JP2010032929A - Quartz crystal wavelength plate - Google Patents

Quartz crystal wavelength plate Download PDF

Info

Publication number
JP2010032929A
JP2010032929A JP2008197062A JP2008197062A JP2010032929A JP 2010032929 A JP2010032929 A JP 2010032929A JP 2008197062 A JP2008197062 A JP 2008197062A JP 2008197062 A JP2008197062 A JP 2008197062A JP 2010032929 A JP2010032929 A JP 2010032929A
Authority
JP
Japan
Prior art keywords
plate
quartz
component
quartz crystal
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008197062A
Other languages
Japanese (ja)
Other versions
JP5123098B2 (en
Inventor
Akinori Ito
明則 伊東
Kotaro Wakabayashi
小太郎 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2008197062A priority Critical patent/JP5123098B2/en
Publication of JP2010032929A publication Critical patent/JP2010032929A/en
Application granted granted Critical
Publication of JP5123098B2 publication Critical patent/JP5123098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control (modify) polarization states of light sources of a plurality of wavelengths with half wavelength plates without causing increase of the number of components such as use of a plurality of the half wavelength plates. <P>SOLUTION: Quartz crystal components 101-104 are constituted of quartz crystal plates, mutually arranged while principal planes are in parallel, optical axes are made to be in parallel to the principal planes, and they include respectively different optical axes. The quartz crystal component 101 and the quartz crystal component 103 are constituted of quartz crystal plates of 0.17 mm of plate thickness. The quartz crystal component 102 is constituted of a quartz crystal plate of 0.255 mm of plate thickness. The quartz crystal component 104 is constituted of a quartz crystal plate of 0.34 mm of plate thickness. Their plate thicknesses have a relationship of the plate thickness of the quartz crystal component 101: the plate thickness of the quartz crystal component 102: the plate thickness of the quartz crystal component 103: the plate thickness of the quartz crystal component 104=2:3:2:4 by regarding 0.085 mm, as a reference. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複屈折を起こす結晶である水晶を用いて直線偏光の入射光の偏光を90°回転させる機能を有する水晶波長板に関するものである。   The present invention relates to a quartz wavelength plate having a function of rotating the polarization of linearly polarized incident light by 90 ° using quartz which is a crystal that causes birefringence.

近年では、高密度実装基板のビアホールの形成などにレーザ加工装置が用いられている。このようなレーザ加工装置では、例えば、基本波に対して高調波を発生させることで得られる複数の波長のレーザ光を同時に用いることで、様々な加工形状が得られるようにしている(特許文献1参照)。また、このレーザ加工においては、よく知られているように、直線偏光のレーザ光の偏光方向を、1/2波長板を用いて制御している。   In recent years, laser processing apparatuses are used for forming via holes in high-density mounting substrates. In such a laser processing apparatus, for example, various processing shapes can be obtained by simultaneously using laser beams having a plurality of wavelengths obtained by generating harmonics with respect to the fundamental wave (Patent Literature). 1). In this laser processing, as is well known, the polarization direction of linearly polarized laser light is controlled using a half-wave plate.

上述した1/2波長板としては、光出力の高いレーザに耐えられるように、一般には、2枚の水晶板から構成されている。2枚の水晶板の板厚の差により、所望とする波長の光に対応させるようにしている。この1/2波長板は、2枚の水晶板の各々の主面に平行な光学軸が互いに90°異なる状態とし、水晶板の主面に垂直に入射する光の偏光方向を、主面に平行な面内で90°回転させるようにしている。また、よく知られているように、水晶板をより高い精度で加工し、2枚の水晶板の光学軸の関係が正確に90°となるようにすることで、対象となる光が透過するときの常光と異常光との位相差が、より180°に近くなるようにしている。   The half-wave plate described above is generally composed of two quartz plates so as to withstand a laser having a high light output. The difference between the thicknesses of the two quartz plates is made to correspond to light having a desired wavelength. In this half-wave plate, the optical axes parallel to the principal surfaces of the two quartz plates are different from each other by 90 °, and the polarization direction of light perpendicularly incident on the principal surface of the quartz plate is the principal surface. It is rotated 90 ° in a parallel plane. Further, as is well known, by processing the quartz plate with higher accuracy so that the relationship between the optical axes of the two quartz plates is accurately 90 °, the target light is transmitted. The phase difference between the ordinary light and the extraordinary light is made closer to 180 °.

特開2007−114520号公報JP 2007-114520 A

しかしながら、複数の波長のレーザ光を用いる場合、波長毎に1/2波長板が必要になり、部品点数の増加を招くという問題がある。例えば、3つの波長のレーザ光を用いる場合、2枚の水晶板を貼り合わせた1/2波長板が3個必要となる。また、特許文献1では、1/2波長板を回転させることで、1つの1/2波長板で複数の波長のレーザ光に対応させるようにしているが、この場合、1/2波長板を回転させる回転装置が必要となる。これらのように、複数の波長の光源の偏光状態を1/2波長板により制御しようとする場合、部品点数の増加を招くという問題がある。   However, when laser beams having a plurality of wavelengths are used, a half-wave plate is required for each wavelength, which increases the number of parts. For example, when using laser light with three wavelengths, three half-wave plates obtained by bonding two quartz plates are required. Further, in Patent Document 1, by rotating a half-wave plate, one half-wave plate is made to correspond to a plurality of wavelengths of laser light. A rotating device for rotation is required. As described above, when the polarization states of the light sources having a plurality of wavelengths are controlled by the half-wave plate, there is a problem that the number of parts is increased.

本発明は、以上のような問題点を解消するためになされたものであり、複数の1/2波長板を用いるなど部品点数の増加を招くことなく、複数の波長の光源の偏光状態を1/2波長板により制御(変更)できるようにすることを目的とする。   The present invention has been made to solve the above-described problems. The polarization state of a light source having a plurality of wavelengths is set to 1 without causing an increase in the number of components such as using a plurality of half-wave plates. An object is to enable control (change) by a / 2 wavelength plate.

本発明に係る水晶波長板は、板厚0.17mmの水晶板に対応する第1の水晶部品と、板厚0.255mmの水晶板に対応する第2の水晶部品と、板厚0.17mmの水晶板に対応する第3の水晶部品と板厚0.34mmの水晶板に対応する第4の水晶部品と、を備え、前記第1,第2,第3および第4の水晶部品は、各々が互いに主面が平行な状態に配置され、光学軸が前記主面に平行とされ、各々が異なる光学軸を備えることを特徴とする水晶波長板。   The quartz wavelength plate according to the present invention includes a first quartz component corresponding to a quartz plate having a thickness of 0.17 mm, a second quartz component corresponding to a quartz plate having a thickness of 0.255 mm, and a thickness of 0.17 mm. A third crystal component corresponding to the crystal plate and a fourth crystal component corresponding to a crystal plate having a plate thickness of 0.34 mm, and the first, second, third and fourth crystal components are: A quartz wavelength plate, wherein each of the quartz wave plates is arranged in a state in which main surfaces are parallel to each other, an optical axis is parallel to the main surface, and each has a different optical axis.

また、前記水晶波長板において、前記第1の水晶部品および前記第3の水晶部品は、板厚0.17mmの水晶板から構成され、前記第2の水晶部品は、板厚0.255mmの水晶板から構成され、前記第4の水晶部品は、板厚0.34mmの水晶板から構成されていることを特徴とする。   In the quartz wavelength plate, the first quartz component and the third quartz component are formed of a quartz plate having a plate thickness of 0.17 mm, and the second quartz component is a quartz plate having a plate thickness of 0.255 mm. The fourth quartz component is constituted by a quartz plate having a thickness of 0.34 mm.

以上説明したように、本発明によれば、板厚0.17mmの水晶板に対応する第1の水晶部品と、板厚0.255mmの水晶板に対応する第2の水晶部品と、板厚0.17mmの水晶板に対応する第3の水晶部品と、板厚0.34mmの水晶板に対応する第4の水晶部品とを備えるようにしたので、複数の1/2波長板を用いるなど部品点数の増加を招くことなく、複数の波長の光源の偏光状態を1/2波長板により変更できるようになるという優れた効果が得られる。   As described above, according to the present invention, the first crystal component corresponding to the crystal plate having a plate thickness of 0.17 mm, the second crystal component corresponding to the crystal plate having a plate thickness of 0.255 mm, and the plate thickness Since a third crystal component corresponding to a crystal plate having a thickness of 0.17 mm and a fourth crystal component corresponding to a crystal plate having a thickness of 0.34 mm are provided, a plurality of half-wave plates are used. An excellent effect is obtained in that the polarization state of the light sources having a plurality of wavelengths can be changed by the half-wave plate without causing an increase in the number of parts.

以下、本発明の実施の形態(以下、「実施形態」という。)について図を参照して説明する。   Hereinafter, embodiments of the present invention (hereinafter referred to as “embodiments”) will be described with reference to the drawings.

はじめに、本発明の実施形態について図1を用いて説明する。図1は、本発明の実施形態に係る水晶波長板の構成を示す斜視図である。本実施形態における水晶波長板は、水晶部品(第1の水晶部品)101と、水晶部品(第2の水晶部品)102と、水晶部品(第3の水晶部品)103と、水晶部品(第4の水晶部品)104とを備えるようにしたものである。各水晶部品101〜104は、水晶板から構成され、各々が互いに主面が平行な状態に配置され、光学軸が主面に平行とされ、各々が異なる光学軸を備えている。   First, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing a configuration of a quartz wavelength plate according to an embodiment of the present invention. The quartz wavelength plate according to the present embodiment includes a quartz component (first quartz component) 101, a quartz component (second quartz component) 102, a quartz component (third quartz component) 103, and a quartz component (fourth). The crystal component) 104 is provided. Each of the quartz parts 101 to 104 is composed of a quartz plate, each of which is arranged in a state in which the principal surfaces are parallel to each other, the optical axis is parallel to the principal surface, and each has a different optical axis.

なお、図1において、対象となる入射光の偏光方向をX軸とし、対象となる入射光の入射方向をZ軸としている。各水晶部品101〜104を構成している水晶板の主面をXY平面に平行に配置すると、各水晶部品101〜104を構成している水晶板の光学軸は、XY平面上に配置されることになる。また、各水晶部品101〜104を構成している水晶板の板厚は、Z軸方向の寸法となる。   In FIG. 1, the polarization direction of the target incident light is the X axis, and the incident direction of the target incident light is the Z axis. When the main surfaces of the crystal plates constituting the crystal components 101 to 104 are arranged in parallel to the XY plane, the optical axes of the crystal plates constituting the crystal components 101 to 104 are arranged on the XY plane. It will be. Further, the plate thickness of the quartz plate constituting each of the quartz parts 101 to 104 is a dimension in the Z-axis direction.

加えて、本実施形態における水晶波長板において、水晶部品101は、板厚0.17mmの水晶板に対応(相当)し、水晶部品102は、板厚0.255mmの水晶板に対応し、水晶板103は、板厚0.17mmの水晶板に対応し、水晶部品104は、板厚34mmの水晶板に対応する。例えば、水晶部品101および水晶部品103は、板厚0.17mmの水晶板から構成され、水晶部品102は、板厚0.255mmの水晶板から構成され、水晶部品104は、板厚0.34mmの水晶板から構成されている。これら板厚は、0.085mmを基準として、水晶部品101の板厚:水晶部品102の板厚:水晶部品103の板厚:水晶部品104の板厚=2:3:2:4の関係となっている。   In addition, in the quartz wavelength plate according to the present embodiment, the quartz component 101 corresponds to (corresponds to) a quartz plate having a thickness of 0.17 mm, and the quartz component 102 corresponds to a quartz plate having a thickness of 0.255 mm. The plate 103 corresponds to a quartz plate having a plate thickness of 0.17 mm, and the quartz component 104 corresponds to a quartz plate having a plate thickness of 34 mm. For example, the crystal component 101 and the crystal component 103 are made of a crystal plate having a thickness of 0.17 mm, the crystal component 102 is made of a crystal plate having a thickness of 0.255 mm, and the crystal component 104 is made of a plate thickness of 0.34 mm. It consists of a quartz plate. These plate thicknesses are based on the relationship of plate thickness of crystal component 101: plate thickness of crystal component 102: plate thickness of crystal component 103: plate thickness of crystal component 104 = 2: 3: 2: 4 with 0.085 mm as a reference. It has become.

ここで、水晶部品101〜104の光学軸は、それぞれ異なる方向を向いている。
前記XY平面内に任意の直線を想定し、この任意の直線を基準にして、平面内における反時計回り方向を「+(プラス)」、時計回り方向を「−(マイナス)」として説明する。このとき、水晶部品101の光学軸は、任意の直線に対して+26°の方向となっている。つまり、水晶部品101の光学軸と任意の直線とのなす角度φは+26°とされている。同様に、水晶部品102の光学軸とX軸とのなす角度φが−43°とされ、水晶部品103の光学軸とX軸とのなす角度φが+66°とされ、水晶部品104の光学軸とX軸とのなす角度φが−87°とされている。
Here, the optical axes of the crystal components 101 to 104 are in different directions.
Assume that an arbitrary straight line is assumed in the XY plane, and the counterclockwise direction in the plane is “+ (plus)” and the clockwise direction is “− (minus)” on the basis of the arbitrary straight line. At this time, the optical axis of the crystal component 101 is in the direction of + 26 ° with respect to an arbitrary straight line. That is, the angle φ formed by the optical axis of the quartz part 101 and an arbitrary straight line is + 26 °. Similarly, the angle φ formed by the optical axis of the crystal component 102 and the X axis is −43 °, the angle φ formed by the optical axis of the crystal component 103 and the X axis is + 66 °, and the optical axis of the crystal component 104 And the X axis is -87 °.

言い換えれば、水晶部品101、水晶部品102、水晶部品103、および水晶部品104を、平面視長方形の水晶板から構成する場合、長方形の中で選択した一辺に対し、水晶部品101の水晶板の光学軸の角度差を+26°とし、水晶部品102の水晶板の光学軸の角度差を−43°とし、水晶部品103の水晶板の光学軸の角度差を+66°とし、水晶部品104の水晶板の光学軸の角度差を−87°として水晶波長板を構成すればよい。   In other words, when the crystal component 101, the crystal component 102, the crystal component 103, and the crystal component 104 are composed of a rectangular crystal plate in plan view, the optical of the crystal plate of the crystal component 101 is selected with respect to one side selected in the rectangle. The angle difference of the axes is + 26 °, the angle difference of the optical axis of the crystal plate of the crystal component 102 is −43 °, the angle difference of the optical axis of the crystal plate of the crystal component 103 is + 66 °, and the crystal plate of the crystal component 104 The quartz wavelength plate may be configured with an angle difference of the optical axis of −87 °.

このように構成された本発明の本実施形態に係る水晶波長板によれば、波長253〜274nm、317〜362nm、465〜600nm、および1045〜2000nmの光(レーザ光)に対し、位相差を180°±5°の範囲とすることができる。   According to the quartz wavelength plate according to this embodiment of the present invention configured as described above, a phase difference is obtained with respect to light (laser light) having wavelengths 253 to 274 nm, 317 to 362 nm, 465 to 600 nm, and 1045 to 2000 nm. It can be in the range of 180 ° ± 5 °.

なお、実際の水晶波長板の作製では、前述した板厚の関係とした水晶部品101、水晶部品102、水晶部品103、および水晶部品104の間に、上述した光学軸の関係がおおよそ成立する範囲で、前述した各波長に対する位相差が180°±5°の範囲となるように、適宜に最適な光学軸の角度関係を求めるようにすればよい。この結果、各角度の関係は、例えば、±2°の範囲でずれる場合もある。   It should be noted that in the actual production of the quartz wavelength plate, the range in which the above-described optical axis relationship is substantially established among the quartz component 101, the quartz component 102, the quartz component 103, and the quartz component 104 that have the above-described plate thickness relationship. Therefore, an optimal angle relationship between the optical axes may be obtained as appropriate so that the phase difference with respect to each wavelength described above falls within a range of 180 ° ± 5 °. As a result, the relationship between the angles may deviate within a range of ± 2 °, for example.

次に、本発明の実施形態に係る水晶波長板の光学特性(位相差の波長依存性)を図2に示す。なお、この結果は、回転検光子法を用いたシミュレーション値であり、回転検光子法の特性上、偏光状態の左回りまたは右回りの区別がない。
図2に示すように、本発明の実施形態に係る水晶波長板は、0.085mmを基準として、水晶部品101の板厚:水晶部品102の板厚:水晶部品103の板厚:水晶部品104の板厚=2:3:2:4の関係としており、実位相差185°は、175°とされる。このとき、波長253〜274nm,317〜362nm,465〜600nm,および1045〜2000nmの光(レーザ光)に対し、位相差が180°±5°の範囲にあることが確認できる。
Next, FIG. 2 shows optical characteristics (wavelength dependence of phase difference) of the quartz wavelength plate according to the embodiment of the present invention. Note that this result is a simulation value using the rotation analyzer method, and there is no distinction between the left and right rotations of the polarization state due to the characteristics of the rotation analyzer method.
As shown in FIG. 2, the quartz wavelength plate according to the embodiment of the present invention is based on 0.085 mm, the thickness of the quartz component 101: the thickness of the quartz component 102: the thickness of the quartz component 103: the quartz component 104. Plate thickness = 2: 3: 2: 4, and the actual phase difference 185 ° is 175 °. At this time, it can be confirmed that the phase difference is in the range of 180 ° ± 5 ° with respect to light (laser light) having wavelengths of 253 to 274 nm, 317 to 362 nm, 465 to 600 nm, and 1045 to 2000 nm.

なお、このような実施形態において、各水晶板(水晶部品)は、接して配置されていてもよく、また、離間して配置されていてもよい。   In such an embodiment, the quartz plates (quartz components) may be arranged in contact with each other or may be arranged apart from each other.

本発明の実施形態に係る水晶波長板の構成を示す斜視図である。It is a perspective view which shows the structure of the quartz wavelength plate which concerns on embodiment of this invention. 本発明の実施形態に係る水晶波長板の光学特性を示す図である。It is a figure which shows the optical characteristic of the quartz wavelength plate which concerns on embodiment of this invention.

符号の説明Explanation of symbols

101…水晶部品(第1の水晶部品)、102…水晶部品(第2の水晶部品)、103…水晶部品(第3の水晶部品)、104…水晶部品(第4の水晶部品)。   DESCRIPTION OF SYMBOLS 101 ... Crystal component (1st crystal component), 102 ... Crystal component (2nd crystal component), 103 ... Crystal component (3rd crystal component), 104 ... Crystal component (4th crystal component).

Claims (2)

板厚0.17mmの水晶板に対応する第1の水晶部品と、
板厚0.255mmの水晶板に対応する第2の水晶部品と、
板厚0.17mmの水晶板に対応する第3の水晶部品と
板厚0.34mmの水晶板に対応する第4の水晶部品と、
を備え、
前記第1,第2,第3および第4の水晶部品は、
各々が互いに主面が平行な状態に配置され、光学軸が前記主面に平行とされ、各々が異なる光学軸を備える
ことを特徴とする水晶波長板。
A first quartz component corresponding to a quartz plate having a thickness of 0.17 mm;
A second quartz component corresponding to a quartz plate having a thickness of 0.255 mm;
A third crystal component corresponding to a crystal plate having a thickness of 0.17 mm, a fourth crystal component corresponding to a crystal plate having a thickness of 0.34 mm, and
With
The first, second, third and fourth crystal parts are:
A quartz wave plate, wherein each of the quartz wave plates is arranged in a state where the principal surfaces are parallel to each other, the optical axis is parallel to the principal surface, and each has a different optical axis.
請求項1記載の水晶波長板において、
前記第1の水晶部品および前記第3の水晶部品は、板厚0.17mmの水晶板から構成され、
前記第2の水晶部品は、板厚0.255mmの水晶板から構成され、
前記第4の水晶部品は、板厚0.34mmの水晶板から構成されている
ことを特徴とする水晶波長板。
The quartz wave plate according to claim 1,
The first crystal component and the third crystal component are composed of a crystal plate having a plate thickness of 0.17 mm,
The second quartz component is composed of a quartz plate having a thickness of 0.255 mm,
The fourth crystal component is composed of a crystal plate having a plate thickness of 0.34 mm.
JP2008197062A 2008-07-30 2008-07-30 1/2 wave plate Expired - Fee Related JP5123098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197062A JP5123098B2 (en) 2008-07-30 2008-07-30 1/2 wave plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197062A JP5123098B2 (en) 2008-07-30 2008-07-30 1/2 wave plate

Publications (2)

Publication Number Publication Date
JP2010032929A true JP2010032929A (en) 2010-02-12
JP5123098B2 JP5123098B2 (en) 2013-01-16

Family

ID=41737449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197062A Expired - Fee Related JP5123098B2 (en) 2008-07-30 2008-07-30 1/2 wave plate

Country Status (1)

Country Link
JP (1) JP5123098B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277272A (en) * 1998-03-30 1999-10-12 Sumitomo Heavy Ind Ltd Laser beam drill and laser beam drilling method
JP2002031782A (en) * 2000-07-18 2002-01-31 Seiko Epson Corp Projector
WO2005059610A1 (en) * 2003-12-18 2005-06-30 Daishinku Corporation Optical filter
JP2006114080A (en) * 2004-10-12 2006-04-27 Epson Toyocom Corp Wavelength plate
WO2006090721A1 (en) * 2005-02-25 2006-08-31 Matsushita Electric Industrial Co., Ltd. Wavelength converting optical device, laser light source and image display optical device
JP2007304572A (en) * 2006-04-10 2007-11-22 Epson Toyocom Corp Laminated 1/2 wavelength plate, polarization converter, polarization illumination device and optical pickup device
JP2007322703A (en) * 2006-05-31 2007-12-13 Kyocera Kinseki Corp Half-wave plate
JP2007322702A (en) * 2006-05-31 2007-12-13 Kyocera Kinseki Corp Half-wave plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277272A (en) * 1998-03-30 1999-10-12 Sumitomo Heavy Ind Ltd Laser beam drill and laser beam drilling method
JP2002031782A (en) * 2000-07-18 2002-01-31 Seiko Epson Corp Projector
WO2005059610A1 (en) * 2003-12-18 2005-06-30 Daishinku Corporation Optical filter
JP2006114080A (en) * 2004-10-12 2006-04-27 Epson Toyocom Corp Wavelength plate
WO2006090721A1 (en) * 2005-02-25 2006-08-31 Matsushita Electric Industrial Co., Ltd. Wavelength converting optical device, laser light source and image display optical device
JP2007304572A (en) * 2006-04-10 2007-11-22 Epson Toyocom Corp Laminated 1/2 wavelength plate, polarization converter, polarization illumination device and optical pickup device
JP2007322703A (en) * 2006-05-31 2007-12-13 Kyocera Kinseki Corp Half-wave plate
JP2007322702A (en) * 2006-05-31 2007-12-13 Kyocera Kinseki Corp Half-wave plate

Also Published As

Publication number Publication date
JP5123098B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
Karpeev et al. Generation of a controlled double-ring-shaped radially polarized spiral laser beam using a combination of a binary axicon with an interference polarizer
CN109164663B (en) Miniaturized entanglement source, preparation method thereof and device-independent quantum random number generator
Ju et al. Ultra‐broadband high‐efficiency Airy optical beams generated with all‐silicon metasurfaces
JP2010054915A (en) Optical phase controller and optical phase control method
JP2008238184A (en) Laser beam machining apparatus
CN108663740B (en) Linearly polarized light polarizer based on dielectric nano brick metamaterial and preparation method thereof
JP5133795B2 (en) 1/2 wave plate
JP5123096B2 (en) 1/2 wave plate
JP2007116016A (en) Diffraction optical element, pattern forming apparatus and pattern forming method
JP5123099B2 (en) 1/2 wave plate
JP5123095B2 (en) 1/2 wave plate
JP4969369B2 (en) Optical wavelength converter
JP5123098B2 (en) 1/2 wave plate
JP5123097B2 (en) 1/2 wave plate
JPWO2008117528A1 (en) Laser resonator and laser device with non-uniform polarization distribution
JP5561508B2 (en) Illumination system for microlithography projection exposure apparatus
JP5091707B2 (en) Polarization state conversion method, polarization state conversion device, and liquid crystal display
JP2007093964A (en) Polarization conversion element
JP6498957B2 (en) CEP control apparatus and CEP control method
JP2012073415A (en) Polarization conversion element and method for manufacturing polarization conversion element
JP2012073413A (en) Polarization conversion element and method for manufacturing polarization conversion element
JP5378772B2 (en) 1/2 wave plate
JP4959968B2 (en) 1/2 wavelength plate for ultraviolet light
JP7118368B2 (en) optical device
JP2015031745A (en) Half-wave plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5123098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees