JP2006115592A - 非接触型充電装置 - Google Patents

非接触型充電装置 Download PDF

Info

Publication number
JP2006115592A
JP2006115592A JP2004299492A JP2004299492A JP2006115592A JP 2006115592 A JP2006115592 A JP 2006115592A JP 2004299492 A JP2004299492 A JP 2004299492A JP 2004299492 A JP2004299492 A JP 2004299492A JP 2006115592 A JP2006115592 A JP 2006115592A
Authority
JP
Japan
Prior art keywords
power supply
output
primary coil
supply device
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299492A
Other languages
English (en)
Inventor
Daisuke Hashimoto
大輔 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silex Technology Inc
Original Assignee
Silex Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silex Technology Inc filed Critical Silex Technology Inc
Priority to JP2004299492A priority Critical patent/JP2006115592A/ja
Publication of JP2006115592A publication Critical patent/JP2006115592A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】充電中の機器本体の過熱を防止でき、かつ何らかの理由で機器本体が電源装置に装着されていない状態で電源装置が通電されても、電源装置が過熱することのない、非接触式充電装置の提供。
【解決手段】一次側の高周波発振回路F1を内蔵した電源装置1と、蓄電池Bを有して、前記電源装置に電磁的に結合し高周波発振回路の高周波出力による電磁誘導で得られる二次出力により蓄電池を充電する本体機器とからなり、電源装置側一次コイルCL1近傍に温度センサSを設け、その検出信号をヒステリシス特性を有するコンパレータCP3により高温側設定信号と比較させ、検出信号が高温側設定信号より低いときには高周波発振回路F1の出力を連続モードとして、他方高いときには該出力を間欠モードとしてそれぞれ駆動させ、ただし間欠より連続へのモード切換えはヒステリシスにかかる低温側設定信号以下になることにより行われる送電切換え制御回路を具有する。
【選択図】図2

Description

本発明は、非接触型充電装置に関し、詳しくは電源装置と本体機器とに電気的接点がない非接触型充電装置に関し、とくに過熱抑制について電源装置が改良された非接触型充電装置に関する。
近年、携帯用コードレス機器の普及に伴い、機器に内蔵された電池を充電するための電源装置も多くの種類が製品化されている。以前の電源装置およびコードレス機器には、相互接続するための電気的接点がそれぞれの表面に設けられており、接点に触れて感電したり、電極の酸化膜などによる接触不良が生じるなどの問題が生じやすい。
この様な問題を解決するため、接点をなくした非接触式の電源装置が実用化されている。すなわち、かかる電源装置において、商用電源の出力を整流平滑して得られた直流電圧を発振回路で発振させることにより、一次コイル部に磁束を発生させ、電磁誘導により機器本体に設けた二次コイル部に誘起される電力を充電池に供給するようになっている。このような非接触式の電源装置によれば、電源部と機器本体ともに接点を省略できるので、接触不良等の問題がなくなり使用性が向上する。
商用電源からの入力電流に比例する検出信号から交流磁束の発生を間欠的に停止させるようにした非接触型充電装置が知られている(例えば、特許文献1)。また、発振用スイッチング回路に温度センサを貼付して、その検出温度と比較する1つの設定値を設け、これを超えると電力が遮断され、低い第2の温度以下になったときには電力供給が再開されるよう制御するようにした、非接触型充電装置も知られている(例えば、特許文献2)。なお、一次、二次コイルの配置例については、一次コイル、二次コイル共に1つづつケースを介して対面配置させたもの(例えば特許文献3、図2)が一般的であるが、機能の異なる2つの一次コイルに対して1つの二次コイルを対向近接させたものも知られている(例えば、特許文献1、図2)。
特開平7−31064号公報。 特開平11−168839号公報。 特開2003−153457号公報。
しかし、この種の非接触式の電源装置の場合、電磁誘導を利用しているために100%の効率で電力を伝達することは不可能である。特に、この種の目的のために製造されたものでない、電気回路に汎用される安価に入手可能な磁芯を用いてコイルを作成する場合は効率が低い。この場合、低伝送効率という本来的な問題点に加えて、その伝達されない電力のためにジュール熱が発生し、機器本体が備える部品(充電池を含む)の劣化を促進させ、動作不良を誘発したり、性能を低下させる原因となる。また、この熱によって充電池の劣化、すなわち充電特性の低下を引き起こし、頻繁に充電しなければならないばかりでなく、充電時の過熱による事故にも繋がりかねない。
殊に、機器が携帯用心電計、血圧計などの生体に触れる医療機器または診断機器である場合、感電の恐れがない非接触式の電源装置は非常に好ましい。一方、このような用途において、過熱に伴う信頼性の低下は極力避けねばならず、また充電により過熱した機器本体をそのまま使用すれば人体に悪影響を及ぼすこともあるため、過熱防止の方策が一層強く求められるところである。
さらに、このような充電動作は機器本体の装着を確認した後開始されるが、充電時に転倒などによって機器が外れる等のトラブルが生じた時、すなわち機器本体が電源装置に対して正常な位置からずれた場合にも電磁誘導の相互インダクタンスが変動し、電源装置側の動作がバランスを欠いて一次コイルおよび発振部に過熱を生じることがあり、これも電源装置の劣化を促進する原因となり得る。
本発明は、上記の問題点を解決するためになされたものであって、不完全な電磁誘導効率の悪影響を受けずに、充電中の機器本体の過熱を防止でき、かつ何らかの理由で機器本体が電源装置に装着されていない状態で電源装置が通電されても、電源装置が加熱することのない、安価な非接触式の充電装置を提供することを課題とする。
この課題を解決するために、一次側の高周波発振回路を内蔵した電源装置と、蓄電池を有して、前記電源装置に電磁的に結合し高周波発振回路の高周波出力による電磁誘導で得られる二次出力により蓄電池を充電する本体機器とからなる非接触型充電装置において、電源装置側一次コイル近傍に温度センサを設け、その検出信号をヒステリシス特性を有するコンパレータにより高温度設定信号と比較させ、検出信号が高温度設定信号より低いときには高周波発振回路の出力を連続モードとして、他方高いときには該出力を間欠モードとしてそれぞれ駆動させ、ただし間欠より連続へのモード切換えはヒステリシスにかかる低温設定値以下になることにより行われる送電切換え制御回路を具有させる。
また、検出信号を別の2つのコンパレータにかけてゼロ、異常値いずれかを判断して一次コイルへの送電を停止するようにした送電停止制御回路を具有させる。
さらに、本体機器が電源装置と正常に装着されているか否かを一次コイルに流れる電流値により判断し、装着されていない場合に間欠モードにより送電するようにした間欠送電制御回路を具有させる。
なお、好ましくは一次コイル、二次コイル共に小径にして同一の構成により両ケース端板を介して当該一次コイル及び二次コイルをそれぞれの軸を平行に配置させたものを一対とし、少なくとも2対が隔離配置させる。
本発明によれば、安価に入手可能な磁芯を用いて一次コイル、二次コイルを作製した非接触型充電装置において、充電中の機器本体の過熱を防止でき、かつ何らかの理由で機器本体が電源装置に装着されていない状態で電源装置が通電されても、電源装置が加熱することのない非接触型充電装置が得られる。
一次側の高周波発振回路を内蔵した電源装置と、蓄電池を有して、前記電源装置に電磁的に結合し高周波発振回路の高周波出力による電磁誘導で得られる二次出力により蓄電池を充電する本体機器とからなる非接触型充電装置において、次のような回路をを備える。
1.電源装置側に温度監視手段を設け、この温度監視手段からの信号を電源回路の制御のために利用する。
2.電源回路が連続送電モードと間欠送電モードとを有するよう構成する。
3.判断部が事前設定された第1の温度と第2の温度信号を有しており、温度監視手段の温度が第1の温度より上昇した場合、電源回路を連続送電モードから間欠送電モードに切り換え、温度監視手段の温度が、第2の温度を下回った場合、電源回路を間欠送電モードから、連続送電モードに切り換えるようする。
4.温度監視手段からの信号電圧が、ゼロか異常値と判断すると、一次コイルへの送電を停止するように制御する。
5.機器本体が正常に装着されているか否かを一次コイルに流れる電流の値により判断し、機器本体が装着されていないと判断した場合、間欠送電モードに切り換えて電力消費量を抑えるようにする。
6.一次コイル、二次コイル共にそれぞれ2個以上の実質上同一に構成され、それぞれが複数の電磁誘導結合対をなして電力を送電する。
本発明の好適な実施例は図1から図3に基づいて説明される。
図1の上部は本発明による非接触型充電装置において電源装置1と機器本体2の装着例を示した模式図である。電源装置1には、斜壁部を備えた凹所が設けられており、機器本体2の充電を行なう場合にはその下端部を前記凹所に嵌合させる。電源装置1から機器本体2に電力を伝達するためのコイル対は、それぞれほぼ同図におけるCL1、CL2で示したように配置され相対することになる。
図1の下部は従来による電源装置1’と機器本体2’の装着例を示しており、このような鉛直な壁を有する電源装置1’の凹所底部にコイル対を配置している。同図上部に示した斜壁部によれば、電源装置1と機器本体2との接触面積を広く取ることができ、機器本体2が電源装置1に安定的に装着される。さらに、本発明の電源装置1では、重心が低くなり機器本体を装着した場合の安定性が増すうえに、異物が低くなった凹所隅部に集まり易く、機器本体の非装着時に誤って異物がコイル上に載って過熱されるおそれがなくなるなどの利点がある。
図2は、本発明の1実施例を示す回路図である。同図に示すように、非接触充電装置は、電源装置1に備えられた制御基板10および送電基板20と、機器本体2に備えられた受電部30とからなる。
送電基板20には、送電用の一次コイルCL1と、このコイルCL1近辺の温度を監視するための温度センサとしてサーミスタSが設けられている。サーミスタSは、最も温度が高温になる1次コイルCL1に接触させて取付けるのがよい。一次コイルCL1およびサーミスタSは、ケーブルを介して制御基板10上の回路に接続される。サーミスタの代替として熱起電力を利用した熱電対センサも使用可能である。
一次コイルCL1の一端は電源回路DCの出力端に接続され、直流24Vの供給を受ける。電源回路DCには、電源装置1から分離して専用ケーブルで接続された汎用スイッチング式電源アダプタ3(図1参照)により整流された直流電圧5Vがコネクタを介して供給され、電源回路2に内蔵されたスイッチング回路によって、24Vに昇圧される。電源アダプタ3を電源装置1から分離したのは、何らかの不測のトラブルによって商用電圧が電源装置1に直接印加されるのを避けるためであるが、これらを一体として作製することも可能である。
また、コンデンサC1が一次コイルCL1と並列に配置され、共振回路を形成して、電界効果トランジスタTR2で駆動される高周波電力を効率よく一次コイルLC1に伝達する。トランジスタTR2の駆動は、水晶発振子を用いた高周波発振回路F1が出力する高周波を分周回路F2により分周し、これをゲートに入力することにより行われる。トランジスタTR2の駆動周波数の最適値は、使用するコイルの仕様(直径、高さ、巻き数、二次コイルとの相対位置など)によって変化させ得るが、おおむね数十KHz〜数百KHzが望ましい。あまり低すぎると、この周波数による部品の振動が可聴周波数の領域に入り不快な雑音を発生させることとなり好ましくない。
トランジスタTR2のゲートへの高周波入力は、シフトレジスタRGおよび直列配設されたAND回路A1、A2によって制御される。
まず、サーミスタSの出力信号は、オペアンプOP1により増幅された後、抵抗体R4およびR5により分圧され、コンパレータCP3において、基準電圧Vref2と比較される。この時、分圧が基準電圧Vref2より高い場合、一次コイル近辺の温度が高温側設定温度(例えば、50℃)を超えたものと判断し、シフトレジスタRGが作動して、間欠駆動モードに切り替わる。具体的にはシフトレジスタRGの出力Qnが間欠的に出力され、AND回路A1によりこの出力がなされるときのみ、トランジスタTR2が駆動することとなる。
コンパレータCP3は、ヒステリシス特性を有し、かつこの特性はフィードバック抵抗値によって調整可能である。よって、間欠駆動モードにおいて、一次コイルCL1近傍の温度が低下して、サーミスタSからの出力信号が基準電圧Vref2を下回っても直ちに連続駆動モードに復帰するのではなく、サーミスタの出力が低温側設定温度(例えば、45℃)に相当する電圧に達するまでコンパレータCP3の出力が維持され、その結果、シフトレジスタRGの動作を通じて間欠駆動モードが維持されることとなる。
間欠駆動モードにおけるON時、OFF時のいわゆる駆動デューティ比については、下げ過ぎる(すなわち、間欠送電モード時の平均送電電力値を下げ過ぎる)と、温度降下が急激になり、短時間で連続送電モードに復帰させねばならず、頻繁に2つのモード間を往復することになり温度が安定しない。一方、デューティ比を上げ過ぎる(すなわち、省電力時の平均送電電力値を上げ過ぎる)と、温度降下が緩やかになり温度調節効果が不十分なものとなる。試行錯誤を繰り返し、できるだけ温度が上限値と下限値の間で一定するようにする。
デューティ比の具体的な値は、発振器の設計出力、コイルCL1の抵抗値、電源装置1の熱容量、電源装置1と機器本体2間の熱抵抗など種々のパラメータにより、場合に応じて適宜最適化させる必要がある。たとえば、本実施例においてはON:3秒に対しOFF:12秒が好ましかった。
トランジスタTR2のソース端子に接続された抵抗体R6は、一次コイルCL1を流れる電流を監視するためのものである。なお、抵抗体R6は、トランジスタTR2(FET)が何らかのトラブルにより電気的に短絡した際に、直接ソース端子が接地しないための保護回路の役割も備えている。この抵抗体R6の両端に発生する電圧は、抵抗体R7およびコンデンサC2により積分され、オペアンプOP2により増幅された後、コンパレータCP4において、基準電圧Vref3と比較される。前述のように、機器本体2が正常に装着されている場合には、当初設計通りのインピーダンス整合によって、一次コイルCL1には所定の電流値が流れる一方、(a)位置ずれなどにより装着状態が不良である場合、(b)脱落によって機器本体2が装着されていない場合、あるいは(c)電源装置1の機器本体装着部の凹所に導電性異物が誤って置かれた場合などには、インピーダンス不整合によって一次コイルCL1に流れる電流が減少する。よって、オペアンプOP2の出力が基準電圧Vref3より小さくなった場合、送電が正常でなくなったと判断して、トランジスタTR1、コンパレータCP3を経由した信号により、シフトレジスタRGを動作させて、サーミスタSからの出力に関わらず、連続送電モードから間欠送電モードに移行する。
なお、一次コイルCL1側から見たインピーダンスは、たとえ機器本体2が電源装置1に正常に装着されていたとしても、機器本体側の状態(例えば、機器本体2の動作による消費電流の増大、バッテリBの充電の程度による内部抵抗の変化など)によっても変化し、一次コイルCL1に流れる電流を変動させる。従って、前記基準電圧Vref3の設定にあたっては、これらの要因による変動を異常と判定しないよう、余裕を持たせておくのが望ましい。
さらに、サーミスタSが異常な抵抗値を示したり、ケーブルの切断、コネクタの外れなどの場合を想定し、2つの並列して配置されたコンパレータCP1、CP2にサーミスタからの出力信号を入力して、異常の場合、これらコンパレータCP1、CP2の出力信号により、AND回路A2の出力がOFFとなり、トランジスタTR2を強制的に停止させ、一次コイルCL1への送電を停止する機能も有する。
受電部30は、本体機器の一部であり、二次コイルCL2、共振用コンデンサC3、高周波を平滑化するためのダイオードD、およびその後端のコンデンサC4を備え、この回路の出力をリチウムイオンバッテリBに充電する。なお、リチウムイオンバッテリの過熱、過充電を避けるため、市販の専用充電制御回路CTRLが受電平滑回路とバッテリBとの間に挿入されている。
一次コイルCL1、二次コイルCL2の形状については、磁束密度を高めるほど送電効率が高いので、このためにはある程度コイル直径を小さくするほうが有利であるが、その一方で、小径のコイルを使用すると、表面積が小さく熱の放散が十分でない結果、温度が上がりやすいことが明らかとなった。この矛盾する問題を解決するために、小径のコイルを離隔して複数ならべ、送電電力を分散させることで、送電効率が低下せずに過熱し難いシステムが得られることを新たに見出した。
この場合、一次コイルCL1と二次コイルCL2とは同数必要で、かつ一次コイルと二次コイルが1対1に対応して、複数の電磁結合対を構成する必要がある。対をなす一次コイルと二次コイルとは、機器本体2が電源装置1に正常に装着された場合、同軸に整列し、かつできるだけ近接することが望ましい。また、複数の一次コイルは、実質的に同一の構成(同径、同長、同インダクタンス)であることが、回路設計および装置製造を簡単にするためだけでなく、送電効率と放熱効果の両面からの特性上望ましい。複数の二次コイルも実質的に同一の構成とする。複数の一次コイルおよび二次コイルの配列は、並列でも直列でもよい。
図3は、一次・二次コイルの相対的位置関係を示す概略配置図である。一次コイルは、図1における電源装置1の、機器本体装着用の凹所の底部近傍に並列に並ぶよう配置される。この例では一次コイルの軸は水平になるよう電源装置1内に配置される一方、機器本体2内に設けられる二次コイルは、機器本体2が正常に装着された場合に一次コイルと軸を揃えて対面するよう配置される。
本実施例では、一次側コイルとしては磁芯の直径約10mm、長さ約10mmのものでインダクタンスが約70μHものを2個、二次側コイルとしては磁芯の直径約10mm、長さ約2mmのものでインダクタンスが約10μHのものを2個、それぞれ直列としている。一次コイルと二次コイルとの間隔は約2mm程度となるよう、本体機器と電源装置1の配置を考慮した。2個の一次コイル同士の間隔は、広ければ広いほど放熱効果が向上するが、電源装置1・機器本体2の全体寸法との関係で中心間距離を11.5mmを適当とした。
なお、コイル配置にかかる実施例部分について詳しく検証してみた。図2に示す回路において、一次および二次コイルをそれぞれ2個で送受電する場合の特性、温度上昇を、それぞれ1個で送電する場合を比較例として、検討してみた。
用いたコイルは実施例、比較例ともに同じ構成とし、一次コイルは68μH、二次コイルは10μHのものを、実施例では2個、比較例では1個用いた。なお、実施例、比較例ともに、一次コイルと二次コイルのギャップ間隔は2mmであった。
このような構成で、周波数約120kHz(デューティー比50%)で一次電力として約850mWの送電を行った。この時、二次回路に流れる電流・電圧値から求めた送電効率および一次コイルの表面温度を表1(実施例)、表2(比較例)に示す。
Figure 2006115592
Figure 2006115592
これらの表から明らかなように、ほぼ同じ電力を送電したにもかかわらず、実施例における一次コイルの表面温度は、比較例の場合より低い。これは、実施例において一次コイルおよび二次コイルをそれぞれ2個離隔して用いたことにより表面積が増加し放熱効果が向上したためと推察される。なお、実施例の場合の送電効率は、比較例の場合より低いが、これは用いた周波数やコイルと並列に配置されるコンデンサ容量値などの微調整が不十分であることによるものであり、コイルの個数による本質的な差異ではない。むしろ、実施例において送電効率が不十分な微調整により低いにもかかわらず一次コイルの発熱量が小さいことに注目すべきである。
電源装置と機器本体の装着例を示した模式図。 本発明の1実施例を示す回路図。 一次・二次コイルの相対的位置関係を示す概略配置図。
符号の説明
1 電源装置 2 機器本体 3 電源アダプタ
10 制御基板 20 送電基板 30 受電部30
CL コイル C コンデンサ R 抵抗体
CP コンパレータ OP オペアンプ TR トランジスタ
Vref 基準電圧

Claims (5)

  1. 一次側の高周波発振回路を内蔵した電源装置と、蓄電池を有して、前記電源装置に電磁的に結合し高周波発振回路の高周波出力による電磁誘導で得られる二次出力により蓄電池を充電する本体機器とからなる非接触型充電装置において、
    電源装置側一次コイル近傍に温度センサを設け、その検出信号をヒステリシス特性を有するコンパレータにより高温側設定信号と比較させ、検出信号が高温側設定信号より低いときには高周波発振回路の出力を連続モードとして、他方高いときには該出力を間欠モードとしてそれぞれ駆動させ、ただし間欠より連続へのモード切換えはヒステリシスにかかる低温側設定信以下になることにより行われる送電切換え制御回路を具有することを特徴とする、非接触型充電装置。
  2. 検出信号を別の2つのコンパレータにかけてゼロ、異常値いずれかを判断して一次コイルへの送電を停止するようにした送電停止制御回路をさらに具有していることを特徴とする、請求項1に記載の非接触型充電装置。
  3. 本体機器が電源装置と正常に装着されているか否かを一次コイルに流れる電流値により判断し、装着されていない場合に間欠モードにより送電するようにした間欠送電制御回路を具有することを特徴とする、請求項1又は2に記載の非接触型充電装置。
  4. 一次コイル、二次コイル共に小径にして同一の構成により両ケース端板を介して当該一次コイル及び二次コイルをそれぞれの軸を平行に配置させたものを一対とし、少なくとも2対が隔離配置されていることを特徴とする、請求項1,2又は3に記載の非接触型充電装置。
  5. 電源装置が斜壁部を備えた凹所を具有し、この斜壁部に接合して該凹所に本体機器が装着されることを特徴とする、請求項1、2、3又は4に記載の非接触型充電装置。
JP2004299492A 2004-10-14 2004-10-14 非接触型充電装置 Pending JP2006115592A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299492A JP2006115592A (ja) 2004-10-14 2004-10-14 非接触型充電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299492A JP2006115592A (ja) 2004-10-14 2004-10-14 非接触型充電装置

Publications (1)

Publication Number Publication Date
JP2006115592A true JP2006115592A (ja) 2006-04-27

Family

ID=36383613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299492A Pending JP2006115592A (ja) 2004-10-14 2004-10-14 非接触型充電装置

Country Status (1)

Country Link
JP (1) JP2006115592A (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104319A (ja) * 2006-10-20 2008-05-01 Toko Inc 非接触電力伝送装置
CN101345437A (zh) * 2007-07-13 2009-01-14 精工爱普生株式会社 送电装置及电子设备
WO2009040998A1 (ja) * 2007-09-27 2009-04-02 Panasonic Corporation 非接触充電器
EP1962298A3 (en) * 2007-02-20 2009-10-14 Seiko Epson Corporation Coil unit and electronic instrument
EP2017860A3 (en) * 2007-07-20 2010-03-31 Seiko Epson Corporation Coil unit and electronic instrument
JP2010520716A (ja) * 2007-03-02 2010-06-10 クゥアルコム・インコーポレイテッド 無線電力装置及び方法
KR101061661B1 (ko) 2008-01-09 2011-09-01 세이코 엡슨 가부시키가이샤 송전 제어 장치, 송전 장치, 무접점 전력 전송 시스템, 전자 기기 및 송전 제어 방법
US8373514B2 (en) 2007-10-11 2013-02-12 Qualcomm Incorporated Wireless power transfer using magneto mechanical systems
US8378523B2 (en) 2007-03-02 2013-02-19 Qualcomm Incorporated Transmitters and receivers for wireless energy transfer
US8378522B2 (en) 2007-03-02 2013-02-19 Qualcomm, Incorporated Maximizing power yield from wireless power magnetic resonators
US8447234B2 (en) 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
CN103187755A (zh) * 2011-12-27 2013-07-03 三洋电机株式会社 无接点充电方法
US8482157B2 (en) 2007-03-02 2013-07-09 Qualcomm Incorporated Increasing the Q factor of a resonator
JP2013243921A (ja) * 2007-09-19 2013-12-05 Qualcomm Inc 無線電力磁気共振器からの電力収量を最大化すること
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
US8994326B2 (en) 2010-05-14 2015-03-31 Kabushiki Kaisha Toyota Jidoshokki Resonance-type non-contact power supply system
US9083178B2 (en) 2011-05-17 2015-07-14 Samsung Electronics Co., Ltd. Apparatus for and method of protecting wireless-coupled power devices from overvoltage, overcurrent, and overtemperature using hysteresis
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US9142972B2 (en) 2010-05-14 2015-09-22 Kabushiki Kaisha Toyota Jidoshokki Power reception equipment for resonance-type non-contact power supply system
US9391468B2 (en) 2010-05-14 2016-07-12 Kabushiki Kaisha Toyota Jidoshokki Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system
CN106231736A (zh) * 2016-09-12 2016-12-14 深圳市豪恩光电照明股份有限公司 一种led灯管电源驱动电路
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
JP2019180234A (ja) * 2019-06-24 2019-10-17 セイコーエプソン株式会社 制御装置、電子機器及び無接点電力伝送システム
US10811894B2 (en) 2015-05-13 2020-10-20 Seiko Epson Corporation Control device, electronic apparatus, and contactless power transmission system
US10914482B2 (en) 2016-04-18 2021-02-09 Daikin Industries, Ltd. Fan drive circuit for heat pump device
GR20200100106A (el) * 2020-02-27 2021-09-15 Νικολαος Ιωαννη Μπασογιαννης Επιτραπεζια βαση φορτισης πολλαπλων χρησεων

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US8447234B2 (en) 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
JP2008104319A (ja) * 2006-10-20 2008-05-01 Toko Inc 非接触電力伝送装置
EP1962298A3 (en) * 2007-02-20 2009-10-14 Seiko Epson Corporation Coil unit and electronic instrument
US8022801B2 (en) 2007-02-20 2011-09-20 Seiko Epson Corporation Coil unit and electronic instrument
US8482157B2 (en) 2007-03-02 2013-07-09 Qualcomm Incorporated Increasing the Q factor of a resonator
JP2010520716A (ja) * 2007-03-02 2010-06-10 クゥアルコム・インコーポレイテッド 無線電力装置及び方法
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US8378523B2 (en) 2007-03-02 2013-02-19 Qualcomm Incorporated Transmitters and receivers for wireless energy transfer
US8378522B2 (en) 2007-03-02 2013-02-19 Qualcomm, Incorporated Maximizing power yield from wireless power magnetic resonators
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
CN101345437B (zh) * 2007-07-13 2012-12-12 精工爱普生株式会社 送电装置及电子设备
CN101345437A (zh) * 2007-07-13 2009-01-14 精工爱普生株式会社 送电装置及电子设备
US8541977B2 (en) 2007-07-20 2013-09-24 Seiko Epson Corporation Coil unit and electronic instrument
EP2017860A3 (en) * 2007-07-20 2010-03-31 Seiko Epson Corporation Coil unit and electronic instrument
JP2013243921A (ja) * 2007-09-19 2013-12-05 Qualcomm Inc 無線電力磁気共振器からの電力収量を最大化すること
WO2009040998A1 (ja) * 2007-09-27 2009-04-02 Panasonic Corporation 非接触充電器
US8373514B2 (en) 2007-10-11 2013-02-12 Qualcomm Incorporated Wireless power transfer using magneto mechanical systems
KR101061661B1 (ko) 2008-01-09 2011-09-01 세이코 엡슨 가부시키가이샤 송전 제어 장치, 송전 장치, 무접점 전력 전송 시스템, 전자 기기 및 송전 제어 방법
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
US9391468B2 (en) 2010-05-14 2016-07-12 Kabushiki Kaisha Toyota Jidoshokki Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system
US8994326B2 (en) 2010-05-14 2015-03-31 Kabushiki Kaisha Toyota Jidoshokki Resonance-type non-contact power supply system
US9142972B2 (en) 2010-05-14 2015-09-22 Kabushiki Kaisha Toyota Jidoshokki Power reception equipment for resonance-type non-contact power supply system
US9083178B2 (en) 2011-05-17 2015-07-14 Samsung Electronics Co., Ltd. Apparatus for and method of protecting wireless-coupled power devices from overvoltage, overcurrent, and overtemperature using hysteresis
US9966799B2 (en) 2011-05-17 2018-05-08 Samsung Electronics Co., Ltd. Apparatus for and method of protecting wireless-coupled power devices from overvoltage, overcurrent, and overtemperature using hysteresis
CN103187755A (zh) * 2011-12-27 2013-07-03 三洋电机株式会社 无接点充电方法
JP2013135599A (ja) * 2011-12-27 2013-07-08 Sanyo Electric Co Ltd 無接点充電方法
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
US10811894B2 (en) 2015-05-13 2020-10-20 Seiko Epson Corporation Control device, electronic apparatus, and contactless power transmission system
US10914482B2 (en) 2016-04-18 2021-02-09 Daikin Industries, Ltd. Fan drive circuit for heat pump device
CN106231736A (zh) * 2016-09-12 2016-12-14 深圳市豪恩光电照明股份有限公司 一种led灯管电源驱动电路
CN106231736B (zh) * 2016-09-12 2018-04-06 深圳市豪恩光电照明股份有限公司 一种led灯管电源驱动电路
JP2019180234A (ja) * 2019-06-24 2019-10-17 セイコーエプソン株式会社 制御装置、電子機器及び無接点電力伝送システム
GR20200100106A (el) * 2020-02-27 2021-09-15 Νικολαος Ιωαννη Μπασογιαννης Επιτραπεζια βαση φορτισης πολλαπλων χρησεων

Similar Documents

Publication Publication Date Title
JP2006115592A (ja) 非接触型充電装置
US10097047B2 (en) Wireless power transmission system and power transmission device of wireless power transmission system
JP6593661B2 (ja) 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム
JP6004122B2 (ja) 受電装置及び電力伝送システム
JP3306675B2 (ja) 小型電気機器
US8987941B2 (en) Power transmission system
JP3247328B2 (ja) 非接触電力伝達装置
WO2017064955A1 (ja) 送電装置及び非接触給電システム
TWI459676B (zh) 非接觸供電系統及非接觸供電系統的金屬異物檢測裝置
TW493312B (en) Power transmission apparatus and power transmission method
US5949213A (en) Method and system for charging rechargeable batteries
KR100806562B1 (ko) 무접점 충전 시스템
JP6279452B2 (ja) 非接触電力伝送装置
US20120223590A1 (en) Reducing heat dissipation in a wireless power receiver
JPH09103037A (ja) 給電装置、被給電装置および給電システム
US20080157909A1 (en) Non-Contact Power Supply Having Built-In Coupling Detection Device And Coupling Detection Method Thereof
KR20140060180A (ko) 무선전력 수신장치 및 그의 전력 제어 방법
JP6405253B2 (ja) 非接触給電システム
GB2314470A (en) Battery charging arrangement with inductively coupled charging device and rechargeable battery device
WO2016042776A1 (ja) 受電装置、非接触電力伝送システム及び充電方法
JP2018082563A (ja) 非接触給電システム及び送電装置
KR102554226B1 (ko) 무선 전력 전송 장치 및 방법
CN113726021A (zh) 用于保护无线充电接收器的方法和装置
WO2019080212A1 (zh) 过流过压保护电路、电磁感应式无线供电系统及烹饪器具
CN107919714B (zh) 受电装置及充电控制方法、终端设备