JP2008238184A - Laser beam machining apparatus - Google Patents

Laser beam machining apparatus Download PDF

Info

Publication number
JP2008238184A
JP2008238184A JP2007078938A JP2007078938A JP2008238184A JP 2008238184 A JP2008238184 A JP 2008238184A JP 2007078938 A JP2007078938 A JP 2007078938A JP 2007078938 A JP2007078938 A JP 2007078938A JP 2008238184 A JP2008238184 A JP 2008238184A
Authority
JP
Japan
Prior art keywords
processing
laser
laser beam
deflection
processing laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007078938A
Other languages
Japanese (ja)
Inventor
Noriyuki Nakayama
敬之 中山
Yoshimizu Takeno
祥瑞 竹野
Masao Izumo
正雄 出雲
Nobutaka Kobayashi
信高 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007078938A priority Critical patent/JP2008238184A/en
Priority to TW097110320A priority patent/TW200911434A/en
Priority to CNA2008100876551A priority patent/CN101274394A/en
Priority to KR1020080027406A priority patent/KR20080087709A/en
Publication of JP2008238184A publication Critical patent/JP2008238184A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machining apparatus capable of producing a machined hole having high roundness without increasing the size of the apparatus. <P>SOLUTION: A coating having the characteristics of a circular polarized light mirror is formed on a main deflection galvanometer mirror deflecting a laser beam for machining oscillated from a laser oscillator. The main deflection galvanometer mirror irradiates a machining workpiece with the split two laser beams. The coating is, e.g., composed of a dielectric multilayer film made of ZnS and ThF<SB>4</SB>or a dielectric multilayer film made of Ge and ZnS. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、プリント基板や半導体チップなどの加工ワークにおける例えば樹脂材またはセラミックス材等の材料に、穴あけ、切断、またはマーキングなどの加工を行なうレーザ加工装置に関するものである。 The present invention relates to a laser processing apparatus that performs processing such as drilling, cutting, or marking on a material such as a resin material or a ceramic material in a workpiece such as a printed circuit board or a semiconductor chip.

下記特許文献1には、加工速度を高めるために、レーザ発振器から発振された直線偏光の加工用レーザ光を、分光手段を用いて、2つの第1、第2の加工用レーザ光に分光し,これらの2つの加工用レーザ光によるビームで同時に加工を行なうレーザ加工装置が開示されている。   In Patent Document 1 below, in order to increase the processing speed, a linearly polarized processing laser beam oscillated from a laser oscillator is split into two first and second processing laser beams using a spectroscopic unit. A laser processing apparatus is disclosed that performs processing simultaneously with a beam of these two processing laser beams.

特開2004−230466号公報、とくに図4とその説明Japanese Patent Application Laid-Open No. 2004-230466, especially FIG. 4 and its description

特許文献1に開示されたレーザ加工装置では、分光されたP偏光の第1の加工用レーザ光が、位相板を用いて偏光方向を90度回転させてS偏光とされ、また、もう一方のP偏光の第2の加工用レーザ光を副偏向ガルバノミラーにより小角度偏向させた後、S偏光の第1の加工用レーザ光を反射し、P偏光の第2の加工用レーザ光を透過させる偏向ビームスプリッタを用いて、第1、第2の加工用レーザ光を主偏向ガルバノミラーへ導き、この主偏向ガルバノミラーにより、第1、第2の加工用レーザ光を大角度偏向させるとともに、加工ワーク上の加工位置を決定し、さらに、Fθレンズにより集光させ、ワークの加工を行なっている。 In the laser processing apparatus disclosed in Patent Document 1, the split P-polarized first processing laser light is turned into S-polarized light by rotating the polarization direction by 90 degrees using a phase plate. After the P-polarized second processing laser beam is deflected by a sub-angle galvanometer mirror by a small angle, the S-polarized first processing laser beam is reflected and the P-polarized second processing laser beam is transmitted. Using the deflection beam splitter, the first and second processing laser beams are guided to the main deflection galvanometer mirror, and the first and second processing laser beams are deflected by a large angle and processed by the main deflection galvanometer mirror. The processing position on the workpiece is determined, and further, the workpiece is processed by being condensed by an Fθ lens.

このような装置構成とすることで、加工ワーク上の2点に同時にレーザ光を照射することができるため、加工速度が高まると共に、Fθレンズが1つで済むため、コストアップと、加工装置の大型化を防ぐことができる。 By adopting such an apparatus configuration, it is possible to irradiate two points on the workpiece simultaneously with a laser beam, so that the machining speed is increased and only one Fθ lens is required. An increase in size can be prevented.

このようなレーザ加工装置にあっては、加工用レーザ光を分光手段を用いて直線偏光の第1、第2のレーザ光に分光し、偏向ビームスプリッタを用いて反射、透過させた第1、第2の加工用レーザ光を主偏向ガルバノミラーにて加工ワーク上に位置決めさせているため、加工ワークに入射するレーザ光は直線偏光になっている。しかし、直線偏光は偏光方向に偏りがあるため、プリント基板の銅箔貫通加工に代表されるような金属材料を含む材料の穴加工において、例えば真円として加工したい加工穴が楕円径になってしまうという問題があった。   In such a laser processing apparatus, the processing laser beam is split into linearly polarized first and second laser beams using a spectroscopic means, and reflected and transmitted using a deflecting beam splitter. Since the second processing laser beam is positioned on the workpiece by the main deflection galvanometer mirror, the laser beam incident on the workpiece is linearly polarized. However, since linearly polarized light is biased in the polarization direction, in a hole processing of a material containing a metal material represented by copper foil penetration processing of a printed board, for example, a processing hole to be processed as a perfect circle has an elliptical diameter. There was a problem that.

この発明は、このような問題を改善することのできるレーザ加工装置を提案するものである。   The present invention proposes a laser processing apparatus that can improve such problems.

この発明によるレーザ加工装置は、直線偏光の加工用レーザ光を出力するレーザ発振器と、前記加工用レーザ光を偏向する偏向ミラーと、前記偏向ミラーで偏向された前記加工用レーザ光を加工ワーク上で集光する集光レンズを備え、前記偏向ミラーには、前記直線偏光された前記加工用レーザ光が入射され、この直線偏光された加工用レーザ光を円偏光に変換するコーティングが形成されたことを特徴とする。 A laser processing apparatus according to the present invention includes a laser oscillator that outputs a linearly polarized processing laser beam, a deflection mirror that deflects the processing laser beam, and the processing laser beam deflected by the deflection mirror on a workpiece. The linearly polarized laser beam for processing is incident on the deflecting mirror, and a coating for converting the linearly polarized laser beam for processing into circularly polarized light is formed on the deflection mirror. It is characterized by that.

この発明によれば、偏向ミラーには、直線偏光された加工用レーザ光を円偏光に変換するコーティングが形成されているので、加工ワークに入射するレーザ光を円偏光とさせることが可能となり、従来のレーザ加工装置からの直線偏光のレーザ光では真円度が悪かった、プリント基板の銅箔貫通加工に代表されるような穴加工について、真円度が高い加工穴を得ることできるという効果が得られる。また、特別な光学系を追加することなく、直線偏光のレーザ光を円偏光のレーザ光に変換することができるので、装置の大型化、コストアップを防ぐことが可能となる。   According to the present invention, since the coating for converting the linearly polarized processing laser light into circularly polarized light is formed on the deflection mirror, the laser light incident on the work piece can be made circularly polarized, The effect of being able to obtain processed holes with high roundness for hole processing as represented by copper foil penetration processing of printed circuit boards, where roundness was poor with linearly polarized laser light from conventional laser processing equipment Is obtained. In addition, since linearly polarized laser light can be converted into circularly polarized laser light without adding a special optical system, it is possible to prevent an increase in size and cost of the apparatus.

以下、この発明によるレーザ加工装置の実施の形態について、図面を参照して説明する。   Embodiments of a laser processing apparatus according to the present invention will be described below with reference to the drawings.

実施の形態1.
図1は,この発明の実施の形態1によるレーザ加工装置を示す全体構成図である。この実施の形態1のレーザ加工装置は、加工部10と、加工用レーザ光生成部20と、加工用レーザ光分光部30と、加工用レーザ光統合部40を含む。このレーザ加工装置は、加工用レーザ光Lを、第1、第2の2つの加工用レーザ光La、Lbに分光し、これらの加工用レーザ光La、Lbをそれぞれ加工ワークに照射して、加工を行なう。
Embodiment 1 FIG.
FIG. 1 is an overall configuration diagram showing a laser processing apparatus according to Embodiment 1 of the present invention. The laser processing apparatus according to the first embodiment includes a processing unit 10, a processing laser light generation unit 20, a processing laser light spectroscopic unit 30, and a processing laser light integration unit 40. This laser processing apparatus splits the processing laser beam L into the first and second processing laser beams La and Lb, irradiates the processing workpiece with the processing laser beams La and Lb, Processing.

加工部10は、XYステージ11を有し、このXYステージ11上には、加工ワーク12が固定される。XYステージ11は、互いに直交するX軸方向とY軸方向に可動に構成される。   The processing unit 10 includes an XY stage 11, and a workpiece 12 is fixed on the XY stage 11. The XY stage 11 is configured to be movable in the X-axis direction and the Y-axis direction that are orthogonal to each other.

加工用レーザ光生成部20は、レーザ発振器21と、コリメートレンズ22と、絞り手段23を含む。レーザ発振器21は、光軸Aに沿って加工用レーザ光Lを発生する。この加工用レーザ光Lは、直線偏光されたP偏光のレーザ光である。コリメートレンズ22は、加工用レーザ光Lを通過させるように、光軸A上に配置され、加工用レーザ光Lの発散角を調整する。絞り手段23は、同じく光軸A上に配置され、コリメートレンズ22を通過した加工用レーザ光Lに任意のビームスポット径を設定する。この加工用レーザ光Lのスポット径は、加工ワーク12上に照射される加工用レーザ光La、Lbのスポット径に対応して設定される。 The processing laser light generator 20 includes a laser oscillator 21, a collimator lens 22, and a diaphragm unit 23. The laser oscillator 21 generates a processing laser beam L along the optical axis A. This processing laser beam L is a linearly polarized P-polarized laser beam. The collimating lens 22 is disposed on the optical axis A so as to allow the processing laser light L to pass therethrough, and adjusts the divergence angle of the processing laser light L. The aperture means 23 is also arranged on the optical axis A, and sets an arbitrary beam spot diameter for the processing laser light L that has passed through the collimating lens 22. The spot diameter of the processing laser beam L is set corresponding to the spot diameters of the processing laser beams La and Lb irradiated on the workpiece 12.

加工用レーザ光分光部30は、分光手段31と、位相板32と、ベントミラー33と、副偏向手段34を含む。分光手段31は、光軸A上に配置され、絞り手段23を通過した加工用レーザ光Lを、第1の加工用レーザ光Laと、第2の加工用レーザ光Lbとに分光する。加工用レーザ光La、Lbの強度比は1:1とされ、互いに等しくされる。加工用レーザ光Laは、光軸Aと一致する光軸A1に沿って出射される。加工用レーザ光Lbは、光軸A、A1に直交する光軸A3に沿って出射される。   The processing laser beam spectroscopic unit 30 includes a spectroscopic unit 31, a phase plate 32, a vent mirror 33, and a sub deflection unit 34. The spectroscopic means 31 is arranged on the optical axis A and splits the processing laser light L that has passed through the aperture means 23 into the first processing laser light La and the second processing laser light Lb. The intensity ratio of the processing laser beams La and Lb is 1: 1 and is equal to each other. The processing laser beam La is emitted along an optical axis A1 that coincides with the optical axis A. The processing laser beam Lb is emitted along an optical axis A3 orthogonal to the optical axes A and A1.

位相板32は、光軸A1上に配置され、分光手段31で分光された第1の加工用レーザ光La、すなわち直線偏光されたP偏光の第1の加工用レーザ光Laの偏光方向を90度回転し、この加工用レーザ光Laを、直線偏光されたS偏光のレーザ光に変換する。ベントミラー33は、光軸A1に対して45度の角度で傾斜する面に配置され、S偏光に変換された第1の加工用レーザ光Laを、光軸A1と直交する光軸A2に沿った方向に反射する。   The phase plate 32 is disposed on the optical axis A1, and the polarization direction of the first processing laser light La split by the spectroscopic means 31, that is, the linearly polarized P-polarized first processing laser light La is 90. The processing laser beam La is converted into linearly polarized S-polarized laser light. The vent mirror 33 is disposed on a surface inclined at an angle of 45 degrees with respect to the optical axis A1, and the first processing laser light La converted to S-polarized light is along the optical axis A2 orthogonal to the optical axis A1. Reflect in the direction of

副偏向手段34は、一対の副偏向ガルバノミラー35、36と、これらに対する一対の副偏向ガルバノスキャナ37、38を含む。一対の副偏向ガルバノミラー35、36は、その反射面で第2の加工用レーザ光Lbを反射し、副偏向ガルバノスキャナ37、38により、小角度で偏向するもので、加工用レーザ光Lbを加工ワーク12上において、小角度、例えば、±1度の範囲で偏向する。第2の加工用レーザLbのこの小角度の偏向は、加工ワーク12上では、例えば数ミリメータの間隔に相当する。副偏向ガルバノミラー35は、加工用レーザ光Lbを加工ワーク11のX軸方向に偏向し、また副偏向ガルバノミラー36は、加工用レーザ光Lbを加工ワーク11のY軸方向に偏向する。   The sub deflection means 34 includes a pair of sub deflection galvanometer mirrors 35, 36 and a pair of sub deflection galvano scanners 37, 38 corresponding thereto. The pair of sub-deflection galvanometer mirrors 35 and 36 reflect the second processing laser beam Lb on the reflecting surfaces thereof, and deflect the sub-deflection galvano scanners 37 and 38 at a small angle. The workpiece 12 is deflected at a small angle, for example, ± 1 degree. This small-angle deflection of the second machining laser Lb corresponds to, for example, an interval of several millimeters on the workpiece 12. The sub-deflection galvanometer mirror 35 deflects the processing laser beam Lb in the X-axis direction of the processing workpiece 11, and the sub-deflection galvanometer mirror 36 deflects the processing laser beam Lb in the Y-axis direction of the processing workpiece 11.

加工用レーザ光Lbは、分光手段31から先ず副偏向ガルバノミラー35の反射面にほぼ45度の入射角で入射され、その後、副偏向ガルバノミラー36の反射面にほぼ45度の入射角で入射される。副偏向ガルバノスキャナ37は、副偏向ガルバノミラー35を駆動し、加工用レーザ光Lbを小角度の範囲で、加工ワーク12のX軸方向に偏向する。副偏向ガルバノスキャナ38は、副偏向ガルバノミラー36を駆動し、加工用レーザ光Lbを小角度の範囲で、加工ワーク12のY軸方向に偏向する。加工用レーザ光Lbは、一対の副偏向ガルバノミラー35、36で小角度の偏向を受けた後、副偏向ガルバノミラー36から光路A4に沿って出射される。光路A4は、光軸A2にほぼ直交するが、加工用レーザ光Lbは、各副偏向ガルバノミラー35、36の偏向を受けて、その光軸が小角度の範囲で変化する。   The processing laser beam Lb is first incident on the reflecting surface of the sub-deflection galvanometer mirror 35 from the spectroscopic means 31 at an incident angle of approximately 45 degrees, and then incident on the reflecting surface of the sub-deflection galvanometer mirror 36 at an incident angle of approximately 45 degrees. Is done. The sub-deflection galvano scanner 37 drives the sub-deflection galvanometer mirror 35 to deflect the machining laser beam Lb in the X-axis direction of the workpiece 12 within a small angle range. The sub-deflection galvano scanner 38 drives the sub-deflection galvanometer mirror 36 to deflect the machining laser beam Lb in the Y-axis direction of the workpiece 12 within a small angle range. The processing laser light Lb is deflected at a small angle by the pair of sub-deflection galvanometer mirrors 35 and 36, and then emitted from the sub-deflection galvanometer mirror 36 along the optical path A4. The optical path A4 is substantially orthogonal to the optical axis A2, but the processing laser light Lb is deflected by the sub-deflection galvanometer mirrors 35 and 36, and the optical axis changes within a small angle range.

加工用レーザ統合部40は、偏向ビームスプリッタ41と、主偏向手段42と、集光レンズ47を含み、第1、第2の加工用レーザ光La、Lbを統合して、加工ワーク12上に照射する。偏向ビームスプリッタ41は、光軸A2と光路A4との交差部に設置される。この偏向ビームスプリッタ41には、ベントミラー33から第1の加工用レーザ光Laが入射され、また副偏向ガルバノミラー36から第2の加工用レーザ光Lbが入射される。この偏向ビームスプリッタ41は、第1の加工用レーザ光Laを、光軸A2と直交する光軸A5の方向に反射するとともに、第2の加工用レーザ光Lbを、光路A4の延長方向に通過させ、結果として、これらの加工用レーザ光La、Lbを、ともに主偏向手段42へ向けて出射する。光路A4は、光軸A5とほぼ平行となる。   The processing laser integration unit 40 includes a deflection beam splitter 41, a main deflection unit 42, and a condenser lens 47, and integrates the first and second processing laser beams La and Lb onto the processing workpiece 12. Irradiate. The deflecting beam splitter 41 is installed at the intersection of the optical axis A2 and the optical path A4. The first processing laser beam La is incident on the deflection beam splitter 41 from the vent mirror 33, and the second processing laser beam Lb is incident on the sub-deflection galvanometer mirror 36. The deflection beam splitter 41 reflects the first processing laser beam La in the direction of the optical axis A5 orthogonal to the optical axis A2, and passes the second processing laser beam Lb in the extending direction of the optical path A4. As a result, both the processing laser beams La and Lb are emitted toward the main deflection unit 42. The optical path A4 is substantially parallel to the optical axis A5.

主偏向手段42は、一対の主偏向ガルバノミラー43、44と、これらに対する一対の主ガルバノスキャナ45、46を含む。一対の主偏向ガルバノミラー43、44は、それぞれの反射面で、第1、第2の加工用レーザ光La、Lbを反射し、それらをそれぞれ大角度で偏向するもので、第1、第2の加工用レーザ光La、Lbを加工ワーク12上において、大角度、例えば±10度の角度範囲で偏向する。主偏向ガルバノミラー43は、各加工用レーザ光La、Lbを、加工ワーク11のY軸方向に大角度で偏向し、また主偏向ガルバノミラー44は、各加工用レーザ光La、Lbを、加工ワーク11のX軸方向に大角度で偏向する。   The main deflection means 42 includes a pair of main deflection galvanometer mirrors 43 and 44 and a pair of main galvanometer scanners 45 and 46 corresponding thereto. The pair of main deflection galvanometer mirrors 43 and 44 reflect the first and second processing laser beams La and Lb on their respective reflecting surfaces and deflect them at a large angle, respectively. The processing laser beams La and Lb are deflected on the workpiece 12 by a large angle, for example, an angle range of ± 10 degrees. The main deflection galvanometer mirror 43 deflects the processing laser beams La and Lb at a large angle in the Y-axis direction of the workpiece 11, and the main deflection galvanometer mirror 44 processes the processing laser beams La and Lb. The work 11 is deflected at a large angle in the X-axis direction.

第1、第2の加工用レーザ光La、Lbは、偏向ビームスプリッタ41から先ず主偏向ガルバノミラー43の反射面にほぼ45度の入射角で入射され、その後、主偏向ガルバノミラー44の反射面にほぼ45度の入射角で入射される。主偏向ガルバノスキャナ45は、主偏向ガルバノミラー43を駆動し、各加工用レーザ光La、Lbを大角度の範囲で、加工ワーク12のY軸方向に偏向する。主偏向ガルバノスキャナ46は、主偏向ガルバノミラー44を駆動し、各加工用レーザ光La、Lbを大角度の範囲で、加工ワーク12のX軸方向に偏向する。   The first and second processing laser beams La and Lb are first incident on the reflection surface of the main deflection galvano mirror 43 from the deflection beam splitter 41 at an incident angle of approximately 45 degrees, and then the reflection surface of the main deflection galvano mirror 44. At an incident angle of approximately 45 degrees. The main deflection galvano scanner 45 drives the main deflection galvanometer mirror 43 to deflect the respective processing laser beams La and Lb in the Y-axis direction of the workpiece 12 within a large angle range. The main deflection galvano scanner 46 drives the main deflection galvanometer mirror 44 to deflect the processing laser beams La and Lb in the X-axis direction of the workpiece 12 within a large angle range.

第1、第2の加工用レーザ光La、Lbは、集光レンズ47を通り、この集光レンズ47から加工ワーク12に照射される。加工用レーザ光Laは、加工ワーク12にほぼ垂直な光路A6に沿って加工ワーク12に照射される。加工用レーザ光Lbは、光路A6とほぼ平行な光路A7から加工ワーク12に照射される。光路A6、A7は、主偏向ガルバノミラー43、44の偏向によって、その光軸が変化する。集光レンズ47は、fθレンズであり、各加工用レーザ光La、Lbをともに屈折させ、加工ワーク12上に集光させる。各加工用レーザ光La、Lbは、集光レンズ47から加工ワーク12に同時に照射され、加工ワーク12に同時に加工を行なう。   The first and second processing laser beams La and Lb pass through the condensing lens 47 and are irradiated to the workpiece 12 from the condensing lens 47. The machining laser beam La is irradiated onto the workpiece 12 along an optical path A6 that is substantially perpendicular to the workpiece 12. The machining laser beam Lb is applied to the workpiece 12 from an optical path A7 substantially parallel to the optical path A6. The optical axes of the optical paths A6 and A7 are changed by the deflection of the main deflection galvanometer mirrors 43 and 44. The condensing lens 47 is an fθ lens, and refracts both the processing laser beams La and Lb and condenses them on the workpiece 12. The processing laser beams La and Lb are simultaneously irradiated onto the workpiece 12 from the condenser lens 47, and the workpiece 12 is processed simultaneously.

第1の加工用レーザ光Laは、副偏向手段34による小角度の偏向を受けず、主偏向手段42による大角度の偏向だけを受けて、加工ワーク12上に照射される。第2の加工用レーザ光Lbは、副偏向手段34による小角度の偏向と、主偏向手段42による大角度の偏向とを受けて、加工ワーク12上に照射される。言い換えれば、第2の加工用レーザ光Lbには、第1の加工用レーザ光Laに比較し、副偏向手段34による小角度の偏向が加わっており、この結果、第2の加工用レーザ光Lbは、第1の加工用レーザ光Laから小角度さらに偏向された位置において加工ワーク12上に照射され、小角度に偏向に基づき、第1の加工用レーザ光Laから、例えば数ミリメータだけ離れた位置に照射され、加工用レーザ光Laと同時に、加工ワーク12を加工する。第1、第2の加工用レーザ光La、lbは、例えば隣接する2つの加工穴を同時に加工する。   The first processing laser beam La is irradiated on the workpiece 12 without being subjected to small-angle deflection by the sub-deflecting unit 34 but only subjected to large-angle deflection by the main deflecting unit 42. The second processing laser beam Lb is irradiated onto the workpiece 12 after receiving a small-angle deflection by the sub-deflecting unit 34 and a large-angle deflection by the main deflecting unit 42. In other words, the second processing laser beam Lb is subjected to a small-angle deflection by the sub-deflecting unit 34 as compared with the first processing laser beam La, and as a result, the second processing laser beam Lb. Lb is irradiated onto the workpiece 12 at a position further deflected from the first processing laser beam La by a small angle, and is separated from the first processing laser beam La by, for example, several millimeters based on the deflection at a small angle. The processing workpiece 12 is processed simultaneously with the processing laser beam La. For example, the first and second processing laser beams La and lb simultaneously process two adjacent processing holes.

ここで、主偏向ガルバノミラー44は、その反射面に、直線偏光のレーザ光を円偏光に変換する、円偏光ミラーの特性を持つコーティング44aを有する。この主偏向ガルバノミラー44には、S偏光に直線偏光された加工用レーザ光Laと、P偏光に直線偏光された加工用レーザ光Lbが、ともに入射され、その反射面で反射される。主偏向ガルバノミラー44のコーティング44aは、これらの直線偏光の加工用レーザ光La、Lbを、ともに円偏光に変換する。   Here, the main deflection galvanometer mirror 44 has, on its reflection surface, a coating 44a having the characteristics of a circularly polarized mirror that converts linearly polarized laser light into circularly polarized light. Both the processing laser light La linearly polarized to S-polarized light and the processing laser light Lb linearly polarized to P-polarized light are incident on the main deflection galvanometer mirror 44 and reflected by the reflecting surface thereof. The coating 44a of the main deflection galvanometer mirror 44 converts both of these linearly polarized processing laser beams La and Lb into circularly polarized light.

コーティング44aは、例えばZnSとThFを用いた8層誘電体多層膜で構成される。具体的には、このZnSとThFからなる8層誘電体多層膜のコーティングは、空気と接する厚さ0.95±0.1μmのZnSからなる第1層、厚さ1.57±0.1μmのThFからなる第2層、厚さ1.10±0.1μmのZnSからなる第3層、厚さ1.04±0.1μmのThFからなる第4層、厚さ1.43±0.1μmのZnSからなる第5層、厚さ1.80±0.1μmのThFからなる第6層、厚さ1.80±0.1μmのZnSからなる第7層,および厚さ1.54±0.1μmのThFからなる第8層から構成され、これらの第1〜第8層からなるコーティング44aがミラー材料層の上に積層される。第8層は、ミラー材料層に接しており、その上に第7〜第1層が順次積層され、第1層は空気と接しており、この第1層の表面に、加工用レーザ光La、Lbがほぼ45度の入射角で入射する。 The coating 44a is constituted by, for example, eight layers dielectric multilayer film using ZnS and ThF 4. Specifically, the coating of the eight-layer dielectric multilayer film made of ZnS and ThF 4 has a first layer made of ZnS having a thickness of 0.95 ± 0.1 μm in contact with air, and a thickness of 1.57 ± 0. A second layer made of 1 μm ThF 4 , a third layer made of ZnS having a thickness of 1.10 ± 0.1 μm, a fourth layer made of ThF 4 having a thickness of 1.04 ± 0.1 μm, a thickness of 1.43 A fifth layer made of ZnS having a thickness of ± 0.1 μm, a sixth layer made of ThF 4 having a thickness of 1.80 ± 0.1 μm, a seventh layer made of ZnS having a thickness of 1.80 ± 0.1 μm, and a thickness It is composed of an eighth layer made of 1.54 ± 0.1 μm ThF 4, and a coating 44a made of these first to eighth layers is laminated on the mirror material layer. The eighth layer is in contact with the mirror material layer, and the seventh to first layers are sequentially stacked thereon, the first layer is in contact with air, and the processing laser beam La is formed on the surface of the first layer. , Lb is incident at an incident angle of approximately 45 degrees.

コーティング44aは、また、ZnSとThFに代わって、GeとZnSを用いた8層誘電体多層膜で構成することもできる。このGeとZnSからなる8層の誘電体多層膜は、具体的には、空気と接する厚さ0.47±0.05μmのGeからなる第1層、厚さ0.89±0.1μmのZnSからなる第2層、厚さ0.48±0.05μmのGeからなる第3層、厚さ0.65±0.1μmのZnSからなる第4層、厚さ0.64±0.1μmのGeからなる第5層、厚さ1.07±0.1μmのZnSからなる第6層、厚さ0.65±0.1μmのGeからなる第7層、および厚さ1.19±0.1μmのZnSからなる第8層で構成され、このコーティングが、ミラー材料層の上に積層される。第8層は、ミラー材料層上に接し、その上に第7〜第1層が順次積層され、第1層は空気と接しており、この第1層の表面に加工用レーザ光La、Lbがほぼ45度の入射角で入射する。 The coating 44a also on behalf of ZnS and ThF 4, may be constituted by eight layers dielectric multilayer film using Ge and ZnS. Specifically, the eight-layer dielectric multilayer film made of Ge and ZnS has a first layer made of Ge having a thickness of 0.47 ± 0.05 μm in contact with air, and having a thickness of 0.89 ± 0.1 μm. A second layer made of ZnS, a third layer made of Ge having a thickness of 0.48 ± 0.05 μm, a fourth layer made of ZnS having a thickness of 0.65 ± 0.1 μm, a thickness of 0.64 ± 0.1 μm A fifth layer of Ge, a sixth layer of ZnS with a thickness of 1.07 ± 0.1 μm, a seventh layer of Ge with a thickness of 0.65 ± 0.1 μm, and a thickness of 1.19 ± 0 Composed of an eighth layer of .1 μm ZnS, this coating is laminated on the mirror material layer. The eighth layer is in contact with the mirror material layer, and the seventh to first layers are sequentially laminated thereon. The first layer is in contact with air, and the processing laser beams La and Lb are formed on the surface of the first layer. Is incident at an incident angle of approximately 45 degrees.

次に、この実施の形態1のレーザ加工装置において、加工用レーザ光Lの動作について説明する。レーザ発振器21から出射された直線偏光(P偏光)の加工用レーザ光Lは、コリメートレンズ22により発散角を調整され、さらに、絞り手段23により加工ワーク20上での狙いビームスポット径に応じてビーム径が設定される。その後、分光手段31により、強度比が1:1の第1、第2の加工用レーザ光La、Lbに分光され、第1の加工用レーザ光Laは、位相板32により偏光方向が90度回転され、S偏光となる。S偏光となった第1の加工用レーザ光Laは、偏向ビームスプリッタ41、主偏向ガルバノミラー43で反射され、円偏光ミラーの特性を持つ主偏向ガルバノミラー44により、S偏光(直線偏光)から円偏光のレーザ光に変換され、加工ワーク上20に照射される。   Next, the operation of the processing laser beam L in the laser processing apparatus of the first embodiment will be described. The linearly polarized (P-polarized) processing laser light L emitted from the laser oscillator 21 has its divergence angle adjusted by the collimating lens 22 and further, according to the target beam spot diameter on the workpiece 20 by the aperture means 23. The beam diameter is set. Thereafter, the light is split into the first and second processing laser beams La and Lb having an intensity ratio of 1: 1 by the spectroscopic unit 31, and the polarization direction of the first processing laser beam La is 90 degrees by the phase plate 32. Rotated and becomes S-polarized light. The first processing laser beam La that has become S-polarized light is reflected by the deflecting beam splitter 41 and the main deflecting galvanometer mirror 43, and from the S-polarized light (linearly polarized light) by the main deflecting galvanometer mirror 44 having the characteristics of a circularly polarizing mirror. It is converted into circularly polarized laser light and irradiated onto the workpiece 20.

一方、分光手段31で分光された第2の加工用レーザ光Lbは、P偏光のままで副偏向ガルバノミラー35に入射し、偏向ビームスプリッタ41を透過して、主偏向ガルバノミラー43で反射され、円偏光ミラーの特性を持つ主偏向ガルバノミラー44により、P偏光(直線偏光)から円偏光のレーザ光に変換され、加工ワーク12上に、加工用レーザ光Laとは異なる位置に照射される。加工用レーザ光Laの加工ワーク12上への照射位置に対する加工用レーザ光Lbの相対的な照射位置は、副偏向ガルバノスキャナ37、38により決定される。   On the other hand, the second processing laser light Lb split by the spectroscopic means 31 is incident on the sub-deflection galvanometer mirror 35 as P-polarized light, passes through the deflection beam splitter 41, and is reflected by the main deflection galvanometer mirror 43. The main deflection galvanometer mirror 44 having the characteristics of a circularly polarizing mirror converts the light from P-polarized light (linearly polarized light) into circularly-polarized laser light, and irradiates the processing workpiece 12 at a position different from the processing laser light La. . The relative irradiation position of the processing laser beam Lb with respect to the irradiation position of the processing laser beam La on the workpiece 12 is determined by the sub-deflection galvano scanners 37 and 38.

ここで、円偏光ミラーの特性を持つ主偏向ガルバノミラー44によって、直線偏光から円偏光に変換された第1、第2のレーザ光La、Lbは、完全な円偏光ではなく、その円偏光率が60%程度の楕円偏光となっている。   Here, the first and second laser beams La and Lb converted from linearly polarized light to circularly polarized light by the main deflection galvanometer mirror 44 having the characteristics of a circularly polarized mirror are not completely circularly polarized light, but their circular polarization rates. Is elliptically polarized light of about 60%.

一般的に直線偏光のレーザ光を正確な円偏光に変換する場合には、図2に示すように、円偏光ミラー1の反射面に対し、直線偏光のレーザ光を45度の入射角で入射させ、この入射したレーザ光を90度折り曲げて反射させるという手段が用いられ、入射する直線偏光の入射角が45度からずれると完全な円偏光が得られず、厚鋼板のレーザ切断などの加工では、円偏光率が少なくとも90%以上でないと加工溝が傾くなどの現象が生じ、高精度な加工ができなかった。 In general, when linearly polarized laser light is converted into accurate circularly polarized light, the linearly polarized laser light is incident on the reflecting surface of the circularly polarizing mirror 1 at an incident angle of 45 degrees as shown in FIG. The incident laser beam is bent 90 degrees and reflected, and if the incident angle of the incident linearly polarized light deviates from 45 degrees, complete circularly polarized light cannot be obtained, and processing such as laser cutting of a thick steel plate However, unless the circular polarization rate is at least 90% or more, a phenomenon such as tilting of the processing groove occurs, and high-accuracy processing cannot be performed.

しかし、発明者は、実験により図3に示すように、例えばプリント基板などの銅箔、樹脂への穴あけ加工において、円偏光率が30%以上であれば、真円度90%以上の加工穴が得られることを確認した。図3は、実施の形態1において、プリント基板などの銅箔、樹脂への穴あけ加工を行う場合に、その円偏光率と加工穴真円度との関係を示す実験データである。図3の横軸は円偏光率(%)を、また、その縦軸は加工穴真円度(%)を示す。実施の形態1では、主偏向ガルバノミラー44を円偏光ミラーとし、ビーム位置決めのためビーム入射角が45度から±10度程度ずれても、円偏光率は30%以上を十分確保できるため、ビームスキャンしても真円度90%以上の加工穴を得ることができた。 However, as shown in FIG. 3, the inventor, for example, in drilling holes in a copper foil or resin such as a printed circuit board, if the circular polarization rate is 30% or more, a processed hole having a roundness of 90% or more It was confirmed that FIG. 3 is experimental data showing the relationship between the circular polarization rate and the roundness of a processed hole when drilling a copper foil such as a printed circuit board or a resin in the first embodiment. The horizontal axis in FIG. 3 represents the circular polarization rate (%), and the vertical axis represents the processed hole roundness (%). In the first embodiment, the main deflection galvanometer mirror 44 is a circular polarization mirror, and even if the beam incident angle is deviated from 45 degrees by ± 10 degrees for beam positioning, the circular polarization rate can be sufficiently secured at 30% or more. Even after scanning, a machined hole with a roundness of 90% or more could be obtained.

このように実施の形態1では、円偏光ミラーの特性を持つコーティング44aを反射面に形成した主偏向ガルバノミラー44を有するレーザ加工装置とし、加工ワーク12に入射する第1、第2の加工用レーザ光La、Lbを円偏光とすることで、真円度の高い加工穴が得ることができる。例えば、従来の直線偏光の加工用レーザ光では約83%の真円度しか得られなかった銅箔貫通加工の加工穴において、約92%の真円度の加工穴を得ることが可能となった。また実施の形態1のレーザ加工装置では、特別な光学系を用いることなく、主偏向ガルバノミラー44の反射面にコーティング44aを形成するだけで、直線偏光の第1、第2の加工用レーザ光La、Lbを円偏光のレーザ光に変換することができるので、装置の大型化を防止し、低価格で高性能のレーザ加工装置を提供できるという効果が得られる。 As described above, in the first embodiment, a laser processing apparatus having the main deflection galvanometer mirror 44 in which the coating 44a having the characteristics of a circularly polarized mirror is formed on the reflection surface, is used for the first and second processing incident on the processing workpiece 12. By making the laser beams La and Lb circularly polarized, a processed hole with high roundness can be obtained. For example, it is possible to obtain a processing hole with a circularity of about 92% in a processing hole for copper foil penetration processing, which has been obtained only with a circularity of about 83% with a conventional linearly polarized processing laser beam. It was. In the laser processing apparatus of the first embodiment, the first and second laser beams for linearly polarized light are formed by merely forming the coating 44a on the reflecting surface of the main deflection galvanometer mirror 44 without using a special optical system. Since La and Lb can be converted into circularly polarized laser light, it is possible to prevent an increase in size of the apparatus and to provide a low-cost and high-performance laser processing apparatus.

実施の形態2.
実施の形態1では、主偏向ガルバノミラー44の反射面に円偏光ミラーの特性を持つコーティング44aを形成したが、実施の形態2は、これに代わって、主偏向ガルバノミラー43の反射面に円偏光ミラーの特性を持つコーティングを形成するものである。このコーティングは、実施の形態1のコーティング44aと同じ材料で構成される。実施の形態2は、その他は実施の形態1と同じに構成される。
Embodiment 2. FIG.
In the first embodiment, the coating 44a having the characteristics of a circularly polarized mirror is formed on the reflecting surface of the main deflection galvanometer mirror 44. However, in the second embodiment, instead of this, a circular surface is formed on the reflecting surface of the main deflection galvanometer mirror 43. A coating having the characteristics of a polarizing mirror is formed. This coating is made of the same material as the coating 44a of the first embodiment. The rest of the configuration of the second embodiment is the same as that of the first embodiment.

この実施の形態2でも、第1、第2の加工用レーザ光La、Lbは、直線偏光から円偏光に変換されるため、実施の形態1と同様に、高い真円度の加工を行なうことができる。なお、実施の形態2において、主偏向ガルバノミラー43に前記コーティングを形成するのに加え、さらに、主偏向ガルバノミラー44に、実施の形態1と同じコーティング44aを形成してもよい。 Also in the second embodiment, since the first and second processing laser beams La and Lb are converted from linearly polarized light into circularly polarized light, processing with high roundness is performed as in the first embodiment. Can do. In the second embodiment, in addition to forming the coating on the main deflection galvanometer mirror 43, the same coating 44 a as in the first embodiment may be formed on the main deflection galvanometer mirror 44.

この発明によるレーザ加工装置の実施の形態1を示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows Embodiment 1 of the laser processing apparatus by this invention. レーザ光を直線偏光から円偏光へ変換する一般的な構成の説明図である。It is explanatory drawing of the general structure which converts a laser beam from a linearly polarized light into a circularly polarized light. 実施の形態1において、加工用レーザ光の円偏光率と加工穴の真円度の関係を示した実験データである。In Embodiment 1, it is the experimental data which showed the relationship between the circular polarization rate of the laser beam for a process, and the roundness of a process hole.

符号の説明Explanation of symbols

A、A1、A2、A3、A4、A5、A6、A7:光軸、L、La、Lb:レーザ光、
1:円偏光ミラー、10:加工部、11:XYステージ、12:加工ワーク、
20:レーザ光生成部、21:レーザ発振器、22:コリメートレンズ、
23:絞り手段、31:分光手段、32:位相板、33:ベントミラー、
34:副偏向手段、35、36:副偏向ガルバノミラー、
37、38:副偏向ガルバノスキャナ、40:レーザ統合部、
41:偏向ビームスプリッタ、42:主偏向手段、
43.44:主偏向ガルバノミラー、44a:コーティング。
A, A1, A2, A3, A4, A5, A6, A7: optical axis, L, La, Lb: laser light,
1: circularly polarized mirror, 10: processing part, 11: XY stage, 12: processing work,
20: Laser light generation unit, 21: Laser oscillator, 22: Collimating lens,
23: Aperture means, 31: Spectroscopic means, 32: Phase plate, 33: Vent mirror,
34: Sub deflection means, 35, 36: Sub deflection galvanometer mirror,
37, 38: Sub-deflection galvano scanner, 40: Laser integration unit,
41: deflection beam splitter, 42: main deflection means,
43.44: Main deflection galvanometer mirror, 44a: Coating.

Claims (3)

直線偏光の加工用レーザ光を出力するレーザ発振器と、前記加工用レーザ光を偏向する偏向ミラーと、前記偏向ミラーで偏向された前記加工用レーザ光を加工ワーク上で集光する集光レンズを備え、前記偏向ミラーには、前記直線偏光された前記加工用レーザ光が入射され、この直線偏光された加工用レーザ光を円偏光に変換するコーティングが形成されたことを特徴とするレーザ加工装置。   A laser oscillator that outputs a laser beam for linearly polarized machining; a deflection mirror that deflects the machining laser beam; and a condenser lens that collects the machining laser beam deflected by the deflection mirror on a workpiece. A laser processing apparatus, wherein the linearly polarized processing laser light is incident on the deflection mirror, and a coating for converting the linearly polarized processing laser light into circularly polarized light is formed. . 請求項1記載のレーザ加工装置であって、さらに、前記レーザ発振器から出力された前記加工用レーザ光を第1、第2の加工用レーザ光に分光する分光手段を備え、前記偏向ミラーには、前記第1、第2の加工用レーザ光がともに入射され、それらをともに偏向するように構成されたことを特徴とするレーザ加工装置。   The laser processing apparatus according to claim 1, further comprising a spectroscopic unit that splits the processing laser beam output from the laser oscillator into first and second processing laser beams, and the deflection mirror includes: A laser processing apparatus characterized in that both the first and second processing laser beams are incident and deflected together. 請求項2記載のレーザ加工装置であって、前記第1、第2の加工用レーザ光は、それらの偏光方向が互いに直交するものとされ、前記偏向ミラーに入射されることを特徴とするレーザ加工装置。   3. The laser processing apparatus according to claim 2, wherein the first and second processing laser beams have their polarization directions orthogonal to each other and are incident on the deflection mirror. Processing equipment.
JP2007078938A 2007-03-26 2007-03-26 Laser beam machining apparatus Pending JP2008238184A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007078938A JP2008238184A (en) 2007-03-26 2007-03-26 Laser beam machining apparatus
TW097110320A TW200911434A (en) 2007-03-26 2008-03-24 Laser processing device
CNA2008100876551A CN101274394A (en) 2007-03-26 2008-03-25 Laser processing device
KR1020080027406A KR20080087709A (en) 2007-03-26 2008-03-25 Lazer processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078938A JP2008238184A (en) 2007-03-26 2007-03-26 Laser beam machining apparatus

Publications (1)

Publication Number Publication Date
JP2008238184A true JP2008238184A (en) 2008-10-09

Family

ID=39910147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078938A Pending JP2008238184A (en) 2007-03-26 2007-03-26 Laser beam machining apparatus

Country Status (4)

Country Link
JP (1) JP2008238184A (en)
KR (1) KR20080087709A (en)
CN (1) CN101274394A (en)
TW (1) TW200911434A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028250A (en) * 2009-07-02 2011-02-10 Mitsubishi Electric Corp Laser beam machine
JP2013041124A (en) * 2011-08-17 2013-02-28 Mitsubishi Electric Corp Infrared optical film, scan mirror and laser beam machine
JP2014228611A (en) * 2013-05-21 2014-12-08 三菱電機株式会社 Infrared optical film, circular polarization mirror, laser processing machine including circular polarization mirror, and method of manufacturing infrared optical film
JP2017158580A (en) * 2011-05-13 2017-09-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Photothermal substrates for selective transfection of cells
US10472651B2 (en) 2014-03-28 2019-11-12 The Regents Of The University Of California Efficient delivery of large cargos into cells on a porous substrate
US10982217B2 (en) 2013-03-15 2021-04-20 The Regents Of The University Of California High-throughput cargo delivery into live cells using photothermal platforms

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046953B1 (en) * 2011-01-20 2011-07-06 주식회사 엘티에스 Apparatus for forming selective emitter of solar cell using laser
CN102357735B (en) * 2011-09-22 2015-05-13 中国航天科技集团公司第五研究院第五一0研究所 Double-scanning three-dimensional (3D) laser etching method based on controllable profile shape and power distribution of light beams
KR101299234B1 (en) * 2011-11-01 2013-08-22 주식회사 이오테크닉스 Laser machining apparatus and method being capable of 2-beam-machining
KR101425492B1 (en) * 2012-11-15 2014-08-04 주식회사 이오테크닉스 Laser machining apparatus and method thereof
KR101427688B1 (en) * 2013-03-20 2014-08-08 주식회사 엘티에스 Laser manufacturing apparatus and method
KR101855307B1 (en) * 2015-10-07 2018-05-09 주식회사 이오테크닉스 Laser marking system and laser marking method using the same
JP6851751B2 (en) * 2016-08-30 2021-03-31 キヤノン株式会社 Optical equipment, processing equipment, and article manufacturing methods
KR102100821B1 (en) * 2019-08-14 2020-04-14 조정우 Laser processing method using two beams and laser beam irradiation apparatus for performing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028250A (en) * 2009-07-02 2011-02-10 Mitsubishi Electric Corp Laser beam machine
JP2017158580A (en) * 2011-05-13 2017-09-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Photothermal substrates for selective transfection of cells
JP2013041124A (en) * 2011-08-17 2013-02-28 Mitsubishi Electric Corp Infrared optical film, scan mirror and laser beam machine
US10982217B2 (en) 2013-03-15 2021-04-20 The Regents Of The University Of California High-throughput cargo delivery into live cells using photothermal platforms
JP2014228611A (en) * 2013-05-21 2014-12-08 三菱電機株式会社 Infrared optical film, circular polarization mirror, laser processing machine including circular polarization mirror, and method of manufacturing infrared optical film
US10472651B2 (en) 2014-03-28 2019-11-12 The Regents Of The University Of California Efficient delivery of large cargos into cells on a porous substrate

Also Published As

Publication number Publication date
CN101274394A (en) 2008-10-01
KR20080087709A (en) 2008-10-01
TW200911434A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
JP2008238184A (en) Laser beam machining apparatus
TWI392552B (en) Laser irradiation device and laser processing method
TW503677B (en) Laser processing apparatus
JP3822188B2 (en) Multi-beam laser drilling machine
US6437283B1 (en) Device and method for processing substrates
JP4234697B2 (en) Laser equipment
US6727462B2 (en) Laser machining device
JP2011110591A (en) Laser machining device
JP2005177788A (en) Laser beam machining apparatus
JP2019074748A (en) Pattern drawing device
JP2005205429A (en) Laser beam machine
JP3935775B2 (en) Laser processing equipment
JP4294239B2 (en) Laser processing apparatus and transmissive half-wave plate
JP2009210726A (en) Maskless exposure apparatus
JP4318525B2 (en) Optical apparatus and laser irradiation apparatus
JP2006122988A (en) Laser beam machine
JP2004230466A (en) Laser beam machining device
JP2019155392A (en) Laser processing device and laser processing method
JP4522322B2 (en) Laser processing method
KR20060037568A (en) Dual laser beam system
JP3201375B2 (en) Substrate surface roughening method, substrate surface roughening device, printed wiring board manufacturing method, and printed wiring board manufacturing device
JP4948923B2 (en) Beam irradiation apparatus and beam irradiation method
JP2004177502A (en) Laser scanning device
US6919561B2 (en) Diffraction laser encoder apparatus
JP2010227984A (en) Laser beam machining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602