JP2006121874A - Power supply apparatus and vehicle equipped with same - Google Patents

Power supply apparatus and vehicle equipped with same Download PDF

Info

Publication number
JP2006121874A
JP2006121874A JP2004309959A JP2004309959A JP2006121874A JP 2006121874 A JP2006121874 A JP 2006121874A JP 2004309959 A JP2004309959 A JP 2004309959A JP 2004309959 A JP2004309959 A JP 2004309959A JP 2006121874 A JP2006121874 A JP 2006121874A
Authority
JP
Japan
Prior art keywords
battery
power supply
boosting
batteries
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004309959A
Other languages
Japanese (ja)
Other versions
JP4400414B2 (en
Inventor
Takaaki Abe
孝昭 安部
Masaaki Suzuki
正明 鈴木
Hideaki Horie
英明 堀江
Takuya Kinoshita
拓哉 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004309959A priority Critical patent/JP4400414B2/en
Publication of JP2006121874A publication Critical patent/JP2006121874A/en
Application granted granted Critical
Publication of JP4400414B2 publication Critical patent/JP4400414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply apparatus for rapidly progressing charging/discharging between a high-capacity battery and a high-output battery connected, in parallel. <P>SOLUTION: The high-capacity battery 110 and the high-output battery 120 having an internal resistor and a capacity smaller than the high-capacity battery 110 are connected in parallel via a DC-DC converter 130 for receiving a voltage from the high-capacity battery 110, boosting the voltage and applying the boosted voltage to the high-output battery 120. A controller 140 is provided, and switches a voltage boosting state for boosting the voltage using the DC-DC converter 130 and a voltage boosting stopping state for stopping the voltage boosting and connecting the high-capacity battery 110 and the high-output battery 120, in parallel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電源装置およびこれを搭載した車両に関する。本発明は、特に、高容量電池および高出力電池が並列に接続された電源装置およびこれを搭載した車両に関する。   The present invention relates to a power supply device and a vehicle equipped with the same. The present invention particularly relates to a power supply device in which a high-capacity battery and a high-power battery are connected in parallel, and a vehicle equipped with the same.

電気自動車(EV)およびハイブリッド電気自動車(HEV)のモータ駆動用電源として、リチウムイオン電池およびニッケル水素電池などの二次電池の開発が盛んである。   Secondary batteries such as lithium ion batteries and nickel metal hydride batteries are actively developed as power sources for driving motors of electric vehicles (EV) and hybrid electric vehicles (HEV).

モータ駆動用電源としては、高容量かつ高出力化の要求から、下記の特許文献1に示すようなハイブリッド電池が提案されている。特許文献1に開示されているハイブリッド電池は、高容量電池(高エネルギー密度型電池)と高出力電池(高出力密度型電池)とが、並列に接続されたものである。このような構成にすると、高容量電池と高出力電池との間の電位差を小さくする方向に電流が流れ、二つの電池間での充放電が進行する。
特開平11−332023号公報
As a power source for driving a motor, a hybrid battery as shown in Patent Document 1 below has been proposed because of a demand for high capacity and high output. The hybrid battery disclosed in Patent Document 1 is a battery in which a high capacity battery (high energy density type battery) and a high output battery (high output density type battery) are connected in parallel. With such a configuration, current flows in a direction to reduce the potential difference between the high-capacity battery and the high-power battery, and charging / discharging between the two batteries proceeds.
Japanese Patent Laid-Open No. 11-332023

しかしながら、上記ハイブリッド電池では、二つの電池間での充放電は、モータ駆動にともなって発生する二つの電池間の電位差によって、ゆっくりと進行する。   However, in the above hybrid battery, charging / discharging between the two batteries proceeds slowly due to the potential difference between the two batteries that occurs as the motor is driven.

したがって、モータへの放電により高出力電池の充電量(SOC)が著しく低下した場合、高容量電池から高出力電池への電流の供給が追いつかず、高出力電池の出力が低下する。また、低温時に、高容量電池と高出力電池との間で電流を流すことにより電池を昇温させ、電池の出力低下を防止する際に、電池の昇温に時間がかかるなどの問題があった。   Therefore, when the charge amount (SOC) of the high-power battery is remarkably reduced due to the discharge to the motor, the current supply from the high-capacity battery to the high-power battery cannot catch up, and the output of the high-power battery decreases. In addition, when a battery is heated by flowing current between a high-capacity battery and a high-power battery at a low temperature to prevent a decrease in battery output, it takes time for the battery to warm. It was.

本発明は、上述した問題を解決するためになされたものである。したがって、本発明の目的は、並列接続された高容量電池と高出力電池との間に、強制的に電位差を発生させることにより、電池間での充放電が迅速に進行することが可能な電源装置を提供することである。   The present invention has been made to solve the above-described problems. Therefore, an object of the present invention is to provide a power source that can rapidly charge and discharge between batteries by forcibly generating a potential difference between a high-capacity battery and a high-power battery connected in parallel. Is to provide a device.

本発明の上記目的は、下記の手段によって達成される。   The above object of the present invention is achieved by the following means.

本発明の電源装置は、第1の電池と、前記第1の電池よりも内部抵抗および容量が小さい第2の電池とが、前記第1の電池の電圧を受けて昇圧した電圧を前記第2の電池に加える昇圧手段を介して、並列に接続されることを特徴とする。   In the power supply device of the present invention, the first battery and the second battery having lower internal resistance and capacity than the first battery receive the voltage of the first battery and boost the voltage. It is characterized by being connected in parallel through boosting means applied to the battery.

本発明の車両は、上記電源装置を搭載したことを特徴とする。   The vehicle of the present invention is equipped with the above power supply device.

本発明の電源装置によれば、高容量電池と高出力電池とを並列接続した電池において、二つの電池の間に強制的に電位差が発生することにより、電池間での充放電が迅速に進行する。   According to the power supply device of the present invention, in a battery in which a high-capacity battery and a high-power battery are connected in parallel, a potential difference is forcedly generated between the two batteries, so that charging / discharging between the batteries proceeds rapidly. To do.

また、本発明の電源装置を搭載した車両によれば、低温時での出力の低下が防止でき、さらに、加速と減速が頻繁に繰り返される場合にも出力の低下が軽減される。   In addition, according to the vehicle equipped with the power supply device of the present invention, it is possible to prevent a decrease in output at a low temperature, and further reduce a decrease in output even when acceleration and deceleration are frequently repeated.

以下、図面を参照して、本発明の実施の形態を説明する。なお、以下の実施の形態では、本発明をモータ駆動用の電源装置に適用した場合を例にとって説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the following embodiments, a case where the present invention is applied to a motor driving power supply device will be described as an example.

(第1の実施の形態)
図1は、本発明の第1の実施の形態である電源装置の概略構成を示すブロック図である。本実施の形態の電源装置100は、低温時に、高容量電池110と高出力電池120との間に強制的に電位差を発生させることで、電池110,120間での充放電を迅速に進行させ、電池110,120を昇温するものである。
(First embodiment)
FIG. 1 is a block diagram showing a schematic configuration of a power supply apparatus according to the first embodiment of the present invention. The power supply device 100 according to the present embodiment causes the potential difference between the high-capacity battery 110 and the high-power battery 120 to be forcibly generated at a low temperature so that charging / discharging between the batteries 110 and 120 can proceed rapidly. The batteries 110 and 120 are heated.

図1に示すとおり、電源装置100は、モータ駆動用のインバータ200を介して、モータ300に接続される。インバータ200は、電源装置100とモータ300との間の充放電を制御する。モータ駆動時は、インバータ200により、電源装置100とモータ300とは電気的に接続され、電源装置100とモータ300との間で充放電される。一方、モータ停止時は、電源装置100とモータ300とは電気的に絶縁された状態となる。   As shown in FIG. 1, the power supply device 100 is connected to a motor 300 via an inverter 200 for driving a motor. Inverter 200 controls charging / discharging between power supply device 100 and motor 300. When the motor is driven, the power supply device 100 and the motor 300 are electrically connected by the inverter 200, and charging / discharging is performed between the power supply device 100 and the motor 300. On the other hand, when the motor is stopped, the power supply device 100 and the motor 300 are electrically insulated.

電源装置100は、高容量電池110、高出力電池120、DC−DCコンバータ130、コントローラ140、温度検出装置150、および電流検出装置160を備える。   The power supply device 100 includes a high-capacity battery 110, a high-power battery 120, a DC-DC converter 130, a controller 140, a temperature detection device 150, and a current detection device 160.

電源装置100において、第1の電池である高容量電池110と、この第1の電池よりも内部抵抗および容量が小さい第2の電池である高出力電池120とが、昇圧手段のDC−DCコンバータ130を介して、並列に接続されている。具体的には、高容量電池110の正極および負極は、DC−DCコンバータ130の入力端子131,132にそれぞれ接続される。高出力電池120の正極および負極は、DC−DCコンバータ130の出力端子133,134にそれぞれ接続される。また、高容量電池110および高出力電池120の初期電圧は略同一であり、共にモータ(負荷)への放電に用いられる。   In the power supply device 100, a high-capacity battery 110 that is a first battery and a high-power battery 120 that is a second battery having a smaller internal resistance and capacity than the first battery include a DC-DC converter as a boosting unit. 130 are connected in parallel. Specifically, the positive electrode and the negative electrode of high-capacity battery 110 are connected to input terminals 131 and 132 of DC-DC converter 130, respectively. The positive electrode and the negative electrode of the high-power battery 120 are connected to the output terminals 133 and 134 of the DC-DC converter 130, respectively. The initial voltages of the high capacity battery 110 and the high output battery 120 are substantially the same, and both are used for discharging to the motor (load).

DC−DCコンバータ130は、高容量電池110の電圧を受けて昇圧した電圧を高出力電池120に加える昇圧手段である。コントローラ140は、DC−DCコンバータ130によって電圧を昇圧する昇圧状態と、昇圧を停止して高容量電池110および高出力電池120を並列接続する昇圧停止状態とを切り替える制御手段である。なお、高容量電池110、高出力電池120、およびDC−DCコンバータ130の詳細は後述する。   The DC-DC converter 130 is a boosting unit that applies a voltage boosted by receiving the voltage of the high capacity battery 110 to the high output battery 120. The controller 140 is control means for switching between a boosting state in which the voltage is boosted by the DC-DC converter 130 and a boosting stop state in which the boosting is stopped and the high capacity battery 110 and the high output battery 120 are connected in parallel. Details of the high capacity battery 110, the high output battery 120, and the DC-DC converter 130 will be described later.

温度検出装置150は、高容量電池110および高出力電池120にそれぞれ独立に取り付けられた温度センサを含む温度検出手段である。前記温度センサからの信号はコントローラ140に送信される。なお、温度センサとして、たとえば、熱電対、サーミスタ、白色測温抵抗体、および水晶などの接触式センサ、あるいは放射温度計などの非接触式センサを採用することができる。   The temperature detection device 150 is temperature detection means including temperature sensors that are independently attached to the high-capacity battery 110 and the high-power battery 120. A signal from the temperature sensor is transmitted to the controller 140. As the temperature sensor, for example, a thermocouple, a thermistor, a white resistance temperature detector, a contact sensor such as a crystal, or a non-contact sensor such as a radiation thermometer can be employed.

電流検出装置160は、高容量電池110および高出力電池120にそれぞれ独立に取り付けられた電流センサを含む電流検出手段である。前記電流センサからの信号はコントローラ140に送信される。なお、電流センサとして、たとえば、一般的な電流計のほか、クランプ式電流センサおよびホール素子型電流センサなどを採用することができる。   The current detection device 160 is current detection means including current sensors that are independently attached to the high-capacity battery 110 and the high-power battery 120. A signal from the current sensor is transmitted to the controller 140. In addition, as a current sensor, for example, a clamp type current sensor and a Hall element type current sensor can be employed in addition to a general ammeter.

コントローラ140は、温度検出装置150および電流検出装置160からの各信号を受信し、これらの信号に基づいて、DC−DCコンバータ130を制御するものである。   The controller 140 receives each signal from the temperature detection device 150 and the current detection device 160, and controls the DC-DC converter 130 based on these signals.

次に、図2を参照して、本実施の形態における電池110,120の構造について説明する。高出力電池120は、バイポーラ電極を有することを特徴とするバイポーラ電池である。一方、高容量電池110は、バイポーラ型でない従来の二次電池(以下、一般電池と称する)である。なお、本実施の形態では、高容量電池110および高出力電池120は、リチウムイオン二次電池である。   Next, the structure of batteries 110 and 120 in the present embodiment will be described with reference to FIG. The high-power battery 120 is a bipolar battery characterized by having a bipolar electrode. On the other hand, the high-capacity battery 110 is a conventional secondary battery (hereinafter referred to as a general battery) that is not a bipolar type. In the present embodiment, high capacity battery 110 and high power battery 120 are lithium ion secondary batteries.

図2(A)は、一般電池の構造を説明するための断面図である。一般電池は、基本的な構成として、図2(A)に示すとおり、金属板111上に正極活物質層112を形成した正極と、金属板115上に負極活物質層114を形成した負極とが、電解質層113を介して積層され、電池ケースに収納される構成を有している。   FIG. 2A is a cross-sectional view for explaining the structure of a general battery. As shown in FIG. 2A, a general battery has a basic structure in which a positive electrode in which a positive electrode active material layer 112 is formed on a metal plate 111 and a negative electrode in which a negative electrode active material layer 114 is formed on a metal plate 115. However, it has the structure laminated | stacked via the electrolyte layer 113 and accommodated in a battery case.

このような構成を有する一般電池を用いる場合には、通常、複数個を直列に接続して電池モジュールとし、さらに、前記電池モジュールを直列に接続して組電池を形成することにより、高容量電池110を実現している。しかし、このような組電池では、電池間の接続および電池モジュール間の接続による抵抗が加算され、充放電時の組電池全体の内部抵抗が高まるので、高出力を得ることが難しい。   When a general battery having such a configuration is used, a high capacity battery is usually obtained by connecting a plurality of batteries in series to form a battery module, and further connecting the battery modules in series to form an assembled battery. 110 is realized. However, in such an assembled battery, resistance due to the connection between the batteries and the connection between the battery modules is added, and the internal resistance of the entire assembled battery at the time of charging and discharging is increased, so that it is difficult to obtain a high output.

一方、図2(B)は、バイポーラ電池の構造を説明するための断面図である。図2(B)に示すとおり、バイポーラ電池では、集電体121の一方の面に正極活物質層122を形成し、他方の面に負極活物質層124を形成したバイポーラ電極が、電解質層123を介して複数積層されている。バイポーラ電池は、一般電池と比べると内部抵抗の方が小さいため、一般電池よりも高い出力を得ることができる。しかしながら、このようなバイポーラ電池を用いて、電池容量を向上させようとする場合には、前記バイポーラ電池の面積を大きくする必要があり、これは、電池を搭載可能なスペースが制限される車両等に搭載する場合には不利である。   On the other hand, FIG. 2B is a cross-sectional view for explaining the structure of the bipolar battery. As shown in FIG. 2B, in the bipolar battery, the bipolar electrode in which the positive electrode active material layer 122 is formed on one surface of the current collector 121 and the negative electrode active material layer 124 is formed on the other surface is the electrolyte layer 123. A plurality of layers are stacked via Since the bipolar battery has a smaller internal resistance than that of a general battery, a higher output than that of a general battery can be obtained. However, in order to improve the battery capacity using such a bipolar battery, it is necessary to increase the area of the bipolar battery, such as a vehicle in which a space in which the battery can be mounted is limited. It is disadvantageous when it is installed.

また、一般電池およびバイポーラ電池は、ともに化学反応を利用するものであるため、温度依存性を有する。具体的には、低温時には、電池の出力は低下する。なお、集電体、正極活物質層、負極活物質層、および電解質層に関する詳しい説明は省略する。   Moreover, since both a general battery and a bipolar battery utilize a chemical reaction, they have temperature dependence. Specifically, the battery output decreases at low temperatures. Note that a detailed description of the current collector, the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer is omitted.

次に、図3を参照して、DC−DCコンバータ130を説明する。なお、DC−DCコンバータ130自体は、一般のDC−DCコンバータと同様であるので、以下、簡単に説明する。   Next, the DC-DC converter 130 will be described with reference to FIG. The DC-DC converter 130 itself is the same as a general DC-DC converter, and will be briefly described below.

図3は、DC−DCコンバータ130の構成の一例を示す回路図である。DC−DCコンバータ130は、たとえば、図3に示すとおり、一対の入力端子131,132、一対の出力端子133,134、スイッチング素子135、第1のコンデンサ136、第2のコンデンサ137、チョークコイル138、および第1のダイオード141を備えるチョッパー方式のものである。   FIG. 3 is a circuit diagram showing an example of the configuration of the DC-DC converter 130. The DC-DC converter 130 includes, for example, a pair of input terminals 131 and 132, a pair of output terminals 133 and 134, a switching element 135, a first capacitor 136, a second capacitor 137, and a choke coil 138, as shown in FIG. And a chopper type including the first diode 141.

一対の入力端子131,132の間には、第1のコンデンサ136が接続され、一対の出力端子133,134の間には、第2のコンデンサ137が接続される。入力端子131と出力端子133の間には、スイッチング素子135およびチョークコイル138が、この順序で直列に接続される。スイッチング素子135とチョークコイル138との接続ノードには、第1のダイオード141の出力端子が接続され、第1のダイオード141の入力端子は、入力端子132および出力端子134と接続される。スイッチング素子135は、たとえば、FET(Field−Effect Transistor)139と第2のダイオード142とが並列に接続されて構成される。ここで、第2のダイオード142は、入力端子が前記接続ノードに接続される向きに設けられる。スイッチング素子135は、FET139のON/OFFを切り替えることによりチョークコイル138への電流を制御するものである。第1のコンデンサ136および第2のコンデンサ137は、チョークコイル138に流れる電流を平滑化する。   A first capacitor 136 is connected between the pair of input terminals 131 and 132, and a second capacitor 137 is connected between the pair of output terminals 133 and 134. Between the input terminal 131 and the output terminal 133, the switching element 135 and the choke coil 138 are connected in series in this order. An output terminal of the first diode 141 is connected to a connection node between the switching element 135 and the choke coil 138, and an input terminal of the first diode 141 is connected to the input terminal 132 and the output terminal 134. The switching element 135 is configured by, for example, a FET (Field-Effect Transistor) 139 and a second diode 142 connected in parallel. Here, the second diode 142 is provided in a direction in which an input terminal is connected to the connection node. The switching element 135 controls the current to the choke coil 138 by switching the FET 139 ON / OFF. The first capacitor 136 and the second capacitor 137 smooth the current flowing through the choke coil 138.

スイッチング素子135のON/OFFを交互に切り替えると、高容量電池110の電圧を受けて昇圧した電圧を高出力電池120に加える昇圧状態となる。一方、スイッチング素子135のOFF状態が維持されると、容量電池110と高出力電池120とが並列接続される昇圧停止状態となる。前記昇圧状態と前記昇圧停止状態の切り替えは、前記FET139のゲート端子に接続されるコントローラ140によって実行される。   When ON / OFF of the switching element 135 is alternately switched, a boosted state in which the voltage boosted in response to the voltage of the high capacity battery 110 is applied to the high output battery 120 is obtained. On the other hand, when the OFF state of the switching element 135 is maintained, a boosting stop state is established in which the capacity battery 110 and the high-power battery 120 are connected in parallel. Switching between the boosting state and the boosting stop state is executed by the controller 140 connected to the gate terminal of the FET 139.

コントローラ140は、高容量電池110、高出力電池120が低温であるときに、前記昇圧状態と前記昇圧停止状態とを切り替えることによって、高容量電池110と高出力電池120との間での充放電を迅速に進行させ、高容量電池110および高出力電池120を昇温する。   The controller 140 charges and discharges between the high capacity battery 110 and the high output battery 120 by switching between the boosting state and the boost stop state when the high capacity battery 110 and the high output battery 120 are at a low temperature. The high-capacity battery 110 and the high-power battery 120 are heated.

次に、図4を参照しつつ、本実施の形態における電池110,120の昇温処理を説明する。図4は、本実施の形態において、電池110,120の昇温処理を示すフローチャートである。   Next, with reference to FIG. 4, the temperature raising process for the batteries 110 and 120 in the present embodiment will be described. FIG. 4 is a flowchart showing the temperature raising process for batteries 110 and 120 in the present embodiment.

まず、温度検出装置150は、高容量電池110の温度を検出し、検出した温度データをコントローラ140へ送る(ステップS101)。同様に、温度検出装置150は、高出力電池120の温度を検出し、検出した温度データをコントローラ140へ送る(ステップS102)。   First, the temperature detection device 150 detects the temperature of the high capacity battery 110 and sends the detected temperature data to the controller 140 (step S101). Similarly, the temperature detection device 150 detects the temperature of the high-power battery 120 and sends the detected temperature data to the controller 140 (step S102).

次に、ステップS101およびステップS102で検出された各温度と所定温度t1とが比較される(ステップS103)。ここで、所定温度t1は、事前に設定されていてもよく、外気温あるいは電池110,120の温度に応じて適宜に設定されてもよい所定値である。たとえば、モータ始動時の外気温が−30度である場合、t1は−10度程度に設定される。また、モータ始動時の外気温が−10度である場合、t1は+10度に設定される。   Next, each temperature detected in step S101 and step S102 is compared with a predetermined temperature t1 (step S103). Here, the predetermined temperature t1 may be set in advance, or may be a predetermined value that may be appropriately set according to the outside air temperature or the temperature of the batteries 110 and 120. For example, when the outside air temperature at the start of the motor is -30 degrees, t1 is set to about -10 degrees. Further, when the outside air temperature at the time of starting the motor is −10 degrees, t1 is set to +10 degrees.

検出された各温度が共に所定温度t1以上であれば(ステップS103:NO)、電池110,120の昇温処理が終了する。一方、検出された温度の少なくとも一方が所定温度t1未満であれば(ステップS103:YES)、検出された温度が所定温度t1以上になるまで、電池間での充放電処理(ステップS104)が繰り返される。   If the detected temperatures are both equal to or higher than the predetermined temperature t1 (step S103: NO), the temperature increasing process for the batteries 110 and 120 is completed. On the other hand, if at least one of the detected temperatures is less than the predetermined temperature t1 (step S103: YES), the charging / discharging process (step S104) between the batteries is repeated until the detected temperature becomes equal to or higher than the predetermined temperature t1. It is.

ここで、電池間での充放電処理(ステップS104)について説明する。図5は、図4のフローチャートにおける本発明の特徴点の一つである電池間での充放電処理(ステップS104)の詳細を示すフローチャートである。   Here, the charging / discharging process (step S104) between batteries is demonstrated. FIG. 5 is a flowchart showing details of the charge / discharge process (step S104) between the batteries, which is one of the features of the present invention in the flowchart of FIG.

まず、コントローラ140はスイッチング素子135のON/OFFを交互に切り替える。その結果、DC−DCコンバータ130は、高容量電池110の電圧を受けて、昇圧した電圧を高出力電池120へ加える昇圧処理を開始する(ステップS201)。   First, the controller 140 switches ON / OFF of the switching element 135 alternately. As a result, the DC-DC converter 130 receives the voltage of the high-capacity battery 110 and starts a boosting process of adding the boosted voltage to the high-power battery 120 (step S201).

図6は、高容量電池110および高出力電池120それぞれの電圧および電流の変化を示す図である。図中の横軸は時間であり、縦軸は電圧および電流値である。E1およびE2は、それぞれ高容量電池110および高出力電池120の電圧(内部電圧)である(図3を参照)。同様に、I1およびI2は、それぞれ高容量電池110および高出力電池120へ流れ込む電流であり、図3中の矢印の向きを正とする。なお、高容量電池110および高出力電池120の初期電圧は、電圧E0で等しい。   FIG. 6 is a diagram illustrating changes in voltage and current of the high-capacity battery 110 and the high-power battery 120, respectively. In the figure, the horizontal axis represents time, and the vertical axis represents voltage and current values. E1 and E2 are voltages (internal voltages) of the high-capacity battery 110 and the high-power battery 120, respectively (see FIG. 3). Similarly, I1 and I2 are currents flowing into the high-capacity battery 110 and the high-power battery 120, respectively, and the direction of the arrow in FIG. 3 is positive. The initial voltages of the high capacity battery 110 and the high output battery 120 are equal to the voltage E0.

前記昇圧処理(ステップS201)が開始されると、DC−DCコンバータ130は、高容量電池110の電圧を受けて昇圧する。したがって、DC−DCコンバータ130によって昇圧された電圧と高出力電池120の電圧E2との間には差が生じる。その結果、DC−DCコンバータ130から高出力電池120に迅速に電流が供給される。このとき、高容量電池110が高出力電池120へ放電するため、電圧E1は低下し、電流I1は負の向きに流れる。一方、高出力電池120が高容量電池110から充電されるため、電圧E2は上昇し、電流I2は正の向きに流れる。   When the boosting process (step S201) is started, the DC-DC converter 130 receives the voltage of the high capacity battery 110 and boosts the voltage. Therefore, there is a difference between the voltage boosted by the DC-DC converter 130 and the voltage E2 of the high-power battery 120. As a result, current is rapidly supplied from the DC-DC converter 130 to the high-power battery 120. At this time, since the high capacity battery 110 is discharged to the high power battery 120, the voltage E1 decreases and the current I1 flows in a negative direction. On the other hand, since the high output battery 120 is charged from the high capacity battery 110, the voltage E2 rises and the current I2 flows in the positive direction.

次に、電流検出装置160は、電流I2を検出し、検出した電流データをコントローラ140へ送る(ステップS202)。そして、検出された電流I2の絶対値と、所定の電流値とが比較される(ステップS203)。検出された電流I2の絶対値が所定の電流値未満であれば(ステップS203:YES)、コントローラ140は、昇圧停止処理(ステップS204)へ移行する。一方、検出された電流I2の絶対値が所定の電流値以上であれば(ステップS203:NO)、電流I2の絶対値が所定の電流値未満になるまで、ステップS201以下の処理が繰り返し実行される。   Next, the current detection device 160 detects the current I2, and sends the detected current data to the controller 140 (step S202). Then, the detected absolute value of the current I2 is compared with a predetermined current value (step S203). If the absolute value of the detected current I2 is less than the predetermined current value (step S203: YES), the controller 140 proceeds to a boost stop process (step S204). On the other hand, if the detected absolute value of the current I2 is equal to or greater than the predetermined current value (step S203: NO), the processes in and after step S201 are repeatedly executed until the absolute value of the current I2 becomes less than the predetermined current value. The

図6に示されるとおり、前記昇圧処理(ステップS201)を開始して時間が経過すると、DC−DCコンバータ130によって昇圧された電圧と、高出力電池120の電圧E2との電位差が小さくなり、電流I1およびI2の絶対値は小さくなる。したがって、これ以上、昇圧状態を維持していても、高出力電池120への充電効果が小さいので、検出された電流I2の絶対値が所定の電流値未満であれば、昇圧停止処理へ移行する。   As shown in FIG. 6, when time elapses after the boosting process (step S201) is started, the potential difference between the voltage boosted by the DC-DC converter 130 and the voltage E2 of the high-power battery 120 decreases, and the current The absolute values of I1 and I2 are small. Therefore, even if the boosted state is maintained further, the charging effect on the high-power battery 120 is small, so if the absolute value of the detected current I2 is less than the predetermined current value, the process proceeds to the boost stop process. .

次に、DC−DCコンバータ130は、前述した昇圧処理を停止する昇圧停止処理を開始する(ステップS204)。具体的には、コントローラ140はスイッチング素子135をOFF状態に維持する。その結果、高容量電池110と高出力電池120とは、スイッチング素子135の第2のダイオード142を介して、並列接続された状態となる。ステップS202〜ステップS204の処理により、昇圧処理は中止される。   Next, the DC-DC converter 130 starts a boost stop process for stopping the boost process described above (step S204). Specifically, the controller 140 maintains the switching element 135 in the OFF state. As a result, the high capacity battery 110 and the high power battery 120 are connected in parallel via the second diode 142 of the switching element 135. The boosting process is stopped by the processes in steps S202 to S204.

高容量電池110と高出力電池120とが並列に接続された状態では、高容量電池110と高出力電池120との間の電位差がなくなるように、高容量電池110と高出力電池120との間に電流が流れる。具体的には、前記昇圧処理(ステップS201)により高められた高出力電池120の電圧E2は、高容量電池110の電圧E1よりも十分に大きい。したがって、第2のダイオード142を通って、高出力電池120から高容量電池110へ迅速に電流が供給される。図6に示されるとおり、高出力電池120が高容量電池110へ放電するため、電圧E2は低下し、電流I2は負の向きに流れる。一方、高容量電池110が高出力電池120から充電されるため、電圧E1は上昇し、電流I1は正の向きに流れる。したがって、低温時に電流が流れにくい高容量電池110にも電流I1が流れ、高容量電池110の昇温が迅速に進行する。   When the high-capacity battery 110 and the high-power battery 120 are connected in parallel, the high-capacity battery 110 and the high-power battery 120 are arranged so that there is no potential difference between the high-capacity battery 110 and the high-power battery 120. Current flows through Specifically, the voltage E2 of the high-power battery 120 raised by the boosting process (step S201) is sufficiently larger than the voltage E1 of the high-capacity battery 110. Therefore, current is rapidly supplied from the high power battery 120 to the high capacity battery 110 through the second diode 142. As shown in FIG. 6, since the high-power battery 120 is discharged to the high-capacity battery 110, the voltage E2 decreases and the current I2 flows in the negative direction. On the other hand, since the high capacity battery 110 is charged from the high power battery 120, the voltage E1 rises and the current I1 flows in the positive direction. Therefore, the current I1 also flows through the high-capacity battery 110 where current does not easily flow at low temperatures, and the temperature of the high-capacity battery 110 rapidly increases.

次に、電流検出装置160は、電流I1を検出し、検出した電流データをコントローラ140へ送る(ステップS205)。そして、検出された電流I1の絶対値と、所定の電流値とが比較される(ステップS206)。検出された電流I1の絶対値が所定の電流値未満であれば(ステップS206:YES)、コントローラ140は、昇圧停止処理(ステップS204)を終了し、図4のフローチャートのステップ101の処理に戻る。一方、検出された電流I1の絶対値が所定の電流値以上であれば(ステップS206:NO)、電流I1の絶対値が所定の電流値未満になるまで、ステップS204以下の処理が繰り返し実行される。   Next, the current detection device 160 detects the current I1, and sends the detected current data to the controller 140 (step S205). Then, the detected absolute value of the current I1 is compared with a predetermined current value (step S206). If the absolute value of the detected current I1 is less than the predetermined current value (step S206: YES), the controller 140 ends the boost stop process (step S204) and returns to the process of step 101 in the flowchart of FIG. . On the other hand, if the detected absolute value of the current I1 is equal to or greater than the predetermined current value (step S206: NO), the processes in and after step S204 are repeatedly executed until the absolute value of the current I1 becomes less than the predetermined current value. The

図6に示されるとおり、前記昇圧停止処理(ステップS204)を開始して時間が経過すると、高容量電池110の電圧E1と高出力電池120の電圧E2がほぼ等しい平衡状態に到達し、電流I1および電流I2の絶対値は小さくなる。したがって、これ以上、昇圧停止状態を維持していても、高容量電池110への昇温効果が得にくいので、昇圧停止状態を終了する。   As shown in FIG. 6, when time elapses after the boost stop processing (step S204) is started, the voltage E1 of the high-capacity battery 110 and the voltage E2 of the high-power battery 120 reach an almost equal equilibrium state, and the current I1 And the absolute value of the current I2 becomes small. Therefore, even if the boost stop state is maintained, the temperature rise effect on the high capacity battery 110 is difficult to obtain, and the boost stop state is terminated.

以上のとおり、図4および図5に示すフローチャートでは、上述した昇圧状態と昇圧停止状態を繰り返し実行することにより、電池110,120間での充放電が迅速に進行し、電池110,120が昇温される。なお、本実施の形態では、昇圧状態および昇圧停止状態を切り替えるために、高容量電池110および高出力電池120に流れ込む電流I1および電流I2を検出した。しかしながら、検出する電流は、どちらか一方だけでもよい。   As described above, in the flowcharts shown in FIG. 4 and FIG. 5, by repeatedly executing the above-described boosting state and boosting stop state, charging / discharging between the batteries 110 and 120 proceeds rapidly, and the batteries 110 and 120 rise. Be warmed. In the present embodiment, current I1 and current I2 flowing into high-capacity battery 110 and high-power battery 120 are detected in order to switch between the boosting state and the boosting stop state. However, only one of the currents to be detected may be detected.

本実施の形態では、一定の電圧まで昇圧する場合が示された。しかしながら、外気温あるいは電池の温度に応じて、昇圧電圧を変化させてもよい。この場合、スイッチング素子135のON/OFF切り替えのデューティー比を変えることにより、昇圧電圧を変化させることができる。   In the present embodiment, a case where the voltage is boosted to a certain voltage is shown. However, the boosted voltage may be changed according to the outside air temperature or the battery temperature. In this case, the boosted voltage can be changed by changing the ON / OFF switching duty ratio of the switching element 135.

なお、本実施の形態においては、高容量電池110および高出力電池120両方の温度を検出している。しかしながら、必ずしも二つの電池110,120両方の温度を検出する必要はない。高容量電池110は、高出力電池120よりも内部抵抗は大きいため、電流が流れにくい。それゆえ、高容量電池110は、昇温されにくい。したがって、高容量電池110の温度のみを検出し、高容量電池110の温度が所定の温度未満の場合に、電池110,120間の充放電を進行させてもよい。   In the present embodiment, the temperatures of both the high capacity battery 110 and the high output battery 120 are detected. However, it is not always necessary to detect the temperatures of both the two batteries 110 and 120. The high-capacity battery 110 has a larger internal resistance than the high-power battery 120, so that current does not flow easily. Therefore, the high-capacity battery 110 is not easily heated. Therefore, only the temperature of the high capacity battery 110 may be detected, and when the temperature of the high capacity battery 110 is lower than a predetermined temperature, charging / discharging between the batteries 110 and 120 may be advanced.

次に、本実施の形態の電源装置における作用効果を説明する。   Next, the effect of the power supply device of this embodiment will be described.

図7は、本実施の形態の電源装置による低温時の電池昇温効果、および、昇温による電池出力の向上効果を説明するための図である。具体的には、図7は、低温時におけるモータ始動後の時間経過に応じた高容量電池110の温度および出力電圧の変化を模式的に示したものである。なお、図7では、参考のために図8に示されるような一般的なハイブリッド電池を用いた場合を比較例として示している。図7中の点線は、比較例における高容量電池110の温度および出力電圧の変化を表しており、実線は、本実施の形態における低温時の高容量電池110の温度および出力電圧の変化を表している。   FIG. 7 is a diagram for explaining the battery temperature increase effect at low temperatures and the battery output improvement effect due to temperature increase by the power supply device of the present embodiment. Specifically, FIG. 7 schematically shows changes in the temperature and output voltage of the high-capacity battery 110 as time elapses after starting the motor at low temperatures. In FIG. 7, for reference, a case where a general hybrid battery as shown in FIG. 8 is used is shown as a comparative example. The dotted line in FIG. 7 represents changes in the temperature and output voltage of the high capacity battery 110 in the comparative example, and the solid line represents changes in the temperature and output voltage of the high capacity battery 110 at a low temperature in the present embodiment. ing.

比較例では、内部抵抗の高い高容量電池110には電流が流れにくいため、図7(A)に示されるとおり、低温時、高容量電池110は昇温されにくい。したがって、図7(B)に示されるとおり、低温時、高容量電池110の出力電圧は低く、電源装置100全体としても、出力電圧が向上するのに時間がかかる。   In the comparative example, current does not flow easily through the high-capacity battery 110 having a high internal resistance. Therefore, as shown in FIG. Therefore, as shown in FIG. 7B, the output voltage of the high-capacity battery 110 is low at a low temperature, and it takes time for the output voltage to improve even for the power supply device 100 as a whole.

一方、本実施の形態では、モータ起動時であっても、昇圧手段により強制的に二つの電池110,120間に電位差を発生させることができるため、二つの電池110,120間での充放電が迅速に進行する。したがって、図7(A)に示されるとおり、比較例よりも短時間で高容量電池110を昇温できる。その結果、高容量電池110の内部抵抗を低くすることができ、図7(B)に示されるとおり、高容量電池110の出力電圧を向上させることができる。その結果、電源装置100全体としても、より短時間で出力電圧が向上する。また、モータの停止状態では、昇圧手段の作用によって、強制的に二つの電池110,120間で充放電することができ、電池110,120をあらかじめ暖めておくことができる。   On the other hand, in the present embodiment, even when the motor is started, a potential difference can be forcibly generated between the two batteries 110 and 120 by the boosting means, so that charging / discharging between the two batteries 110 and 120 is possible. Progresses quickly. Accordingly, as shown in FIG. 7A, the high-capacity battery 110 can be heated in a shorter time than the comparative example. As a result, the internal resistance of the high capacity battery 110 can be lowered, and the output voltage of the high capacity battery 110 can be improved as shown in FIG. 7B. As a result, the output voltage can be improved in a shorter time even for the power supply apparatus 100 as a whole. Further, when the motor is stopped, it is possible to forcibly charge and discharge between the two batteries 110 and 120 by the action of the boosting means, and the batteries 110 and 120 can be warmed in advance.

以上のとおり、説明した本実施の形態は、以下の効果を奏する。   As described above, the described embodiment has the following effects.

(a)高容量電池と、前記高容量電池よりも内部抵抗および容量が小さい高出力電池とが、DC−DCコンバータを介して、並列に接続される。したがって、二つの電池の間に強制的に電位差を発生させて、二つの電池の間での充放電を迅速に進行させることができる。   (A) A high capacity battery and a high output battery having an internal resistance and a capacity smaller than those of the high capacity battery are connected in parallel via a DC-DC converter. Therefore, a potential difference is forcibly generated between the two batteries, and charging / discharging between the two batteries can be rapidly advanced.

(b)また、DC−DCコンバータを制御することにより、電圧を昇圧する昇圧状態と、昇圧を停止して高容量電池と高出力電池とを並列接続する昇圧停止状態を切り替えることができる。したがって、二つの電池の間での充放電を迅速に進行させることができる。特に、高容量電池から高出力電池へ電流が流れる充放電(昇圧状態時)と、高出力電池から高容量電池へ電流が流れる充放電(昇圧停止状態時)の両方を実施することができる。また、前記昇圧停止状態では、一般的なハイブリッド電池と同様に、高容量電池と高出力電池の両方をモータ(負荷)への放電に用いることができる。   (B) Also, by controlling the DC-DC converter, it is possible to switch between a boost state in which the voltage is boosted and a boost stop state in which the boost is stopped and the high capacity battery and the high output battery are connected in parallel. Therefore, charging / discharging between two batteries can be rapidly advanced. In particular, it is possible to carry out both charging / discharging (in the boosting state) in which current flows from the high-capacity battery to the high-power battery and charging / discharging (in boosting stop state) in which current flows from the high-power battery to the high-capacity battery. In the boost stop state, both the high-capacity battery and the high-power battery can be used for discharging to the motor (load), as in a general hybrid battery.

(c)昇圧手段として、DC−DCコンバータを使用する。したがって、容易に電池の電圧を受けて昇圧することができる。   (C) A DC-DC converter is used as the boosting means. Therefore, the voltage of the battery can be easily received and boosted.

(d)一般電池およびバイポーラ電池それぞれの特性を有効に利用した電源装置を構成することができる。したがって、並列接続された電池間での迅速な充放電が可能な高容量かつ高出力の電源装置を実現できる。   (D) A power supply device that effectively uses the characteristics of each of a general battery and a bipolar battery can be configured. Therefore, it is possible to realize a high-capacity and high-output power supply device that can quickly charge and discharge between batteries connected in parallel.

(e)高容量電池と高出力電池との間で充放電を迅速に進行させることができ、電池を昇温させることができる。さらには、電池を昇温させることにより、電池出力を向上させることができる。   (E) Charging / discharging can be rapidly advanced between the high capacity battery and the high output battery, and the battery can be heated. Furthermore, the battery output can be improved by raising the temperature of the battery.

(f)本実施の形態では、温度センサを用いて高容量電池および高出力電池の少なくとも一方の温度を検出する。また、検出した温度に基づいて、昇圧状態と昇圧停止状態を切り替えることにより、電池間での充放電が進行する。したがって、電池の温度に応じて、電池を昇温することができる。   (F) In this embodiment, the temperature sensor is used to detect the temperature of at least one of the high capacity battery and the high output battery. Moreover, charging / discharging between batteries advances by switching a pressure | voltage rise state and a pressure | voltage rise stop state based on the detected temperature. Therefore, the battery can be heated according to the temperature of the battery.

(g)また、検出した温度が所定値よりも低い場合、昇圧状態と昇圧停止状態を切り替える。昇圧状態と昇圧停止状態を切り替えることにより、電池間での充放電が進行する。したがって、低温時に、電池を昇温することができる。さらには、低温時の電池出力を向上させることができる。   (G) When the detected temperature is lower than the predetermined value, the boosting state and the boosting stop state are switched. By switching between the boosting state and the boosting stop state, charging / discharging between the batteries proceeds. Therefore, the battery can be heated at a low temperature. Furthermore, the battery output at low temperature can be improved.

(h)また、昇圧状態と昇圧停止状態を交互に切り替えることにより、電池間での充放電が繰り返し進行する。したがって、低温時に、比較的長時間に渡って電池を効果的に昇温することができる。さらには、低温時の電池出力を効果的に向上させることができる。   (H) Further, by alternately switching the boosting state and the boosting stop state, charging / discharging between the batteries repeatedly proceeds. Therefore, the temperature of the battery can be effectively raised for a relatively long time at a low temperature. Furthermore, battery output at low temperatures can be effectively improved.

(i)また、モータ起動時の外気温あるいは電池温度に応じて、電池温度の所定値を可変に設定することができ、無理なく電池を昇温させることができる。   (I) Moreover, the predetermined value of battery temperature can be set variably according to the outside air temperature or battery temperature at the time of starting the motor, and the battery can be raised without difficulty.

(第2の実施の形態)
第1の実施の形態では、低温時に電池を昇温する処理について述べた。本実施の形態では、高容量電池および高出力電池の充電量の差が大きい場合に電源装置の出力低下を防止する処理について述べる。ここで、充電量(SOC:State of Charge)とは、電池の定格容量に対して充電容量を比率で示した値であり、たとえば、満充電状態を100%、充電量ゼロの状態を0%で表示する。電源装置の出力の低下を防止する見地からは、高容量電池と高出力電池のSOCの差が小さい方が望ましい。本実施の形態の電源装置は、前述したSOCの差が大きい場合に、電池間に強制的に電位差を発生させることで、電池間での充放電を迅速に進行させて、SOCの均一化を図り、電源装置の出力低下を防止するものである。
(Second Embodiment)
In the first embodiment, the process of heating the battery at a low temperature has been described. In the present embodiment, a process for preventing a decrease in the output of the power supply apparatus when the difference between the charge amounts of the high capacity battery and the high output battery is large will be described. Here, the state of charge (SOC) is a value indicating the ratio of the charge capacity to the rated capacity of the battery. For example, the state of full charge is 100%, and the state of charge is zero is 0%. Is displayed. From the viewpoint of preventing the output of the power supply device from decreasing, it is desirable that the difference in SOC between the high-capacity battery and the high-power battery is small. The power supply device according to the present embodiment makes the SOC uniform by rapidly charging and discharging between the batteries by forcibly generating a potential difference between the batteries when the above-described SOC difference is large. This is intended to prevent a decrease in the output of the power supply device.

図9は、本発明の第2の実施の形態である電源装置の概略構成を示すブロック図である。電源装置100は、高容量電池110、高出力電池120、DC−DCコンバータ130、コントローラ140、およびSOC検出装置170を備える。なお、図中、図1に示すブロック図と同様の部材には同じ符号を用いた。また、第1の実施の形態における温度検出装置150および電流検出装置160の代わりに、SOC検出装置170が接続されている点、および、コントローラ140がSOC検出装置170からの信号に基づいてDC−DCコンバータ130を制御する点を除いては、本実施の形態における電源装置100、インバータ200、およびモータ300の構成は第1の実施の形態の場合と同様であるため、詳しい説明は省略する。   FIG. 9 is a block diagram showing a schematic configuration of a power supply device according to the second embodiment of the present invention. The power supply device 100 includes a high-capacity battery 110, a high-power battery 120, a DC-DC converter 130, a controller 140, and an SOC detection device 170. In the figure, the same reference numerals are used for the same members as those in the block diagram shown in FIG. Further, instead of the temperature detection device 150 and the current detection device 160 in the first embodiment, the SOC detection device 170 is connected, and the controller 140 is based on the signal from the SOC detection device 170 based on the DC−. Except for controlling the DC converter 130, the configuration of the power supply device 100, the inverter 200, and the motor 300 in the present embodiment is the same as that in the first embodiment, and detailed description thereof is omitted.

SOC検出装置170は、高容量電池110および高出力電池120にそれぞれ独立に取り付けられた電流センサを含むSOC検出手段であり、SOCは、電池110,120へ流れ込むあるいは電池110,120から流れ出る電流の積算により算出される。また、電流センサは、第1の実施の形態における電流検出装置160の電流センサと共通化できるため、本実施の形態においては、SOC検出装置170が第1の実施の形態における電流検出装置160の機能も果たす。   The SOC detection device 170 is an SOC detection means including current sensors that are independently attached to the high-capacity battery 110 and the high-power battery 120. The SOC is a current that flows into or out of the batteries 110 and 120. Calculated by integration. In addition, since the current sensor can be shared with the current sensor of the current detection device 160 in the first embodiment, in the present embodiment, the SOC detection device 170 is replaced by the current detection device 160 in the first embodiment. It also functions.

次に、図10を参照して、本実施の形態における電源装置の出力低下防止処理を説明する。図10は、本実施の形態において、電源装置の出力低下防止処理を示すフローチャートである。   Next, with reference to FIG. 10, the output reduction prevention process of the power supply device in the present embodiment will be described. FIG. 10 is a flowchart showing output reduction prevention processing of the power supply device in the present embodiment.

まず、SOC検出装置170は、高容量電池110のSOCを検出し、検出したSOCデータをコントローラ140へ送る(ステップS301)。同様に、SOC検出装置170は、高出力電池120のSOCを検出し、検出したSOCデータをコントローラ140へ送る(ステップS302)。そして、コントローラ140は、ステップS301およびステップS302で検出された高容量電池110および高出力電池120のSOCの差(以下、SOC差)を算出する(ステップS303)。   First, the SOC detection device 170 detects the SOC of the high-capacity battery 110, and sends the detected SOC data to the controller 140 (step S301). Similarly, SOC detection device 170 detects the SOC of high-power battery 120 and sends the detected SOC data to controller 140 (step S302). Then, the controller 140 calculates the difference between the SOCs of the high-capacity battery 110 and the high-power battery 120 detected in Steps S301 and S302 (hereinafter, SOC difference) (Step S303).

次に、ステップS303で算出されたSOC差と、所定のSOC差とが比較される(ステップS304)。ここで、所定のSOC差は、事前に設定される所定値である。算出されたSOC差が所定のSOC差未満であれば(ステップS304:NO)、処理は終了する。一方、算出されたSOC差が所定のSOC差以上であれば(ステップS304:YES)、算出されたSOC差が所定のSOC差未満になるまで、電池間での充放電処理(ステップS305)が繰り返される。すなわち、算出されたSOC差が所定のSOC差以上の間は、コントローラ140が昇圧状態と昇圧停止状態とを切り替えることによって、高容量電池110と高出力電池120との間での充放電を迅速に進行させる。より具体的には、図6に示されるとおり、昇圧状態と昇圧停止状態とが繰り返される。   Next, the SOC difference calculated in step S303 is compared with a predetermined SOC difference (step S304). Here, the predetermined SOC difference is a predetermined value set in advance. If the calculated SOC difference is less than the predetermined SOC difference (step S304: NO), the process ends. On the other hand, if the calculated SOC difference is greater than or equal to the predetermined SOC difference (step S304: YES), the charging / discharging process (step S305) between the batteries is performed until the calculated SOC difference becomes less than the predetermined SOC difference. Repeated. That is, while the calculated SOC difference is greater than or equal to the predetermined SOC difference, the controller 140 switches between the boosting state and the boosting stop state, thereby quickly charging / discharging between the high capacity battery 110 and the high output battery 120. Proceed to. More specifically, as shown in FIG. 6, the boosting state and the boosting stop state are repeated.

ここで、ステップS305の電池間での充放電処理は、前述のステップS104の電池間での充放電処理と同様であるため、詳しい説明は省略する。   Here, the charge / discharge process between the batteries in step S305 is the same as the charge / discharge process between the batteries in step S104 described above, and thus detailed description thereof is omitted.

以上のとおり、図10に示すフローチャートの処理が終了すると、高容量電池110および高出力電池120の充電量の差が大きい場合にも、高容量電池110と高出力電池120との間で充放電が迅速に進行し、電源装置100の出力低下を防止することができる。   As described above, when the processing of the flowchart shown in FIG. 10 is completed, charging / discharging between the high-capacity battery 110 and the high-power battery 120 is performed even when the charge amount difference between the high-capacity battery 110 and the high-power battery 120 is large. Can proceed quickly and prevent a decrease in the output of the power supply apparatus 100.

なお、本実施の形態では、昇圧処理と昇圧停止処理を繰り返し実行して、昇圧状態と昇圧停止状態を繰り返す場合が示された。しかしながら、昇圧処理と昇圧停止処理を1回のみ実行する場合でも、電源装置100の出力低下を防止することができる。   In the present embodiment, the case where the boosting process and the boosting stop process are repeatedly executed to repeat the boosting state and the boosting stop state is shown. However, even when the boosting process and the boosting stop process are executed only once, the output of the power supply device 100 can be prevented from being lowered.

さらに、本実施の形態では、高容量電池110および高出力電池120のSOCをそれぞれ検出し、これらの差を算出した。しかしながら、高出力電池120のSOCのみを検出し、前記SOCが所定のSOCよりも小さい場合に、高容量電池110と高出力電池120との間での充放電を迅速に進行させてもよい。   Further, in the present embodiment, the SOCs of high capacity battery 110 and high power battery 120 are detected, and the difference between them is calculated. However, only the SOC of the high-power battery 120 may be detected, and when the SOC is smaller than a predetermined SOC, charging / discharging between the high-capacity battery 110 and the high-power battery 120 may be advanced rapidly.

次に、本実施の形態の電源装置における作用効果を説明する。   Next, the effect of the power supply device of this embodiment will be described.

図11は、モータ300への放電により高出力電池120の電流が急激に低下した場合、電源装置100の出力低下を防止する効果を説明するための図である。具体的には、図11は、時間経過に応じた高出力電池120の出力電圧の変化を模式的に示したものである。図中の点線は、上記図8に示される比較例による高出力電池120の出力電圧の変化を表しており、実線は、本実施の形態による高出力電池120の出力電圧の変化を表している。また、図中の「放電」と記された期間は、高出力電池120からモータ300への放電により、高出力電池120の出力が低下している状態である。   FIG. 11 is a diagram for explaining an effect of preventing a decrease in the output of the power supply device 100 when the current of the high-power battery 120 is suddenly decreased due to the discharge to the motor 300. Specifically, FIG. 11 schematically shows a change in the output voltage of the high-power battery 120 over time. The dotted line in the figure represents the change in the output voltage of the high-power battery 120 according to the comparative example shown in FIG. 8, and the solid line represents the change in the output voltage of the high-power battery 120 according to the present embodiment. . Further, the period indicated as “discharge” in the figure is a state in which the output of the high-power battery 120 is reduced due to the discharge from the high-power battery 120 to the motor 300.

高出力電池120からモータ300への放電が発生した後の状態では、高容量電池110と高出力電池120との間には電位差が発生する。したがって、比較例でも、高容量電池110から高出力電池120へ電流が供給されて、高出力電池120の出力電圧は自然に回復する。しかしながら、本実施の形態と比べると、比較例では、二つの電池110,120間で発生する電位差が小さいため、高出力電池120の出力電圧が回復するには時間がかかる。   In a state after the discharge from the high-power battery 120 to the motor 300 occurs, a potential difference is generated between the high-capacity battery 110 and the high-power battery 120. Therefore, also in the comparative example, a current is supplied from the high capacity battery 110 to the high output battery 120, and the output voltage of the high output battery 120 naturally recovers. However, compared with the present embodiment, in the comparative example, since the potential difference generated between the two batteries 110 and 120 is small, it takes time to recover the output voltage of the high-power battery 120.

本実施の形態では、昇圧手段により、比較例よりも大きな電位差を二つの電池110,120間に発生させることができので、図11に示されるとおり、比較例の場合よりも短時間で高出力電池120の出力電圧が回復する。したがって、電源装置100全体でみても、出力電圧の低下が防止される。   In the present embodiment, the boosting means can generate a larger potential difference between the two batteries 110 and 120 than in the comparative example, and therefore, as shown in FIG. The output voltage of the battery 120 is restored. Accordingly, even when the power supply device 100 is viewed as a whole, a decrease in output voltage is prevented.

以上のとおり、説明した本実施の形態は、第1の実施の形態における効果(a)〜(d)に加えて、以下の効果を奏する。   As described above, the described embodiment has the following effects in addition to the effects (a) to (d) in the first embodiment.

(j)本実施の形態では、SOC検出手段を用いて高容量電池および高出力電池の少なくとも一方のSOCを検出する。また、検出したSOCに基づいて、昇圧状態と昇圧停止状態を切り替えることにより、電池間での充放電が進行する。したがって、電池のSOCに応じて、電源装置の出力低下を防止することができる。   (J) In the present embodiment, the SOC detection means is used to detect the SOC of at least one of the high capacity battery and the high output battery. Moreover, charging / discharging between batteries advances by switching a pressure | voltage rise state and a pressure | voltage rise stop state based on detected SOC. Therefore, it is possible to prevent a decrease in the output of the power supply device according to the SOC of the battery.

(k)また、高容量電池と高出力電池のSOCの差が所定値よりも大きい場合、昇圧状態と昇圧停止状態を切り替える。昇圧状態と昇圧停止状態を切り替えることにより、電池間での充放電が迅速に進行する。したがって、高容量電池と高出力電池のSOCの差が所定値よりも大きい場合、電源装置の出力低下を防止することができる。   (K) When the difference between the SOC of the high capacity battery and the high output battery is larger than a predetermined value, the boosting state and the boosting stop state are switched. By switching between the boosting state and the boosting stop state, charging / discharging between the batteries proceeds rapidly. Therefore, when the difference in SOC between the high-capacity battery and the high-power battery is larger than a predetermined value, it is possible to prevent the output of the power supply device from decreasing.

(l)高出力電池からモータへの放電によって高出力電池の出力が低下した場合、高容量電池から高出力電池に迅速に電流を供給することができる。したがって、高出力電池の出力低下を防止することができる。   (L) When the output of the high-power battery decreases due to the discharge from the high-power battery to the motor, it is possible to quickly supply current from the high-capacity battery to the high-power battery. Accordingly, it is possible to prevent the output of the high output battery from being lowered.

(第3の実施の形態)
本実施の形態は、本電源装置の高容量電池および高出力電池に対して、燃料電池を並列に接続した実施の形態である。
(Third embodiment)
In the present embodiment, fuel cells are connected in parallel to the high-capacity battery and the high-power battery of the power supply apparatus.

図12は、本発明の第3の実施の形態である電源装置の概略構成を示すブロック図である。図12に示すとおり、電源装置100の高容量電池110および高出力電池120に対して、燃料電池400が並列に接続されている。また、通常、高容量電池110および高出力電池120から燃料電池400には電流が流れ込まないように、ダイオード(不図示)などが取り付けられる。本実施の形態における電源装置100の構成は、燃料電池400が高容量電池110および高出力電池120に対して並列に接続されていることを除いては、第一の実施の形態の場合と同様であるため、詳しい説明は省略する。なお、図中、図1に示すブロック図と同様の部材には同じ符号を用いた。   FIG. 12 is a block diagram showing a schematic configuration of a power supply apparatus according to the third embodiment of the present invention. As shown in FIG. 12, the fuel cell 400 is connected in parallel to the high capacity battery 110 and the high output battery 120 of the power supply device 100. In general, a diode (not shown) or the like is attached so that current does not flow into the fuel cell 400 from the high-capacity battery 110 and the high-power battery 120. The configuration of power supply apparatus 100 in the present embodiment is the same as that in the first embodiment except that fuel cell 400 is connected in parallel to high capacity battery 110 and high output battery 120. Therefore, detailed description is omitted. In the figure, the same reference numerals are used for the same members as those in the block diagram shown in FIG.

本実施の形態では、燃料電池400は、モータ300へ電流を供給するとともに、電源装置100へも電流を供給することができる。言い換えれば、高容量電池110および高出力電池120は、燃料電池400から充電される。   In the present embodiment, fuel cell 400 can supply current to motor 300 and also supply current to power supply device 100. In other words, the high capacity battery 110 and the high power battery 120 are charged from the fuel cell 400.

また、燃料電池400は、リチウムイオン二次電池と同様に、低温時に出力が低下しやすい。そこで、本実施の形態においては、燃料電池400と高容量電池110および高出力電池120とを近接して配置することが望ましい。このようにすると、まず、モータ300起動時は、高容量電池110および高出力電池120からの電流の供給によりモータ300を駆動する。次に、高容量電池110および高出力電池120は、第1の実施の形態で説明したとおり、電池110,120間での充放電により昇温され、発熱する。したがって、昇温された高容量電池110および高出力電池120に近接配置される燃料電池400は、高容量電池110および高出力電池120からの熱を受けて昇温される。また、燃料電池400が十分に昇温されると、高容量電池110および高出力電池120から燃料電池400に切り替わって、燃料電池400からモータ300へ電流が供給される。さらに、モータ300が使用される状況に応じて、高容量電池110および高出力電池120と燃料電池400とを切り替えることもできる。   Further, the output of the fuel cell 400 is likely to decrease at a low temperature, similarly to the lithium ion secondary battery. Therefore, in the present embodiment, it is desirable that the fuel cell 400, the high-capacity battery 110, and the high-power battery 120 are arranged close to each other. If it does in this way, when motor 300 starts, first, motor 300 will be driven by supply of current from high capacity battery 110 and high output battery 120. Next, as described in the first embodiment, the high-capacity battery 110 and the high-power battery 120 are heated by charging / discharging between the batteries 110 and 120 and generate heat. Therefore, the fuel cell 400 disposed in proximity to the high-capacity battery 110 and the high-power battery 120 that have been heated is heated by receiving heat from the high-capacity battery 110 and the high-power battery 120. When the temperature of the fuel cell 400 is sufficiently raised, the high capacity battery 110 and the high power battery 120 are switched to the fuel cell 400, and current is supplied from the fuel cell 400 to the motor 300. Furthermore, the high-capacity battery 110, the high-power battery 120, and the fuel cell 400 can be switched according to the situation in which the motor 300 is used.

以上のとおり、説明した本実施の形態は、第1の実施の形態における効果(a)〜(d)に加えて、以下の効果を奏する。   As described above, the described embodiment has the following effects in addition to the effects (a) to (d) in the first embodiment.

(m)高容量電池および高出力電池に対して、燃料電池が並列に接続される。したがって、燃料電池が、高容量電池および高出力電池を充電することができる。   (M) A fuel cell is connected in parallel to the high capacity battery and the high output battery. Therefore, the fuel cell can charge the high capacity battery and the high output battery.

(n)また、高容量電池および高出力電池が、燃料電池と近接して配置される場合、低温時に、高容量電池および高出力電池からの発熱により、燃料電池を昇温させることができる。   (N) When the high-capacity battery and the high-power battery are arranged close to the fuel cell, the temperature of the fuel cell can be raised by heat generated from the high-capacity battery and the high-power battery at low temperatures.

(o)さらに、モータの使用状況に応じて、高容量電池110および高出力電池120と、燃料電池とを交互に切り替えて、モータへ電流を供給することができる。したがって、エネルギー効率を向上させることができる。   (O) Furthermore, the high-capacity battery 110, the high-power battery 120, and the fuel cell can be switched alternately according to the usage status of the motor, and current can be supplied to the motor. Therefore, energy efficiency can be improved.

(第4の実施の形態)
上述した第1〜第3の実施の形態では、高容量電池110として一般電池を使用し、高出力電池120としてバイポーラ電池を使用した。しかしながら、本発明は、これらに限られるものではない。本実施の形態は、図13に示されるように、高容量電池110と高出力電池120の組み合わせを変更したものである。なお、電池の組み合わせを除いては、第1〜第3の実施の形態と同様であるため、ブロック図は省略する。
(Fourth embodiment)
In the first to third embodiments described above, a general battery is used as the high capacity battery 110 and a bipolar battery is used as the high output battery 120. However, the present invention is not limited to these. In the present embodiment, as shown in FIG. 13, the combination of the high capacity battery 110 and the high output battery 120 is changed. Except for the combination of batteries, the block diagram is omitted because it is the same as the first to third embodiments.

(電極活物質層の厚さが異なる場合)
第1の組み合わせは、高出力電池120の電極上の電極活物質層が、高容量電池110の電極上の電極活物質層よりも薄く形成される場合の一例である。
(When the thickness of the electrode active material layer is different)
The first combination is an example in which the electrode active material layer on the electrode of the high-power battery 120 is formed thinner than the electrode active material layer on the electrode of the high-capacity battery 110.

ここで、上述した図2(A)を参照して、前記第1の組み合わせについて説明する。まず、上述したようにリチウムイオン二次電池の電極は、金属板111,115上に、それぞれ電極活物質層(正極活物質層112,負極活物質層114)が形成されてなる。前記電極活物質層には、リチウムイオンが蓄積されるため、電池の高容量化の見地からは、電極活物質層は厚い方が望ましい。一方、前記電極活物質層が厚くなると、電池の内部抵抗は大きくなるため、電池の高出力化の見地からは、電極活物質層は薄い方が望ましい。   Here, the first combination will be described with reference to FIG. First, as described above, the electrode of the lithium ion secondary battery is formed by forming the electrode active material layers (the positive electrode active material layer 112 and the negative electrode active material layer 114) on the metal plates 111 and 115, respectively. Since lithium ions are accumulated in the electrode active material layer, it is desirable that the electrode active material layer is thicker from the viewpoint of increasing the capacity of the battery. On the other hand, since the internal resistance of the battery increases as the electrode active material layer becomes thicker, it is desirable that the electrode active material layer is thinner from the viewpoint of increasing the output of the battery.

したがって、第1の組み合わせでは、高出力電池120の電極活物質層は、高容量電池110の電極活物質層よりも薄く形成される。なお、高容量電池110および高出力電池120の電極材料は同一であってもよい。たとえば、図13では、高容量電池110および高出電池120はともにリチウムイオン二次電池である。   Therefore, in the first combination, the electrode active material layer of the high power battery 120 is formed thinner than the electrode active material layer of the high capacity battery 110. The electrode materials of the high capacity battery 110 and the high power battery 120 may be the same. For example, in FIG. 13, both the high capacity battery 110 and the high output battery 120 are lithium ion secondary batteries.

(電極材料が異なる場合)
第2の組み合わせは、高容量電池110と高出力電池120の電極材料が異なる場合の一例である。図13では、たとえば、高容量電池110がニッケル水素電池であり、高出出力電池120がリチウムイオン電池である。
(When electrode materials are different)
The second combination is an example when the electrode materials of the high-capacity battery 110 and the high-power battery 120 are different. In FIG. 13, for example, the high capacity battery 110 is a nickel metal hydride battery, and the high output battery 120 is a lithium ion battery.

ニッケル水素電池は、リチウムイオン電池と同程度の容積あたりのエネルギー密度、すなわち容量が得られ、かつ、リチウムイオン電池よりも安価である。しかしながら、ニッケル水素電池の出力電圧は、リチウムイオン電池の出力電圧よりも小さいため、高出力化は得られにくい。したがって、比較的安価に高容量化が可能なニッケル水素電池の特性と、出力電圧が高く高出力化が可能なリチウムイオン電池の特性とを有効に利用して、本発明を実施することができる。   The nickel-metal hydride battery can obtain an energy density per unit volume, that is, a capacity comparable to that of a lithium ion battery, and is less expensive than a lithium ion battery. However, since the output voltage of the nickel metal hydride battery is smaller than the output voltage of the lithium ion battery, it is difficult to achieve high output. Therefore, the present invention can be implemented by effectively utilizing the characteristics of a nickel metal hydride battery capable of increasing the capacity relatively inexpensively and the characteristics of a lithium ion battery having a high output voltage and capable of increasing output. .

以上のとおり、説明した本実施の形態は、第1の実施の形態における効果(a)〜(d)に加えて、以下の効果を奏する。   As described above, the described embodiment has the following effects in addition to the effects (a) to (d) in the first embodiment.

(p)リチウムイオン電池を使用することにより、高出力な電源装置を提供することができる。   (P) By using a lithium ion battery, a high-output power supply device can be provided.

(q)電極活物質層の厚さが異なる場合では、電極活物質層の厚さを異ならせることにより、高容量電池と高出力電池を共に製造できる。また、本実施の形態の電源装置では、一般電池およびバイポーラ電池の両方を製造する必要がない。したがって、電池および電源装置の製造工程が簡略化される。   (Q) When the thicknesses of the electrode active material layers are different, both the high capacity battery and the high output battery can be manufactured by making the thicknesses of the electrode active material layers different. Moreover, in the power supply apparatus of this Embodiment, it is not necessary to manufacture both a general battery and a bipolar battery. Therefore, the manufacturing process of the battery and the power supply device is simplified.

(r)電極材料が異なる場合では、電極の構成、あるいは電極活物質層の厚さが同一であったとしても、高容量電池および高出力電池を製造することができる。特に、高容量電池にニッケル水素電池、高出力電池にリチウムイオン電池を用いる場合では、本電源装置の製造コストを抑えることができる。   (R) When the electrode materials are different, a high-capacity battery and a high-power battery can be manufactured even if the electrode configuration or the electrode active material layer thickness is the same. In particular, when a nickel metal hydride battery is used for the high-capacity battery and a lithium ion battery is used for the high-power battery, the manufacturing cost of the power supply device can be reduced.

(第5の実施の形態)
本実施の形態は、上記第1〜第4の実施の形態の電源装置が搭載されている車両の実施の形態である。
(Fifth embodiment)
The present embodiment is an embodiment of a vehicle on which the power supply device of the first to fourth embodiments is mounted.

図14は、本実施の形態の車両を示す図である。本実施の形態では、車両500は、上記第1〜第4の実施の形態で説明したとおり、電源装置100、インバータ200、およびモータ300を備える。図14では説明の簡便のため、インバータ200およびモータ300については表示を省略する。駆動輪に動力を与えるためのモータ300に、電源装置100から電流が供給される。その結果、駆動輪が回転し、車両500が走行する。   FIG. 14 is a diagram showing a vehicle according to the present embodiment. In the present embodiment, vehicle 500 includes power supply device 100, inverter 200, and motor 300 as described in the first to fourth embodiments. In FIG. 14, for simplicity of explanation, the display of the inverter 200 and the motor 300 is omitted. A current is supplied from the power supply device 100 to the motor 300 for supplying power to the drive wheels. As a result, the driving wheel rotates and the vehicle 500 travels.

低温環境に長時間停止していた車両500は、始動の際に、高容量電池110と高出力電池120との間で迅速に充放電が繰り返されることにより、短時間で電池110,120が昇温されて、安定的に走行可能な状態となる。また、走行時に加速および減速を繰り替えした場合においても、高容量電池110から高出力電池120に迅速に電流が供給されるため、電源装置100の出力は維持される。すなわち、加速状態が頻発し、高出力電池120のSOCが低下した場合にも、迅速にSOCの回復を図り、次の加速に備えることができる。   The vehicle 500 that has been stopped for a long time in a low-temperature environment is quickly charged and discharged between the high-capacity battery 110 and the high-power battery 120 at the time of starting, so that the batteries 110 and 120 rise in a short time. It is warmed and can run stably. Further, even when acceleration and deceleration are repeated during traveling, current is rapidly supplied from the high-capacity battery 110 to the high-power battery 120, so that the output of the power supply apparatus 100 is maintained. That is, even when the acceleration state occurs frequently and the SOC of the high-power battery 120 decreases, the SOC can be quickly recovered and prepared for the next acceleration.

以上のとおり、説明した本実施の形態は、第1〜第4の実施の形態における効果(a)〜(r)に加えて、以下の効果を奏する。   As described above, the described embodiment has the following effects in addition to the effects (a) to (r) in the first to fourth embodiments.

(s)本発明の電源装置を搭載した車両は、低温環境に長時間停車していた場合でも、始動の際に、短時間で電源装置が昇温される。したがって、短時間で安定的に走行可能な状態となる。   (S) In a vehicle equipped with the power supply device of the present invention, even when the vehicle is stopped in a low temperature environment for a long time, the temperature of the power supply device is raised in a short time when starting. Therefore, it will be in the state which can drive | work stably in a short time.

(t)本発明の電源装置を搭載した車両は、加速および減速を繰り返して、高出力電池の出力が低下した場合においても、高容量電池から高出力電池に電流が迅速に供給される。したがって、加速状態が頻発する場合においても、加速性能が低下しない。   (T) A vehicle equipped with the power supply device of the present invention repeatedly accelerates and decelerates, and even when the output of the high-power battery decreases, current is rapidly supplied from the high-capacity battery to the high-power battery. Therefore, even when the acceleration state occurs frequently, the acceleration performance does not deteriorate.

以上のとおり、第1〜第5の実施の形態において、本発明の電源装置を説明した。しかしながら、本発明は、その技術思想の範囲内において当業者が適宜に追加、変形、省略することができることはいうまでもない。   As described above, the power supply device of the present invention has been described in the first to fifth embodiments. However, it goes without saying that the present invention can be appropriately added, modified, and omitted by those skilled in the art within the scope of the technical idea.

たとえば、本実施の形態では、昇圧手段として、非絶縁型のチョッパー式DC−DCコンバータを使用した。しかしながら、昇圧手段としては、たとえば、絶縁型のDC−DCコンバータなどを使用してもよい。   For example, in this embodiment, a non-insulated chopper type DC-DC converter is used as the boosting means. However, for example, an insulation type DC-DC converter may be used as the boosting means.

また、本発明の第1の実施の形態と第2の実施の形態とを組み合わせて実行することもできる。図15は、第1の実施の形態と第2の実施の形態とを組み合わせた処理の一例を示すフローチャートである。   Also, the first embodiment and the second embodiment of the present invention can be executed in combination. FIG. 15 is a flowchart illustrating an example of processing in which the first embodiment and the second embodiment are combined.

図15のステップS401〜ステップS403およびステップS406は、図10のステップS301〜ステップS303およびステップS304にそれぞれ対応する。同様に、図15のステップS404、ステップS405およびステップS407は、図4のステップS101、ステップS102およびステップS103にそれぞれ対応する。また、図15のステップS408で示される電池間での充放電処理は、図5で示されるフローチャートの処理であるため、説明は省略する。図15の処理では、温度データおよび電流(SOC)データは並列に検出される。高容量電池110と高出力電池120のSOCの差が大きい場合(ステップS406:YES)、あるいは、低温時(ステップS407:YES)に、電池110,120間での充放電処理が実行される。   Steps S401 to S403 and S406 in FIG. 15 correspond to steps S301 to S303 and S304 in FIG. 10, respectively. Similarly, step S404, step S405, and step S407 in FIG. 15 correspond to step S101, step S102, and step S103 in FIG. 4, respectively. Further, the charge / discharge process between the batteries shown in step S408 of FIG. 15 is the process of the flowchart shown in FIG. In the process of FIG. 15, temperature data and current (SOC) data are detected in parallel. When the difference in SOC between the high-capacity battery 110 and the high-power battery 120 is large (step S406: YES), or when the temperature is low (step S407: YES), the charging / discharging process between the batteries 110 and 120 is executed.

また、第1の実施の形態と第2の実施の形態を組み合わせた処理の他の例として、第1の実施の形態と第2の実施の形態とを連続して実行することもできる。この場合、図4で示される第1の実施の形態のフローチャートの処理を実行後に、図10で示される第2の実施の形態のフローチャートの処理を実行してもよく、図10で示されるフローチャートの処理を実行後に、図4で示されるフローチャートの処理を実行してもよい。   In addition, as another example of processing in which the first embodiment and the second embodiment are combined, the first embodiment and the second embodiment can be executed in succession. In this case, after executing the processing of the flowchart of the first embodiment shown in FIG. 4, the processing of the flowchart of the second embodiment shown in FIG. 10 may be executed, and the flowchart shown in FIG. After executing the process, the process of the flowchart shown in FIG. 4 may be executed.

本発明の第1の実施の形態である電源装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the power supply device which is the 1st Embodiment of this invention. 図1に示される一般電池およびバイポーラ電池の構造を説明するための断面図である。It is sectional drawing for demonstrating the structure of the general battery and bipolar battery which are shown by FIG. 図1に示されるDC−DCコンバータの構成の一例を示す回路図である。It is a circuit diagram which shows an example of a structure of the DC-DC converter shown by FIG. 図1に示される電源装置における電池の昇温処理を示すフローチャートである。It is a flowchart which shows the temperature rising process of the battery in the power supply device shown by FIG. 図4のステップS104に示される電池間での充放電処理を示すフローチャートである。It is a flowchart which shows the charging / discharging process between the batteries shown by FIG.4 S104. 図1に示される高容量電池および高出力電池の電圧および電流の変化を示す図である。It is a figure which shows the change of the voltage and electric current of the high capacity | capacitance battery shown in FIG. 1, and a high output battery. 図1に示される電源装置による作用効果を説明するための図である。It is a figure for demonstrating the effect by the power supply device shown by FIG. 図1に示される電源装置の比較例として、一般的なハイブリッド電池を示すブロック図である。It is a block diagram which shows a general hybrid battery as a comparative example of the power supply device shown by FIG. 本発明の第2の実施の形態である電源装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the power supply device which is the 2nd Embodiment of this invention. 図9に示される電源装置における電池の出力低下防止処理を示すフローチャートである。It is a flowchart which shows the output fall prevention process of the battery in the power supply device shown by FIG. 図9に示される電源装置による作用効果を説明するための図である。It is a figure for demonstrating the effect by the power supply device shown by FIG. 本発明の第3の実施の形態である電源装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the power supply device which is the 3rd Embodiment of this invention. 本発明の第4の実施の形態である電源装置における高容量電池および高出力電池の組み合わせの例を示す図である。It is a figure which shows the example of the combination of the high capacity battery and the high output battery in the power supply device which is the 4th Embodiment of this invention. 本発明の第5の実施の形態である車両を示す図である。It is a figure which shows the vehicle which is the 5th Embodiment of this invention. 図4および図10に示されるフローチャートの処理を組み合わせて、電池間での充放電を進行させる処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which advances the charging / discharging between batteries combining the process of the flowchart shown by FIG. 4 and FIG.

符号の説明Explanation of symbols

100 電源装置、
110 高容量電池(第1の電池)、
120 高出力電池(第2の電池)、
130 DC−DCコンバータ(昇圧手段)、
140 コントローラ(制御手段)、
150 温度検出装置(温度検出手段)、
160 電流検出装置、
170 SOC検出装置(充電量検出手段)、
200 インバータ、
300 モータ、
400 燃料電池、
500 車両。
100 power supply,
110 high capacity battery (first battery),
120 high power battery (second battery),
130 DC-DC converter (boosting means),
140 controller (control means),
150 temperature detection device (temperature detection means),
160 current detection device,
170 SOC detection device (charge amount detection means),
200 inverter,
300 motor,
400 fuel cell,
500 vehicles.

Claims (14)

第1の電池と、前記第1の電池よりも内部抵抗および容量が小さい第2の電池とが、前記第1の電池の電圧を受けて昇圧した電圧を前記第2の電池に加える昇圧手段を介して、並列に接続されることを特徴とする電源装置。   Boosting means for applying, to the second battery, a voltage boosted by the first battery and a second battery having a smaller internal resistance and capacity than the first battery by receiving the voltage of the first battery. And a power supply device connected in parallel. 前記昇圧手段によって電圧を昇圧する昇圧状態と、昇圧を停止して前記第1および第2の電池を並列接続する昇圧停止状態とを切り替える制御手段を有することを特徴とする請求項1に記載の電源装置。   2. The control unit according to claim 1, further comprising a control unit that switches between a boosting state in which the voltage is boosted by the boosting unit and a boosting stop state in which the boosting is stopped and the first and second batteries are connected in parallel. Power supply. 前記第1および第2の電池の少なくとも一方の温度を検出する温度検出手段を有し、
前記制御手段は、前記温度検出手段が検出する温度に基づいて、前記昇圧状態と前記昇圧停止状態とを切り替えることを特徴とする請求項1に記載の電源装置。
Temperature detecting means for detecting the temperature of at least one of the first and second batteries;
The power supply apparatus according to claim 1, wherein the control unit switches between the boosting state and the boosting stop state based on a temperature detected by the temperature detecting unit.
前記制御手段は、前記温度検出手段が検出する前記第1または第2の電池の温度が所定値よりも低い場合、前記昇圧状態と前記昇圧停止状態とを切り替えることを特徴とする請求項3に記載の電源装置。   The said control means switches the said pressure | voltage rise state and the said pressure | voltage rise stop state, when the temperature of the said 1st or 2nd battery which the said temperature detection means detects is lower than predetermined value. The power supply described. 前記制御手段は、前記昇圧状態と前記昇圧停止状態とを交互に切り替えることを特徴とする請求項4に記載の電源装置。   The power supply apparatus according to claim 4, wherein the control unit alternately switches between the boosting state and the boosting stop state. 前記第1および第2電池の少なくとも一方の充電量を検出する充電量検出手段を有し、
前記制御手段は、前記充電量検出手段が検出する充電量に基づいて、前記昇圧状態と前記昇圧停止状態とを切り替えることを特徴とする請求項1に記載の電源装置。
Charge amount detecting means for detecting a charge amount of at least one of the first and second batteries;
The power supply apparatus according to claim 1, wherein the control unit switches between the boosting state and the boosting stop state based on a charge amount detected by the charge amount detection unit.
前記制御手段は、前記充電量検出手段が検出する前記第1および第2の電池の充電量の差が所定値よりも大きい場合、前記昇圧状態と前記昇圧停止状態とを切り替えることを特徴とする請求項6に記載の電源装置。   The control unit switches between the boosting state and the boosting stop state when a difference between the charging amounts of the first and second batteries detected by the charging amount detection unit is larger than a predetermined value. The power supply device according to claim 6. 前記第1の電池は、正極活物質層を形成した正極と、負極活物質層を形成した負極とを、電解質層を介して積層した一般電池であり、
前記第2の電池は、一枚の集電体の一方の面に正極活物質層を形成し、他方の面に負極活物質層を形成したバイポーラ電極を、電解質層を介して複数積層したバイポーラ電池であることを特徴とする請求項1に記載の電源装置。
The first battery is a general battery in which a positive electrode in which a positive electrode active material layer is formed and a negative electrode in which a negative electrode active material layer is formed are stacked via an electrolyte layer,
The second battery is a bipolar battery in which a plurality of bipolar electrodes each having a positive electrode active material layer formed on one surface of a current collector and a negative electrode active material layer formed on the other surface are disposed via an electrolyte layer. The power supply device according to claim 1, wherein the power supply device is a battery.
前記第2の電池は、前記第1の電池よりも、電極上の電極活物質層が薄く形成されることを特徴とする請求項1に記載の電源装置。   2. The power supply device according to claim 1, wherein an electrode active material layer on an electrode of the second battery is formed thinner than the first battery. 前記第1および第2の電池は、リチウムイオン電池であることを特徴とする請求項8または請求項9のいずれか一つに記載の電源装置。   The power supply device according to claim 8, wherein the first and second batteries are lithium ion batteries. 前記第1の電池は、ニッケル水素電池であり、前記第2の電池は、リチウムイオン電池であることを特徴とする請求項1に記載の電源装置。   2. The power supply device according to claim 1, wherein the first battery is a nickel metal hydride battery, and the second battery is a lithium ion battery. さらに、前記第1および第2の電池に対して、燃料電池を並列に接続したことを特徴とする請求項1に記載の電源装置。   The power supply apparatus according to claim 1, further comprising a fuel cell connected in parallel to the first and second batteries. 前記昇圧手段は、DC−DCコンバータであることを特徴とする請求項1〜請求項12のいずれか一つに記載の電源装置。   The power supply apparatus according to claim 1, wherein the boosting unit is a DC-DC converter. 請求項1〜請求項13のいずれか一つに記載の電源装置を搭載した車両。   A vehicle equipped with the power supply device according to any one of claims 1 to 13.
JP2004309959A 2004-10-25 2004-10-25 Power supply device and vehicle equipped with the same Expired - Fee Related JP4400414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309959A JP4400414B2 (en) 2004-10-25 2004-10-25 Power supply device and vehicle equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309959A JP4400414B2 (en) 2004-10-25 2004-10-25 Power supply device and vehicle equipped with the same

Publications (2)

Publication Number Publication Date
JP2006121874A true JP2006121874A (en) 2006-05-11
JP4400414B2 JP4400414B2 (en) 2010-01-20

Family

ID=36539227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309959A Expired - Fee Related JP4400414B2 (en) 2004-10-25 2004-10-25 Power supply device and vehicle equipped with the same

Country Status (1)

Country Link
JP (1) JP4400414B2 (en)

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013011A1 (en) * 2006-07-25 2008-01-31 Toyota Jidosha Kabushiki Kaisha Power system and vehicle having same, method for controlling temperature rise of power storage device, and computer-readable recording medium on which program for allowing computer to execute temperature rise control of power storage device is recorded
WO2008015857A1 (en) * 2006-07-31 2008-02-07 Toyota Jidosha Kabushiki Kaisha Power source system and vehicle having the system, method for conrolling temperature rise of electricity accumulation device, and computer-readable recording medium including recorded program for causing computer to execute control of temperature rise of electricity accumulation device
WO2008029564A1 (en) * 2006-09-04 2008-03-13 Toyota Jidosha Kabushiki Kaisha Power system, vehicle having the same, temperature rise control method of power storage device, and computer-readable recording medium containing program for allowing computer to execute temperature rise control of power storage device
JP2008109756A (en) * 2006-10-24 2008-05-08 Toyota Motor Corp Power supply system and vehicle equipped with the same, control method of the power supply system, and computer-readable recording medium stored with program for making computer implement control method of the power supply system
JP2008109778A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Apparatus and method for controlling power supply unit, program for making computer implement method, and recording medium with program recorded thereon
WO2008056818A1 (en) * 2006-11-08 2008-05-15 Toyota Jidosha Kabushiki Kaisha Electric vehicle and method of controlling voltage conversion device
WO2008059979A1 (en) * 2006-11-13 2008-05-22 Toyota Jidosha Kabushiki Kaisha Electric power feeding system
JP2008178287A (en) * 2006-12-04 2008-07-31 Samsung Sdi Co Ltd Hybrid power supply device, control method thereof, electronic equipment, and recording medium
JP2010178506A (en) * 2009-01-29 2010-08-12 Equos Research Co Ltd Battery hybrid system and method of using same
WO2010095292A1 (en) * 2009-02-23 2010-08-26 株式会社村田製作所 Battery module
CN102933420A (en) * 2009-11-05 2013-02-13 丰田自动车株式会社 Vehicular electric power unit and method of controlling same
WO2013038441A1 (en) * 2011-09-13 2013-03-21 トヨタ自動車株式会社 Vehicle battery system and method for controlling same
JP2013077452A (en) * 2011-09-30 2013-04-25 Toyota Central R&D Labs Inc Power supply system
JP2013085413A (en) * 2011-10-12 2013-05-09 Toyota Motor Corp Electric vehicle
JP2013085390A (en) * 2011-10-11 2013-05-09 Toyota Central R&D Labs Inc Power supply system
JP2013233002A (en) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp Power storage system and method of controlling charge/discharge thereof
US20140111121A1 (en) * 2012-10-19 2014-04-24 Yi-Tsung Wu Battery configuration for an electric vehicle
JP2014082857A (en) * 2012-10-16 2014-05-08 Toyota Motor Corp Power supply device for vehicle
WO2014119049A1 (en) * 2013-01-29 2014-08-07 日立オートモティブシステムズ株式会社 Battery control device
WO2014184861A1 (en) * 2013-05-14 2014-11-20 株式会社日立製作所 Battery system, mobile body and power storage system provided with battery system, and control method for battery system
JP2014238966A (en) * 2013-06-07 2014-12-18 住友電気工業株式会社 Power supply unit, electric propulsion vehicle, and heating method for secondary cell
WO2015046531A1 (en) * 2013-09-30 2015-04-02 日本電気株式会社 Lithium ion secondary battery system
US9124085B2 (en) 2013-11-04 2015-09-01 Gogoro Inc. Apparatus, method and article for power storage device failure safety
US9129461B2 (en) 2011-07-26 2015-09-08 Gogoro Inc. Apparatus, method and article for collection, charging and distributing power storage devices, such as batteries
US9176680B2 (en) 2011-07-26 2015-11-03 Gogoro Inc. Apparatus, method and article for providing vehicle diagnostic data
US9216687B2 (en) 2012-11-16 2015-12-22 Gogoro Inc. Apparatus, method and article for vehicle turn signals
US9275505B2 (en) 2011-07-26 2016-03-01 Gogoro Inc. Apparatus, method and article for physical security of power storage devices in vehicles
US9390566B2 (en) 2013-11-08 2016-07-12 Gogoro Inc. Apparatus, method and article for providing vehicle event data
US9407024B2 (en) 2014-08-11 2016-08-02 Gogoro Inc. Multidirectional electrical connector, plug and system
US9424697B2 (en) 2011-07-26 2016-08-23 Gogoro Inc. Apparatus, method and article for a power storage device compartment
US9437058B2 (en) 2011-07-26 2016-09-06 Gogoro Inc. Dynamically limiting vehicle operation for best effort economy
WO2017003218A1 (en) * 2015-06-30 2017-01-05 Samsung Electronics Co., Ltd. Method for controlling multiple batteries and electronic device for implementing same
US9552682B2 (en) 2011-07-26 2017-01-24 Gogoro Inc. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
JP2017085755A (en) * 2015-10-27 2017-05-18 本田技研工業株式会社 Power storage device, transportation device and control method
JP2017083268A (en) * 2015-10-27 2017-05-18 本田技研工業株式会社 Power storage device, transport machine, and control method
JP2017085819A (en) * 2015-10-29 2017-05-18 本田技研工業株式会社 Energy storage system, transporter, and control method
USD789883S1 (en) 2014-09-04 2017-06-20 Gogoro Inc. Collection, charging and distribution device for portable electrical energy storage devices
JP2017125699A (en) * 2016-01-12 2017-07-20 本田技研工業株式会社 Power storage device, transport apparatus and control method
WO2017130080A1 (en) * 2016-01-29 2017-08-03 株式会社半導体エネルギー研究所 Electric power control system
EP2043244A4 (en) * 2006-07-18 2017-08-30 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle using the same, accumulator temperature increase control method, and computer-readable recording medium containing a program for causing a computer to execute the accumulator temperature increase control
US9770996B2 (en) 2013-08-06 2017-09-26 Gogoro Inc. Systems and methods for powering electric vehicles using a single or multiple power cells
US9830753B2 (en) 2011-07-26 2017-11-28 Gogoro Inc. Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
US9837842B2 (en) 2014-01-23 2017-12-05 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
CN107719175A (en) * 2017-11-17 2018-02-23 北京市亿微科技有限公司 Detection method and charge-discharge system based on charging station with high power D C/DC power supplys
US9911252B2 (en) 2011-07-26 2018-03-06 Gogoro Inc. Apparatus, method and article for providing to a user device information regarding availability of portable electrical energy storage devices at a portable electrical energy storage device collection, charging and distribution machine
TWI629184B (en) * 2013-10-18 2018-07-11 睿能創意公司 Power delivery system for a vehicle and operation method thereof
WO2018128119A1 (en) * 2017-01-05 2018-07-12 株式会社ソニー・インタラクティブエンタテインメント Electric device
US10055911B2 (en) 2011-07-26 2018-08-21 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries, based on user profiles
US10065525B2 (en) 2013-08-06 2018-09-04 Gogoro Inc. Adjusting electric vehicle systems based on an electrical energy storage device thermal profile
DE102017206473A1 (en) * 2017-04-13 2018-10-18 Bayerische Motoren Werke Aktiengesellschaft Electrically powered vehicle with different energy storage units
US10186094B2 (en) 2011-07-26 2019-01-22 Gogoro Inc. Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
US10209090B2 (en) 2011-07-26 2019-02-19 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries
US10421462B2 (en) 2015-06-05 2019-09-24 Gogoro Inc. Systems and methods for vehicle load detection and response
EP3576276A1 (en) * 2009-07-31 2019-12-04 Thermo King Corporation Bi-directional battery voltage converter
JP2020522841A (en) * 2017-05-26 2020-07-30 キティー・ホーク・コーポレーションKitty Hawk Corporation Electric transportation equipment hybrid battery system
CN111816938A (en) * 2020-07-06 2020-10-23 安徽恒明工程技术有限公司 Gradient utilization method for retired battery
CN112606737A (en) * 2021-01-05 2021-04-06 连云港伟晟新能源电动汽车有限公司 New energy electric vehicle power supply control method
US11075530B2 (en) 2013-03-15 2021-07-27 Gogoro Inc. Modular system for collection and distribution of electric storage devices
US11097839B2 (en) 2019-10-09 2021-08-24 Kitty Hawk Corporation Hybrid power systems for different modes of flight
US11222485B2 (en) 2013-03-12 2022-01-11 Gogoro Inc. Apparatus, method and article for providing information regarding a vehicle via a mobile device
CN114379382A (en) * 2020-10-16 2022-04-22 郑州宇通客车股份有限公司 Dual-power system passenger car and charging method thereof
WO2022254580A1 (en) * 2021-06-01 2022-12-08 三菱電機株式会社 Power system stabilization system
US11655024B1 (en) 2022-05-25 2023-05-23 Kitty Hawk Corporation Battery systems with power optimized energy source and energy storage optimized source
US11710105B2 (en) 2013-03-12 2023-07-25 Gogoro Inc. Apparatus, method and article for changing portable electrical power storage device exchange plans

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132626A1 (en) * 2014-03-03 2015-09-11 Robert Bosch (Sea) Pte. Ltd. Hybird storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158012A (en) * 1974-06-10 1975-12-20
JPH11332023A (en) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd Battery for electric vehicle
JP2004224267A (en) * 2003-01-24 2004-08-12 Toyota Motor Corp Power supply system for vehicle, and bidirectional dc/dc converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158012A (en) * 1974-06-10 1975-12-20
JPH11332023A (en) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd Battery for electric vehicle
JP2004224267A (en) * 2003-01-24 2004-08-12 Toyota Motor Corp Power supply system for vehicle, and bidirectional dc/dc converter

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043244A4 (en) * 2006-07-18 2017-08-30 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle using the same, accumulator temperature increase control method, and computer-readable recording medium containing a program for causing a computer to execute the accumulator temperature increase control
JP4535039B2 (en) * 2006-07-25 2010-09-01 トヨタ自動車株式会社 Power supply system, vehicle equipped with the same, power storage device temperature rise control method, and computer-readable recording medium storing a program for causing a computer to execute power storage device temperature rise control
JP2008029171A (en) * 2006-07-25 2008-02-07 Toyota Motor Corp Power supply system and vehicle equipped with the same, temperature rise control method for battery device, and computer-readable recording medium with program recorded thereon for making computer execute temperature rise control of battery device
WO2008013011A1 (en) * 2006-07-25 2008-01-31 Toyota Jidosha Kabushiki Kaisha Power system and vehicle having same, method for controlling temperature rise of power storage device, and computer-readable recording medium on which program for allowing computer to execute temperature rise control of power storage device is recorded
KR101052603B1 (en) * 2006-07-25 2011-07-29 도요타 지도샤(주) A computer-readable recording medium storing a power supply system and a vehicle having the same, a method for controlling temperature rise of a power storage device, and a program for causing the computer to perform temperature rise control of a power storage device.
US7888811B2 (en) 2006-07-25 2011-02-15 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same, temperature rise control method of power storage device and computer-readable recording medium bearing program for executing computer to perform temperature rise control of power supply device
WO2008015857A1 (en) * 2006-07-31 2008-02-07 Toyota Jidosha Kabushiki Kaisha Power source system and vehicle having the system, method for conrolling temperature rise of electricity accumulation device, and computer-readable recording medium including recorded program for causing computer to execute control of temperature rise of electricity accumulation device
JP2008061487A (en) * 2006-07-31 2008-03-13 Toyota Motor Corp Power supply system and vehicle equipped with the same, method for controlling temperature rise of power storage apparatus, and computer-readable recording medium with program for making computer execute temperature rise control of the power storage apparatus stored
US7911077B2 (en) 2006-07-31 2011-03-22 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle provided with the same, temperature rise control method of power storage device, and computer-readable recording medium with program recorded thereon for causing computer to execute temperature rise control of power storage device
WO2008029564A1 (en) * 2006-09-04 2008-03-13 Toyota Jidosha Kabushiki Kaisha Power system, vehicle having the same, temperature rise control method of power storage device, and computer-readable recording medium containing program for allowing computer to execute temperature rise control of power storage device
JP2008060047A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Power supply system and vehicle equipped with it, and temperature elevation control method of power storage device, as well as recording medium readable by computer recording program in order to carry out temperature elevation control of power storage device
US8035252B2 (en) 2006-09-04 2011-10-11 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same, temperature increase control method for power storage device and computer-readable recording medium bearing program for causing computer to execute temperature increase control of power storage device
JP2008109756A (en) * 2006-10-24 2008-05-08 Toyota Motor Corp Power supply system and vehicle equipped with the same, control method of the power supply system, and computer-readable recording medium stored with program for making computer implement control method of the power supply system
US7989978B2 (en) 2006-10-24 2011-08-02 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same, control method of power supply system and computer-readable recording medium bearing program causing computer to execute control method of power supply system
JP4656042B2 (en) * 2006-10-24 2011-03-23 トヨタ自動車株式会社 POWER SUPPLY SYSTEM AND VEHICLE HAVING THE SAME, POWER SUPPLY SYSTEM CONTROL METHOD, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE POWER SUPPLY SYSTEM CONTROL METHOD
JP2008109778A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Apparatus and method for controlling power supply unit, program for making computer implement method, and recording medium with program recorded thereon
US8188710B2 (en) 2006-11-08 2012-05-29 Toyota Jidosha Kabushiki Kaisha Motored vehicle and method of controlling voltage conversion device for rapidly charging a power storage device
WO2008056818A1 (en) * 2006-11-08 2008-05-15 Toyota Jidosha Kabushiki Kaisha Electric vehicle and method of controlling voltage conversion device
JP2008125257A (en) * 2006-11-13 2008-05-29 Toyota Motor Corp Power supply system
WO2008059979A1 (en) * 2006-11-13 2008-05-22 Toyota Jidosha Kabushiki Kaisha Electric power feeding system
JP2008178287A (en) * 2006-12-04 2008-07-31 Samsung Sdi Co Ltd Hybrid power supply device, control method thereof, electronic equipment, and recording medium
JP2010178506A (en) * 2009-01-29 2010-08-12 Equos Research Co Ltd Battery hybrid system and method of using same
WO2010095292A1 (en) * 2009-02-23 2010-08-26 株式会社村田製作所 Battery module
JPWO2010095292A1 (en) * 2009-02-23 2012-08-16 株式会社村田製作所 Battery module
EP3576276A1 (en) * 2009-07-31 2019-12-04 Thermo King Corporation Bi-directional battery voltage converter
CN102933420A (en) * 2009-11-05 2013-02-13 丰田自动车株式会社 Vehicular electric power unit and method of controlling same
US10345843B2 (en) 2011-07-26 2019-07-09 Gogoro Inc. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
US9552682B2 (en) 2011-07-26 2017-01-24 Gogoro Inc. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
US9437058B2 (en) 2011-07-26 2016-09-06 Gogoro Inc. Dynamically limiting vehicle operation for best effort economy
US9424697B2 (en) 2011-07-26 2016-08-23 Gogoro Inc. Apparatus, method and article for a power storage device compartment
US11139684B2 (en) 2011-07-26 2021-10-05 Gogoro Inc. Apparatus, method and article for a power storage device compartment
US10573103B2 (en) 2011-07-26 2020-02-25 Gogoro Inc. Apparatus, method and article for physical security of power storage devices in vehicles
US10546438B2 (en) 2011-07-26 2020-01-28 Gogoro Inc. Apparatus, method and article for providing vehicle diagnostic data
US10529151B2 (en) 2011-07-26 2020-01-07 Gogoro Inc. Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
US9830753B2 (en) 2011-07-26 2017-11-28 Gogoro Inc. Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
US10459471B2 (en) 2011-07-26 2019-10-29 Gorogo Inc. Apparatus, method and article for collection, charging and distributing power storage devices, such as batteries
US9908506B2 (en) 2011-07-26 2018-03-06 Gogoro Inc. Apparatus, method and article for physical security of power storage devices in vehicles
US11772493B2 (en) 2011-07-26 2023-10-03 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries
US10209090B2 (en) 2011-07-26 2019-02-19 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries
US10186094B2 (en) 2011-07-26 2019-01-22 Gogoro Inc. Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
US10055911B2 (en) 2011-07-26 2018-08-21 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries, based on user profiles
US9129461B2 (en) 2011-07-26 2015-09-08 Gogoro Inc. Apparatus, method and article for collection, charging and distributing power storage devices, such as batteries
US9176680B2 (en) 2011-07-26 2015-11-03 Gogoro Inc. Apparatus, method and article for providing vehicle diagnostic data
US9911252B2 (en) 2011-07-26 2018-03-06 Gogoro Inc. Apparatus, method and article for providing to a user device information regarding availability of portable electrical energy storage devices at a portable electrical energy storage device collection, charging and distribution machine
US9275505B2 (en) 2011-07-26 2016-03-01 Gogoro Inc. Apparatus, method and article for physical security of power storage devices in vehicles
US8884461B2 (en) 2011-09-13 2014-11-11 Toyota Jidosha Kabushiki Kaisha Battery system for vehicle and control method thereof
WO2013038441A1 (en) * 2011-09-13 2013-03-21 トヨタ自動車株式会社 Vehicle battery system and method for controlling same
JP5321742B1 (en) * 2011-09-13 2013-10-23 トヨタ自動車株式会社 Vehicle battery system and control method thereof
CN103222148A (en) * 2011-09-13 2013-07-24 丰田自动车株式会社 Vehicle battery system and method for controlling same
JP2013077452A (en) * 2011-09-30 2013-04-25 Toyota Central R&D Labs Inc Power supply system
JP2013085390A (en) * 2011-10-11 2013-05-09 Toyota Central R&D Labs Inc Power supply system
JP2013085413A (en) * 2011-10-12 2013-05-09 Toyota Motor Corp Electric vehicle
JP2013233002A (en) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp Power storage system and method of controlling charge/discharge thereof
JP2014082857A (en) * 2012-10-16 2014-05-08 Toyota Motor Corp Power supply device for vehicle
US10011184B2 (en) 2012-10-16 2018-07-03 Toyota Jidosha Kabushiki Kaisha Power supply system for vehicle
US20140111121A1 (en) * 2012-10-19 2014-04-24 Yi-Tsung Wu Battery configuration for an electric vehicle
US11639116B2 (en) 2012-10-19 2023-05-02 Gogoro Inc. Battery configuration for an electric vehicle
US10035428B2 (en) 2012-10-19 2018-07-31 Gogoro Inc. Battery configuration for an electric vehicle
WO2014063065A1 (en) * 2012-10-19 2014-04-24 Gogoro, Inc. Battery configuration for an electric vehicle
US9381826B2 (en) 2012-10-19 2016-07-05 Gogoro Inc. Battery configuration for an electric vehicle
US9216687B2 (en) 2012-11-16 2015-12-22 Gogoro Inc. Apparatus, method and article for vehicle turn signals
WO2014119049A1 (en) * 2013-01-29 2014-08-07 日立オートモティブシステムズ株式会社 Battery control device
JP2014147197A (en) * 2013-01-29 2014-08-14 Hitachi Automotive Systems Ltd Battery control device
US11710105B2 (en) 2013-03-12 2023-07-25 Gogoro Inc. Apparatus, method and article for changing portable electrical power storage device exchange plans
US11222485B2 (en) 2013-03-12 2022-01-11 Gogoro Inc. Apparatus, method and article for providing information regarding a vehicle via a mobile device
US11075530B2 (en) 2013-03-15 2021-07-27 Gogoro Inc. Modular system for collection and distribution of electric storage devices
WO2014184861A1 (en) * 2013-05-14 2014-11-20 株式会社日立製作所 Battery system, mobile body and power storage system provided with battery system, and control method for battery system
JP2014238966A (en) * 2013-06-07 2014-12-18 住友電気工業株式会社 Power supply unit, electric propulsion vehicle, and heating method for secondary cell
US9770996B2 (en) 2013-08-06 2017-09-26 Gogoro Inc. Systems and methods for powering electric vehicles using a single or multiple power cells
US10065525B2 (en) 2013-08-06 2018-09-04 Gogoro Inc. Adjusting electric vehicle systems based on an electrical energy storage device thermal profile
JPWO2015046531A1 (en) * 2013-09-30 2017-03-09 日本電気株式会社 Lithium ion secondary battery system
WO2015046531A1 (en) * 2013-09-30 2015-04-02 日本電気株式会社 Lithium ion secondary battery system
US9742041B2 (en) 2013-09-30 2017-08-22 Nec Corporation Lithium ion secondary battery system
TWI629184B (en) * 2013-10-18 2018-07-11 睿能創意公司 Power delivery system for a vehicle and operation method thereof
US9124085B2 (en) 2013-11-04 2015-09-01 Gogoro Inc. Apparatus, method and article for power storage device failure safety
US9390566B2 (en) 2013-11-08 2016-07-12 Gogoro Inc. Apparatus, method and article for providing vehicle event data
US10467827B2 (en) 2013-11-08 2019-11-05 Gogoro Inc. Apparatus, method and article for providing vehicle event data
US9837842B2 (en) 2014-01-23 2017-12-05 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
US9407024B2 (en) 2014-08-11 2016-08-02 Gogoro Inc. Multidirectional electrical connector, plug and system
USD789883S1 (en) 2014-09-04 2017-06-20 Gogoro Inc. Collection, charging and distribution device for portable electrical energy storage devices
US10421462B2 (en) 2015-06-05 2019-09-24 Gogoro Inc. Systems and methods for vehicle load detection and response
US10211652B2 (en) 2015-06-30 2019-02-19 Samsung Electronics Co., Ltd. Method for controlling multiple batteries and electronic device for implementing same
WO2017003218A1 (en) * 2015-06-30 2017-01-05 Samsung Electronics Co., Ltd. Method for controlling multiple batteries and electronic device for implementing same
CN106329614A (en) * 2015-06-30 2017-01-11 三星电子株式会社 Method for controlling multiple batteries and electronic device for implementing same
CN106329614B (en) * 2015-06-30 2021-06-01 三星电子株式会社 Method for controlling a plurality of batteries and electronic device for implementing the method
JP2017083268A (en) * 2015-10-27 2017-05-18 本田技研工業株式会社 Power storage device, transport machine, and control method
JP2017085755A (en) * 2015-10-27 2017-05-18 本田技研工業株式会社 Power storage device, transportation device and control method
JP2017085819A (en) * 2015-10-29 2017-05-18 本田技研工業株式会社 Energy storage system, transporter, and control method
JP2017125699A (en) * 2016-01-12 2017-07-20 本田技研工業株式会社 Power storage device, transport apparatus and control method
JPWO2017130080A1 (en) * 2016-01-29 2019-01-31 株式会社半導体エネルギー研究所 Power control system
US11951769B2 (en) 2016-01-29 2024-04-09 Semiconductor Energy Laboratory Co., Ltd. Electric power control system
WO2017130080A1 (en) * 2016-01-29 2017-08-03 株式会社半導体エネルギー研究所 Electric power control system
US11201477B2 (en) 2017-01-05 2021-12-14 Sony Interactive Entertainmnt Inc. Electric device for supplying multiple power outputs and recharging multiple supply batteries having different operating voltages
WO2018128119A1 (en) * 2017-01-05 2018-07-12 株式会社ソニー・インタラクティブエンタテインメント Electric device
DE102017206473A1 (en) * 2017-04-13 2018-10-18 Bayerische Motoren Werke Aktiengesellschaft Electrically powered vehicle with different energy storage units
JP2020522841A (en) * 2017-05-26 2020-07-30 キティー・ホーク・コーポレーションKitty Hawk Corporation Electric transportation equipment hybrid battery system
JP7084676B2 (en) 2017-05-26 2022-06-15 キティー・ホーク・コーポレーション Electric vehicle hybrid battery system
CN107719175A (en) * 2017-11-17 2018-02-23 北京市亿微科技有限公司 Detection method and charge-discharge system based on charging station with high power D C/DC power supplys
US11097839B2 (en) 2019-10-09 2021-08-24 Kitty Hawk Corporation Hybrid power systems for different modes of flight
US11787537B2 (en) 2019-10-09 2023-10-17 Kitty Hawk Corporation Hybrid power systems for different modes of flight
CN111816938A (en) * 2020-07-06 2020-10-23 安徽恒明工程技术有限公司 Gradient utilization method for retired battery
CN114379382B (en) * 2020-10-16 2023-05-23 宇通客车股份有限公司 Double-power-system passenger car and charging method thereof
CN114379382A (en) * 2020-10-16 2022-04-22 郑州宇通客车股份有限公司 Dual-power system passenger car and charging method thereof
CN112606737A (en) * 2021-01-05 2021-04-06 连云港伟晟新能源电动汽车有限公司 New energy electric vehicle power supply control method
WO2022254580A1 (en) * 2021-06-01 2022-12-08 三菱電機株式会社 Power system stabilization system
US11655024B1 (en) 2022-05-25 2023-05-23 Kitty Hawk Corporation Battery systems with power optimized energy source and energy storage optimized source

Also Published As

Publication number Publication date
JP4400414B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP4400414B2 (en) Power supply device and vehicle equipped with the same
JP5577775B2 (en) Electric vehicle power supply
JP5752151B2 (en) Battery pack system for improving operating performance using internal battery resistance
JP4893804B2 (en) Vehicle power supply
JP4530078B2 (en) Power storage control device and vehicle
JP5333671B1 (en) Power storage system
KR100825208B1 (en) Hybrid-typed Battery Pack Operated in High Efficiency
US20140327298A1 (en) Energy storage arrangement
US20160288662A1 (en) Charge/discharge system
JP5267180B2 (en) Temperature raising system
CN108432012B (en) Fuel cell system
JP2006352970A (en) Controller of power supply device
KR20140085454A (en) Molten salt battery device, and control method for molten salt battery device
US20150004443A1 (en) Apparatus for controlling lithium-ion battery and method of recovering lithium-ion battery
JP2019129555A (en) Dc/dc converter, power supply system, and charging/discharging method of secondary battery
JP5810945B2 (en) Power storage system
JP5822779B2 (en) Power storage system and charge / discharge control method thereof
US11641125B2 (en) Vehicular power supply device
JP2013013245A (en) Power storage system
JP2008199770A (en) Power supply device, and vehicle
JP2012218535A (en) Drive power source device for vehicle
JP2015061504A (en) Power storage system
US11891000B2 (en) Vehicular power supply device
US11964620B2 (en) Vehicular power supply device
JP2012003870A (en) Power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees