JP2015178653A - Sputtering device and sputtering method - Google Patents

Sputtering device and sputtering method Download PDF

Info

Publication number
JP2015178653A
JP2015178653A JP2014056071A JP2014056071A JP2015178653A JP 2015178653 A JP2015178653 A JP 2015178653A JP 2014056071 A JP2014056071 A JP 2014056071A JP 2014056071 A JP2014056071 A JP 2014056071A JP 2015178653 A JP2015178653 A JP 2015178653A
Authority
JP
Japan
Prior art keywords
substrate
target
sputtering
cylindrical body
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014056071A
Other languages
Japanese (ja)
Inventor
直樹 森本
Naoki Morimoto
森本  直樹
近藤 智保
Tomoyasu Kondo
智保 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014056071A priority Critical patent/JP2015178653A/en
Publication of JP2015178653A publication Critical patent/JP2015178653A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a sputtering device having a structure capable of effectively suppressing neutral sputter particles scattered from a sputter surface of a target from impinging on a substrate.SOLUTION: A sputtering device includes a processing chamber 11, gas introduction means 6 of introducing a sputter gas into the processing chamber, and a sputter power source E1 which supplies electric power to a target T provided facing the processing chamber. The processing chamber is partitioned by a cylindrical body 1 which has the target and a substrate arranged at both end opening parts Cs1, Cs2 respectively, and the cylindrical body is configured to have a curved part 12 at at least one place so as to introduce the sputter gas into the processing chamber, neutral sputter particles scattered from the target not reaching the substrate directly when the target is supplied with electric power to be sputtered. Magnetic field generation means 5, E3 of generating a magnetic field between the target and substrate so that lines of magnetic force corresponding to the outline of the cylindrical body pass are provided at a periphery of the cylindrical body to allow ionized sputter particles to reach the substrate.

Description

本発明は、スパッタリング装置及びスパッタリング方法に関する。   The present invention relates to a sputtering apparatus and a sputtering method.

従来、スパッタリング装置は、例えば半導体デバイスの製作工程で種々の薄膜を成膜するために用いられ、その中で、高アスペクト比の微細孔を備える処理すべき基板に対して銅膜等をボトムカバレッジよく成膜できる、SIS(Self-Ionized Sputtering)技術を利用したものが例えば特許文献1で知られている。   Conventionally, a sputtering apparatus has been used to form various thin films, for example, in a semiconductor device manufacturing process. Among them, a copper film or the like is bottom-covered with respect to a substrate to be processed having high aspect ratio fine holes. For example, Patent Document 1 discloses a technique using a SIS (Self-Ionized Sputtering) technique that can form a film well.

このものは、真空引きされる処理室と、処理室内にスパッタガスを導入するガス導入手段と、処理室に設けた基板に対向配置されるターゲットに電力を投入するスパッタ電源とを備える。また、このものは、ターゲットのスパッタ面側を下とし、ターゲットの下方に磁場を発生させる磁石ユニットと、ターゲットのスパッタ面と、ターゲットに対向配置される基板との全面に亘って所定の間隔で垂直な磁力線が通るように垂直磁場を発生させる磁場発生手段とを更に備えている。   This includes a processing chamber that is evacuated, a gas introduction unit that introduces a sputtering gas into the processing chamber, and a sputtering power source that supplies power to a target that is disposed opposite to a substrate provided in the processing chamber. In addition, this has a predetermined interval over the entire surface of the magnet unit that generates a magnetic field below the target, the sputtering surface side of the target, the sputtering surface of the target, and the substrate disposed opposite to the target. Magnetic field generating means for generating a vertical magnetic field so that a vertical magnetic field line passes therethrough.

スパッタリングによる成膜時、垂直な磁力線が通るように垂直磁場を発生させた状態でターゲットに例えば負の電位を持った所定電力を投入してこのターゲットをスパッタリングすると、スパッタ面から飛散したスパッタ粒子のイオン化が促進され、このイオン化したスパッタ粒子は正電荷を有するので、上記垂直磁場によりその方向が変えられ、基板に対して略垂直に入射して付着するようになる。この場合、上記従来例のものでは、スパッタリングの開始時、処理室に希ガスからなるスパッタガスを導入することでスパッタ面の下方空間にプラズマを発生させ、磁石ユニットによりスパッタ面の下方に発生させた磁場でプラズマが封じ込められると、スパッタガスの導入を停止し、低圧力下で自己放電させている(所謂自己保持放電)。   When sputtering is performed by applying a predetermined power having a negative potential to the target in a state where a vertical magnetic field is generated so that a vertical magnetic field line passes through the film by sputtering, sputtering of the sputtered particles scattered from the sputtering surface occurs. Since the ionization is promoted and the ionized sputtered particles have a positive charge, the direction is changed by the vertical magnetic field, and the ionized sputtered particles are incident on and adhered to the substrate substantially perpendicularly. In this case, in the above-mentioned conventional example, at the start of sputtering, plasma is generated in the space below the sputtering surface by introducing a sputtering gas consisting of a rare gas into the processing chamber, and is generated below the sputtering surface by the magnet unit. When the plasma is confined in the magnetic field, the introduction of the sputtering gas is stopped and the self-discharge is performed under a low pressure (so-called self-holding discharge).

これにより、ターゲット等で反射したスパッタガスが基板に入射することを抑制しつつ、スパッタ粒子のイオン化率を高め、垂直な成分を持って基板に入射するイオン化したスパッタ粒子の割合を増加させている。然し、上記従来例のものでは、主として、自己保持放電させるまでの間に、ターゲットのスパッタ面から大きな角度広がりを持って飛散する中性のスパッタ粒子がそのまま基板に付着する割合が多く、微細孔の形態によっては、ボトムカバレッジが劣化する(つまり、コンタクトホールなどの微細孔が塞がれてしまう)という問題がある。   As a result, while suppressing the sputtering gas reflected by the target or the like from being incident on the substrate, the ionization rate of the sputtered particles is increased, and the ratio of the ionized sputtered particles incident on the substrate with a vertical component is increased. . However, in the above-described conventional example, there is a large proportion of neutral sputtered particles that are scattered with a large angular spread from the sputtered surface of the target until the self-maintained discharge is performed. Depending on the form, there is a problem that bottom coverage is deteriorated (that is, fine holes such as contact holes are blocked).

再表2009/150997号公報No. 2009/150997

本発明は、以上の点に鑑み、ターゲットのスパッタ面から飛散する中性のスパッタ粒子の基板への入射を効果的に抑制できる構造を持つスパッタリング装置及びこれを用いたスパッタリング方法を提供することをその課題とする。   In view of the above, the present invention provides a sputtering apparatus having a structure capable of effectively suppressing the incidence of neutral sputtered particles scattered from a sputtering surface of a target onto a substrate, and a sputtering method using the same. Let that be the issue.

上記課題を解決するために、真空引きされる処理室と、処理室内にスパッタガスを導入するガス導入手段と、処理室を臨むように設けられるターゲットに電力投入するスパッタ電源と、を備える本発明のスパッタリング装置は、処理室が両端開口部にターゲットと処理すべき基板とが夫々配置される筒状体で画成され、筒状体は、少なくとも一箇所の湾曲部を有して処理室内にスパッタガスを導入し、ターゲットに電力投入してスパッタリングしたときにターゲットから飛散する中性のスパッタ粒子が直接基板に到達しないように構成され、筒状体の周囲に、ターゲットと基板との間に筒状体の輪郭に対応する磁力線が通るように磁場を発生させる磁場発生手段を設けてイオン化したスパッタ粒子が基板に到達するように構成したことを特徴とする。   In order to solve the above-described problems, the present invention includes a processing chamber that is evacuated, a gas introduction unit that introduces a sputtering gas into the processing chamber, and a sputtering power source that supplies power to a target provided to face the processing chamber. In the sputtering apparatus, a processing chamber is defined by a cylindrical body in which a target and a substrate to be processed are respectively disposed at openings at both ends, and the cylindrical body has at least one curved portion in the processing chamber. It is configured so that neutral sputtered particles scattered from the target do not directly reach the substrate when the sputtering gas is introduced and power is applied to the target for sputtering, and around the cylindrical body between the target and the substrate. A magnetic field generating means for generating a magnetic field so that the magnetic field lines corresponding to the contour of the cylindrical body pass is provided so that ionized sputtered particles reach the substrate. To.

本発明によれば、筒状体の両端開口部に処理すべき基板とターゲットとを夫々セットした後、処理室を真空引きする。処理室が所定圧力に到達すると、希ガスからなるスパッタガスを導入し、ターゲットに例えば負の電位を持った所定電力を投入すると、ターゲットと基板との間の空間にプラズマが発生し、ターゲットがスパッタリングされる。このとき、ターゲットのスパッタ面から飛散する中性のスパッタ粒子が直接基板に到達しない位置関係となるように筒状体が湾曲部を有しているため、中性のスパッタ粒子の基板への入射を効果的に抑制することができる。   According to the present invention, the substrate to be processed and the target are set in the opening portions at both ends of the cylindrical body, and then the processing chamber is evacuated. When the processing chamber reaches a predetermined pressure, a sputtering gas consisting of a rare gas is introduced, and when a predetermined power having a negative potential is applied to the target, for example, plasma is generated in the space between the target and the substrate, Sputtered. At this time, since the cylindrical body has a curved portion so that the neutral sputtered particles scattered from the sputtering surface of the target do not directly reach the substrate, the neutral sputtered particles are incident on the substrate. Can be effectively suppressed.

そして、磁場発生手段によりターゲットと基板との間に筒状体の輪郭に対応する磁力線が通るように磁場を発生させると、スパッタ面から飛散したスパッタ粒子のイオン化が促進される一方で、基板にもこの基板の成膜面に対して垂直な磁力線が通るようになり、イオン化されたスパッタ粒子は、磁場に沿ってその方向が変えられて基板に対して略垂直に入射して付着、堆積して成膜される。その結果、処理すべき基板が高アスペクト比の微細孔を備えるような場合に、垂直な成分を持って基板に入射するイオン化したスパッタ粒子のみで成膜することができ、ボトムカバレッジを向上することができる。   When the magnetic field generating means generates a magnetic field so that the magnetic field lines corresponding to the outline of the cylindrical body pass between the target and the substrate, ionization of the sputtered particles scattered from the sputtering surface is promoted, while However, the magnetic field lines perpendicular to the film-forming surface of the substrate pass, and the ionized sputtered particles are changed in direction along the magnetic field and are incident and deposited almost perpendicularly to the substrate. To form a film. As a result, when the substrate to be processed has fine holes with a high aspect ratio, the film can be formed only with ionized sputtered particles incident on the substrate with a vertical component, thereby improving bottom coverage. Can do.

本発明においては、前記筒状体はL字状の輪郭を有することが好ましい。これにより、筒状体の簡単な構造で、ターゲットから飛散する中性のスパッタ粒子が直接基板に到達しない構成を実現することができる。なお、本発明の湾曲部には、ターゲットのスパッタ面と基板の成膜面とが直交するように筒状体を90°屈曲させているような場合も含まれる。   In the present invention, the cylindrical body preferably has an L-shaped contour. Thereby, it is possible to realize a configuration in which neutral sputtered particles scattered from the target do not reach the substrate directly with a simple structure of the cylindrical body. The curved portion of the present invention includes a case where the cylindrical body is bent by 90 ° so that the sputtering surface of the target and the film formation surface of the substrate are orthogonal to each other.

また、本発明においては、筒状体に、前記イオン化したスパッタ粒子を前記基板に向けて収束させる電位発生手段を更に備えることが好ましい。これにより、垂直な成分を持って基板に入射するイオン化したスパッタ粒子の総量が増加し、成膜レートが向上して量産性を高めることができる。この場合、電位発生手段として、前記筒状体の内面を覆うように設けた導電性の板状部材と、板状部材に正の電位を印加する電源とを備える構成を採用すればよい。   In the present invention, it is preferable that the cylindrical body further includes a potential generating means for converging the ionized sputtered particles toward the substrate. As a result, the total amount of ionized sputtered particles incident on the substrate having a vertical component is increased, the film formation rate is improved, and mass productivity can be increased. In this case, as the potential generating means, a configuration including a conductive plate member provided so as to cover the inner surface of the cylindrical body and a power source for applying a positive potential to the plate member may be employed.

ところで、筒状体が少なくとも一箇所の湾曲部を有することで、ターゲットと基板との間にこの筒状体の輪郭に対応する磁力線が通るように磁場を発生させたときに磁場勾配が生じていると、基板の膜厚分布の面内均一性が損なわれる虞がある。このような場合には、基板の一方の面を開放して保持し、この基板を一定の回転速度で回転駆動するステージを更に備えることが好ましい。   By the way, since the cylindrical body has at least one curved portion, a magnetic field gradient is generated when a magnetic field is generated so that a magnetic field line corresponding to the outline of the cylindrical body passes between the target and the substrate. If so, the in-plane uniformity of the film thickness distribution of the substrate may be impaired. In such a case, it is preferable to further include a stage that opens and holds one surface of the substrate and rotationally drives the substrate at a constant rotational speed.

また、上記課題を解決するために、上記スパッタリング装置を用いた本発明のスパッタリング方法は、磁場発生手段による磁場を発生させない磁場発生手段の稼働停止状態にて、真空引きされた処理室内にスパッタガスを導入し、ターゲットに電力投入してスパッタリングする第1工程と、ターゲットへの電力投入を維持したままスパッタガスの導入を停止する第2工程と、磁場発生手段を稼働させ、イオン化したスパッタ粒子を基板に到達させて基板の一方の面にイオン化したスパッタ粒子を付着、堆積させて成膜する第3工程とを含むことを特徴とする。   In order to solve the above-described problem, the sputtering method of the present invention using the sputtering apparatus includes a sputtering gas in a vacuum-evacuated processing chamber when the magnetic field generating unit that does not generate a magnetic field by the magnetic field generating unit is stopped. The first step of sputtering by applying power to the target, the second step of stopping the introduction of the sputtering gas while maintaining the power input to the target, and operating the magnetic field generating means to ionized sputtered particles And a third step of depositing and depositing ionized sputtered particles on one surface of the substrate so as to reach the substrate and forming a film.

これによれば、所謂自己保持放電するまでは磁場発生手段を稼働させないことで、ターゲットのスパッタ面から飛散するイオン化されたスパッタ粒子以外のものの基板への入射をより確実に防止することができる。この場合、第3工程にて電位発生手段を稼働させ、前記イオン化したスパッタ粒子を前記基板に向けて収束させる工程を更に含むことが好ましい。   According to this, by not operating the magnetic field generating means until so-called self-holding discharge, it is possible to more surely prevent the incident of ions other than the ionized sputtered particles scattered from the sputtering surface of the target. In this case, it is preferable to further include a step of operating the potential generating means in the third step to converge the ionized sputtered particles toward the substrate.

本発明のスパッタリング装置の構成を示す斜視図。The perspective view which shows the structure of the sputtering device of this invention. 図1のスパッタリング装置の内部構造を示す模式断面図。FIG. 2 is a schematic cross-sectional view showing an internal structure of the sputtering apparatus in FIG. 1. 本発明の実験結果を示すグラフ。The graph which shows the experimental result of this invention.

以下、図面を参照して、ターゲットTを銅製のものとし、処理すべき基板Wを一方の面に高アスペクト比の微細孔が複数形成されたものとし、この一方の面にCu膜を成膜する場合を例に本発明のスパッタリング装置の実施形態について説明する。以下において、「上」、「下」、「左」、「右」といった方向を示す用語は図2を基準とする。   Hereinafter, with reference to the drawings, the target T is made of copper, the substrate W to be processed is formed with a plurality of high aspect ratio fine holes formed on one surface, and a Cu film is formed on the one surface. An embodiment of the sputtering apparatus of the present invention will be described by taking as an example. In the following, terms indicating directions such as “up”, “down”, “left”, and “right” are based on FIG.

図1及び図2を参照して、SMは、所謂自己保持放電が可能なDCマグネトロンスパッタリング方式のスパッタリング装置である。スパッタリング装置SMは、処理室11を画成する真空チャンバとしての筒状体1を備える。なお、筒状体1の断面形状は円形に限らず、矩形等であってもよい。筒状体1の中央部には、ターゲットTのスパッタ面Tpから飛散する中性のスパッタ粒子が直接基板Wに到達しない位置関係となるように単一の湾曲部12が形成されて略L字状の輪郭を有している。そして、筒状体1は、一端開口部13aが図1中右方を向くと共に他端開口部13aが下方を向く姿勢で支持台14で支持されている。   1 and 2, SM is a DC magnetron sputtering type sputtering apparatus capable of so-called self-sustained discharge. The sputtering apparatus SM includes a cylindrical body 1 as a vacuum chamber that defines a processing chamber 11. In addition, the cross-sectional shape of the cylindrical body 1 is not limited to a circle but may be a rectangle or the like. A single curved portion 12 is formed in the central portion of the cylindrical body 1 so as to have a positional relationship in which neutral sputtered particles scattered from the sputter surface Tp of the target T do not directly reach the substrate W, and are substantially L-shaped. It has a contour of a shape. The cylindrical body 1 is supported by the support base 14 in such a posture that the one end opening 13a faces rightward in FIG. 1 and the other end opening 13a faces downward.

筒状体1の一端開口部13aには、ターゲットTが処理室11を臨むようにカソードユニットCが取付けられている。カソードユニットCは、筒状体1の一端開口部13aを閉塞する蓋兼用の第1の支持体Cs1を備え、第1の支持体Cs1でターゲットTが支持される。なお、ターゲットTは、銅製のものに限定されるものではなく、処理すべき基板Wに形成しようとする薄膜の組成に応じて適宜選択されるものであり、例えば、タングステン、タンタルやチタン製とすることもでき、公知の方法で所定形状に作製される。そして、スパッタ面Tpと背向する面にバッキングプレートBpをボンディングした状態で第1の支持体Cs1に絶縁体Isを介して取り付けられる。ターゲットTは、スパッタ電源としてのDC電源E1に接続され、負の電位を持つ所定電力(例えば、17〜20kW)が投入される。   A cathode unit C is attached to one end opening 13 a of the cylindrical body 1 so that the target T faces the processing chamber 11. The cathode unit C includes a first support Cs1 that also serves as a lid that closes the one end opening 13a of the cylindrical body 1, and the target T is supported by the first support Cs1. Note that the target T is not limited to copper, and is appropriately selected according to the composition of the thin film to be formed on the substrate W to be processed. For example, the target T is made of tungsten, tantalum, or titanium. It is also possible to make a predetermined shape by a known method. And it attaches to the 1st support body Cs1 through the insulator Is in the state which bonded the backing plate Bp to the surface opposite to the sputtering surface Tp. The target T is connected to a DC power source E1 as a sputtering power source, and a predetermined power having a negative potential (for example, 17 to 20 kW) is input.

また、カソードユニットCは、第1の支持体Cs1の大気側(図2中、右側)に位置させて、ターゲットTのスパッタ面Tp左前方に磁界を形成する磁石ユニットMuを備える。磁石ユニットMuは、スパッタ面Tpと背向する側(ターゲットTの右側)に、ターゲット側の極性を互いに変えて列設した複数の磁石Mgで構成される。なお、磁石ユニットMu自体は、磁石の形状、個数やその配置を含め、公知の構造のものを用いることもできるため、ここでは詳細な説明を省略する。   Further, the cathode unit C includes a magnet unit Mu that is positioned on the atmosphere side (right side in FIG. 2) of the first support Cs1 and forms a magnetic field on the front left side of the sputtering surface Tp of the target T. The magnet unit Mu is composed of a plurality of magnets Mg arranged in a row on the side opposite to the sputtering surface Tp (on the right side of the target T) while changing the polarity of the target side. The magnet unit Mu itself can be of a known structure including the shape, number, and arrangement of magnets, and a detailed description thereof will be omitted here.

筒状体1の他端開口部13bには、筒状体1の他端開口部13bを閉塞する蓋兼用の第2の支持体Cs2が取り付けられ、第2の支持体Cs2でステージ2が支持され、ステージ2上に基板がその成膜面を上側に向けてセットされる。また、ステージ2には、第2の支持体Cs2の大気側(図2中、下側)に位置させて設けたモータ等の駆動手段3の駆動軸31が連結され、ステージ2、ひいては基板Wを所定回転数で回転できるようにしている。なお、ステージ2を図外の高周波電源に接続し、スパッタリング中、ステージ2、ひいては基板Wに所定のバイアス電位が印加できるようにしてもよい。   A second support Cs2 serving as a lid for closing the other end opening 13b of the cylindrical body 1 is attached to the other end opening 13b of the cylindrical body 1, and the stage 2 is supported by the second support Cs2. Then, the substrate is set on the stage 2 with its film formation surface facing upward. Further, the stage 2 is connected to a driving shaft 31 of a driving means 3 such as a motor provided on the atmosphere side (lower side in FIG. 2) of the second support Cs2, and the stage 2, and thus the substrate W. Can be rotated at a predetermined rotational speed. It should be noted that the stage 2 may be connected to a high-frequency power source (not shown) so that a predetermined bias potential can be applied to the stage 2 and thus the substrate W during sputtering.

筒状体1内には、内周面をその略全面に亘って覆うように、図示省略の絶縁体を介して導電性の板状部材4が着脱自在に設けられている。板状部材4には、電源としての他のDC電源E2に接続され、所定の正の電位(例えば、50〜150V)が印加されるようになっている。この場合、板状部材4は、中性及びイオン化されたスパッタ粒子が筒状体1内面に付着することを防止する防着板としての役割も果たす。本実施形態では、板状部材4とDC電源E2とが、イオン化したスパッタ粒子を基板Wに向けて収束させる電位発生手段を構成する。   A conductive plate-like member 4 is detachably provided in the cylindrical body 1 through an insulator (not shown) so as to cover the substantially entire inner peripheral surface. The plate-like member 4 is connected to another DC power source E2 as a power source, and is applied with a predetermined positive potential (for example, 50 to 150 V). In this case, the plate-like member 4 also serves as an adhesion preventing plate that prevents neutral and ionized sputtered particles from adhering to the inner surface of the cylindrical body 1. In the present embodiment, the plate-like member 4 and the DC power source E2 constitute a potential generating unit that converges the ionized sputtered particles toward the substrate W.

筒状体1の外周には、磁性材料からなるリング状のヨークに導線を巻回してなるコイル5が、筒状体1の全長に亘って所定間隔で複数設けられている。この場合、各コイル5は、筒状体1の外周面に立設した支柱51で支持されている。そして、各コイル5に公知の構造のDC電源E3から通電すると、ターゲットTと基板Wとの間に筒状体1の輪郭に対応し、かつ、基板Wの成膜面に対して垂直に磁力線Mfが通るように磁場が発生する。本実施形態では、各コイル5とDC電源E3とが磁場発生手段を構成する。なお、筒状体1の外周に設けるコイル5の個数や各コイル5相互の間隔等は、図2中に示す形態ものに限定されるものではなく、上記の如く磁場を発生させることができるものであれば、特に制限はなく、単一のコイルで構成することもできる。   A plurality of coils 5 formed by winding a conducting wire around a ring-shaped yoke made of a magnetic material are provided on the outer periphery of the cylindrical body 1 at predetermined intervals over the entire length of the cylindrical body 1. In this case, each coil 5 is supported by a column 51 erected on the outer peripheral surface of the cylindrical body 1. When each coil 5 is energized from a DC power source E3 having a known structure, the magnetic field lines correspond to the contour of the cylindrical body 1 between the target T and the substrate W and are perpendicular to the film formation surface of the substrate W. A magnetic field is generated so that Mf passes. In the present embodiment, each coil 5 and the DC power source E3 constitute a magnetic field generating means. Note that the number of coils 5 provided on the outer periphery of the cylindrical body 1 and the interval between the coils 5 are not limited to those shown in FIG. 2, but can generate a magnetic field as described above. If it is, there will be no restriction | limiting in particular, It can also comprise with a single coil.

更に、筒状体1には、アルゴンガスなどの希ガス(スパッタガス)を導入するガス導入管6が接続され、その他端は、マスフローコントローラ61を介して図外のガス源に連通している。また、筒状体1には、ターボ分子ポンプやロータリポンプなどからなる真空ポンプ7に通じる排気管71が接続されている。   Further, a gas introduction pipe 6 for introducing a rare gas (sputtering gas) such as argon gas is connected to the cylindrical body 1, and the other end communicates with a gas source outside the figure via a mass flow controller 61. . The tubular body 1 is connected to an exhaust pipe 71 that communicates with a vacuum pump 7 such as a turbo molecular pump or a rotary pump.

以下に、上記スパッタリング装置SMを用いたスパッタリングによる成膜を説明する。先ず、ステージ2に基板Wをセットした後、真空ポンプ7を稼働させて処理室11内を所定圧力(例えば、10−5Pa)まで真空引きする。このとき、各コイル5には通電せず、磁場を発生させない状態とする(磁場発生手段の稼働停止状態)。処理室11の圧力が所定値に達すると、処理室11内にアルゴンガスを所定の流量で導入し、DC電源E1よりターゲットTに所定の負の電位を持った所定電力を投入する。これにより、処理室11内のターゲットTと基板Wとの間にプラズマが形成される。そして、主に磁石ユニットMuによる磁場で処理室11内にプラズマが封じ込められると、スパッタガスの導入を停止し、低圧力下で自己放電させる(所謂自己保持放電)。 Hereinafter, film formation by sputtering using the sputtering apparatus SM will be described. First, after setting the substrate W on the stage 2, the vacuum pump 7 is operated to evacuate the inside of the processing chamber 11 to a predetermined pressure (for example, 10 −5 Pa). At this time, the coils 5 are not energized and do not generate a magnetic field (operation state where the magnetic field generating means is stopped). When the pressure in the processing chamber 11 reaches a predetermined value, argon gas is introduced into the processing chamber 11 at a predetermined flow rate, and predetermined power having a predetermined negative potential is applied to the target T from the DC power source E1. Thereby, plasma is formed between the target T in the processing chamber 11 and the substrate W. When the plasma is confined in the processing chamber 11 mainly by the magnetic field generated by the magnet unit Mu, the introduction of the sputtering gas is stopped and self-discharge is performed under a low pressure (so-called self-holding discharge).

次に、DC電源E3によりコイル5に通電して磁場発生手段を稼働させ、ターゲットTと基板Wとの間に筒状体1の輪郭に対応し、かつ、基板Wの成膜面に対して垂直に磁力線Mfが通るように磁場を発生させると共に、DC電源E2により板状部材4に所定の正の電位(例えば、50〜150V)を印加する。このとき、ステージ2を所定回転数で回転させてもよい。これにより、イオン化したスパッタ粒子が、磁場に沿ってその方向が変えられ、かつ、基板Wに向けて収束されながら基板Wに対して略垂直に入射して付着、堆積して成膜される。   Next, the coil 5 is energized by the DC power source E <b> 3 to operate the magnetic field generation unit, corresponds to the outline of the cylindrical body 1 between the target T and the substrate W, and is applied to the film formation surface of the substrate W. A magnetic field is generated so that the magnetic field lines Mf pass vertically, and a predetermined positive potential (for example, 50 to 150 V) is applied to the plate-like member 4 by the DC power source E2. At this time, the stage 2 may be rotated at a predetermined rotational speed. Thereby, the ionized sputtered particles are changed in the direction along the magnetic field, and while being converged toward the substrate W, are incident on and deposited on the substrate W so as to be deposited and deposited.

以上説明したように、本実施形態によれば、ターゲットTのスパッタ面Tpから飛散する中性のスパッタ粒子が直接基板Wに到達しない位置関係となるように筒状体1が湾曲部を有し、しかも、自己保持放電するまでは各コイル5に通電しないため、ターゲットTのスパッタ面Tpから広い角度範囲も持って飛散する中性のスパッタ粒子は、殆ど基板Wに入射することがなく、イオン化されたスパッタ粒子のみが基板Wに対して略垂直に入射して付着、堆積して成膜される。その結果、基板Wが高アスペクト比の微細孔を備えるような場合にボトムカバレッジを向上することができる。このとき、電位発生手段4,E2を設けたことで基板Wに入射するイオン化したスパッタ粒子の総量が増加し、成膜レートが向上して量産性を高めることができる。また、成膜中、ステージ2を回転させることで、筒状体1が少なくとも一箇所の湾曲部12を有することで、ターゲットTと基板Wとの間に発生させた磁場に勾配が生じているような場合でも、基板Wの膜厚分布の面内均一性が損なわれることはない。   As described above, according to the present embodiment, the cylindrical body 1 has a curved portion so that the neutral sputtered particles scattered from the sputtering surface Tp of the target T do not reach the substrate W directly. Moreover, since each coil 5 is not energized until self-holding discharge, the neutral sputtered particles scattered from the sputtering surface Tp of the target T with a wide angle range hardly enter the substrate W and are ionized. Only the sputtered particles incident on the substrate W are substantially perpendicular to the substrate W, and are deposited and deposited. As a result, bottom coverage can be improved when the substrate W includes fine holes with a high aspect ratio. At this time, the provision of the potential generating means 4 and E2 increases the total amount of ionized sputtered particles incident on the substrate W, thereby improving the film formation rate and increasing the mass productivity. In addition, by rotating the stage 2 during film formation, the cylindrical body 1 has at least one curved portion 12, so that a gradient is generated in the magnetic field generated between the target T and the substrate W. Even in such a case, the in-plane uniformity of the film thickness distribution of the substrate W is not impaired.

以上の効果を確認するため、上記実施形態のスパッタリング装置SMを用いて次の実験を行った。ターゲットTとして組成比99.999%の銅製のものを用い、また、筒状体1として、ターゲットTのスパッタ面Tpと基板Wの成膜面との間の距離が920mmで、スパッタ面Tpから600mmの個所でL字状に湾曲させたものを用いた。スパッタリングの条件として、ターゲットTへの投入電力を18kW、スパッタガスとしてArを用い、スパッタによる成膜中、10sccmの流量でスパッタガスを導入した。そして、各コイル5への通電電流を0〜20Aの間で段階的に変化させて、基板Wへの成膜レートを測定し、その結果を図3に示す。   In order to confirm the above effects, the following experiment was performed using the sputtering apparatus SM of the above embodiment. The target T is made of copper having a composition ratio of 99.999%, and the cylindrical body 1 has a distance of 920 mm between the sputtering surface Tp of the target T and the film-forming surface of the substrate W, and from the sputtering surface Tp. What was curved in the L shape in the place of 600 mm was used. As sputtering conditions, an input power to the target T was 18 kW, Ar was used as a sputtering gas, and a sputtering gas was introduced at a flow rate of 10 sccm during film formation by sputtering. And the energization current to each coil 5 was changed stepwise between 0-20A, the film-forming rate to substrate W was measured, and the result is shown in FIG.

これによれば、各コイル5への通電電流がゼロのとき(つまり、磁場発生手段の稼働停止状態のとき)、基板に銅が成膜されておらず、これにより、ターゲットTのスパッタ面Tpから飛散する中性のスパッタ粒子が直接基板に到達していないことが確認された。そして、各コイル5に通電すると、基板Wに銅が成膜されていき、その通電電流を増加させていくと、成膜レートが増加した。これにより、イオン化したスパッタ粒子のみを基板Wに到達させて成膜することができることが確認された。   According to this, when the energization current to each coil 5 is zero (that is, when the operation of the magnetic field generating means is stopped), copper is not formed on the substrate, and thereby, the sputtering surface Tp of the target T. It was confirmed that the neutral sputtered particles scattered from the substrate did not reach the substrate directly. When each coil 5 was energized, copper was deposited on the substrate W, and when the energization current was increased, the deposition rate increased. Thus, it was confirmed that only ionized sputtered particles can reach the substrate W to form a film.

以上本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、筒状体1が単一の湾曲部12を有するものを例に説明したが、湾曲部12は複数あってもよく、また、本発明の湾曲部には、ターゲットTのスパッタ面Tpと基板Wの成膜面とが直交するように筒状体1を90°屈曲させているような場合も含む。なお、筒状体1が単一の湾曲部12を有する場合、ターゲットTと基板Wとが対面しないように湾曲させているだけでは不十分であり、広い角度範囲を持ってターゲットTから飛散する中性のスパッタ粒子が確実に基板Wに到達しないように、例えば、湾曲部12から両端開口部13a,13bまでの距離を適宜設計する必要がある。   Although the embodiment of the present invention has been described above, the present invention is not limited to the above. In the above-described embodiment, the cylindrical body 1 has been described as an example having a single curved portion 12, but there may be a plurality of curved portions 12, and the curved portion of the present invention has a sputtering target T. This includes the case where the cylindrical body 1 is bent by 90 ° so that the surface Tp and the film formation surface of the substrate W are orthogonal to each other. In addition, when the cylindrical body 1 has the single curved part 12, it is inadequate only to bend so that the target T and the board | substrate W may not face, and it scatters from the target T with a wide angle range. In order to ensure that the neutral sputtered particles do not reach the substrate W, for example, it is necessary to appropriately design the distance from the curved portion 12 to both end openings 13a and 13b.

また、上記実施形態では、イオン化したスパッタ粒子を基板Wに向けて収束させる電位発生手段として、筒状体1内に設けた板状部材4と他のDC電源E2とで構成したものを例に説明したが、これに限定されるものではない。   Moreover, in the said embodiment, what comprised the plate-shaped member 4 provided in the cylindrical body 1 and the other DC power supply E2 as an example as an electric potential generation means to converge the ionized sputtered particle toward the board | substrate W. Although described, the present invention is not limited to this.

SM…スパッタリング装置、1…筒状体、11…処理室、12…湾曲部、2…ステージ、4…板状部材(電位発生手段)、E2…DC電源(電位発生手段)、6…ガス導入管(ガス導入手段)、Mf…磁力線、T…ターゲット、Tp…スパッタ面、W…基板。 SM ... Sputtering device, 1 ... cylindrical body, 11 ... treatment chamber, 12 ... curved portion, 2 ... stage, 4 ... plate member (potential generating means), E2 ... DC power source (potential generating means), 6 ... gas introduction Tube (gas introduction means), Mf ... lines of magnetic force, T ... target, Tp ... sputter surface, W ... substrate.

Claims (7)

真空引きされる処理室と、処理室内にスパッタガスを導入するガス導入手段と、処理室を臨むように設けられるターゲットに電力投入するスパッタ電源と、を備えるスパッタリング装置において、
処理室が両端開口部にターゲットと処理すべき基板とが夫々配置される筒状体で画成され、筒状体は、少なくとも一箇所の湾曲部を有して処理室内にスパッタガスを導入し、ターゲットに電力投入してスパッタリングしたときにターゲットから飛散する中性のスパッタ粒子が直接基板に到達しないように構成され、
筒状体の周囲に、ターゲットと基板との間に筒状体の輪郭に対応する磁力線が通るように磁場を発生させる磁場発生手段を設けてイオン化したスパッタ粒子が基板に到達するように構成したことを特徴とするスパッタリング装置。
In a sputtering apparatus comprising: a processing chamber that is evacuated; a gas introduction unit that introduces a sputtering gas into the processing chamber; and a sputtering power source that supplies power to a target that faces the processing chamber.
The processing chamber is defined by a cylindrical body in which a target and a substrate to be processed are respectively disposed at openings at both ends, and the cylindrical body has at least one curved portion and introduces a sputtering gas into the processing chamber. The neutral sputtered particles scattered from the target when the target is powered on and sputtered are configured not to reach the substrate directly,
A magnetic field generating means for generating a magnetic field is provided around the cylindrical body so that a magnetic field line corresponding to the outline of the cylindrical body passes between the target and the substrate so that ionized sputtered particles reach the substrate. A sputtering apparatus characterized by that.
前記筒状体はL字状の輪郭を有することを特徴とする請求項1記載のスパッタリング装置。   The sputtering apparatus according to claim 1, wherein the cylindrical body has an L-shaped outline. 前記筒状体は、前記イオン化したスパッタ粒子を前記基板に向けて収束させる電位発生手段を更に備えることを特徴とする請求項1または請求項2記載のスパッタリング装置。   The sputtering apparatus according to claim 1, wherein the cylindrical body further includes a potential generating unit that converges the ionized sputtered particles toward the substrate. 前記電位発生手段は、前記筒状体の内面を覆うように設けた導電性の板状部材と、板状部材に正の電位を印加する電源とを備えることを特徴とする請求項3記載のスパッタリング装置。   The said electric potential generation means is provided with the electroconductive plate-shaped member provided so that the inner surface of the said cylindrical body might be covered, and the power supply which applies a positive electric potential to a plate-shaped member. Sputtering equipment. 前記基板の一方の面を開放して保持し、この基板を一定の回転速度で回転駆動するステージを更に備えることを特徴とする請求項1〜請求項4のいずれか1項に記載のスパッタリング装置。   The sputtering apparatus according to claim 1, further comprising a stage that opens and holds one surface of the substrate and rotationally drives the substrate at a constant rotation speed. . 請求項1〜請求項5のいずれか1項に記載のスパッタリング装置を用いたスパッタリング方法において、
磁場発生手段による磁場を発生させない磁場発生手段の稼働停止状態にて、真空引きされた処理室内にスパッタガスを導入し、ターゲットに電力投入してスパッタリングする第1工程と、ターゲットへの電力投入を維持したままスパッタガスの導入を停止する第2工程と、磁場発生手段を稼働させ、イオン化したスパッタ粒子を基板に到達させて基板の一方の面にイオン化したスパッタ粒子を付着、堆積させて成膜する第3工程とを含むことを特徴とするスパッタリング方法。
In the sputtering method using the sputtering apparatus of any one of Claims 1-5,
The first step of introducing a sputtering gas into the evacuated processing chamber and supplying power to the target for sputtering while the magnetic field generating means that does not generate a magnetic field by the magnetic field generating means is stopped, and applying power to the target The second step of stopping the introduction of the sputtering gas while maintaining it, and the magnetic field generating means are operated to allow the ionized sputtered particles to reach the substrate and deposit and deposit the ionized sputtered particles on one surface of the substrate. And a third step of performing a sputtering method.
第3工程にて電位発生手段を稼働させ、前記イオン化したスパッタ粒子を前記基板に向けて収束させる工程を更に含むことを特徴とする請求項6記載のスパッタリング方法。
The sputtering method according to claim 6, further comprising a step of operating a potential generating means in the third step to cause the ionized sputtered particles to converge toward the substrate.
JP2014056071A 2014-03-19 2014-03-19 Sputtering device and sputtering method Pending JP2015178653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056071A JP2015178653A (en) 2014-03-19 2014-03-19 Sputtering device and sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056071A JP2015178653A (en) 2014-03-19 2014-03-19 Sputtering device and sputtering method

Publications (1)

Publication Number Publication Date
JP2015178653A true JP2015178653A (en) 2015-10-08

Family

ID=54262902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056071A Pending JP2015178653A (en) 2014-03-19 2014-03-19 Sputtering device and sputtering method

Country Status (1)

Country Link
JP (1) JP2015178653A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168565A (en) * 1996-12-13 1998-06-23 Mitsubishi Electric Corp Production of ionization pvd device and semiconductor device
JPH1174225A (en) * 1997-05-08 1999-03-16 Applied Materials Inc Sustained self-sputtering reactor having increased density plasma
JPH11315374A (en) * 1998-05-08 1999-11-16 Ulvac Corp Formation of copper thin film
JP2000182286A (en) * 1998-12-16 2000-06-30 Toray Ind Inc Manufacture of optical recording medium
US20040045811A1 (en) * 2002-09-10 2004-03-11 Applied Materials, Inc. Magnetically confined metal plasma sputter source with magnetic control of ion and neutral densities
JP2010287268A (en) * 2009-06-10 2010-12-24 Fuji Electric Device Technology Co Ltd Filtered cathodic arc device and carbon protective film produced using the same
JP2013189684A (en) * 2012-03-14 2013-09-26 Hoya Corp Method for manufacturing mask blank

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168565A (en) * 1996-12-13 1998-06-23 Mitsubishi Electric Corp Production of ionization pvd device and semiconductor device
JPH1174225A (en) * 1997-05-08 1999-03-16 Applied Materials Inc Sustained self-sputtering reactor having increased density plasma
JPH11315374A (en) * 1998-05-08 1999-11-16 Ulvac Corp Formation of copper thin film
JP2000182286A (en) * 1998-12-16 2000-06-30 Toray Ind Inc Manufacture of optical recording medium
US20040045811A1 (en) * 2002-09-10 2004-03-11 Applied Materials, Inc. Magnetically confined metal plasma sputter source with magnetic control of ion and neutral densities
JP2010287268A (en) * 2009-06-10 2010-12-24 Fuji Electric Device Technology Co Ltd Filtered cathodic arc device and carbon protective film produced using the same
JP2013189684A (en) * 2012-03-14 2013-09-26 Hoya Corp Method for manufacturing mask blank

Similar Documents

Publication Publication Date Title
JP4355036B2 (en) Ionization sputtering equipment
JP5373905B2 (en) Film forming apparatus and film forming method
JP4344019B2 (en) Ionized sputtering method
US8834685B2 (en) Sputtering apparatus and sputtering method
TWI464285B (en) Film formation equipment and film formation method
WO2009157439A1 (en) Sputtering apparatus and sputtering method
JP3847866B2 (en) Sputtering equipment
JP2007197840A (en) Ionized sputtering apparatus
JP2016011445A (en) Sputtering method
TWI770421B (en) Sputtering apparatus and sputtering method
JP2011256441A (en) Sputtering method
JP7262235B2 (en) Sputtering apparatus and sputtering method
JP6509553B2 (en) Sputtering device
JP2015178653A (en) Sputtering device and sputtering method
JP2014070275A (en) Plasma treatment method, and plasma treatment apparatus
JP4526139B2 (en) Substrate processing apparatus and sputtering apparatus
JP5265309B2 (en) Sputtering method
JP5558020B2 (en) Deposition method
JP6422074B2 (en) Vacuum processing equipment
JP7438853B2 (en) Magnetron sputtering equipment
TWI632246B (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
JP2014181376A (en) Sputtering apparatus and sputtering method
JP2019014924A (en) Sputtering apparatus and sputtering method
JP2021021120A (en) Sputtering method and sputtering apparatus
TW201235497A (en) Sputtering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180515