JP7438853B2 - Magnetron sputtering equipment - Google Patents

Magnetron sputtering equipment Download PDF

Info

Publication number
JP7438853B2
JP7438853B2 JP2020098128A JP2020098128A JP7438853B2 JP 7438853 B2 JP7438853 B2 JP 7438853B2 JP 2020098128 A JP2020098128 A JP 2020098128A JP 2020098128 A JP2020098128 A JP 2020098128A JP 7438853 B2 JP7438853 B2 JP 7438853B2
Authority
JP
Japan
Prior art keywords
magnetic field
vacuum chamber
substrate
target
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020098128A
Other languages
Japanese (ja)
Other versions
JP2021188113A (en
Inventor
スンオプ クォン
照明 岩橋
チャンミン シム
ヨンヒョン ウォン
ビョンファ ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Korea Ltd
Original Assignee
Ulvac Korea Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Korea Ltd filed Critical Ulvac Korea Ltd
Priority to JP2020098128A priority Critical patent/JP7438853B2/en
Publication of JP2021188113A publication Critical patent/JP2021188113A/en
Application granted granted Critical
Publication of JP7438853B2 publication Critical patent/JP7438853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空チャンバと、真空チャンバ内で被処理基板を保持するステージと、ステージに対向させて真空チャンバに取り付けられるターゲットと、ステージに背向するターゲットの裏面側に配置されて被処理基板とターゲットとの間の空間に漏洩磁場を発生させる磁石ユニットとを備え、真空チャンバ内に発生させたプラズマを利用してステージで保持された被処理基板の処理面に成膜するマグネトロンスパッタリング装置に関する。 The present invention includes a vacuum chamber, a stage that holds a substrate to be processed in the vacuum chamber , a target that is attached to the vacuum chamber facing the stage, and a substrate that is disposed on the back side of the target facing away from the stage. and a magnet unit that generates a leakage magnetic field in the space between the target and the target , and relates to a magnetron sputtering apparatus that uses plasma generated in a vacuum chamber to form a film on the processing surface of a substrate to be processed held on a stage. .

例えば、半導体デバイスの製造工程では、真空チャンバ内にプラズマを発生させ、この発生させたプラズマを利用してステージで保持された被処理基板の処理面に所定処理を施す各種のプラズマ処理装置が利用されている。例えば、ビアホールやコンタクトホールの内面(内壁面及び底面)にシード層としてCu膜等の金属膜を成膜する工程においては、金属膜を被処理基板全面に亘って被覆性よく成膜するために、スパッタリング装置が従来から利用されている(例えば、特許文献1参照)。この種のスパッタリング装置は、真空チャンバを備え、真空チャンバ内には、金属製のターゲットのスパッタ面と被処理基板の成膜面とを互いに対向させた姿勢でターゲットと被処理基板とが配置される。 For example, in the manufacturing process of semiconductor devices, various plasma processing apparatuses are used that generate plasma in a vacuum chamber and use the generated plasma to perform predetermined processing on the processing surface of a processing target substrate held on a stage. has been done. For example, in the process of forming a metal film such as a Cu film as a seed layer on the inner surface (inner wall surface and bottom surface) of a via hole or contact hole, it is necessary to form a metal film over the entire surface of the substrate to be processed with good coverage. , sputtering apparatuses have been used conventionally (for example, see Patent Document 1). This type of sputtering apparatus is equipped with a vacuum chamber, and in the vacuum chamber, a target and a substrate to be processed are arranged with the sputtering surface of the metal target and the film forming surface of the substrate to be processed facing each other. Ru.

また、上記スパッタリング装置は、スパッタ面と成膜面とに夫々直交する軸線方向をZ軸方向、成膜面側を上として、ターゲットのZ軸方向上方に配置されてターゲットを貫通してターゲットと被処理基板との間の空間に漏洩磁場を発生させる磁石ユニットと、成膜面を通るZ軸方向下向きの垂直磁場を発生させる磁場発生ユニットと、成膜中に被処理基板に対してバイアス電力を投入する高周波電源とを備えている。磁場発生ユニットとしては、一般に、真空チャンバの外側壁に固定配置されるリング状のヨークに導線を巻回してなるコイルとこのコイルに通電する電源とで構成したものが利用される。 Further, the sputtering apparatus is arranged above the target in the Z-axis direction, with the axial direction orthogonal to the sputtering surface and the film-forming surface being the Z-axis direction, and the film-forming surface side being upward. A magnet unit that generates a leakage magnetic field in the space between the substrate to be processed, a magnetic field generation unit that generates a vertical magnetic field directed downward in the Z-axis direction passing through the film formation surface, and a bias power applied to the substrate to be processed during film formation. It is equipped with a high-frequency power supply that supplies power. Generally, a magnetic field generating unit is used, which includes a coil formed by winding a conductive wire around a ring-shaped yoke that is fixedly arranged on the outer wall of a vacuum chamber, and a power supply that energizes the coil.

上記スパッタリング装置を用いて金属膜を成膜するのに際しては、真空雰囲気の真空チャンバにアルゴンなどのスパッタガスを導入し、磁石ユニットによって漏洩磁場を作用させた状態で金属製のターゲットに、例えば負の電位を持つ所定電力を投入する。すると、成膜面とスパッタ面との間の空間にプラズマが形成され、プラズマ中で電離したスパッタガスのイオンがターゲットのスパッタ面に衝突してターゲットからスパッタ粒子が飛散される。この飛散したスパッタ粒子は、正電位を持つことで垂直磁場によりその向きが変えられ、被処理基板にバイアス電力が投入されていることと相俟って、成膜面に対して略垂直に入射して付着、堆積して所定の金属膜が成膜される。 When forming a metal film using the above sputtering apparatus, a sputtering gas such as argon is introduced into a vacuum chamber with a vacuum atmosphere, and a leakage magnetic field is applied to a metal target by a magnet unit. A predetermined power with a potential of . Then, plasma is formed in the space between the film forming surface and the sputtering surface, and ions of the sputtering gas ionized in the plasma collide with the sputtering surface of the target, causing sputtered particles to be scattered from the target. Because these scattered sputter particles have a positive potential, their direction is changed by a vertical magnetic field, and together with the fact that bias power is applied to the substrate to be processed, they are incident almost perpendicularly to the film-forming surface. A predetermined metal film is formed by adhesion and deposition.

ここで、金属膜の成膜時、生産性向上のために成膜レートを速くしようとする場合、被処理基板に対して所定のバイアス電力を投入した状態で、コイルへの通電電流を大きくしていくと(即ち、第2の磁場発生ユニットにより発生させる垂直磁場の磁場強度を強くすると)、それに従い、成膜レートが速くなる。一方で、コイルへの通電電流を大きくすると、膜厚分布の面内均一性が低下することが判明した。そこで、本願発明者らは、鋭意研究を重ね、成膜レートを速くするために、磁場発生ユニットによって発生させる垂直磁場の磁場強度を強くすることで、膜厚分布の面内均一性が低下したとき、垂直磁場をZ軸に対して所定範囲内の角度(例えば、-15度~15度以下の範囲内)で傾ければ、膜厚分布の面内均一性が調整できることを見出した。なお、例えば、ドライエッチング装置によりシリコンウエハの一方の面(処理面)に、処理面を通るZ軸方向に沿う垂直磁場を発生させた状態でトレンチやホールを形成する際に、垂直磁場をZ軸に対して傾ける構成は、処理面全面に亘ってエッチング形状を制御することにも期待できる。 When forming a metal film, if you want to increase the film forming rate to improve productivity, increase the current flowing through the coil while applying a predetermined bias power to the substrate to be processed. As the magnetic field strength increases (that is, as the magnetic field strength of the perpendicular magnetic field generated by the second magnetic field generating unit is increased), the film formation rate increases accordingly. On the other hand, it has been found that when the current applied to the coil is increased, the in-plane uniformity of the film thickness distribution decreases. Therefore, the inventors of the present application conducted extensive research, and in order to speed up the film formation rate, the in-plane uniformity of the film thickness distribution was reduced by increasing the magnetic field strength of the vertical magnetic field generated by the magnetic field generation unit. In this case, it has been found that the in-plane uniformity of the film thickness distribution can be adjusted by tilting the vertical magnetic field at an angle within a predetermined range (for example, within a range of −15 degrees to 15 degrees or less) with respect to the Z axis. For example, when forming trenches or holes on one surface (processing surface) of a silicon wafer using a dry etching device while generating a vertical magnetic field along the Z-axis direction passing through the processing surface, the perpendicular magnetic field is The configuration tilted with respect to the axis can also be expected to control the etching shape over the entire surface to be processed.

特開2013-1965号公報Japanese Patent Application Publication No. 2013-1965

本発明は、以上の点に鑑みなされたものであり、処理面を通るZ軸方向の垂直磁場を発生させた状態でプラズマを利用して所定処理を施す際に、垂直磁場をZ軸に対して所定範囲内の角度で傾けることができるプラズマ処理装置を提供することをその課題とするものである。 The present invention has been made in view of the above points, and when a predetermined process is performed using plasma with a perpendicular magnetic field generated in the Z-axis direction passing through the processing surface, the perpendicular magnetic field is applied to the Z-axis. The object of the present invention is to provide a plasma processing apparatus that can be tilted at an angle within a predetermined range.

上記課題を解決するために真空チャンバと、真空チャンバ内で被処理基板を保持するステージと、ステージに対向させて真空チャンバに取り付けられるターゲットと、ステージに背向するターゲットの裏面側に配置されて被処理基板とターゲットとの間の空間に漏洩磁場を発生させる磁石ユニットとを備え、真空チャンバ内に発生させたプラズマを利用してステージで保持された被処理基板の処理面に成膜する本発明のマグネトロンスパッタリング装置は、処理面に直交する軸線方向をZ軸方向、被処理基板の処理面側を上として、真空チャンバの側壁に設けられて処理面を通るZ軸方向に沿う垂直磁場を発生させる磁場発生ユニットを備え、磁場発生ユニットに、垂直磁場をZ軸に対して所定範囲内の角度で傾ける傾動手段が備えられることを特徴とする。

In order to solve the above problems, a vacuum chamber, a stage that holds a substrate to be processed in the vacuum chamber , a target that is attached to the vacuum chamber opposite to the stage, and a target that is placed on the back side of the target that is opposite to the stage are used. This book is equipped with a magnet unit that generates a leakage magnetic field in the space between the substrate to be processed and the target, and uses plasma generated in a vacuum chamber to form a film on the processing surface of the substrate to be processed held on a stage. The magnetron sputtering apparatus of the invention is provided on the side wall of a vacuum chamber , with the axial direction perpendicular to the processing surface being the Z-axis direction, and the processing surface side of the substrate to be processed facing upward, and generating a vertical magnetic field along the Z-axis direction passing through the processing surface. The magnetic field generating unit is characterized in that the magnetic field generating unit is provided with a tilting means for tilting the vertical magnetic field at an angle within a predetermined range with respect to the Z axis.

本発明において、磁場発生ユニットが、Z軸方向にのびる前記真空チャンバの側壁に外挿されるリング状のヨークに導線を巻回してなるコイルとこのコイルに通電する電源とを備えるような場合、前記傾動手段が、ヨークの部分を上方向または下方向に移動させてZ軸方向に対してコイルを全体として傾ける少なくとも1個の駆動部を備える構成を採用すればよい。これにより、コイルの部分を上方または下方に移動させるだけで、垂直磁場をZ軸に対して所定範囲内の角度で傾ける構成が実現できる。このため、プラズマを利用して所定処理を施すプラズマ処理装置が、例えば、マグネトロンスパッタリング装置であり、このマグネトロンスパッタリング装置を用いて被処理基板の成膜面に銅などの金属膜を成膜するような場合に、成膜レートを速くするために、コイルへの通電電流を大きくして磁場発生ユニットによって発生させる垂直磁場の磁場強度を強くすることで、膜厚分布の面内均一性が低下しても、垂直磁場をZ軸に対して所定範囲内の角度(例えば、-15度~15度以下の範囲内)で所定の方位に傾ければ、膜厚分布の面内均一性を調整することができる。その結果、速い成膜レートで膜厚分布の面内均一性よく金属膜を成膜することが可能になる。 In the present invention, when the magnetic field generation unit includes a coil formed by winding a conductive wire around a ring-shaped yoke that is inserted on the side wall of the vacuum chamber extending in the Z-axis direction, and a power source that energizes this coil, A configuration may be adopted in which the tilting means includes at least one drive unit that moves a portion of the yoke upward or downward to tilt the coil as a whole with respect to the Z-axis direction. This makes it possible to realize a configuration in which the vertical magnetic field is tilted at an angle within a predetermined range with respect to the Z-axis simply by moving the coil portion upward or downward. For this reason, a plasma processing apparatus that performs a predetermined process using plasma is, for example, a magnetron sputtering apparatus. In such cases, in order to speed up the film formation rate, the in-plane uniformity of the film thickness distribution is reduced by increasing the current applied to the coil and increasing the magnetic field strength of the vertical magnetic field generated by the magnetic field generation unit. However, if the vertical magnetic field is tilted in a predetermined direction at an angle within a predetermined range (for example, within a range of -15 degrees to 15 degrees or less) with respect to the Z axis, the in-plane uniformity of the film thickness distribution can be adjusted. be able to. As a result, it becomes possible to deposit a metal film at a high deposition rate and with good in-plane uniformity of film thickness distribution.

ところで、上記のように磁場発生ユニットをコイルで構成し、コイルの部分を機械的に上方または下方に移動させる構成では、Z軸に対して垂直磁場を傾けることができる方位や傾斜角度が限られてしまう場合がある。そこで、磁場発生ユニットが、Z軸方向にのびる前記真空チャンバの側壁に、Z軸方向に直交する同一平面内に位置させ、且つ、周方向に間隔を存して複数個の電磁石を配置してなる電磁石群を上下方向に所定間隔で複数段設けて構成され、前記傾動手段は、各段の電磁石群の中から夫々選択される電磁石に対して通電可能なコントローラで構成することができる。これによれば、コントローラにより通電する電磁石を適宜選択するだけで、Z軸に対して垂直磁場を傾けることができる傾斜角度や方位を自在に変更でき、しかも、成膜中に、Z軸に対して傾けた垂直磁場をZ軸回りに回転させるといったことも可能になる。 By the way, in the above configuration in which the magnetic field generation unit is composed of a coil and the coil part is mechanically moved upward or downward, there are limitations on the direction and angle of inclination in which the vertical magnetic field can be tilted with respect to the Z axis. There are cases where this happens. Therefore, a magnetic field generation unit is arranged such that a plurality of electromagnets are arranged on the side wall of the vacuum chamber extending in the Z-axis direction, in the same plane perpendicular to the Z-axis direction, and at intervals in the circumferential direction. The tilting means may be configured with a controller that can energize the electromagnets selected from the electromagnet groups in each stage. According to this, by simply selecting the electromagnet to be energized by the controller, it is possible to freely change the inclination angle and direction that can tilt the magnetic field perpendicular to the Z-axis. It also becomes possible to rotate a vertical magnetic field that is tilted by the angle around the Z axis.

なお、本発明は、被処理基板がその成膜面に全面に亘って高アスペクト比の微細ホールが複数形成されたものである場合に、各微細ホールにカバレッジよく金属膜を成膜するのにも適用することができる。他方、例えば、プラズマ処置装置をドライエッチング装置とし、ドライエッチング装置によりシリコンウエハの処理面に、断面形状の揃ったトレンチやホールを形成する場合にも本発明は適用することができる。 In addition, the present invention can be used to form a metal film with good coverage on each fine hole when a plurality of fine holes with a high aspect ratio are formed over the entire surface of the substrate to be processed. can also be applied. On the other hand, the present invention can also be applied, for example, to a case where a dry etching apparatus is used as the plasma processing apparatus and trenches or holes with uniform cross-sectional shapes are formed on the processing surface of a silicon wafer by the dry etching apparatus.

本発明の第1の実施形態のプラズマ処理装置を示す模式的断面図。FIG. 1 is a schematic cross-sectional view showing a plasma processing apparatus according to a first embodiment of the present invention. 本発明の効果を示す実験で成膜されたCu膜の成膜レート及び膜厚分布の面内均一性を示す図。FIG. 3 is a diagram showing the film formation rate and in-plane uniformity of film thickness distribution of a Cu film formed in an experiment showing the effects of the present invention. 本発明の第2の実施形態のプラズマ処理装置を示す平面断面図。FIG. 3 is a plan sectional view showing a plasma processing apparatus according to a second embodiment of the present invention. 図3のIV-IV線に沿った断面図。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3;

以下、図面を参照して、プラズマ処理装置をマグネトロン方式のスパッタリング装置とし、被処理基板をシリコンウエハ(以下、「基板Sw」という)、ターゲットを所定の純度を持つ銅製のものとして、基板Swの一方の面(以下、「成膜面Sw1」という)にCu膜を成膜するものを例に本実施形態を説明する。以下において、図1に示す姿勢を基準とし、基板Swの成膜面Sw1に直交する軸線方向をZ軸方向、成膜面Sw1に向かう方向を下として説明する。 Hereinafter, with reference to the drawings, the plasma processing apparatus is a magnetron type sputtering apparatus, the substrate to be processed is a silicon wafer (hereinafter referred to as "substrate Sw"), and the target is a copper one having a predetermined purity. The present embodiment will be described using an example in which a Cu film is formed on one surface (hereinafter referred to as "film formation surface Sw1"). In the following description, the orientation shown in FIG. 1 is used as a reference, and the axial direction perpendicular to the film-forming surface Sw1 of the substrate Sw is the Z-axis direction, and the direction toward the film-forming surface Sw1 is the bottom.

図1を参照して、SMは、第1の実施形態のマグネトロンスパッタリング装置である。スパッタリング装置SMは、成膜室1aを画成する真空チャンバ1を備え、真空チャンバ1の上部にはカソードユニットCuが取り付けられている。カソードユニットCuは、ターゲットアッセンブリ2と、真空チャンバ1外に位置させてターゲットアッセンブリ2の上方に配置される磁石ユニット3とを備える。ターゲットアッセンブリ2は、公知の方法で円筒状の輪郭を持つ所定の組成比の銅製のターゲット21と、ターゲット21の上面にインジウム等のボンディング材(図示省略)を介して接合されるバッキングプレート22とを備える。なお、ターゲット21は銅製ものに限られるものではなく、チタンやタングステンなどの他の金属製のものや金属化合物製のものを使用することができる。そして、ターゲット21の下面(スパッタ面21a)が成膜室1aを臨むようにして絶縁体Iを介して真空チャンバ1の上部にターゲットアッセンブリ2が着脱自在に取り付けられる。ターゲット21にはまた、電源E1からの出力が接続され、スパッタリング中、ターゲット21に例えば、負の電位を持つ所定電力が投入される。磁石ユニット3としては、ターゲット21の下面(スパッタ面)21aの下方空間に漏洩磁場を発生させ、スパッタリング時にスパッタ面21aの下方で電離した電子等を捕捉してターゲット21から飛散したスパッタ粒子を効率よくイオン化する公知の構造を有するものを用いることができるため、ここでは、詳細な説明を省略する。 Referring to FIG. 1, SM 1 is the magnetron sputtering apparatus of the first embodiment. The sputtering apparatus SM 1 includes a vacuum chamber 1 defining a film forming chamber 1a, and a cathode unit Cu is attached to the upper part of the vacuum chamber 1. The cathode unit Cu includes a target assembly 2 and a magnet unit 3 located outside the vacuum chamber 1 and above the target assembly 2. The target assembly 2 includes a copper target 21 having a cylindrical profile and a predetermined composition ratio, and a backing plate 22 bonded to the upper surface of the target 21 via a bonding material (not shown) such as indium, using a known method. Equipped with Note that the target 21 is not limited to being made of copper, but may be made of other metals such as titanium or tungsten, or of metal compounds. Then, the target assembly 2 is detachably attached to the upper part of the vacuum chamber 1 via the insulator I1 so that the lower surface (sputtering surface 21a) of the target 21 faces the film forming chamber 1a. The output from the power source E1 is also connected to the target 21, and a predetermined power having a negative potential, for example, is applied to the target 21 during sputtering. The magnet unit 3 generates a leakage magnetic field in the space below the lower surface (sputtering surface) 21a of the target 21, captures electrons etc. ionized below the sputtering surface 21a during sputtering, and efficiently removes sputtered particles scattered from the target 21. Since it is possible to use a material having a well-known structure that ionizes well, a detailed explanation will be omitted here.

真空チャンバ1の下部には、ターゲット21のスパッタ面21aに対向する基板載置面41を持つステージ4が絶縁体Iを介して設けられ、基板Swをその成膜面Sw1を上方に向けて位置決め保持することができる。ステージ4にはまた、電源E2からの出力が接続され、スパッタリング中、ステージ4、ひいては基板Swに所定周波数のバイアス電力が投入されて、正電位を持つスパッタ粒子を基板Swに積極的に引き込むことができる。スパッタ面21aと成膜面Sw1との間の間隔は、例えば300mm~600mmの範囲に設定される。真空チャンバ1の下壁には、排気管5aが接続されている。排気管5aは、ターボ分子ポンプやロータリーポンプ等で構成される真空ポンプユニットPuに連通し、真空チャンバ1内を所定圧力以下に真空引きすることができる。真空チャンバ1の側壁1bには、スパッタガスとしてアルゴンガスを導入するガス管5bが接続されている。ガス管5bは、マスフローコントローラMcを介して図外のガス源に連通し、流量制御されたアルゴンガスを成膜室1a内に導入することができる。なお、電極としてのターゲット21、電源E1,E2やガス管5bなどの各種の構成部品が本実施形態のプラズマ発生手段を構成する。 At the bottom of the vacuum chamber 1, a stage 4 having a substrate mounting surface 41 facing the sputtering surface 21a of the target 21 is provided with an insulator I2 interposed therebetween. Can be held in position. The output from the power source E2 is also connected to the stage 4, and during sputtering, bias power at a predetermined frequency is applied to the stage 4 and, by extension, the substrate Sw to actively draw sputtered particles having a positive potential to the substrate Sw. I can do it. The distance between the sputtering surface 21a and the film forming surface Sw1 is set, for example, in a range of 300 mm to 600 mm. An exhaust pipe 5a is connected to the lower wall of the vacuum chamber 1. The exhaust pipe 5a communicates with a vacuum pump unit Pu composed of a turbo molecular pump, a rotary pump, etc., and can evacuate the inside of the vacuum chamber 1 to a predetermined pressure or less. A gas pipe 5b for introducing argon gas as a sputtering gas is connected to the side wall 1b of the vacuum chamber 1. The gas pipe 5b communicates with a gas source (not shown) via a mass flow controller Mc, and can introduce argon gas whose flow rate is controlled into the film forming chamber 1a. Note that various components such as the target 21 as an electrode, the power sources E1 and E2, and the gas pipe 5b constitute the plasma generating means of this embodiment.

真空チャンバ1の側壁1bには、基板Swの成膜面Sw1を通るZ軸方向下向きの垂直磁場MFを発生させる磁場発生ユニット6が設けられている。磁場発生ユニット6は、真空チャンバ1の側壁1bに隙間を存して外挿されるリング状のヨーク61aに導線61bを巻回してなるコイル61と、導線61bの自由端が接続されてコイル61への通電を可能とする電源62とを備える。真空チャンバ1の側壁1bに対するコイル61の位置や導線61bの巻数は、例えばターゲット21のスパッタ面21aの面積、ターゲット21と基板Swとの間の距離や、発生させようとする垂直磁場MFの磁場強度に応じて適宜設定される。また、ヨーク61aには、その一部を上方向または下方向に移動させてZ軸方向に対してコイル61を全体として傾ける傾動手段7が連結されている。 The side wall 1b of the vacuum chamber 1 is provided with a magnetic field generating unit 61 that generates a vertical magnetic field MF1 directed downward in the Z-axis direction passing through the film forming surface Sw1 of the substrate Sw. The magnetic field generating unit 61 includes a coil 61 formed by winding a conducting wire 61b around a ring-shaped yoke 61a that is fitted onto the side wall 1b of the vacuum chamber 1 with a gap therebetween, and a coil 61 formed by connecting the free end of the conducting wire 61b. A power source 62 that enables energization of the power source 62 is provided. The position of the coil 61 with respect to the side wall 1b of the vacuum chamber 1 and the number of turns of the conducting wire 61b depend on, for example, the area of the sputtering surface 21a of the target 21, the distance between the target 21 and the substrate Sw, and the vertical magnetic field MF 1 to be generated. It is set appropriately depending on the magnetic field strength. Further, a tilting means 71 is connected to the yoke 61a to move a part of the yoke upward or downward to tilt the coil 61 as a whole with respect to the Z-axis direction.

傾動手段7は、駆動部としてのモータ71を有する送りねじ72と送りねじ72に螺合するスライダ73とを備え、スライダ73がヒンジ74を介してヨーク61aの所定位置に連結されている。本実施形態では、4個の傾動手段7が周方向に90度間隔で設けられている。これにより、例えば、いずれか1個の傾動手段7のスライダ73をZ軸方向上方(または下方)に移動させれば、コイル61が全体としてZ軸方向に対して傾き、これに応じて、コイル61によって発生する垂直磁場MFが、仮想線で示す磁場MFのように、Z軸に対して傾斜角度θ(例えば、-15度~15度以下の範囲内)で傾く(図1参照)。この場合、各傾動手段7のスライダ73をZ軸方向上方または下方への移動量を適宜調整すれば、垂直磁場MFを傾ける傾斜角度や方位を適宜調整することができる。なお、本実施形態では、傾動手段7の駆動部として送りねじ72を備えるものを例に説明するが、これに限定されるものではなく、単軸ロボットなどの他のアクチュエータを利用してコイル61を全体として傾けるようにしてもよい。スパッタリング装置SMはまた、マイクロコンピュータやシーケンサ等を備えた公知の制御コントローラCrを有し、制御コントローラCrにより上記各電源E1,E2,62の作動、マスフローコントローラMcの作動、真空排気手段Puの作動やモータ71の作動等を統括管理するようになっている。以下、上記スパッタリング装置SMを用いた成膜方法について、基板SwにCu膜を成膜する場合を例に説明する。 The tilting means 71 includes a feed screw 72 having a motor 71 as a driving portion and a slider 73 screwed into the feed screw 72, and the slider 73 is connected to a predetermined position of the yoke 61a via a hinge 74. In this embodiment, four tilting means 71 are provided at intervals of 90 degrees in the circumferential direction. Thereby, for example, if the slider 73 of any one of the tilting means 71 is moved upward (or downward) in the Z-axis direction, the coil 61 as a whole is tilted in the Z-axis direction, and accordingly, The vertical magnetic field MF 1 generated by the coil 61 is inclined at an inclination angle θ (for example, within the range of −15 degrees to 15 degrees or less) with respect to the Z axis, as shown by the magnetic field MF 2 shown by the imaginary line (see FIG. 1). ). In this case, by appropriately adjusting the amount of upward or downward movement of the slider 73 of each tilting means 71 in the Z-axis direction, the inclination angle and direction of tilting the vertical magnetic field MF1 can be appropriately adjusted. In this embodiment, an example will be described in which the drive unit of the tilting unit 71 is provided with a feed screw 72, but the invention is not limited to this, and other actuators such as a single-axis robot may be used to move the coil. 61 may be tilted as a whole. The sputtering apparatus SM 1 also has a known control controller Cr equipped with a microcomputer, a sequencer, etc., and the control controller Cr controls the operation of the power supplies E1, E2, 62, the mass flow controller Mc, and the evacuation means Pu. The operation, operation of the motor 71, etc. are collectively managed. Hereinafter, a film forming method using the sputtering apparatus SM 1 will be described, taking as an example a case where a Cu film is formed on a substrate Sw.

真空チャンバ1内でステージ4の基板載置面41にその成膜面Sw1を上側に向けた姿勢で基板Swをセットし、真空排気手段Puにより真空チャンバ1内を所定圧力(例えば、10-5Pa)まで真空排気する。真空チャンバ1内が所定圧力に達すると、電源62によりコイル61に所定の電流値で通電し、基板Swの成膜面Sw1を通るZ軸方向下向きの垂直磁場MFを発生させる。このとき、予め実験的に求めたコイル61への電流値とそのときの基板Sw面内の膜厚分布との相関から、いずれかの傾動手段7のモータ71によりスライダ73をZ軸方向上方(または下方)に移動させ、コイル61を全体としてZ軸方向に対して所定の角度で傾ける(例えば、基板Sw内で膜厚が局所的に厚く(または薄く)なる領域と同方位となるコイル61の部分を起点にし、このコイル61の部分が上方または下方に移動されるようにスライド73を移動する傾動手段7と、その移動量とを選択すればよい)。これにより、Z軸に対して傾斜角度θ(例えば、-15度~15度以下の範囲内)で傾いた垂直磁場MFが基板Swに発生する。 A substrate Sw is set on the substrate mounting surface 41 of the stage 4 in the vacuum chamber 1 with its film forming surface Sw1 facing upward, and the vacuum chamber 1 is heated to a predetermined pressure (for example, 10 -5 Evacuate to Pa). When the inside of the vacuum chamber 1 reaches a predetermined pressure, the power supply 62 energizes the coil 61 with a predetermined current value to generate a vertical magnetic field MF 1 directed downward in the Z-axis direction passing through the film-forming surface Sw1 of the substrate Sw. At this time, the slider 73 is moved upward in the Z-axis direction by the motor 71 of one of the tilting means 71, based on the correlation between the current value to the coil 61, which has been experimentally determined in advance, and the film thickness distribution in the plane of the substrate Sw at that time. (or downward) and tilt the coil 61 as a whole at a predetermined angle with respect to the Z-axis direction (for example, the coil is oriented in the same direction as a region where the film thickness locally becomes thicker (or thinner) within the substrate Sw. 61 as a starting point, the tilting means 71 that moves the slide 73 so that the coil 61 is moved upward or downward, and the amount of movement thereof may be selected. As a result, a vertical magnetic field MF 2 tilted at an inclination angle θ (for example, within a range of -15 degrees to 15 degrees or less) with respect to the Z axis is generated in the substrate Sw.

次に、マスフローコントローラMcを制御して真空チャンバ1内にアルゴンガスを所定の流量で導入し、電源E1よりターゲット21に負の電位を持つ所定電力(10~30kW)を投入して、成膜室1a内にプラズマを発生させ、プラズマを発生させてから所定時間が経過した後、ターゲット21への電力投入を維持しながら、マスフローコントローラMcを制御してアルゴンガスの導入を停止して自己放電させる。これにより、プラズマ雰囲気で電離したスパッタガスのイオンによりターゲット21がスパッタリングされてターゲット21からのスパッタ粒子が飛散する。このとき、電源E2によりステージ4(基板Sw)に所定のバイアス電力(0~1250W)を投入することで、正電位を持つスパッタ粒子が基板Swに積極的に引き込まれながら、基板Swの成膜面Sw1にCu膜が成膜される。これにより、速い成膜レートで膜厚分布の面内均一性良くCu膜を成膜することができる。 Next, argon gas is introduced into the vacuum chamber 1 at a predetermined flow rate by controlling the mass flow controller Mc, and a predetermined power (10 to 30 kW) having a negative potential is applied to the target 21 from the power source E1 to form a film. Plasma is generated in the chamber 1a, and after a predetermined time has elapsed since the plasma is generated, the mass flow controller Mc is controlled to stop the introduction of argon gas while maintaining power input to the target 21, and self-discharge occurs. let As a result, the target 21 is sputtered by ions of the sputtering gas ionized in the plasma atmosphere, and sputtered particles from the target 21 are scattered. At this time, by applying a predetermined bias power (0 to 1250 W) to the stage 4 (substrate Sw) from the power source E2, sputtered particles with a positive potential are actively drawn into the substrate Sw, and the film is formed on the substrate Sw. A Cu film is formed on the surface Sw1. Thereby, a Cu film can be formed at a fast film formation rate and with good in-plane uniformity of film thickness distribution.

以上の効果を確認するため、上記スパッタリング装置SMを用いて、次の実験を行った。発明実験では、基板SwをΦ300mmのシリコン基板として、シリコン基板の表面にCu膜を成膜した。即ち、ターゲット21としてΦ320mmの銅製(純度99.9999%)のものを用い、ターゲット21と基板Swとの間の距離を600mmに設定し、電源62によりコイル61に3Aの電流値で通電し、基板Swの成膜面Sw1を通るZ軸方向下向きの垂直磁場MFを発生させた。そして、モータ71を駆動させて、垂直磁場MFをZ軸に対して3.5度の傾斜角度で傾けた後、マスフローコントローラMcを制御して、アルゴンガスを所定の流量(例えば、20sccm)で導入した(このときの処理室1aの圧力は0.4Pa)。これと併せて、電源E1からターゲット21に負の電位を持つ直流電力(例えば、30kW)を投入して、成膜室1a内にプラズマを発生させた後、ターゲット21への電力投入を維持しながら、アルゴンガスの導入を停止して自己放電させた(このときの成膜室1aの圧力は1×10-5Pa)。このとき、電源E2によりステージ4に250Wまたは400Wの所定のバイアス電力を投入して、ターゲット21のスパッタ面21aをスパッタリングすることで飛散したスパッタ粒子を基板Swに付着、堆積させてCu膜を成膜し、成膜したCu膜の膜厚分布の面内均一性及び成膜レートを夫々測定した。なお、比較実験として、垂直磁場MFをZ軸に対して所定の傾斜角度で傾ける点を除いて、基板SwにCu膜を成膜し、成膜したCu膜の膜厚分布の面内均一性及び成膜レートを夫々測定した。夫々測定したCu膜の膜厚分布の面内均一性及び成膜レートを図2に示す。 In order to confirm the above effects, the following experiment was conducted using the sputtering apparatus SM1 . In the invention experiment, the substrate Sw was a silicon substrate with a diameter of 300 mm, and a Cu film was formed on the surface of the silicon substrate. That is, the target 21 was made of copper (99.9999% purity) with a diameter of 320 mm, the distance between the target 21 and the substrate Sw was set to 600 mm, and the coil 61 was energized with a current value of 3 A by the power source 62. A vertical magnetic field MF 1 directed downward in the Z-axis direction was generated passing through the film-forming surface Sw1 of the substrate Sw. Then, after driving the motor 71 to tilt the vertical magnetic field MF 1 at an inclination angle of 3.5 degrees with respect to the Z axis, the mass flow controller Mc is controlled to supply argon gas at a predetermined flow rate (for example, 20 sccm). (The pressure in the processing chamber 1a at this time was 0.4 Pa). At the same time, DC power (for example, 30 kW) having a negative potential is applied to the target 21 from the power source E1 to generate plasma in the film forming chamber 1a, and then the power applied to the target 21 is maintained. However, the introduction of argon gas was stopped to allow self-discharge (the pressure in the film forming chamber 1a at this time was 1×10 −5 Pa). At this time, a predetermined bias power of 250 W or 400 W is applied to the stage 4 by the power source E2, and the sputtered particles are attached and deposited on the substrate Sw by sputtering the sputtering surface 21a of the target 21 to form a Cu film. The in-plane uniformity of the film thickness distribution and the film formation rate of the formed Cu film were measured. As a comparative experiment, a Cu film was formed on the substrate Sw except that the vertical magnetic field MF 1 was tilted at a predetermined inclination angle with respect to the Z axis, and the thickness distribution of the formed Cu film was uniform in the plane. The properties and film formation rate were measured respectively. FIG. 2 shows the in-plane uniformity of the film thickness distribution and the film formation rate of the Cu films measured.

これによれば、垂直磁場MFをZ軸に対して3.5度の傾斜角度で傾けて成膜されたCu膜の膜厚分布の面内均一性は、ステージ4への投入電力250Wまたは400Wの夫々において、1.82%、1.34%であり、比較実験の2.30%、1.46%と比べて、膜厚分布の面内均一性よく成膜できることが確認された。また、垂直磁場MFをZ軸に対して3.5度の傾斜角度で傾けて成膜されたCu膜の成膜レートは、ステージ4への投入電力250Wまたは400Wの夫々において、2.20nm/sec、1.80nm/secであり、比較実験の2.29nm/sec、1.98nm/secと同程度の成膜レートであることが確認された。 According to this, the in-plane uniformity of the film thickness distribution of a Cu film formed by tilting the vertical magnetic field MF 1 at an inclination angle of 3.5 degrees with respect to the Z axis is determined by the power input to stage 4 of 250 W or At 400 W, the values were 1.82% and 1.34%, respectively, and compared with 2.30% and 1.46% in the comparative experiment, it was confirmed that the film could be formed with good in-plane uniformity in film thickness distribution. Furthermore, the deposition rate of the Cu film formed by tilting the vertical magnetic field MF 1 at an inclination angle of 3.5 degrees with respect to the Z axis was 2.20 nm when the power input to the stage 4 was 250 W or 400 W, respectively. /sec, 1.80 nm/sec, which was confirmed to be the same film forming rate as 2.29 nm/sec, 1.98 nm/sec in the comparative experiment.

次に、上記第1の実施形態と同一の部材、要素につき同一の符号を付した図3,4を参照して、SMは、第2の実施形態のスパッタリング装置である。スパッタリング装置SMでは、真空チャンバ1の側壁1bに設けられる第2の磁場発生ユニット6が次のように構成されている。即ち、第2の磁場発生ユニット6は、Z軸方向に直交する同一平面内に位置させて、且つ、側壁1bの周方向に等間隔に配置される複数個(本実施形態では、8個)の電磁石63を磁石群63u,63m,63dとし、各電磁石63が上下方向で整列するように各磁石群63u,63m,63dを上下方向に等間隔の三段で配置して構成される。各電磁石63は、同一の構成を有し、円柱状や角柱状の鉄心に巻線を巻回してなる公知のものが利用される。磁石群63u,63m,63dを構成する電磁石63の数やその位置は、例えばターゲット21のスパッタ面21aの面積、ターゲット21と基板Swとの間の距離や、発生させようとする垂直磁場MFの磁場強度に応じて適宜設定される。 Next, referring to FIGS. 3 and 4, in which the same members and elements as in the first embodiment are given the same reference numerals, SM 2 is a sputtering apparatus of the second embodiment. In the sputtering apparatus SM2 , the second magnetic field generating unit 62 provided on the side wall 1b of the vacuum chamber 1 is configured as follows. That is, a plurality of second magnetic field generating units 62 (in this embodiment, eight units) are located in the same plane perpendicular to the Z-axis direction and are arranged at equal intervals in the circumferential direction of the side wall 1b. ) are arranged as magnet groups 63u, 63m, and 63d, and the magnet groups 63u, 63m, and 63d are arranged in three stages at equal intervals in the vertical direction so that the electromagnets 63 are aligned in the vertical direction. Each of the electromagnets 63 has the same configuration, and a known electromagnet having a coil wound around a cylindrical or prismatic core is used. The number of electromagnets 63 constituting the magnet groups 63u, 63m, and 63d and their positions depend on, for example, the area of the sputtering surface 21a of the target 21, the distance between the target 21 and the substrate Sw, and the perpendicular magnetic field MF 1 to be generated. It is set appropriately according to the magnetic field strength.

また、スパッタリング装置SMでは、傾動手段7がコントローラで構成される。この場合、コントローラ7は、スパッタリング装置の制御コントローラCrと通信自在としてもよい。コントローラ7は、マイクロコンピュータ、シーケンサや電源回路等を備える公知のものであり、上段の磁石群63uの中から選択される少なくとも1個の電磁石63、中段の磁石群63mの中から選択される少なくとも1個の電磁石63、下段の磁石群63dの中から選択される少なくとも1個の電磁石63の巻線に対して夫々通電可能となっている。そして、各段の磁石群63u,63m,63dを構成する全ての電磁石63に対してコントローラ7から同等の電流を夫々通電すると、基板Swの成膜面Sw1に対して垂直磁場MFを発生させることができる。他方で、例えば、上段の磁石群63uのいずれか1個の電磁石63を基準電磁石63sとし、基準電磁石63sに時計方向で隣接する電磁石63(図3中、63n)への通電を停止し、この通電停止された電磁石63の直下に位置する中段の磁石群63uの電磁石63への通電を維持すると共に、この通電が維持された中段の磁石群63uの電磁石63に時計方向で隣接する電磁石63への通電を停止し、この通電停止された電磁石63の直下に位置する下段の磁石群63dの電磁石63への通電を維持すると共に、この通電が維持された下段の磁石群63dの電磁石63に時計方向で隣接する電磁石63への通電を停止する。これを繰り返すことでZ軸に対して所定の傾斜角度θで傾いた磁場MFを発生させることができる(図4参照)。 Further, in the sputtering apparatus SM2 , the tilting means 72 is composed of a controller. In this case, the controller 72 may be able to freely communicate with the controller Cr of the sputtering apparatus. The controller 72 is a known controller including a microcomputer, a sequencer, a power supply circuit, etc., and includes at least one electromagnet 63 selected from the upper magnet group 63u and one selected from the middle magnet group 63m. Electricity can be applied to at least one electromagnet 63 and the winding of at least one electromagnet 63 selected from the lower magnet group 63d. Then, when an equal current is applied from the controller 72 to all the electromagnets 63 constituting the magnet groups 63u, 63m, and 63d in each stage, a perpendicular magnetic field MF 1 is generated with respect to the film-forming surface Sw1 of the substrate Sw. can be done. On the other hand, for example, any one electromagnet 63 of the upper magnet group 63u is used as the reference electromagnet 63s, and the electromagnet 63 (63n in FIG. 3) adjacent to the reference electromagnet 63s in the clockwise direction is de-energized. Energization is maintained to the electromagnets 63 in the middle magnet group 63u located directly below the electromagnet 63 that has been de-energized, and the electromagnets 63 adjacent in the clockwise direction to the electromagnets 63 in the middle magnet group 63u to which the energization is maintained are maintained. The energization is stopped, the energization is maintained to the electromagnet 63 of the lower magnet group 63d located directly below the electromagnet 63 whose energization has been stopped, and the electromagnet 63 of the lower magnet group 63d whose energization is maintained is connected to the clock. The energization to the electromagnets 63 adjacent in the direction is stopped. By repeating this, a magnetic field MF 2 tilted at a predetermined tilt angle θ with respect to the Z-axis can be generated (see FIG. 4).

以上によれば、各段の磁石群63u,63m,63dの中から任意に選択した電磁石63にコントローラ7により通電するだけで、Z軸に対して垂直磁場MFを傾けることができる角度や方位を自在に変更することができる。しかも、処理中に、Z軸に対して傾けた磁場MFをZ軸回りに回転させるといったことも可能になる。 According to the above, by simply energizing the electromagnet 63 arbitrarily selected from the magnet groups 63u, 63m, and 63d in each stage by the controller 72 , the vertical magnetic field MF1 can be tilted at an angle with respect to the Z axis. The direction can be changed freely. Moreover, it is also possible to rotate the magnetic field MF 2 tilted with respect to the Z-axis around the Z-axis during processing.

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記第1及び第2の各実施形態では、プラズマ処理装置としてマグネトロンスパッタリング装置を例に説明したが、これに限定されるものではなく、例えば、ドライエッチング装置やプラズマCVD装置にて、ステージに保持された被処理基板に対して下向きの垂直磁場を作用させた状態でプラズマを利用して所定処理を施す場合に、本発明の技術思想は広く適用することができる。 Although the embodiments of the present invention have been described above, various modifications can be made without departing from the scope of the technical idea of the present invention. In each of the first and second embodiments described above, a magnetron sputtering apparatus is used as an example of the plasma processing apparatus, but the invention is not limited to this. The technical concept of the present invention can be widely applied to a case where a predetermined process is performed using plasma while applying a downward vertical magnetic field to a processed substrate.

SM,SM…スパッタリング装置(プラズマ処理装置)、Sw…基板(被処理基板)、Sw1…成膜面(処理面)、E1,E2…電源(プラズマ発生手段)、MF…垂直磁場、1…真空チャンバ、1b…真空チャンバの側壁、4…ステージ、5b…ガス管(プラズマ発生手段)、6,6…磁場発生ユニット、7…傾動手段、7…コントローラ(傾動手段)、61…コイル(磁場発生ユニット)、61a…ヨーク、61b…導線、62…電源(磁場発生ユニット)、63…電磁石(磁場発生ユニット)、63u,63m,63d…電磁石群71…モータ(駆動部)。 SM 1 , SM 2 ... sputtering device (plasma processing device), Sw ... substrate (substrate to be processed), Sw1 ... film forming surface (processing surface), E1, E2 ... power supply (plasma generation means), MF 1 ... vertical magnetic field, DESCRIPTION OF SYMBOLS 1...Vacuum chamber, 1b...Side wall of vacuum chamber, 4...Stage, 5b...Gas tube (plasma generation means), 61 , 62 ...Magnetic field generation unit, 71 ...Tilt means, 7 2 ...Controller (tilt means) , 61... Coil (magnetic field generation unit), 61a... Yoke, 61b... Conductor, 62... Power supply (magnetic field generation unit), 63... Electromagnet (magnetic field generation unit), 63u, 63m, 63d... Electromagnet group 71... Motor (drive unit) ).

Claims (3)

真空チャンバと、真空チャンバ内で被処理基板を保持するステージと、ステージに対向させて真空チャンバに取り付けられるターゲットと、ステージに背向するターゲットの裏面側に配置されて被処理基板とターゲットとの間の空間に漏洩磁場を発生させる磁石ユニットとを備え、真空チャンバ内に発生させたプラズマを利用してステージで保持された被処理基板の処理面に成膜するマグネトロンスパッタリング装置であって、
処理面に直交する軸線方向をZ軸方向、被処理基板の処理面側を上として、真空チャンバの側壁に設けられて処理面を通るZ軸方向に沿う垂直磁場を発生させる磁場発生ユニットを備えるものにおいて、
磁場発生ユニットに、垂直磁場をZ軸に対して所定範囲内の角度で傾ける傾動手段が備えられることを特徴とするマグネトロンスパッタリング装置
A vacuum chamber, a stage that holds a substrate to be processed within the vacuum chamber , a target that is attached to the vacuum chamber to face the stage, and a target that is placed on the back side of the target facing away from the stage to connect the substrate to be processed and the target. A magnetron sputtering apparatus that is equipped with a magnet unit that generates a leakage magnetic field in a space between the two , and that uses plasma generated in a vacuum chamber to form a film on the processing surface of a substrate to be processed held on a stage,
A magnetic field generating unit is provided on the side wall of the vacuum chamber and generates a vertical magnetic field along the Z-axis direction passing through the processing surface, with the axial direction perpendicular to the processing surface being the Z-axis direction and the processing surface side of the substrate being processed facing upward. In things,
A magnetron sputtering apparatus characterized in that the magnetic field generation unit is equipped with a tilting means for tilting the vertical magnetic field at an angle within a predetermined range with respect to the Z-axis.
前記磁場発生ユニットが、Z軸方向にのびる前記真空チャンバの側壁に外挿されるリング状のヨークに導線を巻回してなるコイルとこのコイルに通電する電源とを備え、前記傾動手段が、ヨークの部分を上方向または下方向に移動させてZ軸方向に対してコイルを全体として傾ける少なくとも1個の駆動部を備えることを特徴とする請求項1記載のマグネトロンスパッタリング装置 The magnetic field generation unit includes a coil formed by winding a conducting wire around a ring-shaped yoke that is fitted onto a side wall of the vacuum chamber extending in the Z-axis direction, and a power supply that energizes the coil. 2. The magnetron sputtering apparatus according to claim 1, further comprising at least one drive unit that tilts the coil as a whole with respect to the Z-axis direction by moving a portion upward or downward. 前記磁場発生ユニットが、Z軸方向にのびる前記真空チャンバの側壁に、Z軸方向に直交する同一平面内に位置させると共に周方向に間隔を存して複数個の電磁石を配置してなる電磁石群を上下方向に所定間隔で複数段設けて構成され、
前記傾動手段が、各段の電磁石群の中から夫々選択される電磁石に対して通電可能なコントローラを備えることを特徴とする請求項1記載のマグネトロンスパッタリング装置
An electromagnet group in which the magnetic field generation unit is formed by disposing a plurality of electromagnets on a side wall of the vacuum chamber extending in the Z-axis direction, located in the same plane orthogonal to the Z-axis direction, and spaced apart in the circumferential direction. Consisting of multiple stages of vertically arranged at predetermined intervals,
2. The magnetron sputtering apparatus according to claim 1, wherein the tilting means includes a controller capable of energizing the electromagnets selected from the electromagnet group at each stage.
JP2020098128A 2020-06-05 2020-06-05 Magnetron sputtering equipment Active JP7438853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020098128A JP7438853B2 (en) 2020-06-05 2020-06-05 Magnetron sputtering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020098128A JP7438853B2 (en) 2020-06-05 2020-06-05 Magnetron sputtering equipment

Publications (2)

Publication Number Publication Date
JP2021188113A JP2021188113A (en) 2021-12-13
JP7438853B2 true JP7438853B2 (en) 2024-02-27

Family

ID=78848191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020098128A Active JP7438853B2 (en) 2020-06-05 2020-06-05 Magnetron sputtering equipment

Country Status (1)

Country Link
JP (1) JP7438853B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525519A (en) 2000-03-01 2003-08-26 東京エレクトロン株式会社 Electrically controllable plasma uniformity in dense plasma sources
JP2005503648A (en) 2001-09-14 2005-02-03 東京エレクトロン株式会社 Plasma reactor, coil magnet system
WO2011007831A1 (en) 2009-07-17 2011-01-20 株式会社アルバック Film-forming apparatus
WO2012073449A1 (en) 2010-11-30 2012-06-07 キヤノンアネルバ株式会社 Plasma processing device
US20130199926A1 (en) 2012-02-06 2013-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Novel Multi Coil Target Design
WO2016136255A1 (en) 2015-02-25 2016-09-01 株式会社アルバック Film forming device and film forming method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525519A (en) 2000-03-01 2003-08-26 東京エレクトロン株式会社 Electrically controllable plasma uniformity in dense plasma sources
JP2005503648A (en) 2001-09-14 2005-02-03 東京エレクトロン株式会社 Plasma reactor, coil magnet system
WO2011007831A1 (en) 2009-07-17 2011-01-20 株式会社アルバック Film-forming apparatus
US20120103801A1 (en) 2009-07-17 2012-05-03 Ulvac, Inc. Film formation apparatus
WO2012073449A1 (en) 2010-11-30 2012-06-07 キヤノンアネルバ株式会社 Plasma processing device
US20120298303A1 (en) 2010-11-30 2012-11-29 Canon Anelva Corporation Plasma treatment apparatus
US20130199926A1 (en) 2012-02-06 2013-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Novel Multi Coil Target Design
WO2016136255A1 (en) 2015-02-25 2016-09-01 株式会社アルバック Film forming device and film forming method
US20170004995A1 (en) 2015-02-25 2017-01-05 Ulvac, Inc. Film Forming Apparatus and Film Forming Method

Also Published As

Publication number Publication date
JP2021188113A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
KR100776861B1 (en) Improved magnetron sputtering system for large-area substrates
JP2000144399A (en) Sputtering device
US8911602B2 (en) Dual hexagonal shaped plasma source
JP7069319B2 (en) Electrodes shaped for improved plasma exposure from vertical plasma sources
JP7002655B2 (en) Shape-selective deposition of dielectric film using low-frequency bias
US11688591B2 (en) Physical vapor deposition apparatus and method thereof
JP2013139642A (en) Plasma treatment apparatus applied for sputtering film forming
JP4614578B2 (en) Plasma processing equipment for sputter deposition applications
TWM592875U (en) Tilted magnetron in a pvd sputtering deposition chamber
WO2013179548A1 (en) Magnetron sputtering device, magnetron sputtering method, and storage medium
JP2004162138A (en) Plasma assisted sputtering film-forming apparatus
JP7438853B2 (en) Magnetron sputtering equipment
JP2022544801A (en) Tunable uniformity control using a rotating magnetic housing
US7625472B2 (en) Plasma-assisted sputter deposition system
JP4533499B2 (en) Magnetic neutral wire discharge sputtering equipment
JP2020200520A (en) Film deposition apparatus, sputtering target mechanism and film deposition method
JP2650465B2 (en) Dry thin film processing equipment
JP2020122211A (en) Sputtering apparatus and sputtering method
KR102617710B1 (en) Substrate treatment apparatus
JP2011017088A (en) Plasma treatment apparatus for applying sputtering film deposition
JP2009299191A (en) Plasma-assisted sputter film-forming apparatus
JP3898318B2 (en) Sputtering equipment
TW202321484A (en) Tilted pvd source with rotating pedestal
JPH01152272A (en) Sputtering device
JP2015178653A (en) Sputtering device and sputtering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7438853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150