JP2006117999A - Thin film forming method and thin film forming device - Google Patents

Thin film forming method and thin film forming device Download PDF

Info

Publication number
JP2006117999A
JP2006117999A JP2004307093A JP2004307093A JP2006117999A JP 2006117999 A JP2006117999 A JP 2006117999A JP 2004307093 A JP2004307093 A JP 2004307093A JP 2004307093 A JP2004307093 A JP 2004307093A JP 2006117999 A JP2006117999 A JP 2006117999A
Authority
JP
Japan
Prior art keywords
thin film
sputtering
processed
plasma
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004307093A
Other languages
Japanese (ja)
Inventor
Masashi Matsushita
正史 松下
Toshiyuki Horikoshi
稔之 堀越
Masayoshi Aoyama
正義 青山
Tsunehiro Unno
恒弘 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004307093A priority Critical patent/JP2006117999A/en
Publication of JP2006117999A publication Critical patent/JP2006117999A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film forming method and a device therefor where, as the material to be treated such as a cable, a belt and a columnar material is moved to the longitudinal direction, a thick thin film with a thickness of ≥2 μm can be formed on the surface thereof. <P>SOLUTION: A cylindrical sputtering system 4 is constituted so that as one electrode, a tubular material 1 in which the length in the axial direction is longer than the diameter by ≥2 times is used, and, as the other electrode, the long-length material 2 to be treated such as a cable, a belt and a columnar material it self is used. The cylindrical sputtering system or the same and a diode planar type sputtering system are arranged by two or more in total, plasma is generated between the respective electrodes in the two or more sputtering systems, each material to be treated is successively passed inside the plasma to the longitudinal direction, and various thin films of metal, a semiconductor, an insulator or the like are formed on the surface of each material 2 to be treated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ケーブル、帯、柱状材などの長尺の被処理材の表面の全部あるいは一部に対し、被処理材を長手方向に移動させながら、プラズマを利用したスパッタ装置により薄膜作製を行う方法および装置に関するものである。ここで述べる薄膜作製とは、スパッタ装置による金属、半導体、絶縁体などの各種薄膜の形成をさす。   In the present invention, a thin film is produced by a sputtering apparatus using plasma while moving the material to be treated in the longitudinal direction with respect to all or a part of the surface of a long material to be treated such as a cable, a band, and a columnar material. It relates to a method and a device. The thin film production described here refers to the formation of various thin films such as metals, semiconductors, and insulators by a sputtering apparatus.

なお、本発明の方法および装置においては、プラズマを利用した表面処理を併用することも可能である。ここでの表面処理とは、イオンエッチング、および窒化処理、酸化、浸炭処理などをさす。   In the method and apparatus of the present invention, surface treatment using plasma can be used in combination. The surface treatment here means ion etching, nitriding treatment, oxidation, carburizing treatment, and the like.

一般に、医療機器や電子情報機器等に使用される同軸ケーブルは、中心導体の外周に、絶縁層及びシールド層を有する。従来、かかる同軸ケーブルの製造等においては、線材としてのケーブル(例えば中心導体の外周に、第1絶縁層、第2絶縁層を有する構造のケーブルコア)に対し、その表面に、シールド層として、密着性の強い導電性の薄膜を周囲全体に均一に設けることが行われる。また、ケーブルの種類によっては、このような導電性の薄膜や絶縁性の薄膜を、できるだけ厚く設けることが望まれる。例えば、導電性の薄膜は、後の圧延、引き抜き等の加工ができる程度に厚い膜を作製することが望まれることがある。   Generally, a coaxial cable used for a medical device, an electronic information device, or the like has an insulating layer and a shield layer on the outer periphery of a central conductor. Conventionally, in manufacturing such a coaxial cable, for a cable as a wire (for example, a cable core having a structure having a first insulating layer and a second insulating layer on the outer periphery of a central conductor), as a shield layer on the surface thereof, A conductive thin film having strong adhesion is uniformly provided on the entire periphery. Depending on the type of cable, it is desirable to provide such a conductive thin film or insulating thin film as thick as possible. For example, it may be desired that the conductive thin film is formed so as to be thick enough to be processed later such as rolling and drawing.

密着性の強い導電性の薄膜を線材の外周囲全体に均一に厚く設ける技術としては、例えば特開平5−342930号公報(特許文献1)に開示された同軸ワイヤの製造技術がある。すなわち、この特許文献1では、薄膜を線材の外周囲全体に均一に設けるため、フッ素樹脂被膜を形成した銅ワイヤ(線材)と銅スパッタターゲットとの間にプラズマ放電を発生させ、リング状の銅スパッタターゲット中心部を軸方向に沿ってフッ素樹脂被膜を形成した銅ワイヤを移動させ、フッ素樹脂被膜表面に銅薄膜を形成する。またこの特許文献1では、薄膜を線材の外周囲全体に厚く設けるため、上記のスパッタ法で形成した金属皮膜の上に電気めっき法で金属皮膜を形成する。   As a technique for providing a conductive thin film with strong adhesion uniformly over the entire outer periphery of the wire, there is a coaxial wire manufacturing technique disclosed in, for example, Japanese Patent Laid-Open No. 5-342930 (Patent Document 1). That is, in this patent document 1, in order to provide a thin film uniformly on the entire outer periphery of a wire, plasma discharge is generated between a copper wire (wire) on which a fluororesin coating is formed and a copper sputter target, thereby forming a ring-shaped copper. The copper wire on which the fluororesin coating is formed is moved along the axial direction in the center of the sputter target to form a copper thin film on the fluororesin coating surface. Moreover, in this patent document 1, in order to provide a thin film thickly in the whole outer periphery of a wire, a metal film is formed by the electroplating method on the metal film formed by said sputtering method.

さらにまた、特許文献1にはプラズマ発生装置の構造についても開示され、スパッタターゲットを、リング状の金属銅の板とリング状のN極磁性体とS極磁性体とにより構成し、リング状の金属銅の板にリング状のN極磁性体とS極磁性体を所定間隔を開けて取り付けている。   Further, Patent Document 1 also discloses a structure of a plasma generator, and a sputtering target is constituted by a ring-shaped metal copper plate, a ring-shaped N-pole magnetic body, and a S-pole magnetic body. A ring-shaped N-pole magnetic body and S-pole magnetic body are attached to a metal copper plate at a predetermined interval.

なお、金属などの導電体で構成された電極を同心円筒状に配置し、中心電極との間に交流電界を印加してプラズマを生じせしめる構造のプラズマ発生装置が、特開平7−211654号公報(特許文献2)に開示されている。   A plasma generator having a structure in which electrodes made of a conductor such as metal are concentrically arranged and an alternating electric field is applied to the center electrode to generate plasma is disclosed in Japanese Patent Application Laid-Open No. 7-2111654. (Patent Document 2).

ところで、ケーブル及び帯、柱状材を走行焼鈍できるプラズマジェット炉を用いれば、長手方向にケーブル及び帯、柱状材を移動させながら、プラズマ焼鈍、またはイオンエッチング、酸化、窒化、浸炭を行なうことが可能である。しかし、スパッタによる金属、絶縁体、半導体などの各種薄膜の作製はできない。   By the way, if a plasma jet furnace capable of annealing the cable, band, and columnar material is used, it is possible to perform plasma annealing or ion etching, oxidation, nitriding, and carburizing while moving the cable, band, and columnar material in the longitudinal direction. It is. However, various thin films such as metals, insulators, and semiconductors cannot be produced by sputtering.

スパッタは多種多様な薄膜をあらゆる基盤に作製可能な優れた薄膜作製技術である。蒸着、電解めっき、無電解めっきに比べ、密着力の強い膜が作製でき、長い屈曲寿命や高い耐磨耗性を必要とされる薄膜の作製には適した方法である。また、スパッタされた原子の回り込みの効果からターゲットに対し正対していない表面にも膜を比較的作製しやすい。   Sputtering is an excellent thin film production technique that can produce a wide variety of thin films on any substrate. Compared with vapor deposition, electrolytic plating, and electroless plating, a film having a higher adhesion can be produced, and this method is suitable for producing a thin film that requires a long bending life and high wear resistance. Moreover, it is relatively easy to produce a film on the surface not facing the target because of the effect of the sputtered atoms.

蒸着や電解めっき、無電解めっきは、スパッタリングに比べ、安価な装置であり、また、短時間での薄膜の作製が可能である。しかしスパッタで作製された膜に比べ密着性が悪い。
特開平5−342930号公報(段落番号0008、図2、図3) 特開平7−211654号公報
Vapor deposition, electrolytic plating, and electroless plating are cheaper apparatuses than sputtering, and a thin film can be formed in a short time. However, the adhesion is poor compared to a film produced by sputtering.
JP-A-5-342930 (paragraph number 0008, FIG. 2, FIG. 3) JP 7-2111654 A

上記したように、ケーブルおよび帯、柱状材を走行焼鈍できるプラズマジェット炉を用いれば、プラズマ焼鈍またイオンエッチング、酸化、窒化、浸炭は可能だが、スパッタによる金属、絶縁体、半導体などの各種薄膜の作製はできない。   As described above, if a plasma jet furnace capable of running and annealing cables, strips, and columnar materials is used, plasma annealing and ion etching, oxidation, nitriding, and carburizing are possible, but sputtering, various thin films such as metals, insulators, and semiconductors can be used. It cannot be made.

一方、蒸着やめっきによって作製された膜は、スパッタで作製された膜に比べ密着性が悪い。長い屈曲寿命や高い耐磨耗性を必要とされる場合、蒸着やめっきで作製された膜は、剥離やクラックがスパッタによって作製された膜に比べて発生しやすく不適である。また蒸着では、ケーブルおよび帯、柱状材の表面全部に均一な薄膜を作製するのは難しい。   On the other hand, a film produced by vapor deposition or plating has poor adhesion compared to a film produced by sputtering. When a long bending life and high wear resistance are required, a film produced by vapor deposition or plating is unsuitable because peeling or cracking is likely to occur compared to a film produced by sputtering. In vapor deposition, it is difficult to produce a uniform thin film on the entire surface of the cable, band, and columnar material.

これに対し、スパッタは多種多様な薄膜をあらゆる基盤に作製可能な優れた薄膜作製技術であり、蒸着、電解めっき、無電解めっきに比べ、密着力の強い膜が作製でき、長い屈曲寿命や高い耐磨耗性を必要とされる薄膜の作製には適した方法である。また、スパッタされた原子の回り込みの効果からターゲットに対し正対していない表面にも膜を比較的作製しやすい。   Sputtering, on the other hand, is an excellent thin film production technology that can produce a wide variety of thin films on any substrate. Compared with vapor deposition, electrolytic plating, and electroless plating, it can produce a film with stronger adhesion, and has a long flex life and high life. This method is suitable for the production of thin films that require wear resistance. Moreover, it is relatively easy to produce a film on the surface not facing the target because of the effect of the sputtered atoms.

しかしながら、スパッタによる薄膜の作製には、めっきや蒸着に比べ一般に長い時間がかかるため、ケーブル及び帯、柱状材を長手方向に移動させながら、スパッタによる薄膜の作製を行なうのは難しい。   However, since the production of a thin film by sputtering generally takes a longer time than plating or vapor deposition, it is difficult to produce a thin film by sputtering while moving cables, strips, and columnar members in the longitudinal direction.

特許文献1の方法によれば、フッ素樹脂被膜を形成した銅ワイヤ(線材)と銅スパッタターゲットとの間にプラズマ放電を発生させ、銅スパッタターゲット中心部にて線材を軸方向に沿って移動させて、フッ素樹脂被膜表面に銅薄膜を形成するので、薄膜を線材の外周囲全体に均一に設けることが可能である。しかし、スパッタ装置は、この特許文献1のようなスパッタ装置でも、線材の外周囲全体に薄膜を厚く形成することが本質的に困難であり、従って特許文献1に開示されているように、上記のスパッタ法で形成した金属皮膜(0.02〜1μm)の上に電気めっき法で金属皮膜(10〜50μm)を形成することが必須となる。   According to the method of Patent Document 1, plasma discharge is generated between a copper wire (wire) on which a fluororesin coating is formed and a copper sputter target, and the wire is moved along the axial direction at the center of the copper sputter target. Thus, since the copper thin film is formed on the surface of the fluororesin coating, it is possible to provide the thin film uniformly on the entire outer periphery of the wire. However, the sputtering apparatus is essentially difficult to form a thin film over the entire outer periphery of the wire even with the sputtering apparatus as in Patent Document 1, and therefore, as disclosed in Patent Document 1, It is essential to form a metal film (10 to 50 μm) by electroplating on a metal film (0.02 to 1 μm) formed by the sputtering method.

そこで、本発明の目的は、上記課題を解決し、ケーブル、帯、柱状材などの被処理材を長手方向に移動させながら、通常のスパッタによって作製される膜と同等の高い密着性を持つ膜を外周囲全部に均一に作製できるだけでなく、当該被処理材を長手方向に移動させながら、その表面に厚み2μm以上の厚い薄膜を作製することが可能な薄膜作製方法及び装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems and to have a film having a high adhesiveness equivalent to a film produced by ordinary sputtering while moving a material to be treated such as a cable, a band, a columnar material in the longitudinal direction. And a thin film manufacturing method and apparatus capable of manufacturing a thin film having a thickness of 2 μm or more on the surface of the material to be processed while moving the material to be processed in the longitudinal direction. is there.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る薄膜作製方法は、電極間に、高周波、交流電圧などを印加することによって、プラズマを発生させスパッタを行なう薄膜作製方法において、直径よりも軸方向長さの方が2倍以上長い管状材を一方の電極とし、もう片方の電極を前記管状材中を通過するケーブル、帯、柱状材などの長尺の被処理材そのものとする筒状スパッタ装置を構成し、前記筒状スパッタ装置の電極間に交流電圧または高周波、直流電圧を印加することによってプラズマ放電を発生させ、前記被処理材の表面の全部または一部に対して、スパッタによる金属、半導体、絶縁体などの各種薄膜の作成を行なうことを特徴とする。   The thin film manufacturing method according to the invention of claim 1 is a thin film manufacturing method in which plasma is generated and sputtered by applying a high frequency, an alternating voltage or the like between electrodes, and the axial length is 2 rather than the diameter. A tubular sputtering apparatus comprising a tubular material longer than double as one electrode and the other electrode as a long material to be treated such as a cable, a band, a columnar material passing through the tubular material, and the like A plasma discharge is generated by applying an AC voltage, a high frequency, or a DC voltage between the electrodes of the sputter apparatus, and a metal, semiconductor, insulator, etc. by sputtering is applied to all or a part of the surface of the material to be processed. It is characterized by producing various thin films.

本発明の方法においては、プラズマを利用した窒化、酸化、浸炭、イオンエッチングなどの表面処理を併用することも可能である。   In the method of the present invention, surface treatment such as nitriding, oxidation, carburizing, ion etching using plasma can be used in combination.

請求項2の発明に係る薄膜作製方法は、管状材を一方の電極とし、もう片方の電極を前記管状材中を通過するケーブル、帯、柱状材などの長尺の被処理材そのものとする筒状スパッタ装置を構成し、この筒状スパッタ装置を複数個配置するか、又は1個以上の前記筒状スパッタ装置と二極平板型等の他の構造のスパッタ装置とを総計で2以上配置し、これら2以上のスパッタ装置のそれぞれの電極間に、高周波、交流電圧などを印加することによってプラズマを発生させ、この2以上のスパッタ装置のプラズマ中を、ケーブル及び帯、柱状材などの長尺の被処理材を長手方向に順次に通過させ、その被処理材の表面の全部または一部に対して、スパッタによる金属、半導体、絶縁体などの各種薄膜の作製を行なうことを特徴とする。   According to a second aspect of the present invention, there is provided a thin film manufacturing method in which a tubular material is used as one electrode, and the other electrode is a long material to be processed such as a cable, a band, or a columnar material that passes through the tubular material. A plurality of cylindrical sputtering devices are arranged, or two or more of the cylindrical sputtering devices and a sputtering device having another structure such as a bipolar plate type are arranged in total. A plasma is generated by applying a high frequency, an alternating voltage or the like between the electrodes of the two or more sputtering apparatuses, and the plasma of the two or more sputtering apparatuses has a long length such as a cable, a band, a columnar material, or the like. The materials to be treated are sequentially passed in the longitudinal direction, and various thin films such as metals, semiconductors, and insulators are formed by sputtering on the whole or a part of the surface of the materials to be treated.

本発明の方法においては、プラズマを利用して行なう、窒化、酸化、浸炭、イオンエッチングなどの表面処理、焼鈍などの処理を併用することも可能である。   In the method of the present invention, a surface treatment such as nitridation, oxidation, carburization, ion etching, and the like, which are performed using plasma, can be used in combination.

請求項3の発明は、請求項1又は2に記載の薄膜作製方法において、前記被処理材の通過方向に見て前記スパッタ装置の下流に、めっき、蒸着などを行なう第二製膜装置を付加し、前記スパッタにより作製された薄膜上にさらに薄膜を形成する第二薄膜作製処理を、前記被処理材を長手方向に移動させながら行なうことを特徴とする。   According to a third aspect of the present invention, in the thin film manufacturing method according to the first or second aspect, a second film forming apparatus for performing plating, vapor deposition, or the like is added downstream of the sputtering apparatus as viewed in the passing direction of the material to be processed. Then, a second thin film production process for forming a thin film on the thin film produced by sputtering is performed while moving the material to be treated in the longitudinal direction.

請求項4の発明は、請求項1、2又は3に記載の薄膜作製方法において、前記被処理材の通過方向に見て前記スパッタ装置の下流又は前記第二製膜装置の下流に、圧延機、伸線機、引き抜き機などの加工装置を付加し、薄膜の作製及び表面処理、塑性加工などを前記被処理材を長手方向に移動させながら行なうことを特徴とする。   According to a fourth aspect of the present invention, there is provided the thin film manufacturing method according to the first, second, or third aspect, wherein a rolling mill is disposed downstream of the sputtering apparatus or downstream of the second film forming apparatus as viewed in the direction in which the material to be processed passes. Further, a processing apparatus such as a wire drawing machine and a drawing machine is added, and thin film production, surface treatment, plastic working, and the like are performed while moving the material to be processed in the longitudinal direction.

請求項5の発明に係る薄膜作製装置は、管状材を一方の電極とし、もう片方の電極を前記管状材中を通過するケーブル、帯、柱状材などの長尺の被処理材そのものとする筒状スパッタ装置を構成し、この筒状スパッタ装置を複数個配置するか、又は1個以上の前記筒状スパッタ装置と二極平板型等の他の構造のスパッタ装置とを総計で2以上配置し、これら2以上のスパッタ装置のそれぞれの電極間に高周波、交流電圧などを印加することによってプラズマを発生させる手段と、前記の2以上のスパッタ装置のプラズマ中に、前記長尺の被処理材を長手方向に順次通過させる送り手段とを設け、前記被処理材の表面の全部または一部に対して、スパッタによる金属、半導体、絶縁体などの各種薄膜の作製を行なうように構成したことを特徴とする。   The thin film production apparatus according to the invention of claim 5 is a cylinder in which the tubular material is one electrode and the other electrode is a long material to be treated such as a cable, a band, a columnar material, etc., passing through the tubular material. A plurality of cylindrical sputtering devices are arranged, or one or more cylindrical sputtering devices and two or more sputtering devices having other structures such as a bipolar plate type are arranged in total. A means for generating a plasma by applying a high frequency, an alternating voltage or the like between the electrodes of the two or more sputtering apparatuses, and the long material to be processed in the plasma of the two or more sputtering apparatuses. A feed means for sequentially passing in the longitudinal direction, and it is configured to produce various thin films such as metal, semiconductor, insulator, etc. by sputtering on all or part of the surface of the material to be treated. When That.

なお、本発明の薄膜作製装置においては、プラズマを利用して行なう、窒化、酸化、浸炭、イオンエッチングなどの表面処理装置や、焼鈍などを行う処理装置を、スパッタ装置の前後又はスパッタ装置間に配置して併用することも可能である。   In the thin film production apparatus of the present invention, a surface treatment apparatus such as nitridation, oxidation, carburization, ion etching, etc., which is performed using plasma, or a treatment apparatus that performs annealing, etc. is arranged before or after the sputtering apparatus or between the sputtering apparatuses. It is also possible to arrange and use them together.

請求項6の発明は、請求項5に記載の薄膜作製装置において、前記被処理材の通過方向に見て前記スパッタ装置の下流に、めっき、蒸着などを行なう第二製膜装置を付加したことを特徴とする。   The invention of claim 6 is the thin film production apparatus according to claim 5, wherein a second film forming apparatus for performing plating, vapor deposition, etc. is added downstream of the sputtering apparatus as viewed in the direction of passage of the material to be processed. It is characterized by.

請求項7の発明は、請求項5又は6に記載の薄膜作製装置において、前記被処理材の通過方向に見て前記スパッタ装置の下流又は前記第二製膜装置の下流に、圧延機、伸線機、引き抜き機などの加工装置を付加したことを特徴とする。   A seventh aspect of the present invention is the thin film production apparatus according to the fifth or sixth aspect, wherein a rolling mill and a stretcher are disposed downstream of the sputtering apparatus or downstream of the second film forming apparatus as viewed in the direction of passage of the material to be processed. It is characterized by the addition of processing equipment such as wire machines and drawing machines.

請求項8の発明は、請求項5、6又は7に記載の薄膜作製装置において、前記被処理材の通過路の途中に、前記被処理材の回転および進行方向の変更が可能なガイドを設置したことを特徴とする。なお、本発明には、前記第二製膜装置、加工装置、ガイド及び巻取り機を、全て前記スパッタ装置と同じ真空ベルジャー内に設ける形態が含まれる。   The invention according to claim 8 is the thin film manufacturing apparatus according to claim 5, 6 or 7, wherein a guide capable of changing the direction of rotation and advancing of the material to be processed is installed in the middle of the passage of the material to be processed. It is characterized by that. The present invention includes a form in which the second film forming apparatus, the processing apparatus, the guide, and the winder are all provided in the same vacuum bell jar as the sputtering apparatus.

<発明の要点>
ケーブルや円柱状材等の周囲全体に均一に薄膜を作製する装置として、二つの電極間に直流、高周波、交流電圧などを印加することによって、プラズマを発生させスパッタを行なう装置において、管状材をターゲット側の電極とし、ケーブルおよび円柱状材をもう片方の電極とするスパッタ装置の作製を行なう。この構成によって、ケーブルや円柱状材等の周囲全体に均一な薄膜作製が可能となる。
<Key points of the invention>
In a device for generating plasma by applying a direct current, a high frequency, an alternating voltage, etc. between two electrodes as a device for uniformly producing a thin film around the entire circumference of a cable, a cylindrical material, etc. A sputtering apparatus is fabricated using the target side electrode and the cable and columnar material as the other electrode. With this configuration, a uniform thin film can be produced around the entire periphery of the cable, columnar material, or the like.

次に、ケーブル及び帯、柱状材などの長尺の被処理材を長手方向に移動させながらスパッタで厚い膜を作製するには、スパッタ現象がおこるプラズマ発生空間を長い時間通過させる必要がある。本発明においては、ターゲット側の電極となる管状材を長手方向に長いものとすることで、長手方向に長いプラズマ発生空間を作り、厚膜のスパッタを行なうことを可能とする(請求項1)。   Next, in order to produce a thick film by sputtering while moving a long object to be processed such as a cable, a band, and a columnar material in the longitudinal direction, it is necessary to pass through a plasma generation space where a sputtering phenomenon occurs for a long time. In the present invention, by making the tubular material serving as the target-side electrode long in the longitudinal direction, it is possible to create a plasma generation space that is long in the longitudinal direction and perform sputtering of a thick film. .

本発明においては、長手方向に長いプラズマ発生空間を作るため、一個以上のプラズマ発生装置を並べ、その中を移動させることによってケーブルおよび帯状材がプラズマにさらされている時間を長くし、薄膜の作製を厚く行なう(請求項2)。プラズマ発生装置は前記請求項1で示したものでも、それ以外のもの(例えば二極平板型のスパッタ装置)でもよい。また、プラズマの発生機構はそれぞれ異なったものであってもよく、スパッタは、直流スパッタであっても、交流、高周波、マグネトロンスパッタであってもよい。複数のプラズマ発生装置のすべてがスパッタによる薄膜作製を行なうのではなく、表面処理などの役割も持つように構成しても良い。   In the present invention, in order to create a plasma generation space that is long in the longitudinal direction, one or more plasma generators are arranged and moved therethrough to increase the time during which the cable and strip are exposed to the plasma. Fabrication is performed thickly (claim 2). The plasma generator may be the one shown in the first aspect, or the other device (for example, a bipolar plate type sputtering device). The plasma generation mechanisms may be different from each other, and the sputtering may be direct current sputtering, alternating current, high frequency, or magnetron sputtering. All of the plurality of plasma generators may be configured to have a role of surface treatment or the like instead of performing thin film formation by sputtering.

本発明においては、プラズマ発生装置を含むチャンバー(ベルジャー)内にガイドを配置し(請求項8)、ケーブル及び帯、柱状材の向きの変更と回転を可能にし、複数の装置の中をケーブル及び帯、柱状材がくぐって行くことを可能とした。また、前記ガイドを用いてケーブル及び帯、柱状材が移動する方向だけでなく、長手方向を軸とするケーブル及び帯、柱状材の回転を可能とした。向きの変更が可能となったことによってケーブル及び帯、柱状材の周囲全体へより均一な薄膜の作製が可能となった。   In the present invention, a guide is arranged in a chamber (bell jar) including a plasma generator (Claim 8), the cable and the band, and the direction of the columnar member can be changed and rotated. The belt and columnar material can pass through. In addition, the cable, the band, and the columnar material can be rotated around the longitudinal direction as well as the cable, the band, and the columnar material using the guide. The change in orientation made it possible to produce a more uniform thin film around the entire circumference of the cable, band, and columnar material.

本発明においては、めっきまたは蒸着が可能な装置を前述のプラズマ発生装置に付加し、ケーブル及び帯、柱状材を長手方向に移動させながら、スパッタで作製した第一膜の上に、めっき、または蒸着によって第二膜を作製することで、スパッタ単独で成膜するよりも短時間で厚い膜を作製することを可能とした(請求項3、6)。ケーブル及び帯、柱状材に接している面はスパッタ現象による高エネルギーを持った原子の衝突によって作製された薄膜であるため、めっきや蒸着のみで作製された膜に比べ、ケーブル及び帯、柱状材に対する密着度は高く、剥離も起きづらい。また、前記ガイドをそれぞれの装置間に配置し、これらの装置間でもケーブル及び帯、柱状材を回転させることによって表面全体に均等な膜の作製が可能となった。   In the present invention, an apparatus capable of plating or vapor deposition is added to the above-described plasma generator, and the first film formed by sputtering while moving the cable, the band, and the columnar material in the longitudinal direction, or, By producing the second film by vapor deposition, it is possible to produce a thick film in a shorter time than when the film is formed by sputtering alone (claims 3 and 6). Since the surface in contact with the cable, band, and columnar material is a thin film produced by the collision of atoms with high energy due to the sputtering phenomenon, the cable, band, columnar material is less than the film produced only by plating or vapor deposition. Adhesion to is high and peeling is difficult to occur. In addition, it is possible to produce a uniform film over the entire surface by disposing the guide between the devices and rotating the cable, the band, and the columnar material between these devices.

本発明においては、圧延機、伸線機、引き抜き機などの加工装置を付加することで、ケーブル及び帯、柱状材の一連の長手方向への移動の中でこれらの装置を利用した加工が可能となった(請求項4、7)。   In the present invention, by adding a processing device such as a rolling mill, a wire drawing machine, and a drawing machine, it is possible to perform processing using these devices in a series of longitudinal movements of cables, strips, and columnar materials. (Claims 4 and 7).

なお、本発明には、前記第二製膜装置、加工装置、ガイド及び巻取り機を、全て前記スパッタ装置と同じ真空ベルジャー内に設ける形態が含まれる。すなわち、プラズマ発生装置と同一の真空ベルジャー内に、巻取り機を配置することで、ケーブル及び帯、柱状材への不純物の付着をこれまでよりも大きく減少させることができ、これによって安定した薄膜作製、表面処理等が可能になる。また、必要に応じて、めっき、蒸着装置、圧延機、伸線機なども同一の真空ベルジャー内に入れることによって、安定した環境での加工が可能となる。   The present invention includes a form in which the second film forming apparatus, the processing apparatus, the guide, and the winder are all provided in the same vacuum bell jar as the sputtering apparatus. In other words, by placing the winder in the same vacuum bell jar as the plasma generator, the adhesion of impurities to the cable, band, and columnar material can be reduced more than before, thereby stabilizing the thin film Fabrication, surface treatment, etc. are possible. Further, if necessary, plating, vapor deposition apparatus, rolling mill, wire drawing machine, etc. can be placed in the same vacuum bell jar, thereby enabling processing in a stable environment.

本発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

請求項1の発明によれば、直径よりも軸方向長さの方が2倍以上長い管状材を一方の電極として筒状スパッタ装置を構成しているので、特許文献1のように軸方向長さが直径より短いリング状スパッタ装置を用いた場合に比べ、より厚い膜(例えば2μm以上)を、ケーブルおよび帯、柱状材などの長尺の被処理材を長手方向に移動させながら、当該被処理材の表面の全部あるいは一部に作製することが可能となった。しかも、ケーブルおよび帯、柱状材などの長尺の被処理材は、管状材中を通過するので、効率的にスパッタによって密着性の強い薄膜をケーブルおよび帯、柱状材の周囲全体に均一に作製することができる。   According to the first aspect of the present invention, since the tubular sputtering apparatus is configured by using a tubular material whose axial length is at least twice as long as the diameter as one electrode, the axial length as in Patent Document 1 is established. Compared to the case of using a ring-shaped sputtering apparatus whose length is shorter than the diameter, a thicker film (for example, 2 μm or more) can be formed while moving a long object to be processed such as a cable, a band, and a columnar material in the longitudinal direction. It has become possible to produce all or part of the surface of the treatment material. In addition, long materials such as cables, belts, and columnar materials pass through the tubular material, so a thin film with high adhesion is efficiently produced uniformly around the cables, belts, and columnar materials by sputtering. can do.

また、請求項2、5の発明によれば、管状材を一方の電極とし、もう片方の電極を前記管状材中を通過するケーブル、帯、柱状材などの長尺の被処理材そのものとする筒状スパッタ装置を構成し、この筒状スパッタ装置を複数個配置するか、又は1個以上の前記筒状スパッタ装置と二極平板型等の他の構造のスパッタ装置とを総計で2以上配置したので、これらのスパッタ装置中を通過させることにより、特許文献1のリング状スパッタ装置又は上記の筒状スパッタ装置を1個のみ用いた場合に比べ、より厚い膜(例えば2μm以上)を当該被処理材の表面の全部あるいは一部に作製することが可能となった。しかも、ケーブルおよび帯、柱状材などの長尺の被処理材は、管状材中を通過するので、効率的にスパッタによって密着性の強い薄膜をケーブルおよび帯、柱状材の周囲全体に均一に作製することができる。   In addition, according to the inventions of claims 2 and 5, the tubular material is one electrode, and the other electrode is a long material to be treated such as a cable, a band, a columnar material or the like passing through the tubular material. A cylindrical sputtering apparatus is configured, and a plurality of the cylindrical sputtering apparatuses are arranged, or two or more of the cylindrical sputtering apparatuses and a sputtering apparatus having another structure such as a bipolar plate type are arranged in total. Therefore, by passing through these sputtering devices, a thicker film (for example, 2 μm or more) than the case of using only one ring-shaped sputtering device of Patent Document 1 or the above-described cylindrical sputtering device is applied. It has become possible to produce all or part of the surface of the treatment material. In addition, long materials such as cables, belts, and columnar materials pass through the tubular material, so a thin film with high adhesion is efficiently produced uniformly around the cables, belts, and columnar materials by sputtering. can do.

また、請求項3、6の発明によれば、スパッタで薄膜が作製されたケーブルおよび帯、柱状材の表面にめっき、蒸着を行なうことによって厚い膜を作製することができる。   Further, according to the inventions of claims 3 and 6, a thick film can be produced by plating and vapor-depositing the surface of the cable, band, and columnar material on which a thin film has been produced by sputtering.

さらに、請求項4、7の発明によれば、圧延機、伸線機、引き抜き機と組み合わせることによって、ケーブル及び帯、柱状材への膜の作製と、圧延、引き抜き等の加工を一連の長手方向への移動の中で行なうことが可能となった。   Further, according to the inventions of claims 4 and 7, by combining with a rolling mill, a wire drawing machine, and a drawing machine, the production of the film on the cable and the strip, the columnar material and the processing such as rolling, drawing, etc. are performed in a series of longitudinal directions. It became possible to do it while moving in the direction.

以下、本発明の実施形態を添付図面に基づいて詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図2に本実施形態に係る薄膜作製装置の構成を示す。真空ベルジャー3内には、1個以上(ここでは4個)の筒状スパッタ装置4が並置され、その両側に送り手段5としての巻き線機5a、5bが配置されている。一方の巻き線機5aから繰り出されたケーブル、帯、柱状材などの長尺の被処理材2は、この4個の筒状スパッタ装置4を、ガイド6により案内されつつ、ジグザグに順次通って長手方向に送られ、他方の巻き線機5bに巻き取られる構成になっている。   FIG. 2 shows the configuration of the thin film manufacturing apparatus according to this embodiment. In the vacuum bell jar 3, one or more (here, four) cylindrical sputtering apparatuses 4 are juxtaposed, and winding machines 5 a and 5 b as feeding means 5 are arranged on both sides thereof. A long object 2 such as a cable, a belt, or a columnar material fed out from one winding machine 5a passes through the four cylindrical sputtering devices 4 in a zigzag manner while being guided by a guide 6. It is configured to be sent in the longitudinal direction and wound around the other winding machine 5b.

上記筒状スパッタ装置4は、プラズマを発生させスパッタを行なう装置であり、図1に示すように、直径Dよりも軸方向長さLの方が2倍以上長い管状材1を有し、その中心を、軸方向に上記ケーブル、帯、柱状材などの長尺の被処理材2が通過するようになっている。   The cylindrical sputtering device 4 is a device that generates plasma and performs sputtering. As shown in FIG. 1, the cylindrical sputtering device 4 has a tubular material 1 having an axial length L that is twice or more longer than a diameter D. A long workpiece 2 such as the cable, band, or columnar material passes through the center in the axial direction.

筒状スパッタ装置4の管状材1は、少なくともその内側が、所望の材料の薄膜を作製するターゲット材、例えば銅でできている。すなわち、図1中の管状材1は、管状材全体がターゲット材で構成されているが、かかる構造のものだけで無く、管状材1の内側がターゲット材のものであればよい。そのため、管の内側をターゲット材でめっきしたものなどを用いても良い。   At least the inside of the tubular material 1 of the cylindrical sputtering apparatus 4 is made of a target material for producing a thin film of a desired material, for example, copper. That is, although the tubular material 1 in FIG. 1 is composed entirely of the target material, the tubular material 1 is not limited to such a structure, and the inside of the tubular material 1 only needs to be the target material. Therefore, you may use what plated the inner side of the pipe | tube with the target material.

筒状スパッタ装置4には、その管状材1つまりターゲット側を一方の電極とし、もう片方の電極を前記管状材1中を通過するケーブル、帯、柱状材などの長尺の被処理材2そのものとして、両電極間に交流電圧または高周波(RF)、直流(DC)電圧が印加され、プラズマ放電が発生せしめられる。金属層の作製では、DCマグネトロンスパッタ法、RFマグネトロンスパッタ法、イオンビームスパッタ法等といったスパッタ法が用いられる。絶縁物がターゲットの場合には、RFマグネトロンスパッタ法が好ましく用いられる。   The tubular sputtering apparatus 4 includes a tubular material 1, that is, the target side as one electrode, and the other electrode 2 as a long object 2 itself such as a cable, a band, or a columnar material that passes through the tubular material 1. As described above, an AC voltage, a radio frequency (RF), or a direct current (DC) voltage is applied between the two electrodes, and plasma discharge is generated. In the production of the metal layer, a sputtering method such as a DC magnetron sputtering method, an RF magnetron sputtering method, or an ion beam sputtering method is used. When the insulator is a target, RF magnetron sputtering is preferably used.

この実施形態の場合、プラズマは高周波によって発生される。しかしプラズマを発生する方法は高周波に限る必要は無く、交流であっても直流を用いたものであってもよい。   In this embodiment, the plasma is generated by high frequency. However, the method for generating plasma need not be limited to a high frequency, and may be alternating current or direct current.

ケーブル、帯、柱状材などの長尺の被処理材2は、この管状材1のプラズマ中を通過することによって、長手方向に移動しながらの銅の金属スパッタ薄膜の作製が行われる。ここでケーブル及び円柱状材などの長尺の被処理材2には、その周囲全体に、スパッタによる薄膜が均一に、且つ従来のリング状スパッタ装置よりも厚く、すなわちシールド層として十分な膜厚で作製される。   A long processed material 2 such as a cable, a band, or a columnar material passes through the plasma of the tubular material 1, thereby producing a copper metal sputtered thin film while moving in the longitudinal direction. Here, in the long processed material 2 such as a cable and a columnar material, a thin film by sputtering is uniformly formed on the entire periphery thereof, and is thicker than a conventional ring-shaped sputtering apparatus, that is, a film thickness sufficient as a shield layer. It is made with.

上記において、管状材1と被処理材2は、電極として機能するため、その一部あるいは全部に導電性を持った材質、例えば、銅、ステンレスを用いたものでなければならない。   In the above, since the tubular material 1 and the material to be treated 2 function as electrodes, some or all of them must be made of a conductive material such as copper or stainless steel.

図2の実施形態では、直流、高周波、交流電圧を印加することによってプラズマの発生が可能な筒状スパッタ装置4を4個並べ、これにケーブル及び帯、柱状材である長尺の被処理材2を通して長手方向に移動させながら表面処理、薄膜作製を行なう。このため、従来のリング状スパッタ装置(特許文献1参照)又は上記筒状スパッタ装置を1個のみ用いたのではシールド層として十分な膜厚の金属スパッタ薄膜が得られない場合でも、より厚い膜を当該被処理材2の表面の全部あるいは一部に作製することができる。   In the embodiment of FIG. 2, four cylindrical sputtering devices 4 capable of generating plasma by applying direct current, high frequency, and alternating voltage are arranged, and a long object to be processed which is a cable, a band, and a columnar material. Surface treatment and thin film production are performed while moving in the longitudinal direction through 2. For this reason, even when a conventional ring-shaped sputtering apparatus (see Patent Document 1) or only one cylindrical sputtering apparatus is used, even if a metal sputtered thin film having a sufficient thickness as a shield layer cannot be obtained, a thicker film is obtained. Can be produced on all or part of the surface of the material 2 to be treated.

上記実施形態においては、図1に示した同じ筒状スパッタ装置4を4個並べたが、配置するスパッタ装置は図1に示したものであって良いし、無くても良い。例えば、1個以上の筒状スパッタ装置4と二極平板型のスパッタ装置とを総計で2以上配置した形態とすることもできる。   In the above embodiment, the same cylindrical sputtering apparatus 4 shown in FIG. 1 is arranged four, but the sputtering apparatus to be arranged may be the one shown in FIG. 1 or may be omitted. For example, a configuration in which one or more cylindrical sputtering apparatuses 4 and two or more bipolar flat-plate type sputtering apparatuses are arranged in total is also possible.

また、筒状スパッタ装置4は全て同じ種類のプラズマ発生装置である必要は無く、行なう作業についても表面処理、及び薄膜作製など異なって良い。すなわち、プラズマ発生装置であることには変わりがないので、スパッタ装置として機能するプラズマ発生装置と、他の表面処理、及び薄膜作製などを行うプラズマ発生装置(例えばイオンボンバードによる表面改質や、表面の洗浄などの処理)との組み合わせとすることもできる。   The cylindrical sputtering devices 4 do not have to be the same type of plasma generator, and the work to be performed may be different, such as surface treatment and thin film production. That is, since it is a plasma generator, there is no change, and a plasma generator that functions as a sputtering device and a plasma generator that performs other surface treatment, thin film production, etc. (for example, surface modification by ion bombardment, surface It is also possible to combine it with a treatment such as washing.

さらに、筒状スパッタ装置4等として機能させるプラズマ発生装置の配列は、図2の並べ方だけでなく、どのような並べ方であっても良い。   Furthermore, the arrangement of the plasma generators functioning as the cylindrical sputtering apparatus 4 or the like is not limited to the arrangement in FIG.

ケーブルおよび帯、柱状材などの長尺の被処理材2の送り手段5としては、ケーブル及び帯、柱状材を前後両長手方向に移動させることが可能な巻き線機5a、5bを設けているが、他の手段で行なっても良い。また、それぞれのプラズマ発生装置(筒状スパッタ装置4)間に、ケーブル及び帯、柱状材の向きの変化が可能なガイド6を設置しているが、このガイド6には、ケーブル及び帯、柱状材どの長尺の被処理材2の進行方向だけでなく、長手方向を軸として被処理材2を回転させることが可能な構造のものを用いる。   As the feeding means 5 for the long processed material 2 such as a cable, a band, and a columnar material, winding machines 5a and 5b capable of moving the cable, the band, and the columnar material in the longitudinal direction are provided. However, it may be performed by other means. In addition, a guide 6 capable of changing the orientation of the cable, the band, and the columnar material is installed between each plasma generator (cylindrical sputtering apparatus 4). The guide 6 includes a cable, a band, and a columnar shape. The thing of the structure which can rotate the to-be-processed material 2 centering on not only the advancing direction of the long to-be-processed material 2 but a longitudinal direction is used.

図3に本発明の他の実施形態(請求項3、4、6、7に関する)を示す。これは被処理材2の通過方向に見て筒状スパッタ装置4の下流に、めっき、蒸着などを行なう第二製膜装置7を付加し、さらにこの第二製膜装置7の下流に、圧延機、伸線機、引き抜き機などの加工装置8を付加した例である。めっき、蒸着などを行なう第二製膜装置7や、圧延機、伸線機、引き抜き機などの加工装置8を図3のように配置することにより、筒状スパッタ装置4によって薄膜作製、表面処理がなされたケーブルおよび帯、柱状材などの被処理材2の表面上に、第二製膜装置7によって更に厚く製膜を行ない、圧延機、伸線機、引き抜き機などの加工装置8によって細く又は薄く加工することが可能である。   FIG. 3 shows another embodiment of the present invention (related to claims 3, 4, 6, and 7). This is achieved by adding a second film forming apparatus 7 for performing plating, vapor deposition and the like downstream of the cylindrical sputtering apparatus 4 as viewed in the direction of passage of the workpiece 2, and further rolling downstream of the second film forming apparatus 7. This is an example in which a processing device 8 such as a machine, a wire drawing machine, or a drawing machine is added. The second film forming apparatus 7 for performing plating and vapor deposition, and the processing apparatus 8 such as a rolling mill, a wire drawing machine, and a drawing machine are arranged as shown in FIG. The second film forming apparatus 7 forms a thicker film on the surface of the material 2 to be processed such as a cable, a band, and a columnar material, and is thinned by a processing apparatus 8 such as a rolling mill, a wire drawing machine, and a drawing machine. Alternatively, it can be processed thinly.

これらの、めっきや蒸着を行なう第二製膜装置や、圧延機、伸線機、引き抜き機などの加工装置や、巻取り機も、筒状スパッタ装置4で成膜を行なう真空ベルジャー内に入れることによって、不純物の混入が少ない状態でこれらの加工を行うことが可能である。   These second film forming apparatus for performing plating and vapor deposition, processing apparatuses such as a rolling mill, a wire drawing machine, and a drawing machine, and a winder are also placed in a vacuum bell jar for forming a film with the cylindrical sputtering apparatus 4. Thus, it is possible to perform these processes with a small amount of impurities.

本発明の実施形態で用いられる筒状スパッタ装置(プラズマ発生装置)の要部を示す断面図である。It is sectional drawing which shows the principal part of the cylindrical sputtering device (plasma generator) used by embodiment of this invention. 本発明の実施形態に係る薄膜作製装置の概要を示す図である。It is a figure which shows the outline | summary of the thin film preparation apparatus which concerns on embodiment of this invention. 本発明の他の実施形態に係る薄膜作製装置の概要を示す図である。It is a figure which shows the outline | summary of the thin film preparation apparatus concerning other embodiment of this invention.

符号の説明Explanation of symbols

1 管状材
2 長尺の被処理材(ケーブル及び帯、柱状材)
3 真空ベルジャー
4 筒状スパッタ装置(プラズマ発生装置)
5 送り手段
5a 巻き線機
5b 巻き線機
6 ガイド
7 第二製膜装置(めっき装置または蒸着装置)
8 加工装置(伸線機または圧延機、引き抜き機)
1 Tubular material 2 Long material to be treated (cable, belt, columnar material)
3 Vacuum bell jar 4 Cylindrical sputtering equipment (plasma generator)
DESCRIPTION OF SYMBOLS 5 Feed means 5a Winding machine 5b Winding machine 6 Guide 7 2nd film forming apparatus (plating apparatus or vapor deposition apparatus)
8 Processing equipment (drawing machine)

Claims (8)

電極間に、高周波、交流電圧などを印加することによって、プラズマを発生させスパッタを行なう薄膜作製方法において、
直径よりも軸方向長さの方が2倍以上長い管状材を一方の電極とし、もう片方の電極を前記管状材中を通過するケーブル、帯、柱状材などの長尺の被処理材そのものとする筒状スパッタ装置を構成し、
前記筒状スパッタ装置の電極間に交流電圧または高周波、直流電圧を印加することによってプラズマ放電を発生させ、前記被処理材の表面の全部または一部に対して、スパッタによる金属、半導体、絶縁体などの各種薄膜の作成を行なうことを特徴とする薄膜作製方法。
In a thin film manufacturing method in which plasma is generated and sputtered by applying high frequency, alternating voltage, etc. between electrodes,
A tubular material whose axial length is two or more times longer than the diameter is one electrode, and the other electrode itself is a long material to be treated such as a cable, a band, or a columnar material that passes through the tubular material. A cylindrical sputtering apparatus that
A plasma discharge is generated by applying an AC voltage, a high frequency, or a DC voltage between the electrodes of the cylindrical sputtering apparatus, and a metal, a semiconductor, or an insulator by sputtering is applied to all or a part of the surface of the material to be processed. A method for producing a thin film characterized by producing various thin films such as
管状材を一方の電極とし、もう片方の電極を前記管状材中を通過するケーブル、帯、柱状材などの長尺の被処理材そのものとする筒状スパッタ装置を構成し、
この筒状スパッタ装置を複数個配置するか、又は1個以上の前記筒状スパッタ装置と二極平板型等の他の構造のスパッタ装置とを総計で2以上配置し、
これら2以上のスパッタ装置のそれぞれの電極間に、高周波、交流電圧などを印加することによってプラズマを発生させ、この2以上のスパッタ装置のプラズマ中を、ケーブル及び帯、柱状材などの長尺の被処理材を長手方向に順次に通過させ、その被処理材の表面の全部または一部に対して、スパッタによる金属、半導体、絶縁体などの各種薄膜の作製を行なうことを特徴とする薄膜作製方法。
A tubular sputtering apparatus is configured with a tubular material as one electrode and the other electrode as a long material to be treated such as a cable, a band, and a columnar material passing through the tubular material,
A plurality of cylindrical sputtering devices are arranged, or two or more of the cylindrical sputtering devices and a sputtering device of another structure such as a bipolar plate type are arranged in total,
Plasma is generated by applying a high frequency, an alternating voltage, etc. between the respective electrodes of these two or more sputtering devices, and the plasma of these two or more sputtering devices is formed into a long cable, strip, columnar material, or the like. Thin film fabrication characterized in that a material to be treated is sequentially passed in the longitudinal direction and various thin films such as metals, semiconductors, insulators, etc. are produced by sputtering on all or part of the surface of the material to be treated. Method.
請求項1又は2に記載の薄膜作製方法において、
前記被処理材の通過方向に見て前記スパッタ装置の下流に、めっき、蒸着などを行なう第二製膜装置を付加し、前記スパッタにより作製された薄膜上にさらに薄膜を形成する第二薄膜作製処理を、前記被処理材を長手方向に移動させながら行なうことを特徴とする薄膜作製方法。
In the thin film production method according to claim 1 or 2,
A second thin film is formed by adding a second film forming apparatus for performing plating, vapor deposition, etc. downstream of the sputtering apparatus as viewed in the direction of passage of the material to be processed, and further forming a thin film on the thin film formed by the sputtering. A method for producing a thin film, wherein the treatment is performed while moving the material to be treated in the longitudinal direction.
請求項1、2又は3に記載の薄膜作製方法において、
前記被処理材の通過方向に見て前記スパッタ装置の下流又は前記第二製膜装置の下流に、圧延機、伸線機、引き抜き機などの加工装置を付加し、薄膜の作製及び表面処理、塑性加工などを前記被処理材を長手方向に移動させながら行なうことを特徴とする薄膜作製方法。
In the thin film production method according to claim 1, 2, or 3,
A processing apparatus such as a rolling mill, a wire drawing machine, and a drawing machine is added downstream of the sputtering apparatus or downstream of the second film forming apparatus as seen in the direction of passage of the material to be processed. A thin film manufacturing method characterized by performing plastic working or the like while moving the material to be processed in the longitudinal direction.
管状材を一方の電極とし、もう片方の電極を前記管状材中を通過するケーブル、帯、柱状材などの長尺の被処理材そのものとする筒状スパッタ装置を構成し、
この筒状スパッタ装置を複数個配置するか、又は1個以上の前記筒状スパッタ装置と二極平板型等の他の構造のスパッタ装置とを総計で2以上配置し、
これら2以上のスパッタ装置のそれぞれの電極間に高周波、交流電圧などを印加することによってプラズマを発生させる手段と、
前記の2以上のスパッタ装置のプラズマ中に、前記長尺の被処理材を長手方向に順次通過させる送り手段とを設け、
前記被処理材の表面の全部または一部に対して、スパッタによる金属、半導体、絶縁体などの各種薄膜の作製を行なうように構成したことを特徴とする薄膜作製装置。
A tubular sputtering apparatus is configured with a tubular material as one electrode and the other electrode as a long material to be treated such as a cable, a band, and a columnar material passing through the tubular material,
A plurality of cylindrical sputtering devices are arranged, or two or more of the cylindrical sputtering devices and a sputtering device of another structure such as a bipolar plate type are arranged in total,
Means for generating plasma by applying a high frequency, an alternating voltage or the like between the electrodes of the two or more sputtering devices;
In the plasma of the two or more sputtering devices, a feed means for sequentially passing the long material to be processed in the longitudinal direction,
A thin film production apparatus characterized in that various thin films such as metals, semiconductors, and insulators are produced by sputtering on all or a part of the surface of the material to be treated.
請求項5に記載の薄膜作製装置において、
前記被処理材の通過方向に見て前記スパッタ装置の下流に、めっき、蒸着などを行なう第二製膜装置を付加したことを特徴とする薄膜作製装置。
The thin film manufacturing apparatus according to claim 5,
A thin film manufacturing apparatus, wherein a second film forming apparatus for performing plating, vapor deposition and the like is added downstream of the sputtering apparatus as viewed in the direction of passage of the material to be processed.
請求項5又は6に記載の薄膜作成装置において、
前記被処理材の通過方向に見て前記スパッタ装置の下流又は前記第二製膜装置の下流に、圧延機、伸線機、引き抜き機などの加工装置を付加したことを特徴とする薄膜作製装置。
In the thin film production apparatus according to claim 5 or 6,
A thin film production apparatus characterized in that a processing apparatus such as a rolling mill, a wire drawing machine, and a drawing machine is added downstream of the sputtering apparatus or downstream of the second film forming apparatus as viewed in the direction of passage of the material to be processed. .
請求項5、6又は7に記載の薄膜作成装置において、
前記被処理材の通過路の途中に、前記被処理材の回転および進行方向の変更が可能なガイドを設置したことを特徴とする薄膜作製装置。
In the thin film production apparatus according to claim 5, 6 or 7,
A thin film manufacturing apparatus, characterized in that a guide capable of rotating and changing the traveling direction of the material to be processed is installed in the middle of the passage of the material to be processed.
JP2004307093A 2004-10-21 2004-10-21 Thin film forming method and thin film forming device Pending JP2006117999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307093A JP2006117999A (en) 2004-10-21 2004-10-21 Thin film forming method and thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307093A JP2006117999A (en) 2004-10-21 2004-10-21 Thin film forming method and thin film forming device

Publications (1)

Publication Number Publication Date
JP2006117999A true JP2006117999A (en) 2006-05-11

Family

ID=36536151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307093A Pending JP2006117999A (en) 2004-10-21 2004-10-21 Thin film forming method and thin film forming device

Country Status (1)

Country Link
JP (1) JP2006117999A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065174A (en) * 2015-09-30 2017-04-06 アルプス電気株式会社 Moisture-proof film and method for producing the same
CN114267498A (en) * 2021-12-27 2022-04-01 安徽电缆股份有限公司 Film coating equipment for producing photovoltaic cable with aluminum alloy conductor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165909A (en) * 1985-01-14 1986-07-26 レイケム・リミテツド Refractory covered article
JPS62220237A (en) * 1986-03-18 1987-09-28 Sumitomo Electric Ind Ltd Manufacture of metal fine wire
JPS63193410A (en) * 1987-02-05 1988-08-10 Sumitomo Electric Ind Ltd Manufacture of superconductive wire
JPH05342930A (en) * 1992-06-11 1993-12-24 Hitachi Chem Co Ltd Manufacture of coaxial wire
JPH06116728A (en) * 1992-10-02 1994-04-26 Kobe Steel Ltd Vacuum deposition plating method and vacuum deposition plating equipment
EP0647961A1 (en) * 1993-09-28 1995-04-12 MAT GmbH Dresden Device for coating elongated bendable products
JPH09195035A (en) * 1996-01-10 1997-07-29 Teijin Ltd Apparatus for producing transparent conductive film
JP2000345372A (en) * 1999-06-02 2000-12-12 Mitsubishi Electric Corp Production apparatus for ramp function material, ramp function material produced by this production apparatus and ramp function material
JP2002258775A (en) * 2001-03-05 2002-09-11 Matsushita Electric Ind Co Ltd Translucent conductive wire-shaped material, fibrous phosphor and woven fabric type display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165909A (en) * 1985-01-14 1986-07-26 レイケム・リミテツド Refractory covered article
JPS62220237A (en) * 1986-03-18 1987-09-28 Sumitomo Electric Ind Ltd Manufacture of metal fine wire
JPS63193410A (en) * 1987-02-05 1988-08-10 Sumitomo Electric Ind Ltd Manufacture of superconductive wire
JPH05342930A (en) * 1992-06-11 1993-12-24 Hitachi Chem Co Ltd Manufacture of coaxial wire
JPH06116728A (en) * 1992-10-02 1994-04-26 Kobe Steel Ltd Vacuum deposition plating method and vacuum deposition plating equipment
EP0647961A1 (en) * 1993-09-28 1995-04-12 MAT GmbH Dresden Device for coating elongated bendable products
JPH09195035A (en) * 1996-01-10 1997-07-29 Teijin Ltd Apparatus for producing transparent conductive film
JP2000345372A (en) * 1999-06-02 2000-12-12 Mitsubishi Electric Corp Production apparatus for ramp function material, ramp function material produced by this production apparatus and ramp function material
JP2002258775A (en) * 2001-03-05 2002-09-11 Matsushita Electric Ind Co Ltd Translucent conductive wire-shaped material, fibrous phosphor and woven fabric type display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065174A (en) * 2015-09-30 2017-04-06 アルプス電気株式会社 Moisture-proof film and method for producing the same
CN114267498A (en) * 2021-12-27 2022-04-01 安徽电缆股份有限公司 Film coating equipment for producing photovoltaic cable with aluminum alloy conductor

Similar Documents

Publication Publication Date Title
EP2553138B1 (en) Target utilization improvement for rotatable magnetrons
JP2007227375A (en) Long-distance plasma generator
JP2008288437A (en) Plasma processing apparatus and plasma processing method
JP2009024230A (en) Sputtering apparatus
KR20190082723A (en) Method for double-side vacuum film formation and laminate obtainable by the method
KR20100071062A (en) Method of treating a surface of at least one part by means of individual sources of an electron cyclotron resonance plasma
JP5185909B2 (en) Plasma CVD equipment
US20180066362A1 (en) Apparatus for Processing Long Base Material by Roll-to-Roll Method and Film Forming Apparatus Using the Same
US11355314B2 (en) Ion beam processing apparatus, electrode assembly, and method of cleaning electrode assembly
JP2006117999A (en) Thin film forming method and thin film forming device
US20140144382A1 (en) Plasma apparatus
JP5924872B2 (en) Method for forming insulating nitride layer by plasma generator and plasma generator
JP5310486B2 (en) Method for forming long heat-resistant resin film and apparatus for producing heat-resistant resin film with metal film
JP2003024773A (en) Plasma processing method and device
JP2017002340A (en) Dlc film coating apparatus and method of coating object to be coated by using dlc film coating apparatus
JP2010138433A (en) Apparatus and method for manufacturing semiconductor apparatus
JP2007221149A (en) Plasma processing method and method of manufacturing semiconductor device
JP2008231532A (en) Method for producing copper-plating-treated material
JP2007314842A (en) Plasma-generating device and sputtering source using the same
JP7438853B2 (en) Magnetron sputtering equipment
JPH01117308A (en) Manufacture of coil
WO2024048261A1 (en) Ion bombardment device and ion bombardment processing method
JP5524290B2 (en) Sputtering equipment
TWI808539B (en) Resin sheet surface treatment method and resin sheet surface treatment device
JP2008071739A (en) Plasma formation device, and treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070119

A977 Report on retrieval

Effective date: 20090629

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Effective date: 20100528

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201