that the pause period when changing the charged particle having a lower moving speed from the charged particle having the lower moving speed to a higher charged particle is made longer. Features.
 本発明においては、空気調和装置は、空気の流速を変更可能であり、発生させる帯電粒子を空気中での移動速度が低い帯電粒子から空気中での移動速度が高い帯電粒子へ変更する際の休止期間の長さを、空気の流速が低いほど長くなるように調整する。移動速度の高い帯電粒子が移動速度の低い帯電粒子へ追いついて互いに結合するまでの時間が長くなる。 In the present invention, the air conditioner can change the flow rate of air, and changes the generated charged particles from charged particles having a low moving speed in air to charged particles having a high moving speed in air. The length of the rest period is adjusted so as to increase as the air flow rate decreases. It takes a long time for the charged particles having a high moving speed to catch up with the charged particles having a low moving speed and to bond with each other.
 本発明に係る空気調和装置は、前記帯電粒子発生部は、コロナ放電により正の空気イオンを発生させる手段と、静電霧化現象により負の帯電水粒子を発生させる手段とを有することを特徴とする。 The air conditioning apparatus according to the present invention is characterized in that the charged particle generation unit includes means for generating positive air ions by corona discharge and means for generating negative charged water particles by an electrostatic atomization phenomenon. And
 本発明においては、空気調和装置は、負の帯電水粒子と正の空気イオンとを発生させて空気の清浄化を行う。 In the present invention, the air conditioner generates negative charged water particles and positive air ions to clean the air.
 本発明にあっては、空気調和装置の内部で発生した正及び負の帯電粒子同士が結合して消滅する割合が減少し、空気に混合して空気調和装置から放出される帯電粒子の量の減少が抑制される。従って、従来よりも多くの帯電粒子が空気調和装置から放出され、空気調和装置の空気を清浄化する能力が向上する等、本発明は優れた効果を奏する。 In the present invention, the rate at which positive and negative charged particles generated inside the air conditioner combine and disappear is reduced, and the amount of charged particles released from the air conditioner mixed with air is reduced. Reduction is suppressed. Therefore, the present invention has excellent effects such that more charged particles are released from the air conditioner than before, and the ability of the air conditioner to clean the air is improved.
空気調和装置の外観の例を示す模式的斜視図である。It is a typical perspective view which shows the example of the external appearance of an air conditioning apparatus. 空気調和装置の模式的断面図である。It is a typical sectional view of an air harmony device. 通流路内に配置された空気調和装置の構成部分を示す模式図である。It is a schematic diagram which shows the structural part of the air conditioning apparatus arrange | positioned in a flow path. 静電霧化部の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of an electrostatic atomization part. 空気イオン発生部の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of an air ion generation part. 実施の形態1に係る空気調和装置の電気的構成を示すブロック図である。2 is a block diagram showing an electrical configuration of the air-conditioning apparatus according to Embodiment 1. FIG. 空気調和装置が実行する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which an air conditioning apparatus performs. 空気調和装置が負の帯電水粒子を発生させる期間、正の空気イオンを発生させる期間及び休止期間を時間軸上に示した概念図である。It is the conceptual diagram which showed on the time-axis the period which an air conditioning apparatus produces | generates a negative charged water particle, the period which produces | generates a positive air ion, and a rest period. 実施の形態2に係る空気調和装置の電気的構成を示すブロック図である。6 is a block diagram illustrating an electrical configuration of an air-conditioning apparatus according to Embodiment 2. FIG.
 以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
 図1は、空気調和装置の外観の例を示す模式的斜視図である。図1には、空気調和装置の背面、側面及び上面を示している。空気調和装置は、全体的にほぼ直方体状に形成されてあり、上面を傾斜させてあるハウジング11を備えている。ハウジング11の上面には、空気を放出する放出口12が形成されている。また空気調和装置の背面には、空気を吸入する吸入口13が形成されている。空気調和装置は、吸入口13から空気を吸入し、内部で帯電粒子を発生させ、発生させた帯電粒子を含んだ空気を放出口12から放出する。本実施の形態では、負の帯電粒子として負の帯電水粒子を用い、正の帯電粒子として正の空気イオンを用いる。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
FIG. 1 is a schematic perspective view showing an example of the appearance of an air conditioner. In FIG. 1, the back surface, side surface, and upper surface of an air conditioning apparatus are shown. The air conditioner is generally formed in a substantially rectangular parallelepiped shape, and includes a housing 11 whose upper surface is inclined. On the upper surface of the housing 11, a discharge port 12 for discharging air is formed. In addition, a suction port 13 for sucking air is formed on the back surface of the air conditioner. The air conditioner sucks air from the suction port 13, generates charged particles therein, and discharges air containing the generated charged particles from the discharge port 12. In the present embodiment, negative charged water particles are used as the negative charged particles, and positive air ions are used as the positive charged particles.
 図2は、空気調和装置の模式的断面図である。図2には、空気調和装置の断面を側面側から見た図を示しており、図2の右側が空気調和装置の背面側、左側が正面側である。ハウジング11内には、吸入口13につながった空洞17が形成されている。空洞17は、吸入口13から正面側に向かって形成されており、空洞17内には集塵フィルタ16が配置されている。また、ハウジング11内には、空気の通流路14が上下方向に形成されている。通流路14の上端は放出口12につながっており、通流路14の下端部には空洞17がつながっている。また、通流路14の下端部には、送風機15が配置されている。送風機15は例えばシロッコファンである。送風機15は、空洞17から空気を吸入し、通流路14へ空気を放出する構成となっている。送風機15が動作することにより、空気調和装置外の空気が吸入口13から空気調和装置内へ吸入され、吸入された空気は通流路14を通って放出口12から空気調和装置外へ放出される。また、送風機15から放出口12までの通流路14の途中には、静電霧化現象により負の帯電水粒子を発生させる静電霧化部2が配置されている。 FIG. 2 is a schematic cross-sectional view of the air conditioner. In FIG. 2, the figure which looked at the cross section of the air conditioning apparatus from the side surface side is shown, the right side of FIG. 2 is the back side of an air conditioning apparatus, and the left side is a front side. A cavity 17 connected to the suction port 13 is formed in the housing 11. The cavity 17 is formed from the suction port 13 toward the front side, and a dust collection filter 16 is disposed in the cavity 17. An air passage 14 is formed in the housing 11 in the vertical direction. The upper end of the flow path 14 is connected to the discharge port 12, and the cavity 17 is connected to the lower end portion of the flow path 14. A blower 15 is disposed at the lower end of the flow path 14. The blower 15 is a sirocco fan, for example. The blower 15 is configured to suck air from the cavity 17 and release the air to the flow path 14. By operating the blower 15, air outside the air conditioner is sucked into the air conditioner from the suction port 13, and the sucked air is discharged from the discharge port 12 to the outside of the air conditioner through the passage 14. The Further, in the middle of the flow path 14 from the blower 15 to the discharge port 12, an electrostatic atomizing unit 2 that generates negative charged water particles by an electrostatic atomization phenomenon is disposed.
 図3は、通流路14内に配置された空気調和装置の構成部分を示す模式図である。図3には、通流路14内を正面側から見た図を示している。通流路14の上端は放出口12につながっており、下端部には送風機15が配置されている。送風機15から放出口12までの通流路14の途中には、静電霧化部2と、正の空気イオンを発生させる空気イオン発生部3とが配置されている。静電霧化部2及び空気イオン発生部3はほぼ同じ位置に配置されている。静電霧化部2が発生させた負の帯電水粒子と空気イオン発生部3が発生させた正の空気イオンは、通流路14を通流する空気に混合し、負の帯電水粒子及び正の空気イオンを含む空気は放出口12から放出される。放出された空気に含まれる負の帯電水粒子及び正の空気イオンは、空気中の菌類を不活性化する等して、ハウジング11外の空気を清浄化する。 FIG. 3 is a schematic diagram showing components of the air conditioner arranged in the flow path 14. In FIG. 3, the figure which looked at the inside of the flow path 14 from the front side is shown. The upper end of the flow path 14 is connected to the discharge port 12, and the blower 15 is disposed at the lower end. In the middle of the flow path 14 from the blower 15 to the discharge port 12, an electrostatic atomizer 2 and an air ion generator 3 for generating positive air ions are arranged. The electrostatic atomizer 2 and the air ion generator 3 are disposed at substantially the same position. The negative charged water particles generated by the electrostatic atomizer 2 and the positive air ions generated by the air ion generator 3 are mixed with the air flowing through the flow path 14, and the negative charged water particles and Air containing positive air ions is discharged from the discharge port 12. The negative charged water particles and positive air ions contained in the released air clean the air outside the housing 11 by, for example, inactivating fungi in the air.
 図4は、静電霧化部2の内部構成を示す断面図である。静電霧化部2は、突起状の放電電極21を備え、放電電極21はペルチェ素子23の冷却側に接触している。ペルチェ素子23の放熱側には、放熱フィン24が接触している。放電電極21の先端側には、円環電極22が対向配置されている。円環電極22の中心は、放電電極21の中心軸の延長上にある。放電電極21と円環電極22との間は絶縁されている。放電電極21はペルチェ素子23によって冷却され、水蒸気が凝結して放電電極21の先端に水が結露する。放電電極21の先端に水が結露した状態で、円環電極22を接地極として放電電極21を負極とした電圧が放電電極21と円環電極22との間に印加される。電圧の印加によって、結露した水の中から、負イオンを含有した水の微粒子が噴出する。この現象が静電霧化現象であり、噴出した水の微粒子は負に帯電した帯電水粒子である。このようにして、静電霧化部2では、放電電極21の先端に負の帯電水粒子が発生する。発生した負の帯電水粒子は、通流路14を流れる空気へ放出される。通流路14の内で静電霧化部2よりも下流では、負の帯電水粒子を含んだ空気が流れることになる。 FIG. 4 is a cross-sectional view showing the internal configuration of the electrostatic atomizer 2. The electrostatic atomizer 2 includes a protruding discharge electrode 21, and the discharge electrode 21 is in contact with the cooling side of the Peltier element 23. A heat radiating fin 24 is in contact with the heat radiating side of the Peltier element 23. On the tip side of the discharge electrode 21, an annular electrode 22 is disposed oppositely. The center of the annular electrode 22 is on the extension of the central axis of the discharge electrode 21. The discharge electrode 21 and the annular electrode 22 are insulated. The discharge electrode 21 is cooled by the Peltier element 23, and water vapor condenses and water is condensed on the tip of the discharge electrode 21. A voltage with the annular electrode 22 as a ground electrode and the discharge electrode 21 as a negative electrode is applied between the discharge electrode 21 and the annular electrode 22 with water condensing on the tip of the discharge electrode 21. By applying voltage, fine particles of water containing negative ions are ejected from the condensed water. This phenomenon is an electrostatic atomization phenomenon, and the fine particles of the ejected water are negatively charged charged water particles. In this way, in the electrostatic atomizer 2, negative charged water particles are generated at the tip of the discharge electrode 21. The generated negative charged water particles are released into the air flowing through the flow path 14. In the flow path 14, air containing negative charged water particles flows downstream of the electrostatic atomizer 2.
 図5は、空気イオン発生部3の内部構成を示す断面図である。空気イオン発生部3は、針状の放電電極31と、放電電極31の周囲を囲む円環状の誘導電極32とを備えている。誘導電極32は放電電極31から一定距離離れており、放電電極31の中心軸が誘導電極32の中心になる。放電電極31と誘導電極32との間は絶縁されている。放電電極31を正極とし誘導電極32を負極とした電圧が印加され、放電電極31と誘導電極32との間にコロナ放電が発生する。コロナ放電により、放電電極31の先端の周囲に正の空気イオンが発生する。発生した正の空気イオンは、通流路14を流れる空気へ放出される。空気イオン発生部3よりも下流では、正の空気イオンを含んだ空気が通流路14を流れることになる。 FIG. 5 is a cross-sectional view showing the internal configuration of the air ion generator 3. The air ion generator 3 includes a needle-like discharge electrode 31 and an annular induction electrode 32 surrounding the discharge electrode 31. The induction electrode 32 is separated from the discharge electrode 31 by a certain distance, and the central axis of the discharge electrode 31 is the center of the induction electrode 32. The discharge electrode 31 and the induction electrode 32 are insulated. A voltage having the discharge electrode 31 as a positive electrode and the induction electrode 32 as a negative electrode is applied, and a corona discharge is generated between the discharge electrode 31 and the induction electrode 32. Corona discharge generates positive air ions around the tip of the discharge electrode 31. The generated positive air ions are released into the air flowing through the flow path 14. Downstream of the air ion generation unit 3, air containing positive air ions flows through the flow path 14.
 図6は、実施の形態1に係る空気調和装置の電気的構成を示すブロック図である。静電霧化部2には、放電電極21と円環電極22との間に電圧を印加する電圧印加回路42が接続されている。また電圧印加回路42は、ペルチェ素子23へ電力を供給する。空気イオン発生部3には、放電電極31と誘導電極32との間に電圧を印加する電圧印加回路43が接続されている。静電霧化部2、電圧印加回路42、空気イオン発生部3及び電圧印加回路43は、本発明における帯電粒子発生部に対応する。空気調和装置は、空気調和装置の動作を制御する制御部41を備えており、電圧印加回路42及び電圧印加回路43は制御部41に接続されている。制御部41は、空気調和装置を制御するための演算を行う演算部及び演算に必要なデータを記憶する記憶部を含んで構成されている。また、制御部41には、時間を計測する計時部44が接続されている。 FIG. 6 is a block diagram showing an electrical configuration of the air-conditioning apparatus according to Embodiment 1. A voltage application circuit 42 that applies a voltage between the discharge electrode 21 and the annular electrode 22 is connected to the electrostatic atomizer 2. The voltage application circuit 42 supplies power to the Peltier element 23. A voltage application circuit 43 that applies a voltage between the discharge electrode 31 and the induction electrode 32 is connected to the air ion generator 3. The electrostatic atomizer 2, the voltage application circuit 42, the air ion generator 3, and the voltage application circuit 43 correspond to the charged particle generator in the present invention. The air conditioner includes a control unit 41 that controls the operation of the air conditioner, and the voltage application circuit 42 and the voltage application circuit 43 are connected to the control unit 41. The control part 41 is comprised including the calculating part which performs the calculation for controlling an air conditioning apparatus, and the memory | storage part which memorize | stores the data required for a calculation. The control unit 41 is connected to a time measuring unit 44 that measures time.
 次に、空気調和装置の動作を説明する。静電霧化部2及び空気イオン発生部3が同時に動作した場合は、発生した負の帯電水粒子と正の空気イオンとが結合して消滅し易く、放出される空気に含まれる帯電粒子の量が不十分となる。そこで、本発明の空気調和装置は、帯電粒子を発生しない休止期間を挟みながら、負の帯電水粒子と正の空気イオンとを交互に発生させる処理を行う。 Next, the operation of the air conditioner will be described. When the electrostatic atomizer 2 and the air ion generator 3 operate simultaneously, the generated negative charged water particles and the positive air ions are likely to be combined and disappear, and the charged particles contained in the released air The amount is insufficient. Therefore, the air conditioner of the present invention performs a process of alternately generating negative charged water particles and positive air ions with a pause period during which no charged particles are generated.
 図7は、空気調和装置が実行する処理の手順を示すフローチャートである。送風機15が空洞17から空気を吸入して通流路14へ放出することにより、空気調和装置は、吸入口13から空気を吸入して放出口12から放出している。制御部41は、正の空気イオンの発生を停止した状態で、静電霧化部2及び電圧印加回路42に、負の帯電水粒子の発生を開始させる(S1)。以後、電圧印加回路42は、ペルチェ素子23へ電力を供給し、放電電極21と円環電極22との間に電圧を連続的に又は断続的に印加する。静電霧化部2は、断続的に負の帯電水粒子を発生させる。負の帯電水粒子の発生を所定期間継続した後、制御部41は、静電霧化部2及び電圧印加回路42に、負の帯電水粒子の発生を停止させる(S2)。なお、制御部41は、負の帯電水粒子の発生回数又は発生量が所定値になった段階で負の帯電水粒子の発生を停止させる処理を行ってもよい。 FIG. 7 is a flowchart showing a procedure of processing executed by the air conditioner. When the blower 15 sucks air from the cavity 17 and discharges it to the flow path 14, the air conditioner sucks air from the suction port 13 and discharges it from the discharge port 12. The control unit 41 causes the electrostatic atomizer 2 and the voltage application circuit 42 to start generating negative charged water particles in a state where generation of positive air ions is stopped (S1). Thereafter, the voltage application circuit 42 supplies power to the Peltier element 23 and applies a voltage continuously or intermittently between the discharge electrode 21 and the annular electrode 22. The electrostatic atomizer 2 generates negative charged water particles intermittently. After the generation of the negative charged water particles is continued for a predetermined period, the control unit 41 causes the electrostatic atomizer 2 and the voltage application circuit 42 to stop generating the negative charged water particles (S2). In addition, the control part 41 may perform the process which stops generation | occurrence | production of a negative charged water particle, when the frequency | count or generation amount of a negative charged water particle becomes a predetermined value.
 制御部41は、次に、計時部44が計測する時間に基づいて、負の帯電水粒子の発生を停止してから、予め定められた休止期間T1 が経過したか否かを判定する(S3)。負の帯電水粒子の発生を停止してからまだ休止期間T1 が経過していない場合は(S3:NO)、制御部41は、時間経過の判定を随時繰り返す。負の帯電水粒子の発生を停止してから休止期間T1 が経過した場合は(S3:YES)、制御部41は、空気イオン発生部3及び電圧印加回路43に、正の空気イオンの発生を開始させる(S4)。電圧印加回路43は、放電電極31と誘導電極32との間に電圧を印加し、空気イオン発生部3は空気イオンを発生させる。正の空気イオンの発生を所定期間継続した後、制御部41は、空気イオン発生部3及び電圧印加回路43に、正の空気イオンの発生を停止させる(S5)。なお、制御部41は、正の空気イオンの発生回数又は発生量が所定値になった段階で正の空気イオンの発生を停止させる処理を行ってもよい。 Next, the control unit 41 determines whether or not a predetermined pause period T 1 has elapsed since the generation of the negative charged water particles was stopped based on the time measured by the time measuring unit 44 ( S3). When the pause period T 1 has not yet elapsed since the generation of the negative charged water particles is stopped (S3: NO), the control unit 41 repeats the determination of the passage of time as needed. When the pause period T 1 has elapsed since the generation of negative charged water particles was stopped (S3: YES), the control unit 41 causes the air ion generation unit 3 and the voltage application circuit 43 to generate positive air ions. Is started (S4). The voltage application circuit 43 applies a voltage between the discharge electrode 31 and the induction electrode 32, and the air ion generator 3 generates air ions. After the generation of positive air ions is continued for a predetermined period, the control unit 41 causes the air ion generation unit 3 and the voltage application circuit 43 to stop generating positive air ions (S5). In addition, the control part 41 may perform the process which stops generation | occurrence | production of a positive air ion in the step in which the frequency | count or generation amount of a positive air ion became a predetermined value.
 制御部41は、次に、計時部44が計測する時間に基づいて、正の空気イオンの発生を停止してから、予め定められた休止期間T2 が経過したか否かを判定する(S6)。正の空気イオンの発生を停止してからまだ休止期間T2 が経過していない場合は(S6:NO)、制御部41は、時間経過の判定を随時繰り返す。正の空気イオンの発生を停止してから休止期間T2 が経過した場合は(S6:YES)、制御部41は、処理を終了するか否かを判定する(S7)。ステップS7では、例えば、制御部41は、図示しない操作部を使用者が操作することによって処理終了の指示が入力された場合に、処理を終了すると判定する。また例えば、制御部41は、予め指定された終了時刻になった場合に、処理を終了すると判定する。なお、ステップ7の処理は、他のタイミングで実行してもよい。 Next, the control unit 41 determines whether or not a predetermined pause period T 2 has elapsed since the generation of positive air ions was stopped based on the time measured by the time measuring unit 44 (S6). ). If still idle period T 2 generation from the stop of the positive air ions has not elapsed (S6: NO), the control unit 41 repeats from time to time the determination of the time course. If positive rest period T 2 after stopping the generation of air ions has passed (S6: YES), the control unit 41 determines whether to end the processing (S7). In step S <b> 7, for example, the control unit 41 determines to end the process when a user inputs an instruction to end the process by operating an operation unit (not shown). Further, for example, the control unit 41 determines to end the process when the end time designated in advance is reached. In addition, you may perform the process of step 7 at another timing.
 ステップS7でまだ処理を終了しないと判定した場合は(S7:NO)、制御部41は、処理をステップS1へ戻して、負の帯電水粒子の発生を開始させる。ステップS7で処理を終了すると判定した場合は(S7:YES)、制御部41は、送風機15、静電霧化部2、電圧印加回路42、空気イオン発生部3及び電圧印加回路43等の空気調和装置の各部を停止させ、処理を終了する。 If it is determined in step S7 that the process has not yet ended (S7: NO), the control unit 41 returns the process to step S1 to start generation of negative charged water particles. When it determines with complete | finishing a process by step S7 (S7: YES), the control part 41 is air, such as the air blower 15, the electrostatic atomization part 2, the voltage application circuit 42, the air ion generation part 3, and the voltage application circuit 43. Each part of a harmony device is stopped and processing is ended.
 図8は、空気調和装置が負の帯電水粒子を発生させる期間、正の空気イオンを発生させる期間及び休止期間を時間軸上に示した概念図である。図8に示すように、空気調和装置は、負の帯電水粒子を発生させた後、休止期間T1 の間は帯電粒子の発生を休止し、次に正の空気イオンを発生させ、休止期間T2 の間は帯電粒子の発生を休止し、再度負の帯電水粒子を発生させ、これを繰り返す。休止期間T1 及び休止期間T2 の長さは予め定められており、制御部41に記憶されている。休止期間T1 の長さは、休止期間T2 よりも長く定められている。空気イオンは帯電水粒子よりもサイズが小さいので、空気中の移動速度は空気イオンの方が帯電水粒子よりも高い。このため、負の帯電水粒子よりも後で発生した正の空気イオンは、空気の流れの中で先に発生した負の帯電水粒子に追いつくことになる。空気が放出口12から放出される前に正の空気イオンが負の帯電水粒子に追いついた場合は、負の帯電水粒子と正の空気イオンとが結合して消滅する。休止期間T1 の長さは、空気が放出口12から放出される前に正の空気イオンが先に発生した負の帯電水粒子に追いつくことが無い長さに定められているのが望ましい。例えば、休止期間T1 の長さは20秒~100秒であり、休止期間T2 の長さは0秒~1秒である。なお、帯電粒子の一部が消滅したとしても、消滅せずに残留した帯電粒子による空気清浄化の効果が充分であるのであれば、休止期間T1 の長さは、正の空気イオンの一部が負の帯電水粒子の一部に追いつく可能性のある長さであってもよい。このような場合では、休止期間T1 の長さはより短くてもよく、例えば、0.1秒~10秒であってもよい。 FIG. 8 is a conceptual diagram showing, on the time axis, a period in which the air conditioner generates negative charged water particles, a period in which positive air ions are generated, and a pause period. As shown in FIG. 8, after generating negative charged water particles, the air conditioner pauses the generation of charged particles during the rest period T 1 and then generates positive air ions, between T 2 are suspended the generation of charged particles, to generate a negative charge water particles again, repeating this. The lengths of the suspension period T 1 and the suspension period T 2 are determined in advance and stored in the control unit 41. The length of the suspension period T 1 is set longer than the suspension period T 2 . Since air ions are smaller in size than charged water particles, the moving speed in air is higher for air ions than for charged water particles. For this reason, positive air ions generated after the negative charged water particles catch up with the negative charged water particles generated earlier in the air flow. If the positive air ions catch up with the negative charged water particles before the air is discharged from the discharge port 12, the negative charged water particles and the positive air ions are combined and disappear. It is desirable that the length of the rest period T 1 is set to a length that prevents positive air ions from catching up with the negatively charged negative water particles generated before air is discharged from the discharge port 12. For example, the length of the pause period T 1 is 20 seconds to 100 seconds, and the length of the pause period T 2 is 0 seconds to 1 second. Even if a part of the charged particles disappears, if the effect of air cleaning by the charged particles remaining without disappearing is sufficient, the length of the rest period T 1 is one of positive air ions. The length may be such that the portion may catch up with some of the negatively charged water particles. In such a case, the length of the pause period T 1 may be shorter, for example, 0.1 to 10 seconds.
 以上詳述した如く、本実施の形態においては、内部で発生した帯電粒子を含む空気を放出する空気調和装置は、帯電粒子を発生しない休止期間を挟みながら、負の帯電水粒子と正の空気イオンとを交互に発生させる。正及び負の帯電粒子を同時に発生させずに交互に発生させることにより、空気調和装置の内部で発生した正及び負の帯電粒子同士が結合して消滅することが起こり難くなる。また、一方の帯電粒子を発生させる期間と他方の帯電粒子を発生させる期間との間に帯電粒子を発生しない休止期間を設けることにより、正及び負の帯電粒子同士が結合して消滅することがより起こり難くなる。また、空気調和装置は、発生させる帯電粒子を空気中での移動速度が低い負の帯電水粒子から空気中での移動速度が高い正の空気イオンへ変更する際の休止期間T1 を、発生させる帯電粒子を逆に変更する際の休止期間T2 よりも長くする。正の空気イオンが先に発生した負の帯電水粒子に追いつくまでにある程度の時間がかかるので、負の帯電水粒子と正の空気イオンとが結合して消滅する割合が減少し、空気に混合して空気調和装置から放出される帯電粒子の量の減少が抑制される。従って、従来よりも多くの帯電粒子が空気調和装置から放出され、空気調和装置の空気を清浄化する能力が向上する。 As described above in detail, in the present embodiment, the air conditioner that discharges air containing charged particles generated inside has negative charged water particles and positive air while interposing a rest period in which charged particles are not generated. Ions are generated alternately. By alternately generating positive and negative charged particles without simultaneously generating them, it becomes difficult for the positive and negative charged particles generated inside the air conditioner to combine and disappear. Further, by providing a pause period in which charged particles are not generated between the period in which one charged particle is generated and the period in which the other charged particle is generated, the positive and negative charged particles may be combined and disappear. It becomes harder to happen. In addition, the air conditioner generates a pause period T 1 when the charged particles to be generated are changed from negative charged water particles having a low moving speed in the air to positive air ions having a high moving speed in the air. On the contrary, the charged particles are made longer than the rest period T 2 when changing the charged particles. Since it takes a certain amount of time for the positive air ions to catch up with the negative charged water particles generated earlier, the ratio of the negative charged water particles and the positive air ions binding and disappearing decreases and is mixed with the air. Thus, a decrease in the amount of charged particles emitted from the air conditioner is suppressed. Accordingly, more charged particles are released from the air conditioner than before, and the ability of the air conditioner to clean the air is improved.
(実施の形態2)
 図9は、実施の形態2に係る空気調和装置の電気的構成を示すブロック図である。制御部41には、送風機15が接続されている。制御部41は、送風機15の回転速度を制御することにより、放出口12から放出する空気の流速を調整する処理を行う。また、制御部41には、使用者の操作によって各種の指示を受け付ける操作部45が接続されている。操作部45は、放出口12から放出する空気の流速を変更する指示を受け付ける構成となっている。空気調和装置のその他の構成は実施の形態1と同様であり、対応する部分に同符号を付してその説明を省略する。
(Embodiment 2)
FIG. 9 is a block diagram showing an electrical configuration of the air-conditioning apparatus according to Embodiment 2. A blower 15 is connected to the control unit 41. The control unit 41 performs a process of adjusting the flow rate of the air discharged from the discharge port 12 by controlling the rotational speed of the blower 15. The control unit 41 is connected to an operation unit 45 that receives various instructions according to user operations. The operation unit 45 is configured to receive an instruction to change the flow rate of the air discharged from the discharge port 12. Other configurations of the air conditioner are the same as those of the first embodiment, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
 制御部41は、操作部45で受け付けた空気の流速を変更する指示に従って、送風機15の回転速度を制御して空気の流速を調整する処理を行う。また、制御部41は、発生させる帯電粒子を空気中での移動速度が低い負の帯電水粒子から空気中での移動速度が高い正の空気イオンへ変更する際の休止期間T1 の長さを、流速に応じて調整する処理を行う。具体的には、制御部41は、空気の流速が低いほど、休止期間T1 をより長くする制御を行う。制御部41は、変更可能な複数種類の流速の夫々を示す情報に関連付けて送風機15の回転速度を制御するための情報と休止期間T1 の値とを記録したデータを予め記憶している。休止期間T1 の値は、空気の流速が低いほど長くなるように定められている。制御部41は、操作部45で受け付けた指示に従って、送風機15の回転速度を制御して空気の流速を調整し、休止期間T1 の値を設定する処理を行う。更に、制御部41は、図7のフローチャートで示した実施の形態1と同様の処理を実行する。 The control unit 41 performs processing for adjusting the air flow rate by controlling the rotational speed of the blower 15 in accordance with the instruction to change the air flow rate received by the operation unit 45. Further, the control unit 41 sets the length of the pause period T 1 when changing the generated charged particles from negative charged water particles having a low moving speed in the air to positive air ions having a high moving speed in the air. Is adjusted according to the flow rate. Specifically, the control unit 41 performs control to make the pause period T 1 longer as the air flow rate is lower. The control unit 41 stores in advance data recording information for controlling the rotational speed of the blower 15 and the value of the pause period T 1 in association with information indicating each of a plurality of types of flow rates that can be changed. The value of the rest period T 1 is determined so as to increase as the air flow rate decreases. The control unit 41, according to the instructions received by the operation unit 45 controls the rotational speed of the blower 15 to adjust the flow rate of the air, processing is performed to set the value of the quiescent period T 1. Further, the control unit 41 executes the same processing as in the first embodiment shown in the flowchart of FIG.
 以上のように、本実施の形態においても、空気調和装置は、帯電粒子を発生しない休止期間を挟みながら、負の帯電水粒子と正の空気イオンとを交互に発生させ、負の帯電水粒子及び正の空気イオンを含む空気を放出する。また空気調和装置は、空気の流速が低いほど、休止期間T1 をより長くする。通流路14を流れる空気の流速が低い場合は、発生した負の帯電水粒子及び正の空気イオンが放出口12から放出されるまでの時間が長くなるので、正の空気イオンが負の帯電水粒子に追いついて結合し易くなる。そこで、休止期間T1 をより長くすることにより、正の空気イオンが負の帯電水粒子に追いつくまでの時間がより長くなり、負の帯電水粒子と正の空気イオンとが結合して消滅する割合が減少する。従って、本実施の形態においても、空気に混合して空気調和装置から放出される帯電粒子の量の減少が抑制され、従来よりも多くの帯電粒子が空気調和装置から放出され、空気調和装置の空気を清浄化する能力が向上する。 As described above, also in the present embodiment, the air conditioner alternately generates negative charged water particles and positive air ions while sandwiching a rest period in which charged particles are not generated, thereby negatively charged water particles. And release air containing positive air ions. Further, the air conditioner makes the pause period T 1 longer as the air flow rate is lower. When the flow velocity of the air flowing through the flow path 14 is low, the time until the generated negative charged water particles and positive air ions are released from the discharge port 12 becomes long, so that the positive air ions are negatively charged. It catches up with water particles and becomes easy to bond. Therefore, by making the rest period T 1 longer, the time until the positive air ions catch up with the negative charged water particles becomes longer, and the negative charged water particles and the positive air ions are combined and disappear. The rate decreases. Therefore, also in the present embodiment, a decrease in the amount of charged particles mixed with air and released from the air conditioner is suppressed, and more charged particles are discharged from the air conditioner than before, and the air conditioner Improves the ability to clean air.
 なお、空気調和装置は、送風機15の回転速度を制御するのではなく、通流路14の幅を調整することにより空気の流速を調整する形態であってもよい。通流路14を流れる空気の流速は、通流路14の幅が広いほど低くなり、通流路14の幅が狭いほど高くなる。この形態では、空気調和装置は、通流路14の壁を動かすことで幅を変更することが可能な構成となっており、制御部41の制御により通流路14の幅を調整して空気の流速を調整する。この形態においても、空気の流速が低いほど、休止期間T1 をより長くする制御を行うことによって、空気調和装置の空気を清浄化する能力を向上させることが可能である。 The air conditioner may be configured to adjust the flow velocity of the air by adjusting the width of the flow path 14 instead of controlling the rotational speed of the blower 15. The flow velocity of the air flowing through the flow path 14 decreases as the width of the flow path 14 increases, and increases as the width of the flow path 14 decreases. In this embodiment, the air conditioner has a configuration in which the width can be changed by moving the wall of the flow path 14, and the width of the flow path 14 is adjusted by the control of the control unit 41. Adjust the flow rate. Also in this form, it is possible to improve the capability of purifying the air of the air conditioner by performing control to make the pause period T 1 longer as the air flow rate is lower.
 なお、以上の実施の形態1及び2においては、正の帯電粒子として正の空気イオンを用い、負の帯電粒子として負の帯電水粒子を用いる形態を示したが、空気調和装置は、その他の形態であってもよい。例えば、空気調和装置は、正の帯電粒子として正の帯電水粒子を用い、負の帯電粒子として負の空気イオンを用いる形態であってもよい。この形態では、空気調和装置は、発生させる帯電粒子を空気中での移動速度が低い正の帯電水粒子から空気中での移動速度が高い負の空気イオンへ変更する際の休止期間を、発生させる帯電粒子を逆に変更する際の休止期間よりも長くする。これらの形態においても、空気に混合して空気調和装置から放出される帯電粒子の量の減少が抑制され、従来よりも多くの帯電粒子が空気調和装置から放出され、空気調和装置の空気を清浄化する能力が向上する。 In the first and second embodiments described above, a mode in which positive air ions are used as positive charged particles and negative charged water particles are used as negative charged particles has been described. Form may be sufficient. For example, the air conditioner may be configured to use positive charged water particles as positive charged particles and negative air ions as negative charged particles. In this form, the air conditioner generates a rest period when the charged particles to be generated are changed from positive charged water particles having a low moving speed in the air to negative air ions having a high moving speed in the air. The charged particle to be used is made longer than the resting period when the particle is changed. Even in these forms, the reduction in the amount of charged particles mixed with air and discharged from the air conditioner is suppressed, and more charged particles are discharged from the air conditioner than before, and the air of the air conditioner is cleaned. Improves the ability to
 また、以上の実施の形態1及び2においては、空気調和装置が空気清浄機の形をとった例を示したが、本発明の空気調和装置は、空気清浄機に限定されるものでは無く、その他の形態であってもよい。例えば、空気調和装置は、エアコンディショナー又は加湿機であってもよい。また例えば、空気調和装置は、冷蔵庫等の他の電気機器に内蔵された形態であってもよい。 Moreover, in the above Embodiments 1 and 2, although the example which the air conditioning apparatus took the form of the air cleaner was shown, the air conditioning apparatus of this invention is not limited to an air cleaner, Other forms may be used. For example, the air conditioner may be an air conditioner or a humidifier. Further, for example, the air conditioner may be in a form incorporated in another electric device such as a refrigerator.
 11 ハウジング
 12 放出口
 13 吸入口
 14 通流路
 15 送風機
 2 静電霧化部
 3 空気イオン発生部
 41 制御部
 42、43 電圧印加回路
 44 計時部
 45 操作部
DESCRIPTION OF SYMBOLS 11 Housing 12 Release port 13 Inlet port 14 Flow path 15 Blower 2 Electrostatic atomization part 3 Air ion generation part 41 Control part 42, 43 Voltage application circuit 44 Time measurement part 45 Operation part

Claims (4)

  1.  帯電粒子を空気中に発生させる手段を備え、該手段が発生させた帯電粒子を含む空気を放出する空気調和装置において、
     正及び負の帯電粒子を個別に発生させる帯電粒子発生部と、
     予め定められた休止期間を隔てて、前記帯電粒子発生部に正及び負の帯電粒子を交互に発生させる制御手段と
     を備えることを特徴とする空気調和装置。
    In an air conditioner comprising a means for generating charged particles in the air, and discharging air containing the charged particles generated by the means,
    A charged particle generator that individually generates positive and negative charged particles;
    An air conditioner comprising: a control unit that alternately generates positive and negative charged particles in the charged particle generation unit at predetermined intervals.
  2.  前記帯電粒子発生部は、
     空気中での移動速度が互いに異なる正及び負の帯電粒子を発生させる構成としてあり、
     前記制御手段は、
     前記帯電粒子発生部に発生させる帯電粒子を前記移動速度が低い方の帯電粒子から高い方の帯電粒子へ変更する際の休止期間を、前記移動速度が高い方の帯電粒子から低い方の帯電粒子へ変更する際の休止期間よりも長くする構成としてあること
     を特徴とする請求項1に記載の空気調和装置。
    The charged particle generator is
    It is configured to generate positive and negative charged particles having different moving speeds in the air,
    The control means includes
    The charging particle generated in the charged particle generating unit is changed from a charged particle having a lower moving speed to a charged particle having a higher moving speed, and the resting period is changed from a charged particle having a higher moving speed to a charged particle having a lower moving speed. The air conditioner according to claim 1, wherein the air conditioner is configured to be longer than a resting period when changing to an air conditioner.
  3.  放出すべき空気を流動させる送風機を更に備え、
     前記制御手段は、
     前記送風機が流動させる空気の流速を調整する手段と、
     前記流速が低いほど、発生させる帯電粒子を前記移動速度が低い方の帯電粒子から高い方の帯電粒子へ変更する際の休止期間をより長くするように、前記流速に応じて前記休止期間の長さを調整する手段と
     を有することを特徴とする請求項2に記載の空気調和装置。
    A blower for flowing the air to be discharged;
    The control means includes
    Means for adjusting the flow rate of the air flowing by the blower;
    The lower the flow rate, the longer the pause period depends on the flow rate so as to extend the pause period when changing the charged particles to be generated from the lower charged particles to the higher charged particles. The air conditioning apparatus according to claim 2, further comprising: means for adjusting the height.
  4.  前記帯電粒子発生部は、
     コロナ放電により正の空気イオンを発生させる手段と、
     静電霧化現象により負の帯電水粒子を発生させる手段と
     を有することを特徴とする請求項1から3までの何れか一つに記載の空気調和装置。
    The charged particle generator is
    Means for generating positive air ions by corona discharge;
    The air conditioner according to any one of claims 1 to 3, further comprising means for generating negative charged water particles by an electrostatic atomization phenomenon.
PCT/JP2012/069699 2011-08-31 2012-08-02 Air-conditioning device WO2013031472A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011189957A JP5191560B2 (en) 2011-08-31 2011-08-31 Air conditioner
JP2011-189957 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031472A1 true WO2013031472A1 (en) 2013-03-07

Family

ID=47755974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069699 WO2013031472A1 (en) 2011-08-31 2012-08-02 Air-conditioning device

Country Status (3)

Country Link
JP (1) JP5191560B2 (en)
CN (1) CN202823620U (en)
WO (1) WO2013031472A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759234A (en) * 2019-02-22 2019-05-17 张茜美子 Deduster

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038831B2 (en) * 1984-02-17 1991-02-07 Ion Shisutemuzu Inc
WO2007111121A1 (en) * 2006-03-29 2007-10-04 Matsushita Electric Works, Ltd. Electrostatic atomization device
JP2011229818A (en) * 2010-04-30 2011-11-17 Panasonic Electric Works Co Ltd Electrostatic atomizing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218372A (en) * 2007-02-28 2008-09-18 Tse:Kk Ion generator
JP2009283305A (en) * 2008-05-22 2009-12-03 Sharp Corp Ion emission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038831B2 (en) * 1984-02-17 1991-02-07 Ion Shisutemuzu Inc
WO2007111121A1 (en) * 2006-03-29 2007-10-04 Matsushita Electric Works, Ltd. Electrostatic atomization device
JP2011229818A (en) * 2010-04-30 2011-11-17 Panasonic Electric Works Co Ltd Electrostatic atomizing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759234A (en) * 2019-02-22 2019-05-17 张茜美子 Deduster

Also Published As

Publication number Publication date
CN202823620U (en) 2013-03-27
JP2013050288A (en) 2013-03-14
JP5191560B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP7196172B2 (en) System for generating liquid aerosol
JP6012965B2 (en) Blower device and method
JP2002203657A (en) Ion generator
KR102085825B1 (en) Air conditioner and Control method of the same
WO2006060418A2 (en) Temperature control with induced airflow
US20140197332A1 (en) Ion generator
JPWO2015015587A1 (en) Disinfection device using electric discharge
JP2016186413A (en) Bathroom ventilation dryer machine
JP6167326B2 (en) Paint mist processing equipment
JP2006247478A (en) Electrostatic atomization apparatus
JP6783161B2 (en) Electrostatic precipitator and blower
JP5191560B2 (en) Air conditioner
JP4070546B2 (en) ION GENERATOR AND ION GENERATOR HAVING THE SAME
JP2013185765A (en) Device and system for humidifying ion mist
JP2012139667A (en) Outside air treatment device
JP5149934B2 (en) Electrostatic atomizer and electrostatic atomizing method
JP7363058B2 (en) Charging devices and electrostatic precipitators
JP5262913B2 (en) Charging device
JP2012115798A (en) Air cleaning device
JP2010110692A (en) Charging apparatus and air treatment apparatus
JP2007196199A (en) Discharge device, air cleaning apparatus and air-flow generating device equipped with the discharge device
JP2013074998A (en) Air cleaner device
JP2013141882A (en) Air conditioning device
JP5177210B2 (en) Air conditioner
JP2013048866A (en) Air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827690

Country of ref document: EP

Kind code of ref document: A1