JP2006114080A - Wavelength plate - Google Patents

Wavelength plate Download PDF

Info

Publication number
JP2006114080A
JP2006114080A JP2004297671A JP2004297671A JP2006114080A JP 2006114080 A JP2006114080 A JP 2006114080A JP 2004297671 A JP2004297671 A JP 2004297671A JP 2004297671 A JP2004297671 A JP 2004297671A JP 2006114080 A JP2006114080 A JP 2006114080A
Authority
JP
Japan
Prior art keywords
wave plate
wavelength
phase difference
azimuth angle
plane azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004297671A
Other languages
Japanese (ja)
Other versions
JP4534706B2 (en
Inventor
Masayuki Oto
正之 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2004297671A priority Critical patent/JP4534706B2/en
Priority to PCT/JP2005/018821 priority patent/WO2006041109A1/en
Publication of JP2006114080A publication Critical patent/JP2006114080A/en
Application granted granted Critical
Publication of JP4534706B2 publication Critical patent/JP4534706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Head (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength plate functioning as a quarter wave plate over a wide band of 400 to 780 nm to be a wavelength band required for an optical pickup corresponding to not only optical disks of a CD and DVD but also a blue laser disk. <P>SOLUTION: The wavelength plate 4 is formed by laminating a first wavelength plate 5, a second wavelength plate 6 and a third wavelength plate 7 at prescribed in-plane azimuthal angles, and as substrate materials of the wavelength plates, a quartz crystal is used for the first and the second wavelength plates 5 and 6, and lithium niobate is used for the third wavelength plate 7. The first wavelength plate 5 has a phase difference Γ1=180 deg. (λ=600 nm) and an in-plane azimuthal angle θ1=11.5 deg., the second wavelength plate 6 has a phase difference Γ2=195 deg. (λ=600 nm) and an in-plane azimuthal angle θ2=56.1 deg. and the third wavelength plate 7 has a phase difference Γ3=103 deg. (λ600 nm) and an in-plane azimuthal angle θ3=-45.0 deg. as each parameter of the wavelength plate 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は波長板に関し、特にCDやDVD等の光ディスクの他、ブルーレーザディスクにも対応した光ピックアップに用いられる波長板に関するものである。   The present invention relates to a wave plate, and more particularly, to a wave plate used for an optical pickup compatible with a blue laser disk as well as an optical disk such as a CD or a DVD.

CDやDVD等の光ディスクに対する情報の記録や再生を行う際は、光ピックアップが使用され、該光ピックアップには、光ディスクに照射するレーザ光を円偏光とするために1/4波長板が用いられる。
1/4波長板は、複屈折性を有する材料を用いた位相変調を行う光学素子であり、入射する直線偏光の光線を円偏光の光線に変換するという機能を有する。一方、周知のように波長板に入射した光と出射した光との位相差は波長の関数であるため、ある特定の波長の光に対して1/4波長板として機能するものであっても、入射光の波長がそれと異なる場合は、位相差が変化するという波長依存性を有しているので、位相差を1/4波長に維持できない。
An optical pickup is used when information is recorded on or reproduced from an optical disc such as a CD or a DVD, and a quarter-wave plate is used for the optical pickup in order to make the laser light applied to the optical disc circularly polarized. .
The quarter-wave plate is an optical element that performs phase modulation using a birefringent material, and has a function of converting incident linearly polarized light into circularly polarized light. On the other hand, as is well known, the phase difference between the light incident on the wave plate and the emitted light is a function of the wavelength, so even if it functions as a quarter wave plate for light of a specific wavelength. If the wavelength of the incident light is different from that, it has a wavelength dependency that the phase difference changes, and therefore the phase difference cannot be maintained at ¼ wavelength.

そこで、特開平10−68816号公報により広帯域な1/4波長板が提案されている。
図11に、特開平10−68816号公報により開示された従来の広帯域1/4波長板の外観構造例を示し、(a)は正面図(透過面)を示し、(b)は側面図を示す。この広帯域1/4波長板は、二枚の波長板を積層して構成するもので、1/4波長板と1/2波長板とを所定の角度で貼り合わせ、所望の1/4波長板としての性能を得ている。図11に示す如く広帯域1/4波長板1は、第一の波長板2と第二の波長板3とを、第一の波長板2の光学軸方位角(以降、面内方位角と称す)θ1を15degに、第二の波長板3の面内方位角θ2を75degとして積層したものである。
Therefore, a broadband quarter-wave plate has been proposed in Japanese Patent Laid-Open No. 10-68816.
FIG. 11 shows an example of the external structure of a conventional broadband quarter-wave plate disclosed in Japanese Patent Application Laid-Open No. 10-68816, (a) shows a front view (transmission surface), and (b) shows a side view. Show. This broadband quarter wave plate is formed by laminating two wave plates. A quarter wave plate and a half wave plate are bonded together at a predetermined angle to obtain a desired quarter wave plate. As the performance has been obtained. As shown in FIG. 11, the broadband quarter wave plate 1 includes a first wave plate 2 and a second wave plate 3 that are referred to as an optical axis azimuth angle (hereinafter referred to as an in-plane azimuth angle) of the first wave plate 2. ) Θ1 is set to 15 deg, and the in-plane azimuth angle θ2 of the second wave plate 3 is set to 75 deg.

そこで、以下に、特開平10−68816号公報により開示された従来の広帯域1/4波長板の設計方法について説明する。
第一の波長板2の位相差を180deg、面内方位角をθ1、第二の波長板3の位相差を90deg、面内方位角をθ2とし、図12に示したポアンカレ球を用いて説明する。
図12は、従来の1/4波長板のポアンカレ球を示す。図12において、入射光がポアンカレ球の赤道の所定の位置P0に入射されると、この入射光が、第一の波長板2により変調されてP1に到達し、更に第二の波長板3により変調されてポアンカレ球の極P2に到達すれば1/4波長板1を出射する光線は円偏光となる。ここで、P2がポアンカレ球の極であるためには、θ1及びθ2が次の関係式を満足することが望ましい。
θ2=2θ1+45 ・・・・(1)
Therefore, a conventional method for designing a broadband quarter-wave plate disclosed in Japanese Patent Laid-Open No. 10-68816 will be described below.
The phase difference of the first wave plate 2 is 180 deg, the in-plane azimuth angle is θ1, the phase difference of the second wave plate 3 is 90 deg, the in-plane azimuth angle is θ2, and explanation is made using the Poincare sphere shown in FIG. To do.
FIG. 12 shows a conventional Poincare sphere of a quarter wave plate. In FIG. 12, when incident light is incident on a predetermined position P0 on the equator of the Poincare sphere, this incident light is modulated by the first wave plate 2 and reaches P1, and further by the second wave plate 3. When the light reaches the pole P2 of the Poincare sphere after being modulated, the light beam emitted from the quarter-wave plate 1 becomes circularly polarized light. Here, in order for P2 to be the pole of the Poincare sphere, it is desirable that θ1 and θ2 satisfy the following relational expression.
θ2 = 2θ1 + 45 (1)

入射光の波長がλ1〜λ2間で変化すると、第一の波長板2及び第二の波長板3の位相差が夫々180deg及び90degより変化する。第一の波長板2に於ける変化量をΔΓ1、第二の波長板3における変化量をΔΓ2とする。ここで、入射光が第一の波長板2により変調されて到達する位置であるポアンカレ球上のP1が、入射光の波長が変化することにより波長板の位相量が変化し、P1’にずれたとすると、前記変化量ΔΓ1及びΔΓ2がポアンカレ球上のP1とP1’を結ぶ球面上の同一の線分となる条件であれば、P2は常にポアンカレ球の極に到達することが出来る。   When the wavelength of the incident light changes between λ1 and λ2, the phase difference between the first wave plate 2 and the second wave plate 3 changes from 180 deg and 90 deg, respectively. The amount of change in the first wave plate 2 is ΔΓ1, and the amount of change in the second wave plate 3 is ΔΓ2. Here, P1 on the Poincare sphere, where the incident light is modulated by the first wave plate 2 and reached, changes the phase amount of the wave plate due to the change of the wavelength of the incident light, and shifts to P1 ′. Assuming that the change amounts ΔΓ1 and ΔΓ2 are the same line segment on the spherical surface connecting P1 and P1 ′ on the Poincare sphere, P2 can always reach the pole of the Poincare sphere.

そこで、近似的にP1とP1’を直線で結び、余弦定理を用いてΔΓ1、ΔΓ2、θ1の関係を表すと、
cosΔΓ2=1−2(1−2cos2θ1)(1−cosΔΓ1) ・・・・(2)
となる。第一の波長板2と第二の波長板3とが同じ波長分散の材料とすれば、各々の位相差が180deg及び90degであることから、ΔΓ1及びΔΓ2は、
ΔΓ1=2ΔΓ2 ・・・・(3)
の関係を満足する。これを(1)式、(2)式に代入すると、θ1とθ2は下記値を得る。
θ1≒15deg、θ2≒75deg
Therefore, if P1 and P1 ′ are approximately connected by a straight line and the relationship between ΔΓ1, ΔΓ2, and θ1 is expressed using the cosine theorem,
cosΔΓ2 = 1−2 (1-2cos2θ1) (1-cosΔΓ1) (2)
It becomes. If the first wave plate 2 and the second wave plate 3 are made of the same wavelength dispersion material, the phase differences are 180 deg and 90 deg.
ΔΓ1 = 2ΔΓ2 (3)
Satisfy the relationship. Substituting this into equations (1) and (2) gives the following values for θ1 and θ2.
θ1 ≒ 15deg, θ2 ≒ 75deg

以上の結果より1/4波長板1を広帯域1/4波長板として機能させるためには、下記の条件が必須である。
第一の波長板2 位相差 180deg
面内方位角 15deg
第二の波長板3 位相差 90deg
面内方位角 75deg
但し、上記条件は近似を含むため、ミューラ行列、ジョーンズ行列等を用い実際に使用する上で最適な特性となるようにシミュレーションを行い、最適化を行う。
From the above results, the following conditions are essential for the function of the quarter-wave plate 1 as a broadband quarter-wave plate.
First wave plate 2 phase difference 180 deg
In-plane azimuth 15 deg
Second wave plate 3 phase difference 90 deg
In-plane azimuth 75deg
However, since the above condition includes approximation, simulation is performed by using a Mueller matrix, Jones matrix, etc. so as to obtain optimum characteristics for actual use.

図13は、従来の広帯域1/4波長板の楕円率特性例を示す。図13は、所定の波長範囲で最も楕円率が1に近づくよう最適化して、その結果をグラフに示したものであり、特性例1は、波長600〜850nmの範囲で最適化した例を示し、特性例2は、波長400〜500nmの範囲で最適化した例を示し、夫々所定の波長範囲で1/4波長板として機能していることが判る。
特開平10−68816号公報 特開2003−248198号公報
FIG. 13 shows an example of ellipticity characteristics of a conventional broadband quarter-wave plate. FIG. 13 is a graph showing the result of optimization so that the ellipticity approaches 1 most in a predetermined wavelength range, and characteristic example 1 shows an example optimized in the wavelength range of 600 to 850 nm. Characteristic example 2 shows an example of optimization in the wavelength range of 400 to 500 nm, and it can be seen that each of them functions as a quarter-wave plate in a predetermined wavelength range.
JP-A-10-68816 JP 2003-248198 A

波長板の光学材料は一般的に波長が短くなる程、屈折率の波長に対する変化が大きくなるという特性を有しており、波長が短いほど1/4波長板として機能する波長範囲が狭くなる。一方、近年、従来のCD、DVD等の光ディスクに加えて更に大容量化されたブルーレーザディスクと呼ばれる光ディスクが実用化されつつあり、光ピックアップにおいても、CD、DVDの光ディスクの他、ブルーレーザディスクにも対応することが要求されている。ブルーレーザディスクは、波長が400nm近辺のレーザ光を使用しており、従来から使用されている650nm、或いは780nmのレーザ光を使用した光ピックアップと互換性を持たせるためには、1/4波長板として必要な波長帯域は、400nm〜780nmの広帯域となる。図13に示した特性例においても判るように、従来の広帯域波長板は、波長400〜550nmの波長範囲を最適化出来ても、550〜780nmの波長範囲まで最適化することは困難である。   The optical material of the wave plate generally has a characteristic that the shorter the wavelength, the larger the change of the refractive index with respect to the wavelength. The shorter the wavelength, the narrower the wavelength range that functions as a quarter wave plate. On the other hand, in recent years, in addition to conventional optical disks such as CD and DVD, an optical disk called a blue laser disk having a larger capacity has been put into practical use. Is also required to respond to. The blue laser disk uses a laser beam with a wavelength of around 400 nm, and in order to be compatible with an optical pickup using a conventional 650 nm or 780 nm laser beam, a quarter wavelength is used. The wavelength band necessary for the plate is a wide band of 400 nm to 780 nm. As can be seen from the characteristic example shown in FIG. 13, even if the conventional broadband wave plate can optimize the wavelength range of 400 to 550 nm, it is difficult to optimize the wavelength range of 550 to 780 nm.

本発明は、上述したような問題を解決するためになされたものであって、CD、DVDの光ディスクの他、ブルーレーザディスクにも対応する光ピックアップに必要な波長帯域である400nm〜780nmの広帯域に渡って1/4波長板として機能する波長板を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and has a wavelength band of 400 nm to 780 nm, which is a wavelength band necessary for an optical pickup corresponding to a blue laser disk as well as a CD or DVD optical disk. An object of the present invention is to provide a wave plate that functions as a quarter wave plate.

上記目的を達成するために本発明に係わる波長板は、以下の構成をとる。
請求項1に記載の波長板は、第一の波長板と第二の波長板と第三の波長板とを順に結晶光学軸の面内方位角を所定の角度に設定した上で積層して構成する波長板において、前記第一の波長板に入射する入射偏光のポアンカレ球上の入射位置をP0、前記第一の波長板において変調された光のポアンカレ球上の位置をP1、前記第二の波長板において変調された光のポアンカレ球上の位置をP2とした際に、400〜780nmのある波長における前記P0、P1、及びP2の三つの位置により囲まれる三角形と、400〜780nmの他の波長におけるP0、P1、及びP2の三つの位置により囲まれる三角形とが互いに相似であり、常に第三の波長板において変調された光のポアンカレ球上の位置P3が、ポアンカレ球の北極の座標、又は、南極の座標に到達するよう構成する。
In order to achieve the above object, the wave plate according to the present invention has the following configuration.
The wave plate according to claim 1 is formed by laminating the first wave plate, the second wave plate, and the third wave plate in order after setting the in-plane azimuth angle of the crystal optical axis to a predetermined angle. In the wave plate to be configured, the incident position on the Poincare sphere of the incident polarized light incident on the first wave plate is P0, the position on the Poincare sphere of the light modulated in the first wave plate is P1, the second When the position on the Poincare sphere of the light modulated on the wave plate of P2 is P2, the triangle surrounded by the three positions P0, P1, and P2 at a wavelength of 400 to 780 nm, and the others of 400 to 780 nm The triangle surrounded by the three positions P0, P1, and P2 at the same wavelength is similar to each other, and the position P3 on the Poincare sphere of light modulated by the third waveplate is always the coordinates of the north pole of the Poincare sphere Or Configured to reach the coordinates of the Antarctic.

請求項2に記載の波長板は、請求項1に記載の波長板において、前記第一の波長板の位相差をΓ1、面内方位角をθ1、前記第二の波長板の位相差をΓ2、面内方位角をθ2、及び、前記第三の波長板の位相差をΓ3、面内方位角をθ3とした際に、各パラメータが、
位相差Γ1=180deg、面内方位角θ1=11.5deg、
位相差Γ2=195deg、面内方位角θ2=56.1deg、
位相差Γ3=103deg、面内方位角θ3=−45.0deg
となるよう構成する。
The wave plate according to claim 2 is the wave plate according to claim 1, wherein the phase difference of the first wave plate is Γ1, the in-plane azimuth angle is θ1, and the phase difference of the second wave plate is Γ2. When the in-plane azimuth is θ2, the phase difference of the third wave plate is Γ3, and the in-plane azimuth is θ3, each parameter is
Phase difference Γ1 = 180 deg, in-plane azimuth angle θ1 = 11.5 deg,
Phase difference Γ2 = 195 deg, in-plane azimuth angle θ2 = 56.1 deg,
Phase difference Γ3 = 103 deg, in-plane azimuth angle θ3 = −45.0 deg
To be configured.

請求項3に記載の広帯域位相補償波長板は、請求項1又は2に記載の波長板において、前記第一の波長板と前記第二の波長板の基板材料を水晶とし、前記第三の波長板の基板材料を二オブ酸リチウムとして構成する。 The wideband phase compensation wave plate according to claim 3 is the wave plate according to claim 1 or 2, wherein the substrate material of the first wave plate and the second wave plate is quartz, and the third wavelength. The substrate material of the plate is configured as lithium diobate.

請求項1乃至3の発明は、広帯域位相補償波長板を所定の位相差と面内方位角を有する3枚の波長板を積層して構成し、第一の波長板と第二の波長板の基板材料を水晶とし、第三の波長板の基板材料を二オブ酸リチウムを使用することにより、400〜780nmの広帯域な波長範囲において1/4波長板として機能するようにしたものであり、CD、DVDの光ディスクの他、ブルーレーザディスクにも対応する光ピックアップに必要な波長帯域において必要な光学特性を有し、光ピックアップを構成する上で大きな効果を発揮する。   According to the first to third aspects of the present invention, the broadband phase compensation wave plate is formed by laminating three wave plates having a predetermined phase difference and an in-plane azimuth angle, and the first wave plate and the second wave plate are formed. By using quartz as the substrate material and lithium niobate as the substrate material of the third wave plate, it functions as a quarter wave plate in a wide wavelength range of 400 to 780 nm, and CD In addition to DVD optical disks, it has optical characteristics necessary in the wavelength band necessary for optical pickups that are compatible with blue laser disks, and exhibits a great effect in constructing optical pickups.

以下、図示した実施例に基づいて本発明を詳細に説明する。
本発明による波長板は、CD、DVDの光ディスクの他、ブルーレーザディスクにも対応する光ピックアップに必要な波長帯域である400nm〜780nmの広帯域に渡って1/4波長板として機能するように、所定の位相差と面内方位角を有する3枚の波長板を積層したものである。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
The wavelength plate according to the present invention functions as a quarter wavelength plate over a wide band of 400 nm to 780 nm which is a wavelength band necessary for an optical pickup compatible with a blue laser disk as well as an optical disk of CD and DVD. Three wave plates having a predetermined phase difference and in-plane azimuth are laminated.

図1に、本発明に係わる波長板の実施例を示す外観構造図を示し、(a)は正面図(透過面)を示し、(b)は側面図を示す。波長板4は、第一の波長板5と、第二の波長板6と、第三の波長板7とを所定の面内方位角で積層したものであり、後述する設計方法により波長板4が、400〜780nmの広帯域な波長範囲において、1/4波長板として機能するよう各パラメータを下記のように設定したものである。又、各波長板の光学軸は、図1(b)に示す如く光線の入射面に対して平行である。又、後述するように波長板の基板材料は、第一の波長板5と第二の波長板6とは、水晶を使用し、第三の波長板7は、ニオブ酸リチウムを使用している。   FIG. 1 shows an external structural view showing an embodiment of a wave plate according to the present invention, (a) shows a front view (transmission surface), and (b) shows a side view. The wave plate 4 is obtained by laminating a first wave plate 5, a second wave plate 6, and a third wave plate 7 with a predetermined in-plane azimuth angle. However, in the wide wavelength range of 400 to 780 nm, the parameters are set as follows to function as a quarter-wave plate. Further, the optical axis of each wave plate is parallel to the light incident surface as shown in FIG. As will be described later, as the substrate material of the wave plate, the first wave plate 5 and the second wave plate 6 use quartz, and the third wave plate 7 uses lithium niobate. .

第一の波長板5 位相差Γ1 180deg(λ=600nm)
面内方位角θ1 11.5deg
第二の波長板6 位相差Γ2 195deg(λ=600nm)
面内方位角θ2 56.1deg
第三の波長板7 位相差Γ3 103deg(λ=600nm)
面内方位角θ3 −45.0deg
First wave plate 5 Phase difference Γ1 180 deg (λ = 600 nm)
In-plane azimuth angle θ1 11.5 deg
Second wave plate 6 Phase difference Γ2 195 deg (λ = 600 nm)
In-plane azimuth angle θ2 56.1 deg
Third wave plate 7 retardation Γ3 103 deg (λ = 600 nm)
In-plane azimuth angle θ3 -45.0deg

次に、本発明に係わる波長板の設計方法について、ポアンカレ球を用いて説明する。
図2は、本発明に係わる波長板のポアンカレ球を示す図である。図2(a)は、S3軸(北極側)より見た図を示し、図2(b)から(d)は、夫々第一の波長板5の光学軸R1、第二の波長板6の光学軸R2、及び第三の波長板7の光学軸R3の各方向に三角法により図2(a)を展開したものである。
図2において、赤道上の座標(1、0、0)をP0としてこの座標に入射偏光が入射されたものとし、第一の波長板5において変調された位置をP1、第二の波長板6において変調された位置をP2、更に第三の波長板7において変調された位置をP3とする。
Next, a method for designing a wave plate according to the present invention will be described using a Poincare sphere.
FIG. 2 is a view showing a Poincare sphere of a wave plate according to the present invention. 2A shows a view from the S3 axis (north pole side), and FIGS. 2B to 2D show the optical axis R1 of the first wave plate 5 and the second wave plate 6, respectively. FIG. 2A is developed by trigonometry in each direction of the optical axis R2 and the optical axis R3 of the third wave plate 7. FIG.
In FIG. 2, it is assumed that the coordinate (1, 0, 0) on the equator is P0, and incident polarized light is incident on this coordinate, the position modulated in the first wave plate 5 is P1, and the second wave plate 6 The position modulated in step P2 is P2, and the position modulated in the third wave plate 7 is P3.

この時、P3が北極の座標である(0、0、1)、又は、南極の座標である(0、0、−1)に到達するように第一の波長板5、第二の波長板6、及び第三の波長板7のパラメータを設定すれば、三枚の波長板を透過した光線は円偏光となる。   At this time, the first wave plate 5 and the second wave plate so that P3 reaches the coordinates of the north pole (0, 0, 1) or the coordinates of the south pole (0, 0, -1). If the parameters of 6 and the third wave plate 7 are set, the light beam that has passed through the three wave plates becomes circularly polarized light.

又、波長板が400〜780nmの広帯域な波長範囲において、1/4波長板として機能するためには、入射光の波長が変化することで第一の波長板5、第二の波長板6、及び第三の波長板7の夫々の位相差Γ1、Γ2、及びΓ3が変化しても、第三の波長板7において変調された位置であるP3が前記北極、南極の座標である(0、0、1)、又は、(0、0、−1)に到達するようにすればよい。   In addition, in order to function as a quarter wavelength plate in a wide wavelength range of 400 to 780 nm, the wavelength plate of the wavelength plate is changed by changing the wavelength of incident light, the first wavelength plate 5, the second wavelength plate 6, Even if the respective phase differences Γ1, Γ2, and Γ3 of the third wave plate 7 change, P3 that is a position modulated in the third wave plate 7 is the coordinates of the north and south poles (0, 0, 1) or (0, 0, -1) may be reached.

このためには、第一の波長板5、第二の波長板6、及び第三の波長板7の夫々のパラメータを最適なものに設定し、400〜780nmのある波長における前記入射偏光の入射位置P0、第一の波長板5において変調された位置P1、及び第二の波長板6において変調された位置P2の三つの位置により囲まれる三角形と、400〜780nmの他の波長におけるP0、P1、P2により囲まれる三角形とが互いに相似の関係になるようにすれば、常に第三の波長板7において変調された位置P3が、北極の座標である(0、0、1)、又は、南極の座標である(0、0、−1)に到達することが出来る。   For this purpose, the respective parameters of the first wave plate 5, the second wave plate 6, and the third wave plate 7 are set to optimum values, and the incident polarized light is incident at a wavelength of 400 to 780 nm. A triangle surrounded by three positions: a position P0, a position P1 modulated in the first wave plate 5 and a position P2 modulated in the second wave plate 6, and P0 and P1 at other wavelengths of 400 to 780 nm. , The position P3 modulated in the third wave plate 7 is always the coordinates of the north pole (0, 0, 1) or the south pole. (0, 0, −1), which is the coordinates of

そこで、以降数式を用いて本発明に係わる波長板の設計方法について説明する。
ポアンカレ球の半径を1とすると、前記三角形の一辺であるP0―P1(以降L1と称す)は、各波長板のパラメータを用いて下式で表すことが出来る。
L1=sin2θ1・(1−cosΓ1) ・・・・(4)
Therefore, a method for designing a wave plate according to the present invention will be described below using mathematical expressions.
When the Poincare sphere radius is 1, P0-P1 (hereinafter referred to as L1) which is one side of the triangle can be expressed by the following equation using the parameters of each wave plate.
L1 = sin2θ1 (1−cos Γ1) (4)

一方、前記三角形の一辺であるP1―P2(以降L2と称す)は、各波長板のパラメータを用いて下式で表すことが出来る。
L2=cos2θ2・{cos(cosα−cos(Γ2−α))} ・・・・(5)
但し、α=sin−1(sin2θ1・sinΓ1)/cos2θ2 ・・・・(6)
On the other hand, P1-P2 (hereinafter referred to as L2) which is one side of the triangle can be expressed by the following equation using the parameters of each wave plate.
L2 = cos2θ2 · {cos (cosα−cos (Γ2−α))} (5)
However, α = sin −1 (sin2θ1 · sinΓ1) / cos2θ2 (6)

又、前記三角形の辺L1とL2のなす角度をbとすると、bは、下式で表すことが出来る。
∠b=180−2θ1+2θ2 ・・・・(7)
ここで余弦定理を用いると、前記三角形の一辺であるP2―P0(以降L3と称す)は、下式で表すことが出来る。
L3=L1+L2−L1・L2・cos2b ・・・・(8)
If the angle formed by the sides L1 and L2 of the triangle is b, b can be expressed by the following equation.
∠b = 180−2θ1 + 2θ2 (7)
Here, using the cosine theorem, P2-P0 (hereinafter referred to as L3) which is one side of the triangle can be expressed by the following equation.
L3 2 = L1 2 + L2 2 −L1 · L2 · cos2b (8)

そこで、式(4)、(5)、(6)、(7)を式(8)に代入してL3を求めると、下式で表すことが出来る。
L3=sin2θ1・(1−cosΓ1)
+cos2θ2・{cosα−cos(Γ2+α)}
+2sin2θ1・(1−cosΓ1)
・cos2θ2・{cosα−cos(Γ2+α)}・cos(2θ1−2θ2) ・・・・(9)
Therefore, when L3 is obtained by substituting equations (4), (5), (6), and (7) into equation (8), it can be expressed by the following equation.
L3 2 = sin 2 2θ1 · (1-cos Γ1) 2
+ Cos 2 2θ2 · {cos α−cos (Γ2 + α)} 2
+ 2sin2θ1 · (1-cosΓ1)
Cos 2θ2 {cos α-cos (Γ2 + α)} cos (2θ1-2θ2) (9)

一方、前記三角形の一辺であるL3は、第三の波長板7のパラメータであるΓ3を用いて表すことが出来、これをL3’とすると下式で表すことが出来る。
L3’=1+sinΓ3 ・・・・(10)
On the other hand, L3, which is one side of the triangle, can be expressed using Γ3, which is a parameter of the third wave plate 7, and can be expressed by the following equation when this is L3 ′.
L3 ′ = 1 + sin Γ3 (10)

以上の結果より、第一の波長板5と第二の波長板6のパラメータから得られる式(9)で表されるL3と、第三の波長板7のパラメータから得られる式(10)で表されるL3’が等しければ、辺L1、L2、及びL3で囲まれた三角形は、400〜780nmの広帯域な波長範囲において相似の関係となる。   From the above results, L3 represented by the equation (9) obtained from the parameters of the first wave plate 5 and the second wave plate 6 and the equation (10) obtained from the parameters of the third wave plate 7 are obtained. If the represented L3 ′ is equal, the triangle surrounded by the sides L1, L2, and L3 has a similar relationship in a wide wavelength range of 400 to 780 nm.

ここで、
L=L3−L3’ ・・・・(11)
とし、L≒0となるように第一の波長板5、第二の波長板6、及び第三の波長板7のパラメータを夫々設定すれば、第一の波長板5と第二の波長板6における波長による位相差変化を、第三の波長板7における波長による位相差変化により相殺することが出来、常に第三の波長板7において変調された位置であるP3が、前記北極の座標である(0、0、1)に到達することが可能となる。従って、本発明に係わる波長板は、400〜780nmの広帯域な波長範囲において、1/4波長板として機能し、入射する光線を円偏光に変換する。
here,
L = L3-L3 ′ (11)
If the parameters of the first wave plate 5, the second wave plate 6, and the third wave plate 7 are set so that L≈0, the first wave plate 5 and the second wave plate 6 can be canceled by the phase difference change due to the wavelength in the third wave plate 7, and the position P3 that is always modulated in the third wave plate 7 is the coordinates of the north pole. A certain (0, 0, 1) can be reached. Therefore, the wave plate according to the present invention functions as a quarter wave plate in a wide wavelength range of 400 to 780 nm, and converts incident light into circularly polarized light.

次に、上述したような設計方法を用い、パラメータを変化させてシミュレーションを行い、それらの結果をグラフによりまとめた。
そこで、第1の設計例として、光線の波長が400nm近辺でL≒0となるように各波長板のパラメータを設定した。
図3は、本発明に係わる波長板の第1の設計例において、前述した三角形の一辺であるL3及びL3’とLの波長特性を示すグラフである。その時の各波長板のパラメータは以下の通りである。
Next, using the design method as described above, simulation was performed by changing the parameters, and the results were summarized in a graph.
Therefore, as a first design example, the parameters of each wave plate are set so that the wavelength of the light beam is L≈0 around 400 nm.
FIG. 3 is a graph showing the wavelength characteristics of L3, L3 ′, and L, which are one side of the triangle, in the first design example of the wave plate according to the present invention. The parameters of each wave plate at that time are as follows.

第一の波長板9 位相差Γ1 220deg(λ=405nm)
面内方位角θ1 −13deg
第二の波長板10 位相差Γ2 210deg(λ=405nm)
面内方位角θ2 −53deg
第三の波長板11 位相差Γ3 100deg(λ=405nm)
面内方位角θ3 45deg
First wave plate 9 phase difference Γ1 220 deg (λ = 405 nm)
In-plane azimuth angle θ1 -13deg
Second wave plate 10 phase difference Γ2 210 deg (λ = 405 nm)
In-plane azimuth angle θ2-53deg
Third wave plate 11 phase difference Γ3 100 deg (λ = 405 nm)
In-plane azimuth angle θ3 45deg

図4に、本発明に係わる波長板の第1の設計例を示す外観構造図を示し、(a)は正面図(透過面)を示し、(b)は側面図を示す。波長板8は、第一の波長板9と、第二の波長板10と、第三の波長板11とを所定の面内方位角で積層したものである。 FIG. 4 shows an external structural view showing a first design example of the wave plate according to the present invention, (a) shows a front view (transmission surface), and (b) shows a side view. The wave plate 8 is obtained by laminating a first wave plate 9, a second wave plate 10, and a third wave plate 11 with a predetermined in-plane azimuth angle.

図5は、本発明に係わる波長板において、第1の設計例によりパラメータを設定した際の楕円率の波長特性を示すグラフである。図5においては、特性を比較するため従来の広帯域1/4波長板の楕円率を示した特性例1、及び特性例2についても記載した。
グラフに示した第1の設計例による楕円率の波長特性は、おおよそ350nm程度の帯域を有しており、従来の広帯域1/4波長板の波長特性が、200nm程度の帯域を有していたことを考えると、かなり広い帯域で1/4波長板として機能していることがわかるが、CD、DVDの光ディスクの他、ブルーレーザディスクにも対応する光ピックアップに必要な波長帯域である400nm〜780nmの広帯域に渡って1/4波長板として機能するには至っていない。
FIG. 5 is a graph showing the wavelength characteristics of ellipticity when parameters are set according to the first design example in the wave plate according to the present invention. FIG. 5 also shows the characteristic example 1 and the characteristic example 2 showing the ellipticity of the conventional broadband quarter-wave plate in order to compare the characteristics.
The wavelength characteristic of the ellipticity according to the first design example shown in the graph has a band of about 350 nm, and the wavelength characteristic of the conventional broadband quarter-wave plate has a band of about 200 nm. Considering this, it can be seen that it functions as a quarter-wave plate in a fairly wide band, but it is a wavelength band necessary for an optical pickup corresponding to a blue laser disk as well as a CD and DVD optical disk. It has not yet functioned as a quarter-wave plate over a wide band of 780 nm.

そこで次に、第2の設計例として、第1の設計例より更に高波長帯において広帯域波長板として機能させた場合について検討し、光線の波長が650nm近辺でL≒0となるように各波長板のパラメータを設定した。
図6は、本発明に係わる波長板の第2の設計例において、前述した三角形の一辺であるL3及びL3’とLの波長特性を示すグラフである。その時の各波長板のパラメータは以下の通りである。
Then, next, as a second design example, a case where it functions as a broadband wave plate in a higher wavelength band than the first design example is studied, and each wavelength is set so that the wavelength of the light beam becomes L≈0 near 650 nm. The board parameters were set.
FIG. 6 is a graph showing the wavelength characteristics of L3, L3 ′, and L, which are one side of the triangle, in the second design example of the wave plate according to the present invention. The parameters of each wave plate at that time are as follows.

第一の波長板13 位相差Γ1 180deg(λ=650nm)
面内方位角θ1 −13deg
第二の波長板14 位相差Γ2 180deg(λ=650nm)
面内方位角θ2 −53deg
第三の波長板15 位相差Γ3 90deg(λ=650nm)
面内方位角θ3 45deg
First wave plate 13 Phase difference Γ1 180 deg (λ = 650 nm)
In-plane azimuth angle θ1 -13deg
Second wave plate 14 phase difference Γ2 180 deg (λ = 650 nm)
In-plane azimuth angle θ2-53deg
Third wave plate 15 phase difference Γ3 90 deg (λ = 650 nm)
In-plane azimuth angle θ3 45deg

図7に、本発明に係わる波長板の第2の設計例を示す外観構造図を示し、(a)は正面図(透過面)を示し、(b)は側面図を示す。波長板12は、第一の波長板13と、第二の波長板14と、第三の波長板15とを所定の面内方位角で積層したものである。   7A and 7B are external structural views showing a second design example of the wave plate according to the present invention, FIG. 7A is a front view (transmission surface), and FIG. 7B is a side view. The wave plate 12 is obtained by laminating a first wave plate 13, a second wave plate 14, and a third wave plate 15 at a predetermined in-plane azimuth angle.

図8は、本発明に係わる波長板において、第2の設計例によりパラメータを設定した際の楕円率の波長特性を示すグラフである。図8においては、特性を比較するため従来の広帯域1/4波長板の楕円率を示した特性例1、及び特性例2についても記載した。
グラフに示した第2の設計例の楕円率の波長特性は、前述した第1の設計例と同様に、おおよそ350nm程度の帯域を有しており、従来の波長板の波長特性が、200nm程度の帯域を有していたことを考えると、かなり広い帯域で1/4波長板として機能していることがわかるが、CD、DVDの光ディスクの他、ブルーレーザディスクにも対応する光ピックアップに必要な波長帯域である400nm〜780nmの広帯域に渡って1/4波長板として機能するには至っていない。
FIG. 8 is a graph showing the wavelength characteristics of ellipticity when parameters are set according to the second design example in the wave plate according to the present invention. In FIG. 8, for comparison, the characteristic example 1 and the characteristic example 2 showing the ellipticity of the conventional broadband quarter wave plate are also shown.
The wavelength characteristic of the ellipticity of the second design example shown in the graph has a band of about 350 nm as in the first design example described above, and the wavelength characteristic of the conventional wave plate is about 200 nm. Although it can be seen that it functions as a quarter-wave plate in a fairly wide band, it is necessary for optical pickups compatible with CD and DVD optical discs as well as blue laser discs. It has not yet functioned as a quarter-wave plate over a wide wavelength range of 400 nm to 780 nm.

一方、上述したような第1の設計例や第2の設計例は、第一の波長板、第二の波長板、及び第三の波長板の基板材料として、夫々に水晶を用いて広帯域の積層波長板を構成していたが、本願出願者は、更なる広帯域化を図るため、波長板の基板材料として使用する複屈折性材料を水晶に限定することなしに、他の様々な材料を用いた場合について検討した。   On the other hand, in the first design example and the second design example as described above, quartz is used as the substrate material for the first wave plate, the second wave plate, and the third wave plate, respectively. Although the laminated wave plate was configured, the applicant of the present application has made various other materials without limiting the birefringent material used as the substrate material of the wave plate to quartz in order to further increase the bandwidth. The case of using was examined.

図9は、主だった複屈折性を持つ材料の複屈折性の波長分散を示すグラフである。図9からは、水晶、BBO、方解石の複屈折波長分散が小さく、ニオブ酸リチウム、YVO4の複屈折波長分散が大きいことがわかる。そこで、本願発明者は、第一の波長板、第二の波長板、及び第三の波長板の基板材料として、上記複屈折性を持つ材料を組み合わせて使用した場合について夫々シミュレーションを行い、広い帯域で前記式(11)がL≒0となるような検討を加えた。   FIG. 9 is a graph showing the birefringent wavelength dispersion of the main birefringent material. FIG. 9 shows that the birefringence wavelength dispersion of quartz, BBO, and calcite is small, and the birefringence wavelength dispersion of lithium niobate and YVO4 is large. Therefore, the inventor of the present application performs a simulation for each of the cases where the materials having the birefringence are used in combination as substrate materials for the first wave plate, the second wave plate, and the third wave plate. A study was made so that the expression (11) becomes L≈0 in the band.

そのシミュレーションの結果、本願発明者は、第一の波長板、第二の波長板の基板材料として複屈折波長分散の小さな水晶を用い、第三の波長板の基板材料として複屈折波長分散の大きな二オブ酸リチウムを用いた際に、積層波長板として所望の広帯域を有することを見出した。本第3の設計例は、前述した実施例について説明するものであって、この時、シミュレーションの結果求めた第一の波長板、第二の波長板、及び第三の波長板のパラメータは前述したように下記の通りとなる。   As a result of the simulation, the inventor of the present application uses a crystal having a small birefringence wavelength dispersion as a substrate material of the first wave plate and the second wave plate, and a large birefringence wavelength dispersion as a substrate material of the third wave plate. It has been found that when lithium diobate is used, the laminated wave plate has a desired broadband. The third design example describes the above-described embodiment. At this time, the parameters of the first wave plate, the second wave plate, and the third wave plate obtained as a result of the simulation are described above. As follows.

第一の波長板5 位相差Γ1 180deg(λ=600nm)
面内方位角θ1 11.5deg
第二の波長板6 位相差Γ2 195deg(λ=600nm)
面内方位角θ2 56.1deg
第三の波長板7 位相差Γ3 103deg(λ=600nm)
面内方位角θ3 −45.0deg
First wave plate 5 Phase difference Γ1 180 deg (λ = 600 nm)
In-plane azimuth angle θ1 11.5 deg
Second wave plate 6 Phase difference Γ2 195 deg (λ = 600 nm)
In-plane azimuth angle θ2 56.1 deg
Third wave plate 7 retardation Γ3 103 deg (λ = 600 nm)
In-plane azimuth angle θ3 -45.0deg

図10は、本発明に係わる波長板において、所望の帯域を有する第3の設計例によりパラメータを設定した波長板の楕円率の波長特性を示すグラフである。尚、図10は、特性の比較をするため、第1の設計例、及び第2の設計例の楕円率についても記載した。図10に示す如く、本第3の設計例においては、波長板の特性が480nm程度の帯域を有し、400〜780nmの広帯域で楕円率が0.8以上となっており、所望の1/4波長板としての波長板特性を満足した。   FIG. 10 is a graph showing the wavelength characteristics of the ellipticity of a wave plate having parameters set according to the third design example having a desired band in the wave plate according to the present invention. FIG. 10 also shows the ellipticity of the first design example and the second design example in order to compare the characteristics. As shown in FIG. 10, in the third design example, the wavelength plate has a characteristic band of about 480 nm, a wide band of 400 to 780 nm, and an ellipticity of 0.8 or more. The wave plate characteristics as a four-wave plate were satisfied.

以上説明したように本発明においては、積層波長板を構成する三枚の波長板の基板材料を、第一の波長板、及び第二の波長板は水晶、第三の波長板は二オブ酸リチウムとすることにより、CD、DVDの光ディスクの他、ブルーレーザディスクにも対応する光ピックアップに必要な波長帯域である400nm〜780nmの広帯域に渡って、1/4波長板として機能する広帯域波長板を提供することが可能となった。   As described above, in the present invention, the substrate material of the three wave plates constituting the laminated wave plate, the first wave plate and the second wave plate are quartz, and the third wave plate is diobium acid. By using lithium, a broadband wave plate that functions as a quarter wave plate over a wide band of 400 nm to 780 nm, which is a wavelength band necessary for an optical pickup compatible with a blue laser disk as well as an optical disk of CD and DVD. It became possible to provide.

本発明に係わる波長板の実施例を示す外観構造図を示す。1 is an external structural view showing an embodiment of a wave plate according to the present invention. 本発明に係わる波長板のポアンカレ球を示す図である。It is a figure which shows the Poincare sphere of the wave plate concerning this invention. 本発明に係わる波長板の第1の設計例において、前述した三角形の一辺であるL3及びL3’とLの波長特性を示すグラフである。In the first design example of the wave plate according to the present invention, it is a graph showing the wavelength characteristics of L3, L3 'and L which are one side of the triangle described above. 本発明に係わる波長板の第1の設計例を示す外観構造図を示す。1 is an external structural view showing a first design example of a wave plate according to the present invention. FIG. 本発明に係わる波長板において、第1の設計例によりパラメータを設定した際の楕円率の波長特性を示すグラフである。In the waveplate concerning this invention, it is a graph which shows the wavelength characteristic of the ellipticity at the time of setting a parameter by the 1st design example. 本発明に係わる波長板の第2の設計例において、前述した三角形の一辺であるL3及びL3’とLの波長特性を示すグラフである。It is a graph which shows the wavelength characteristic of L3 and L3 'which are one side of the triangle mentioned above in the 2nd design example of the waveplate concerning this invention. 本発明に係わる波長板の第2の設計例を示す外観構造図を示す。The external appearance structural view which shows the 2nd design example of the wave plate concerning this invention is shown. 本発明に係わる波長板において、第2の設計例によりパラメータを設定した際の楕円率の波長特性を示すグラフである。In the waveplate concerning this invention, it is a graph which shows the wavelength characteristic of the ellipticity at the time of setting a parameter by the 2nd design example. 主だった複屈折性を持つ材料の複屈折性の波長分散を示すグラフである。It is a graph which shows the birefringent wavelength dispersion of the material with main birefringence. 本発明に係わる波長板において、所望の帯域を有する第3の設計例によりパラメータを設定した波長板の楕円率の波長特性を示すグラフである。In the waveplate concerning this invention, it is a graph which shows the wavelength characteristic of the ellipticity of the waveplate which set the parameter by the 3rd design example which has a desired zone | band. 特開平10−68816号公報により開示された従来の広帯域1/4波長板の外観構造例を示す。An example of the external structure of a conventional broadband quarter-wave plate disclosed in Japanese Patent Laid-Open No. 10-68816 is shown. 従来の1/4波長板のポアンカレ球を示す。The Poincare sphere of the conventional quarter wavelength plate is shown. 従来の広帯域1/4波長板の楕円率特性例を示す。The example of the ellipticity characteristic of the conventional broadband quarter wave plate is shown.

符号の説明Explanation of symbols

1・・広帯域1/4波長板、 2・・第一の波長板、
3・・第二の波長板、 4・・波長板、
5・・第一の波長板、 6・・第二の波長板、
7・・第三の波長板、 8・・波長板、
9・・第一の波長板、 10・・第二の波長板、
11・・第三の波長板、 12・・波長板、
13・・第一の波長板、 14・・第二の波長板、
15・・第三の波長板

1. Broadband quarter wave plate, 2. First wave plate,
3. Second wave plate, 4. Wave plate,
5. First wave plate, 6. Second wave plate,
7 .... Third wave plate, 8 .... Wave plate,
9. First wave plate, 10. Second wave plate,
11 .... Third wave plate, 12 .... Wave plate,
13 .... first wave plate, 14 .... second wave plate,
15. Third wave plate

Claims (3)

第一の波長板と第二の波長板と第三の波長板とを順に結晶光学軸の面内方位角を所定の角度に設定した上で積層して構成する波長板において、
前記第一の波長板に入射する入射偏光のポアンカレ球上の入射位置をP0、前記第一の波長板において変調された光のポアンカレ球上の位置をP1、前記第二の波長板において変調された光のポアンカレ球上の位置をP2とした際に、400〜780nmのある波長における前記P0、P1、及びP2の三つの位置により囲まれる三角形と、400〜780nmの他の波長におけるP0、P1、及びP2の三つの位置により囲まれる三角形とが互いに相似であり、常に第三の波長板において変調された光のポアンカレ球上の位置P3が、ポアンカレ球の北極の座標、又は、南極の座標に到達するよう構成したことを特徴とする波長板。
In the wave plate configured by laminating the first wave plate, the second wave plate, and the third wave plate in order after setting the in-plane azimuth angle of the crystal optical axis to a predetermined angle,
The incident position on the Poincare sphere of the incident polarized light incident on the first wave plate is P0, the position on the Poincare sphere of the light modulated on the first wave plate is P1, and is modulated on the second wave plate. When the position of the light on the Poincare sphere is P2, the triangle surrounded by the three positions P0, P1 and P2 at a wavelength of 400 to 780 nm, and P0 and P1 at other wavelengths of 400 to 780 nm , And the triangle surrounded by the three positions P2 are similar to each other, and the position P3 on the Poincare sphere of light modulated in the third wave plate is always the coordinates of the North Pole or the South Pole of the Poincare sphere. A wave plate characterized by being configured to reach
前記第一の波長板の位相差をΓ1、面内方位角をθ1、前記第二の波長板の位相差をΓ2、面内方位角をθ2、及び、前記第三の波長板の位相差をΓ3、面内方位角をθ3とした際に、各パラメータが、
位相差Γ1=180deg、面内方位角θ1=11.5deg、
位相差Γ2=195deg、面内方位角θ2=56.1deg、
位相差Γ3=103deg、面内方位角θ3=−45.0deg
となるよう構成したことを特徴とする請求項1に記載の波長板。
The phase difference of the first wave plate is Γ1, the in-plane azimuth angle is θ1, the phase difference of the second wave plate is Γ2, the in-plane azimuth angle is θ2, and the phase difference of the third wave plate is When Γ3 and the in-plane azimuth angle is θ3, each parameter is
Phase difference Γ1 = 180 deg, in-plane azimuth angle θ1 = 11.5 deg,
Phase difference Γ2 = 195 deg, in-plane azimuth angle θ2 = 56.1 deg,
Phase difference Γ3 = 103 deg, in-plane azimuth angle θ3 = −45.0 deg
The wave plate according to claim 1, wherein the wave plate is configured as follows.
前記第一の波長板と前記第二の波長板の基板材料を水晶とし、前記第三の波長板の基板材料を二オブ酸リチウムとしたことを特徴とする請求項1又は2に記載の波長板。
3. The wavelength according to claim 1, wherein the substrate material of the first wave plate and the second wave plate is quartz, and the substrate material of the third wave plate is lithium diobate. Board.
JP2004297671A 2004-10-12 2004-10-12 Laminated wave plate and optical pickup using the same Expired - Fee Related JP4534706B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004297671A JP4534706B2 (en) 2004-10-12 2004-10-12 Laminated wave plate and optical pickup using the same
PCT/JP2005/018821 WO2006041109A1 (en) 2004-10-12 2005-10-12 Broad-band phase compensation polarized light elimination plate and broad-band phase compensation wavelength plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297671A JP4534706B2 (en) 2004-10-12 2004-10-12 Laminated wave plate and optical pickup using the same

Publications (2)

Publication Number Publication Date
JP2006114080A true JP2006114080A (en) 2006-04-27
JP4534706B2 JP4534706B2 (en) 2010-09-01

Family

ID=36382492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297671A Expired - Fee Related JP4534706B2 (en) 2004-10-12 2004-10-12 Laminated wave plate and optical pickup using the same

Country Status (1)

Country Link
JP (1) JP4534706B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017037A1 (en) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. Retardation element and optical head device
JP2010008808A (en) * 2008-06-27 2010-01-14 Kyocera Kinseki Corp Quartz wave plate
JP2010032929A (en) * 2008-07-30 2010-02-12 Kyocera Kinseki Corp Quartz crystal wavelength plate
JP2010032927A (en) * 2008-07-30 2010-02-12 Kyocera Kinseki Corp Quartz crystal wavelength plate
JP2010032930A (en) * 2008-07-30 2010-02-12 Kyocera Kinseki Corp Quartz crystal wavelength plate
JP2010032928A (en) * 2008-07-30 2010-02-12 Kyocera Kinseki Corp Quartz crystal wavelength plate
JP2010032926A (en) * 2008-07-30 2010-02-12 Kyocera Kinseki Corp Quartz crystal wavelength plate
KR101424348B1 (en) 2012-11-21 2014-08-01 경희대학교 산학협력단 Polarizing element and liquid crystal display device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6226902B2 (en) 2015-03-19 2017-11-08 デクセリアルズ株式会社 Wave plate and optical device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05100114A (en) * 1991-10-07 1993-04-23 Nitto Denko Corp Laminated wavelength plate and circularly polarizing plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05100114A (en) * 1991-10-07 1993-04-23 Nitto Denko Corp Laminated wavelength plate and circularly polarizing plate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017037A1 (en) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. Retardation element and optical head device
JP5316409B2 (en) * 2007-07-27 2013-10-16 旭硝子株式会社 Phase difference element and optical head device
JP2010008808A (en) * 2008-06-27 2010-01-14 Kyocera Kinseki Corp Quartz wave plate
JP2010032929A (en) * 2008-07-30 2010-02-12 Kyocera Kinseki Corp Quartz crystal wavelength plate
JP2010032927A (en) * 2008-07-30 2010-02-12 Kyocera Kinseki Corp Quartz crystal wavelength plate
JP2010032930A (en) * 2008-07-30 2010-02-12 Kyocera Kinseki Corp Quartz crystal wavelength plate
JP2010032928A (en) * 2008-07-30 2010-02-12 Kyocera Kinseki Corp Quartz crystal wavelength plate
JP2010032926A (en) * 2008-07-30 2010-02-12 Kyocera Kinseki Corp Quartz crystal wavelength plate
KR101424348B1 (en) 2012-11-21 2014-08-01 경희대학교 산학협력단 Polarizing element and liquid crystal display device including the same

Also Published As

Publication number Publication date
JP4534706B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4623042B2 (en) Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device
JP4830072B2 (en) Wave plate and optical pickup using the same
US8107351B2 (en) Laminated half-wave plate, optical pickup device, polarization converter, and projection display apparatus
US8477272B2 (en) Quarter wave plate, optical pickup device, and reflective liquid crystal display device
WO2011040339A1 (en) Optical waveguide device
JP2010156842A (en) Optical modulator
JP4534706B2 (en) Laminated wave plate and optical pickup using the same
JP4825951B2 (en) Wave plate and optical pickup using the same
JP5673283B2 (en) Polarization synthesizer
JP2007311012A (en) Laminated wave plate and optical pickup device using the same
JP4329508B2 (en) Optical rotation correction broadband quarter wave plate and optical pickup device using the same
US8233101B2 (en) Laminated wave plate, optical pickup device, polarization converter, and projection display apparatus
KR20080033284A (en) Reflective holographic data storage carrier
JP2008185768A (en) Wavelength plate and optical device
JP2007093963A (en) Wave plate using oblique angle deposition
JP5347911B2 (en) 1/2 wavelength plate, optical pickup device, polarization conversion element, and projection display device
JP5056059B2 (en) Broadband wave plate
WO2006041109A1 (en) Broad-band phase compensation polarized light elimination plate and broad-band phase compensation wavelength plate
JP2006113123A (en) Depolarizing plate
JP2008262662A (en) Quarter wavelength plate for optical pickup, and optical head device
JP4507738B2 (en) Laminated wave plate and optical pickup using the same
JP4553056B2 (en) Optical rotation correction broadband quarter wave plate and optical pickup device using the same
JP5332322B2 (en) Optical rotator and optical head device
JP2006313594A (en) Three-wavelength compatible optical pickup
JP2010267337A (en) Laminated phase plate and optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees