JP2006112734A - Storage-type heat exchanger - Google Patents

Storage-type heat exchanger Download PDF

Info

Publication number
JP2006112734A
JP2006112734A JP2004301705A JP2004301705A JP2006112734A JP 2006112734 A JP2006112734 A JP 2006112734A JP 2004301705 A JP2004301705 A JP 2004301705A JP 2004301705 A JP2004301705 A JP 2004301705A JP 2006112734 A JP2006112734 A JP 2006112734A
Authority
JP
Japan
Prior art keywords
heat exchanger
small
refrigerant
heat storage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004301705A
Other languages
Japanese (ja)
Inventor
Isao Fujinami
功 藤波
Nariyuki Takaoka
成幸 高岡
Yasunari Okamoto
康令 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2004301705A priority Critical patent/JP2006112734A/en
Publication of JP2006112734A publication Critical patent/JP2006112734A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storage-type heat exchanger capable of equalizing a distribution of ice water and a distribution of a temperature caused by the melting of a sensible-heat storage material in air cooling, and obtaining a stable heat exchanging quantity for a specific time or longer. <P>SOLUTION: In this storage-type heat exchanger wherein a heat transfer tube where a refrigerant passes is composed of synthetic resin small-diameter tubes 2a, 2b, a number of the small-diameter tubes 2a, 2b are arranged at prescribed intervals to constitute a heat exchanger 2, and the heat exchanger 2 is stored in a heat storage container 1 having the sensible-heat storage material, a refrigerant flow rate variable means for adjusting a refrigerant inflow rate by changing a cross-sectional area of the small-diameter tube 2a or 2b is mounted at the refrigerant inlet side of the small-diameter tube 2a or 2b forming a air cooling circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、放冷時における冷媒流量調節機能を備えた蓄熱熱交換器に関するものである。   The present invention relates to a heat storage heat exchanger having a refrigerant flow rate adjustment function during cooling.

従来から、例えば蓄熱槽内に固相と液相に相変化する潜熱蓄熱材を収容し、固相状態の潜熱蓄熱材を融解することによって蓄熱する一方、利用時には外部からの冷媒で同潜熱蓄熱材を凝固させることによって熱を取り出すフィンチューブ式の蓄熱熱交換器は良く知られている(例えば特許文献1参照)。   Conventionally, for example, a latent heat storage material that changes phase between a solid phase and a liquid phase is accommodated in a heat storage tank, and heat is stored by melting the solid phase latent heat storage material. Fin tube type heat storage heat exchangers that extract heat by solidifying a material are well known (see, for example, Patent Document 1).

この蓄熱熱交換器は、潜熱蓄熱材を用いているために、水などの顕熱蓄熱材に比べて蓄熱密度は高いが、他方熱伝達率が低く、特に水の対流熱伝達のように大きな熱伝達率を得ることが困難である。   Since this heat storage heat exchanger uses a latent heat storage material, the heat storage density is higher than that of sensible heat storage materials such as water, but on the other hand, the heat transfer coefficient is low, especially as large as convective heat transfer of water. It is difficult to obtain a heat transfer coefficient.

また、フィンチューブ式の熱交換器では、フィンカラーがあるために、例えばフィンピッチを1.2mm以下に縮小することが困難で、単位体積当たりの伝熱面積も1670m2/m3以下と小さく、フィン効率やフィンと伝熱管との間の接触抵抗などから、形状的、構造的にも放熱時における熱の取出スピードを向上させるには一定の限界がある。 Further, since the fin tube type heat exchanger has a fin collar, it is difficult to reduce the fin pitch to 1.2 mm or less, for example, and the heat transfer area per unit volume is as small as 1670 m 2 / m 3 or less. From the viewpoint of fin efficiency and contact resistance between the fin and the heat transfer tube, there is a certain limit to improving the heat extraction speed during heat radiation in terms of shape and structure.

さらに、フィンチューブ式の熱交換器には、その管板外部に曲がり管部がある。そして、この曲がり管部分にはフィンがないため、蓄熱も放熱もできない。そのため同領域における5〜10%程度の蓄熱材が無駄になっている(有効に使えない)。   Furthermore, the fin tube type heat exchanger has a bent tube portion outside the tube plate. And since this bending pipe part does not have a fin, neither heat storage nor heat dissipation is possible. Therefore, about 5 to 10% of the heat storage material in the same area is wasted (cannot be used effectively).

また、蓄熱時の冷媒配管と放熱(利用)時の冷媒配管とが異なる構成の場合にフィンチューブ式熱交換器を用いると、伝熱管とフィンとの距離が長くなって、フィン効率が大幅に低下する。   Also, if the finned tube heat exchanger is used when the refrigerant piping at the time of heat storage and the refrigerant piping at the time of heat dissipation (use) are different, the distance between the heat transfer tube and the fin becomes long, and the fin efficiency is greatly increased. descend.

そこで、本願発明者等は、このような事情に鑑み、上記フィンチューブに変えて合成樹脂製の細径管を用い、それら細径管を蓄熱容器内に平行又はクロス構造にして配設することにより、伝熱管密度の高い細径多管構造の蓄熱熱交換器を形成することによって、水などの顕熱蓄熱材を用いた場合にも、蓄熱材中における蓄熱密度および熱伝達率が高く、放冷時の熱の取出速度を有効に向上させた蓄熱熱交換器を提案している(特許文献2参照)。   Therefore, in view of such circumstances, the inventors of the present application use thin tubes made of synthetic resin instead of the fin tubes, and arrange these thin tubes in a heat storage container in a parallel or cross structure. By forming a heat storage heat exchanger with a small-diameter multi-tube structure with a high heat transfer tube density, even when using a sensible heat storage material such as water, the heat storage density and heat transfer coefficient in the heat storage material are high, A heat storage heat exchanger in which the heat extraction speed during cooling is effectively improved has been proposed (see Patent Document 2).

特開2001−207163号公報(明細書第1−9頁、図3−7)Japanese Patent Laid-Open No. 2001-207163 (Specification, page 1-9, FIG. 3-7) 特開2004−10584号公報(明細書第1−9頁、図5−7)Japanese Patent Laying-Open No. 2004-1058 (Specification, page 1-9, FIG. 5-7)

ところで、このような水などの顕熱蓄熱材に適した細径多管構造の蓄熱熱交換器において、蓄熱材を氷結化することにより蓄熱した熱を放冷する際に、放冷開始時は放冷回路を形成している細径管周りの氷が解けて有効な(あるいは過剰な)熱交換量を出すものの、放冷時間の経過とともに氷の量が減少することから、次第に熱交換量は低下し、長時間に亘って安定した熱交換量を得ることが難しい。   By the way, in the heat storage heat exchanger with a small-diameter multi-tubular structure suitable for such sensible heat storage materials such as water, when cooling the heat stored by freezing the heat storage material, Although the ice around the small-diameter tube forming the cooling circuit is melted and an effective (or excessive) heat exchange amount is produced, the amount of ice gradually decreases as the cooling time elapses. It is difficult to obtain a stable heat exchange amount for a long time.

また構造上、放冷回路入口側で細径管に近いものは解けやすいが、放冷回路出口側で細径管から遠いものは解けにくい、という氷融解状態のアンバランスが生じる。   Also, due to the structure, there is an imbalance in the ice-melted state that the one close to the small diameter tube on the inlet side of the cooling circuit is easy to unravel, but the one far from the small diameter tube on the outlet side of the cooling circuit is difficult to unravel.

このような問題に対する対策として、例えば図5に示すように、冷媒供給管30から冷媒入口ヘッダ31を介して各放冷用細径管(パス部)2a,2a・・・に分配供給される放冷用の冷媒(流体)の流入量を同多数本の細径管2a,2a・・・各々の入口部で調節し得るように、多数の開閉制御弁V1〜Vnを設けるとともに、さらに冷媒の入口側ヘッダ31と出口側ヘッダ32とをストレートに結ぶバイパス通路BPを設け、各開閉制御弁V1〜Vnによって放冷用の各細径管2a,2a・・・へ供給される冷媒の一部をバイパス通路BPを介して出口側ヘッダ32から冷媒排出管35にバイパスさせることにより、冷媒流入量を所望の量に制限して、一定時間以上安定した放冷能力を維持させる方法が考えられる。 As a countermeasure against such a problem, for example, as shown in FIG. 5, it is distributed and supplied from the refrigerant supply pipe 30 to each of the cooling-use small diameter pipes (pass portions) 2a, 2a,. A number of open / close control valves V 1 to Vn are provided so that the inflow amount of the refrigerant (fluid) for cooling can be adjusted at the inlets of the plurality of small-diameter pipes 2a, 2a. A bypass passage BP that straightly connects the inlet header 31 and the outlet header 32 of the refrigerant is provided, and the refrigerant supplied to the small-diameter tubes 2a, 2a,... For cooling by the open / close control valves V 1 to Vn. Is a method in which a part of the refrigerant is bypassed from the outlet side header 32 to the refrigerant discharge pipe 35 via the bypass passage BP, thereby limiting the refrigerant inflow amount to a desired amount and maintaining a stable cooling capacity for a predetermined time or more. Conceivable.

このような構成によれば、放冷能力のセーブを図ることができるとともに、熱交部全体に亘って氷水分布および温度分布を可能な限り均一化し、一定時間以上安定した熱交換量が得られるようになる。   According to such a configuration, it is possible to save the cooling capacity, make the ice water distribution and the temperature distribution as uniform as possible over the entire heat exchanger, and obtain a stable heat exchange amount over a predetermined time. It becomes like this.

しかし、現実問題として、合成樹脂製で、しかも管径の極めて小さい多数本の細径管2a,2a・・・の各々に、図5のように微細かつ精密な開閉制御弁V1〜Vnを設けることは不可能に近いし、その通路径の狭さを考えると、弁体内でゴミ等が詰まりやすく、信頼性の点でも問題が多い。また、多数の開閉制御弁V1〜Vnを開閉制御するのは、開閉制御自体も大変である。 However, as a real problem, fine and precise open / close control valves V 1 to Vn as shown in FIG. 5 are provided on each of a large number of small diameter pipes 2 a, 2 a. It is almost impossible to provide it, and considering the narrow passage diameter, dust and the like are easily clogged in the valve body, and there are many problems in terms of reliability. In addition, opening / closing control of the large number of opening / closing control valves V 1 to Vn is also difficult.

そこで、本願発明では、このような事情に鑑み、放冷回路を形成している細径管そのものの通路断面積を変えることにより、簡単かつ確実に放冷時における放冷回路側細径管への冷媒流入量を調節できるようにすることによって、放冷能力のセーブを図るとともに、熱交部全体に亘って氷水分布および温度分布を可能な限り均一化し、一定時間以上安定した熱交換量が得られるようにした蓄熱熱交換器を提供することを目的とするものである。   Therefore, in the present invention, in view of such circumstances, by changing the passage cross-sectional area of the small-diameter tube itself forming the cooling circuit, the cooling circuit side small-diameter tube can be easily and reliably cooled. By adjusting the refrigerant inflow rate, the cooling capacity can be saved, and the ice water distribution and temperature distribution can be made as uniform as possible over the entire heat exchanger, ensuring a stable amount of heat exchange over a certain period of time. An object of the present invention is to provide a heat storage heat exchanger that can be obtained.

本願発明は、上記の目的を達成するために、次のような課題解決手段を備えて構成されている。   In order to achieve the above object, the present invention is configured with the following problem solving means.

(1) 第1の課題解決手段
この発明の第1の課題解決手段は、冷媒の通る伝熱管部分が合成樹脂製の細径管2a,2a、2b,2b・・・よりなり、該細径管2a,2a,2b,2b・・・が所定の間隔を保って多数本配設されて熱交換器2を形成しているとともに、該熱交換器2が顕熱蓄熱材を蓄えた蓄熱容器1内に収納されてなる蓄熱熱交換器において、放冷回路を形成する細径管2a,2a・・・又は2b,2b・・・の冷媒の入口側部分に、当該細径管2a,2a・・・又は2b,2b・・・そのものの通路断面積を変えることにより、冷媒流入量の調節を行う冷媒流量可変手段を設けたことを特徴としている。
(1) First Problem Solving Means The first problem solving means of the present invention is that the heat transfer tube portion through which the refrigerant passes is made of synthetic resin small diameter tubes 2a, 2a, 2b, 2b. A plurality of tubes 2a, 2a, 2b, 2b... Are arranged at predetermined intervals to form a heat exchanger 2, and the heat exchanger 2 stores a sensible heat storage material. In the heat storage heat exchanger housed in 1, the small-diameter pipes 2a, 2a are provided at the refrigerant inlet side portions of the small-diameter pipes 2a, 2a,. ... or 2b, 2b ... itself is provided with a refrigerant flow rate varying means for adjusting the refrigerant inflow amount by changing the passage cross-sectional area.

このような構成によると、放冷時における同冷媒流量可変手段による放冷回路側細径管2a,2a・・・又は2b,2b・・・への冷媒流入量の調節により、放冷時における放冷能力のセーブが可能となるとともに、熱交部全体の氷水分布及び温度分布が可及的に均一化され、一定時間以上安定した熱交換量が得られるようになる。   According to such a configuration, at the time of cooling, by adjusting the refrigerant inflow amount to the cooling circuit side narrow pipes 2a, 2a... Or 2b, 2b. The cooling capacity can be saved, and the ice water distribution and temperature distribution in the entire heat exchanger are made as uniform as possible, and a stable heat exchange amount can be obtained for a certain time or more.

しかも、同冷媒流量可変手段の冷媒流入量の調節は、放冷回路を形成する細径管2a,2a・・・又は2b,2b・・・そのものの冷媒の入口側部分の通路断面積を変えることにより、冷媒流入量の調節が行われるようになっている。   Moreover, the adjustment of the refrigerant inflow amount of the refrigerant flow rate varying means changes the passage sectional area of the refrigerant inlet side portion of the small-diameter pipes 2a, 2a,..., 2b, 2b,. As a result, the refrigerant inflow amount is adjusted.

したがって、放冷時の各パスの冷媒流量を単一の作動手段で共通に、しかも外部から簡単に調節制御するように構成することができ、多数本の細径のパスの各々に多数の開閉制御弁を設ける場合の困難や、弁体内部のゴミ詰まりによる信頼性の問題を生じさせることなく、安定した放冷能力の制御を行うことが可能となる。   Therefore, the refrigerant flow rate of each path during cooling can be configured to be controlled and controlled in common by a single operating means and easily from the outside, and a large number of small-diameter paths can be opened and closed. It becomes possible to control the cooling capacity stably without causing difficulty in providing a control valve and causing problems of reliability due to dust clogging inside the valve body.

(2) 第2の課題解決手段
この発明の第2の課題解決手段は、上記第1の課題解決手段の構成において、放冷回路の冷媒入口ヘッダ31と出口ヘッダ32間には、放冷回路を形成する細径管2a,2a・・・又は2b,2b・・・と並列に同細径管2a,2a・・・又は2b,2b・・・をバイパスするバイパス通路BPが設けられている。
(2) Second Problem Solving Means According to a second problem solving means of the present invention, in the configuration of the first problem solving means, a cooling circuit is provided between the refrigerant inlet header 31 and the outlet header 32 of the cooling circuit. Is provided in parallel with the small diameter pipes 2a, 2a,..., 2b, 2b,. .

このような構成によると、放冷回路を形成している細径管2a,2a・・・又は2b,2b・・・への冷媒流入量を制限した時の冷媒入口ヘッダ31部分に留まる冷媒をスムーズに冷媒出口ヘッダ32側にバイパスさせることができる。   According to such a configuration, the refrigerant remaining in the refrigerant inlet header 31 when the refrigerant inflow amount to the narrow tubes 2a, 2a... 2b, 2b. It can be smoothly bypassed to the refrigerant outlet header 32 side.

したがって、運転効率を悪化させなくて済む。   Therefore, it is not necessary to deteriorate the driving efficiency.

(3) 第3の課題解決手段
この発明の第3の課題解決手段は、上記第1又は第2の課題解決手段の構成において、冷媒流量可変手段が、細径管2a,2a・・・又は2b,2b・・・そのものを押圧変形させる押圧変形装置により構成されている。
(3) Third Problem Solving Means According to a third problem solving means of the present invention, in the configuration of the first or second problem solving means, the refrigerant flow rate varying means is a small-diameter pipe 2a, 2a. 2b, 2b... Itself is configured by a press deformation device that presses and deforms.

このような構成によると、同押圧変形装置により、細径管2a,2a・・・又は2b,2b・・・自体が、外部から偏平な断面楕円形状に押圧変形され、その通路断面積が小さくなって、効果的に冷媒の流入量が制限される。   According to such a configuration, the thin tube 2a, 2a,..., 2b, 2b,... Itself is pressed and deformed from the outside into a flat cross-sectional elliptical shape, and the passage cross-sectional area is small. Thus, the amount of refrigerant flowing in is effectively limited.

(4) 第4の課題解決手段
この発明の第4の課題解決手段は、上記第3の課題解決手段の構成において、押圧変形装置が、細径管2a,2a・・・又は2b,2b・・・を固定支持する支持部材5bと、細径管2a,2a・・・又は2b,2b・・・を押圧する押圧部材5aと、該押圧部材5aを押圧作動させる押圧駆動手段6とから構成されている。
(4) Fourth Problem Solving Means According to a fourth problem solving means of the present invention, in the configuration of the third problem solving means, the pressing deformation device is a small diameter tube 2a, 2a,. .. Composed of a supporting member 5b for fixing and supporting, a small diameter tube 2a, 2a... Or 2b, 2b..., And a pressing drive means 6 for pressing the pressing member 5a. Has been.

このような構成によると、押圧部材5aが、押圧駆動手段6により押圧駆動されることにより、細径管2a,2a・・・又は2b,2b・・・が、上記支持部材5bと該押圧部材5aとの間に挟まれて偏平な断面楕円形状に押圧変形されて、通路断面積が効果的に縮小される。   According to such a configuration, when the pressing member 5a is pressed and driven by the pressing drive means 6, the small diameter tubes 2a, 2a,..., 2b, 2b. 5a is pressed and deformed into a flat cross-sectional ellipse shape, and the passage cross-sectional area is effectively reduced.

(5) 第5の課題解決手段
この発明の第5の課題解決手段は、上記第4の課題解決手段の構成において、押圧駆動手段6が、圧力駆動手段により構成されている。
(5) Fifth Problem Solving Means According to a fifth problem solving means of the present invention, in the configuration of the fourth problem solving means, the pressure driving means 6 is constituted by a pressure driving means.

このような構成によると、押圧部材5aが、例えばエアシリンダ、油圧シリンダ等の圧力駆動手段6により確実に押圧駆動されることにより、細径管2a,2a・・・又は2b,2b・・・が、支持部材5bと押圧部材5aとの間に挟まれて、偏平な断面楕円形状に押圧変形し、その通路断面積をスムーズに縮小して、効果的に冷媒の流入量を制限する。   According to such a configuration, when the pressing member 5a is reliably pressed and driven by the pressure driving means 6 such as an air cylinder or a hydraulic cylinder, the small diameter tubes 2a, 2a,..., 2b, 2b. However, it is sandwiched between the support member 5b and the pressing member 5a, and is pressed and deformed into a flat cross-sectional elliptical shape, and the passage cross-sectional area is smoothly reduced to effectively limit the inflow amount of the refrigerant.

(6) 第6の課題解決手段
この発明の第6の課題解決手段は、上記第4の課題解決手段の構成において、押圧駆動手段6が、電気的な駆動手段により構成されている。
(6) Sixth Problem Solving Means According to a sixth problem solving means of the present invention, in the configuration of the fourth problem solving means, the pressing drive means 6 is constituted by an electric drive means.

このような構成によると、押圧部材5aが、例えば電磁アクチュエータやモータなどの電気的な駆動手段により、確実に押圧駆動されることにより、細径管2a,2a・・・又は2b,2b・・・が、支持部材5bと押圧部材5aとの間に挟まれて、偏平な断面楕円形状に押圧変形し、その通路断面積をスムーズに縮小して、効果的に冷媒の流入量を制限する。   According to such a configuration, when the pressing member 5a is reliably pressed and driven by an electric driving means such as an electromagnetic actuator or a motor, the small diameter tubes 2a, 2a,..., 2b, 2b,. However, it is sandwiched between the support member 5b and the pressing member 5a and is pressed and deformed into a flat cross-sectional elliptical shape, and the passage cross-sectional area is smoothly reduced to effectively limit the inflow amount of the refrigerant.

以上の結果、本願発明によると、放冷時の細径伝熱管各パスの冷媒流量を、単一の変形作動手段で共通に、しかも外部から自由に調節制御することができる。   As a result of the above, according to the present invention, the refrigerant flow rate in each path of the small-diameter heat transfer tube at the time of cooling can be adjusted and controlled in common by a single deformation operating means and freely from the outside.

したがって、多数本の細径の伝熱管各パスの各々に多数の開閉制御弁を設ける場合の困難や、弁体内部のゴミ詰まりによる信頼性の問題等を全く生じさせることなく、長時間に亘って安定した放冷能力の制御を行うことができる。   Therefore, there is no difficulty in providing a large number of open / close control valves in each of a large number of small-diameter heat transfer tubes, and there is no problem of reliability due to dust clogging inside the valve body. And stable cooling ability can be controlled.

(最良の実施の形態1)
図1〜図4は、本願発明の最良の実施の形態1に係る放冷能力調節手段を備えた蓄熱熱交換器の構成を示している。
(Best Embodiment 1)
1 to 4 show the configuration of a heat storage heat exchanger provided with a cooling capacity adjusting means according to the best embodiment 1 of the present invention.

先ず図1は、同蓄熱熱交換器全体の構成を示している。符号1は、水等所望の種類の顕熱蓄熱材が所定量貯留された方形箱型の蓄熱容器、符号2は、蓄熱熱交換器であり、この蓄熱熱交換器2は、蓄熱容器1内に浸漬状態で収納されている。   First, FIG. 1 shows the configuration of the entire heat storage heat exchanger. Reference numeral 1 denotes a rectangular box-type heat storage container in which a predetermined amount of sensible heat storage material such as water is stored, and reference numeral 2 denotes a heat storage heat exchanger. The heat storage heat exchanger 2 is provided in the heat storage container 1. Is stored in a dipped state.

この最良の実施の形態1における蓄熱熱交換器2は、例えば多数本(例えば数百本程度・・・但し、図では一部の本数で代表)の弾力性(復元力)のある合成樹脂製の細径管(中空細径管)をクロス構造(メッシュ構造)に編成した複数枚の偏平な単位熱交換器ユニットH1〜Hnを、図2に示すように上下方向に多数段積層(例えば200段程度・・・但し、図では一部の段数で代表)したものとなっている。そして、それら各単位熱交換器ユニットH1〜Hnの各々は、例えば外径0.2mm〜0.6mm程度の弾性変形可能な合成樹脂製の細径管2a,2a・・・、2b,2b・・・を、多数本X−Y方向に交互にクロスさせて配設し、それらを接着剤などで相互に連結固定することにより、相互の間に均一な所定の蓄熱材介在空間を保った状態で略水平面方向に保持されている。 The heat storage heat exchanger 2 according to the best embodiment 1 is made of, for example, a synthetic resin having a large number (for example, about several hundreds, however, representative of some of them in the figure) having elasticity (restoring force). A plurality of flat unit heat exchanger units H 1 to Hn obtained by knitting a thin pipe (hollow thin pipe) in a cross structure (mesh structure) as shown in FIG. About 200 stages (however, in the figure, representative of some stages). Each of the unit heat exchanger units H 1 to Hn is, for example, an elastically deformable synthetic resin thin tube 2a, 2a,..., 2b, 2b having an outer diameter of about 0.2 mm to 0.6 mm. Are arranged in an alternating manner in the X-Y direction, and are connected and fixed to each other with an adhesive or the like, thereby maintaining a uniform predetermined heat storage material intervening space between them. It is held in a substantially horizontal plane state.

これら多数本の細径管2a,2a・・・、2b,2b・・・は、その縦方向(図1の図面前後方向)の寸法と横方向(図1の図面左右方向)の寸法を所定の比率に設定した平面方形の形状となるようにし、それら各端部を対辺方向に位置して設けられた冷媒分配ヘッダ31,32、31,32に等間隔で接続連通せしめられている。   These multiple small diameter tubes 2a, 2a,..., 2b, 2b... Have predetermined dimensions in the vertical direction (front-rear direction in FIG. 1) and in the horizontal direction (left-right direction in FIG. 1). A flat rectangular shape set to the above ratio is connected to and communicated with refrigerant distribution headers 31, 32, 31, 32 provided with their respective ends positioned in the opposite direction at equal intervals.

これら各対辺方向に連通する冷媒分配ヘッダ31,32、31,32は、それぞれ蓄冷時又は放冷時(熱取出時)の各動作に応じて冷媒の入口ヘッダ31、冷媒の出口ヘッダ32として機能する。   The refrigerant distribution headers 31, 32, 31, 32 communicating in the opposite directions function as a refrigerant inlet header 31 and a refrigerant outlet header 32 in accordance with respective operations during cold storage or cooling (heat extraction), respectively. To do.

このような構成によると、冷媒の通る伝熱管部分が弾力性があって弾性変形および弾性変形後の元の形状への復元が可能な合成樹脂製の細径管2a,2a・・・、2b,2b・・・よりなり、しかも該合成樹脂製の細径管2a,2a・・・、2b,2b・・・が所定の間隔を保って多数本メッシュ構造に編成されて、複数の単位熱交換器ユニットH1〜Hnを形成し、これら複数の単位熱交換器ユニットH1〜Hnの各々が、例えば図2のように上下方向に所定の間隔(ピッチ)を置いて多段構造に積層された状態で、上述の蓄熱容器1内に収納されて、図1のような蓄熱熱交換器2を構成する。 According to such a configuration, the thin tube 2a, 2a,..., 2b made of synthetic resin, which is elastic and can be restored to its original shape after elastic deformation by the heat transfer tube portion through which the refrigerant passes. 2b, and the synthetic resin small diameter tubes 2a, 2a,..., 2b, 2b. The exchanger units H 1 to Hn are formed, and each of the plurality of unit heat exchanger units H 1 to Hn is stacked in a multistage structure with a predetermined interval (pitch) in the vertical direction as shown in FIG. In this state, the heat storage heat exchanger 2 as shown in FIG.

したがって、蓄熱容器1内の顕熱蓄熱材中に、伝熱管である多数本の合成樹脂製の細径管2a,2a・・・、2b,2b・・・が、均一かつ均等に密集した状態で、フィンなどを介することなくダイレクトに接触して分布するようになり、顕熱蓄熱材と細径管2a,2a・・・、2b,2b・・・との間の熱抵抗が大きく低減され、細径管2a,2a・・・、2b,2b・・・内を流れる冷媒と顕熱蓄熱材との熱伝達率(熱伝達性能)が、蓄冷時および放冷時共に大きく向上する。その結果、それら何れの場合の熱交換性能も大きく向上する。   Therefore, in the sensible heat storage material in the heat storage container 1, a large number of synthetic resin small-diameter tubes 2a, 2a,..., 2b, 2b. Therefore, the heat resistance between the sensible heat storage material and the small diameter tubes 2a, 2a,..., 2b, 2b. The heat transfer coefficient (heat transfer performance) between the refrigerant flowing through the small diameter tubes 2a, 2a,..., 2b, 2b... And the sensible heat storage material is greatly improved both during cold storage and during cooling. As a result, the heat exchange performance in either case is greatly improved.

ところで、このような細径多管構造の蓄熱熱交換器2において、今例えば図1の左右方向右側の冷媒分配ヘッダ31が熱交部放冷回路の冷媒入口ヘッダ、同左側の冷媒分配ヘッダ32が同熱交部放冷回路の冷媒出口ヘッダであり、それらの間の多数本の細径管2b,2b・・・が同熱交部放冷回路のパス部を形成しているとすると、図1の上下方向の蓄冷回路(下方から上方に細径管2a,2a・・・を介して冷媒が流れる)により蓄熱した熱を放冷する際に、放冷開始時は同多数本の細径管2b,2b・・・周りの氷が解けて有効な(あるいは過剰な)熱交換量を出すものの、放冷時間の経過とともに氷の量が減少することから、次第に熱交換量は低下し、長時間に亘って安定した熱交換量を得ることが難しい。   By the way, in such a heat storage heat exchanger 2 having a small-diameter multi-tubular structure, for example, the right refrigerant distribution header 31 in FIG. 1 is the refrigerant inlet header of the heat exchanger cooling circuit and the left refrigerant distribution header 32. Is a refrigerant outlet header of the heat exchanger cooling circuit, and a plurality of thin tubes 2b, 2b ... between them form a path portion of the heat exchanger cooling circuit, When the heat stored in the up-and-down cold storage circuit (the refrigerant flows from the lower side to the upper side through the small diameter tubes 2a, 2a,...) In FIG. 1 is allowed to cool, Although the ice around the diameter tubes 2b, 2b... Melts and produces an effective (or excessive) heat exchange amount, the amount of ice decreases as the cooling time elapses, so the heat exchange amount gradually decreases. It is difficult to obtain a stable heat exchange amount over a long period of time.

また構造上、同放冷回路入口側で、細径管2b,2b・・・に近いものは解けやすいが、放冷回路出口側で細径管2b,2b・・・から遠いものは解けにくい、という氷融解状態のアンバランスが生じる。   In addition, the structure close to the small diameter pipes 2b, 2b... Is easy to unwind on the inlet side of the cooling circuit, but the distance from the small diameter pipes 2b, 2b. An unbalanced ice melting state occurs.

このような問題に対する対策として、例えば図1の冷媒供給管33および接続管33aから冷媒入口ヘッダ31を介して放冷回路の各細径管(パス)2b,2b・・・に分配供給される放冷用の冷媒の流入量を同細径管2b,2b・・・各々の入口部で所定量以下に調節し得るように、前述の図5のような多数の開閉制御弁V1〜Vnを設け、それら各開閉制御弁V1〜Vnによって放冷用の各細径管2b,2b・・・へ供給される冷媒の一部をバイパス通路BPを介して冷媒出口ヘッダ32から、接続管34aを介して冷媒排出管34側にバイパスさせることにより、冷媒流入量を所望の量に制限して、一定時間以上安定した放冷能力を維持させる方法が考えられる。 As a countermeasure against such a problem, for example, the refrigerant supply pipe 33 and the connection pipe 33a in FIG. 1 are distributed and supplied to the small diameter pipes (paths) 2b, 2b,. A large number of open / close control valves V 1 to Vn as shown in FIG. 5 so that the inflow amount of the refrigerant for cooling can be adjusted to a predetermined amount or less at the respective inlet portions of the small-diameter tubes 2b, 2b. the provided, each of those thin tube 2b for cooling by the opening and closing control valves V 1 to Vn, a part of the refrigerant from the refrigerant outlet header 32 via the bypass passage BP supplied to 2b · · ·, connecting pipes By bypassing to the refrigerant | coolant discharge pipe 34 side via 34a, the refrigerant | coolant inflow amount is restrict | limited to a desired quantity, and the method of maintaining the stable cooling ability more than fixed time can be considered.

このような構成によれば、放冷能力のセーブを図ることができるとともに、熱交部全体に亘って氷水分布および温度分布を可能な限り均一化し、一定時間以上安定した熱交換量が得られるようになる。   According to such a configuration, it is possible to save the cooling capacity, make the ice water distribution and the temperature distribution as uniform as possible over the entire heat exchanger, and obtain a stable heat exchange amount over a predetermined time. It becomes like this.

しかし、すでに述べたように合成樹脂製の多数本の細径管2b,2b・・・の各々に、図5のような微細かつ精密な開閉制御弁V1〜Vnを設けることは不可能に近いし、その通路径の狭さを考えると、弁体内部にゴミ等が詰まりやすく、信頼性の点でも問題が多い。また、多数の開閉制御弁V1〜Vnを開閉制御するのは、それ自体大変である。 However, as described above, it is impossible to provide fine and precise opening / closing control valves V 1 to Vn as shown in FIG. 5 in each of a large number of the thin tubes 2b, 2b. Considering the narrowness of the passage diameter, dust and the like are easily clogged inside the valve body, and there are many problems in terms of reliability. In addition, it is difficult to control opening and closing a large number of opening / closing control valves V 1 to Vn.

そこで、この実施の形態では、そのような事情に鑑み、上記細径多管構造の蓄熱熱交換器2において、上記放冷回路のパス部を形成している細径管2b,2b・・・の冷媒の入口側端部に、当該細径管2b,2b・・・そのものを、例えば図4のように押圧変形させることにより、その通路断面積を小さくすることによって冷媒流量の調節を行う冷媒流量可変手段を設けている。   Therefore, in this embodiment, in view of such circumstances, in the heat storage heat exchanger 2 having the small diameter multi-tube structure, the small diameter tubes 2b, 2b,. The small diameter pipes 2b, 2b,... Themselves are pressed and deformed, for example, as shown in FIG. A flow rate variable means is provided.

この押圧変形による冷媒流量可変手段は、例えば図1〜図4に示すように、同細径管2b,2b・・・を下方側で受け止める固定側支持部材5bと、同細径管2b,2b・・・を上方側から押圧して圧縮変形させる可動側押圧部材5aと、該押圧部材5aを上下方向に昇降作動させる押圧駆動手段(圧力駆動手段)としてのエアシリンダ6とからなり、エアシリンダ6の伸縮ロッド6aの下端(先端)に押圧部材5aが固着支持されている。   As shown in FIGS. 1 to 4, for example, the refrigerant flow rate varying means by the pressure deformation includes a fixed-side support member 5b for receiving the same small diameter pipes 2b, 2b... On the lower side, and the same small diameter pipes 2b, 2b. .. Are pressed from above and compressed and deformed, and an air cylinder 6 as pressure driving means (pressure driving means) for moving the pressing member 5a up and down in the vertical direction. A pressing member 5a is fixedly supported on the lower end (tip) of the telescopic rod 6a.

押圧部材5aは、例えば図1に示すように、多数本並設された放冷回路側細径管2b,2b・・・の冷媒入口ヘッダ31側各端部に位置して、その配列幅部分の全体を下方側で均一に受け止め、また同様の状態で上方側から均一に押圧できるように、同配列幅に対応した長さを有して構成されており、エアシリンダ6は、同押圧部材5aの長手方向中間部分に対応して設けられている。もちろん、このエアシリンダ6は押圧部材5aの両端側に設けるようにしてもよい。その方が全体に亘って均一な押圧力を作用させることができる。   For example, as shown in FIG. 1, the pressing member 5 a is positioned at each end portion on the refrigerant inlet header 31 side of a plurality of the cooling circuit side narrow tubes 2 b, 2 b. The air cylinder 6 is configured to have a length corresponding to the arrangement width so that the whole can be uniformly received on the lower side and can be uniformly pressed from the upper side in the same state. 5a is provided corresponding to the middle part in the longitudinal direction. Of course, the air cylinder 6 may be provided at both ends of the pressing member 5a. That way, a uniform pressing force can be applied throughout.

そして、この実施の形態の構成においても、上記放冷回路の冷媒入口ヘッダ31と出口ヘッダ32間には、同放冷回路を形成している細径管2b,2b・・・と並列に同細径管2b,2b・・・をバイパスするバイパス通路BPが設けられている。   Also in the configuration of this embodiment, the refrigerant inlet header 31 and the outlet header 32 of the cooling circuit are connected in parallel with the small diameter tubes 2b, 2b,... Forming the cooling circuit. A bypass passage BP that bypasses the small diameter tubes 2b, 2b... Is provided.

したがって、今例えば図3に示すように、エアシリンダ6のシリンダ部6b内が負圧の伸縮ロッド6a収縮状態(上昇状態)では、押圧部材5aが細径管2b,2b・・・の上方に上昇しており、細径管2b,2b・・・の各々は、全く圧縮変形されることなく、最も通路断面積が大きい断面正円形の筒状体で、放冷用の冷媒供給管33から冷媒入口ヘッダ31を介して分配される放冷用の冷媒を効率良く流通させて、冷媒出口ヘッダ32側にスムーズに供給し得る状態にある。   Therefore, for example, as shown in FIG. 3, when the inside of the cylinder portion 6b of the air cylinder 6 is in a contracted state (upward state) where the telescopic rod 6a is in a negative pressure, the pressing member 5a is located above the small diameter tubes 2b, 2b. Each of the small-diameter pipes 2b, 2b... Is a cylindrical body having a perfectly circular cross section with the largest passage cross-sectional area without any compression deformation, and from the refrigerant supply pipe 33 for cooling. It is in a state where the cooling-use refrigerant distributed through the refrigerant inlet header 31 can be efficiently distributed and smoothly supplied to the refrigerant outlet header 32 side.

一方、同状態において、放冷を開始しようとする時は、図3中の矢印に示すように、上記冷媒入口ヘッダ31側冷媒流量可変手段のエアシリンダ6のシリンダ6b内にエアパイプ7を介して図示しないエアポンプからのエアを供給することによって、押圧部材5aを所定ストローク量下降させることによって、図4のように、放冷回路のパス部を形成している細径管2b,2bの冷媒入口側端部を偏平な断面楕円形状に圧縮変形させて、その通路断面積を小さくし、放冷用冷媒の流入量を所定量以下に制限する。   On the other hand, in the same state, when starting to cool, as shown by the arrow in FIG. 3, the air inlet 7 is inserted into the cylinder 6b of the air cylinder 6 of the refrigerant inlet header 31 side refrigerant flow rate varying means. By supplying air from an air pump (not shown) and lowering the pressing member 5a by a predetermined stroke amount, the refrigerant inlets of the small-diameter tubes 2b and 2b forming the path portion of the cooling circuit as shown in FIG. The side end portion is compressed and deformed into a flat cross-sectional elliptical shape, the passage cross-sectional area is reduced, and the inflow amount of the cooling refrigerant is limited to a predetermined amount or less.

そして、それにより同細径管2b,2b・・・の冷媒入口側〜出口側周辺の氷を全体に亘って略均等な状態で徐々に融解させながら冷熱を取り出すことによって、できるだけ放冷能力が一定した長い放冷運転時間を確保する。   Then, by taking out the cold heat while gradually melting the ice around the refrigerant inlet side to the outlet side of the same thin diameter pipes 2b, 2b... Ensure constant and long cooling operation time.

このような構成によると、冷媒流量可変手段による放冷回路側細径管2b,2b・・・への冷媒流入量の調節により、熱交部全体の氷水分布及び温度分布が可及的に均一化され、一定時間以上安定した熱交換量が得られるようになる。   According to such a configuration, the ice water distribution and the temperature distribution in the entire heat exchanger are made as uniform as possible by adjusting the amount of refrigerant flowing into the cooling circuit side small diameter tubes 2b, 2b. Thus, a stable heat exchange amount for a certain time or more can be obtained.

そして、このように細径管2b,2b・・・への冷媒流入量を制限した時の冷媒入口ヘッダ31部分に留まる冷媒は、上記バイパス通路BPによりスムーズに冷媒出口ヘッダ32側にバイパスさせる。   And the refrigerant | coolant which stays in the refrigerant | coolant inlet header 31 part when restrict | limiting the refrigerant | coolant inflow amount to the small diameter pipes 2b, 2b ... in this way is smoothly bypassed to the refrigerant | coolant outlet header 32 side by the said bypass passage BP.

したがって、運転効率を悪化させなくて済む。   Therefore, it is not necessary to deteriorate the driving efficiency.

しかも、同冷媒流量可変手段の冷媒流入量の調節は、放冷回路を形成する細径管2a,2a・・・又は2b,2b・・・そのものの冷媒の入口側部分の通路断面積を変えることにより、冷媒流入量の調節が行われるようになっている。   Moreover, the adjustment of the refrigerant inflow amount of the refrigerant flow rate varying means changes the passage sectional area of the refrigerant inlet side portion of the small-diameter pipes 2a, 2a,..., 2b, 2b,. As a result, the refrigerant inflow amount is adjusted.

したがって、放冷時の各パスの冷媒流量を単一の作動手段で共通に、しかも外部から簡単に簡単に調節制御するように構成することができ、多数本の細径のパスの各々に多数の開閉制御弁を設ける
場合の困難や、弁体内部のゴミ詰まりによる信頼性の問題を生じさせることなく、安定した放冷能力の制御を行うことが可能となる。
Therefore, the refrigerant flow rate of each path during cooling can be configured to be controlled and controlled easily and easily from the outside by a single operating means. Therefore, it is possible to control the cooling capacity stably without causing the difficulty in providing the open / close control valve and the problem of reliability due to dust clogging inside the valve body.

(最良の実施の形態2)
上記最良の実施の形態1の構成では、押圧部材5aが、例えばエアシリンダ、油圧シリンダ等の圧力駆動手段により押圧駆動されるようにしたが、これは例えば電磁プランジャ等の電磁アクチュエータやモータなどの電気的な駆動手段により、押圧駆動されるようにしてもよい。
(Best Mode 2)
In the configuration of the first embodiment, the pressing member 5a is driven to be pressed by pressure driving means such as an air cylinder or a hydraulic cylinder. This may be an electromagnetic actuator such as an electromagnetic plunger or a motor. You may make it press-drive by an electrical drive means.

(最良の実施の形態3)
なお、上記各実施の形態の構成において、さらに上述の蓄熱容器1に機械的な振動(微細振動)を加える加振手段を付加するようにすることもできる。
(Best Mode 3)
In addition, in the structure of each said embodiment, the vibration means which adds mechanical vibration (fine vibration) to the above-mentioned thermal storage container 1 can also be added.

このようにして蓄熱容器1内の氷水状態の顕熱蓄熱材に微細な振動を与えるようにすると、熱交部全体の氷水分布及び温度分布が、より可及的に均一化され、より安定した熱交換量が得られるようになる。   In this way, if fine vibration is given to the sensible heat storage material in the ice water state in the heat storage container 1, the ice water distribution and the temperature distribution of the entire heat exchanger are made more uniform and more stable. The amount of heat exchange can be obtained.

本願発明の最良の実施の形態1に係る蓄熱熱交換器全体の構成を示す上面図である。It is a top view which shows the structure of the whole heat storage heat exchanger which concerns on the best Embodiment 1 of this invention. 同蓄熱熱交換器の要部である熱交換器ユニット積層部分の構成を示す断面図である。It is sectional drawing which shows the structure of the heat exchanger unit lamination | stacking part which is the principal part of the heat storage heat exchanger. 同蓄熱熱交換器の要部である細径管端部の圧縮変形作用を利用した流量可変手段の構成を示す断面図である。It is sectional drawing which shows the structure of the flow volume variable means using the compression deformation effect | action of the small diameter pipe end part which is the principal part of the same heat storage heat exchanger. 同蓄熱熱交換器の要部である流量可変手段の作用を示す拡大断面図であるIt is an expanded sectional view which shows the effect | action of the flow volume variable means which is the principal part of the same heat storage heat exchanger. 本願発明の参考例(検討例)に係る蓄熱熱交換器の流量可変手段部分の構成を示す平面図である。It is a top view which shows the structure of the flow volume variable means part of the thermal storage heat exchanger which concerns on the reference example (examination example) of this invention.

符号の説明Explanation of symbols

1は蓄熱容器、2は蓄熱熱交換器、2a,2bは合成樹脂製の細径管、31は冷媒入口ヘッダ、32は冷媒出口ヘッダ、33aは冷媒入口ヘッダ31と冷媒供給管33との間の接続管、H1〜Hnは単位熱交換器ユニットである。 1 is a heat storage container, 2 is a heat storage heat exchanger, 2a and 2b are thin tubes made of synthetic resin, 31 is a refrigerant inlet header, 32 is a refrigerant outlet header, and 33a is between the refrigerant inlet header 31 and the refrigerant supply pipe 33. The connecting pipes H 1 to Hn are unit heat exchanger units.

Claims (6)

冷媒の通る伝熱管部分が合成樹脂製の細径管(2a),(2a)、(2b),(2b)・・・よりなり、該細径管(2a),(2a),(2b),(2b)・・・が所定の間隔を保って多数本配設されて熱交換器(2)を形成しているとともに、該熱交換器(2)が顕熱蓄熱材を蓄えた蓄熱容器1内に収納されてなる蓄熱熱交換器において、放冷回路を形成する細径管(2a),(2a)・・・又は(2b),(2b)・・・の冷媒の入口側部分に、当該細径管(2a),(2a)・・・又は(2b),(2b)・・・そのものの通路断面積を変えることにより、冷媒流入量の調節を行う冷媒流量可変手段を設けたことを特徴とする蓄熱熱交換器。   The heat transfer tube portion through which the refrigerant passes is composed of synthetic resin small diameter tubes (2a), (2a), (2b), (2b)..., And the small diameter tubes (2a), (2a), (2b) , (2b)... Are arranged at a predetermined interval to form a heat exchanger (2), and the heat exchanger (2) stores a sensible heat storage material. In the heat storage heat exchanger housed in 1, in the refrigerant inlet side portion of the small-diameter pipes (2a), (2a)... Or (2b), (2b). The refrigerant flow rate variable means for adjusting the refrigerant inflow amount is provided by changing the cross-sectional area of the small-diameter pipe (2a), (2a)... Or (2b), (2b). A heat storage heat exchanger characterized by that. 放冷回路の冷媒入口ヘッダ(31)と出口ヘッダ(32)間には、放冷回路を形成する細径管(2a),(2a)・・・又は(2b),(2b)・・・と並列に同細径管(2a),(2a)・・・又は(2b),(2b)・・・をバイパスするバイパス通路BPを設けたことを特徴とする請求項1記載の蓄熱熱交換器。   Between the refrigerant inlet header (31) and the outlet header (32) of the cooling circuit, the small diameter pipes (2a), (2a)... Or (2b), (2b). The heat storage heat exchange according to claim 1, characterized in that a bypass passage BP is provided in parallel with the same small-diameter pipe (2a), (2a) ... or (2b), (2b) ... vessel. 冷媒流量可変手段が、細径管(2a),(2a)・・・又は(2b),(2b)・・・そのものを押圧変形させる押圧変形装置により構成されていることを特徴とする請求項1又は2記載の蓄熱熱交換器。   The refrigerant flow rate varying means is constituted by a press deformation device that presses and deforms the small-diameter pipes (2a), (2a)... Or (2b), (2b). The heat storage heat exchanger according to 1 or 2. 押圧変形装置が、細径管(2a),(2a)・・・又は(2b),(2b)・・・を固定支持する支持部材(5b)と、細径管(2a),(2a)・・・又は(2b),(2b)・・・を押圧する押圧部材(5a)と、該押圧部材5aを押圧作動させる押圧駆動手段(6)とから構成されていることを特徴とする請求項3記載の蓄熱熱交換器。   The pressing deformation device includes a support member (5b) for fixing and supporting the small-diameter pipes (2a), (2a), or (2b), (2b), and the small-diameter pipes (2a), (2a). , Or (2b), (2b), and a pressing drive means (6) for pressing the pressing member 5a. Item 4. The heat storage heat exchanger according to item 3. 押圧駆動手段(6)が、圧力駆動手段により構成されていることを特徴とする請求項4記載の蓄熱熱交換器。   The heat storage heat exchanger according to claim 4, wherein the pressing drive means (6) comprises pressure driving means. 押圧駆動手段(6)が、電気的な駆動手段により構成されていることを特徴とする請求項4記載の蓄熱熱交換器。
The heat storage heat exchanger according to claim 4, wherein the pressing drive means (6) comprises an electric drive means.
JP2004301705A 2004-10-15 2004-10-15 Storage-type heat exchanger Pending JP2006112734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301705A JP2006112734A (en) 2004-10-15 2004-10-15 Storage-type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301705A JP2006112734A (en) 2004-10-15 2004-10-15 Storage-type heat exchanger

Publications (1)

Publication Number Publication Date
JP2006112734A true JP2006112734A (en) 2006-04-27

Family

ID=36381392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301705A Pending JP2006112734A (en) 2004-10-15 2004-10-15 Storage-type heat exchanger

Country Status (1)

Country Link
JP (1) JP2006112734A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300358A (en) * 2008-06-17 2009-12-24 Espec Corp Heat accumulator
GB2546144A (en) * 2015-11-10 2017-07-12 Hamilton Sundstrand Corp Heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221597A (en) * 1983-05-30 1984-12-13 Daikin Ind Ltd Heat exchanger
JP2000283586A (en) * 1999-03-30 2000-10-13 Hitachi Ltd Regenerative air conditioner and operation control therefor
JP2001021051A (en) * 1999-07-05 2001-01-26 Tokyo Gas Co Ltd Conduit shutting-off method
JP2003130565A (en) * 2001-08-16 2003-05-08 Gijutsu Kaihatsu Sogo Kenkyusho:Kk Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221597A (en) * 1983-05-30 1984-12-13 Daikin Ind Ltd Heat exchanger
JP2000283586A (en) * 1999-03-30 2000-10-13 Hitachi Ltd Regenerative air conditioner and operation control therefor
JP2001021051A (en) * 1999-07-05 2001-01-26 Tokyo Gas Co Ltd Conduit shutting-off method
JP2003130565A (en) * 2001-08-16 2003-05-08 Gijutsu Kaihatsu Sogo Kenkyusho:Kk Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300358A (en) * 2008-06-17 2009-12-24 Espec Corp Heat accumulator
GB2546144A (en) * 2015-11-10 2017-07-12 Hamilton Sundstrand Corp Heat exchanger
US10422586B2 (en) 2015-11-10 2019-09-24 Hamilton Sundstrand Corporation Heat exchanger
GB2546144B (en) * 2015-11-10 2020-11-25 Hamilton Sundstrand Corp Heat exchanger

Similar Documents

Publication Publication Date Title
US7086457B2 (en) Heat exchanger for industrial installations
JP5097472B2 (en) Heat exchanger
US9909817B2 (en) Cooling element
JP6612042B2 (en) Solar heat storage device
CN101033922B (en) Pipeline type micro-channels heat exchanger
CN109539838B (en) Intelligent control liquid medicine heat accumulator capable of realizing automatic heat accumulation according to temperature
JP6678235B2 (en) Heat exchanger
JP2006112734A (en) Storage-type heat exchanger
CN111238275A (en) Heat accumulator for controlling valve and electric heater according to gas temperature
CN109631635B (en) Loop heat pipe heat accumulator with variable heat accumulation capacity
KR101936840B1 (en) Apparatus for latent heat storage
CN109945707B (en) Loop heat pipe heat accumulator with variable top heat accumulation capacity
CN203687726U (en) Heat transfer pipe and gas heat exchanger using heat transfer pipe
EP3147618B1 (en) Heat energy accumulator based on solid-liquid phase-change materials, and method for producing the unit
CN109539840B (en) Intelligent control loop heat pipe liquid medicine heating heat accumulator
US20160161190A1 (en) Collector pipe for a heat exchanger device, a heat exchanger device and a method for emptying a heat exchanger device
CN115406283A (en) Monomer high-temperature molten salt energy storage device
JP2005241145A (en) Heat exchanger and solid phase separating method for heat exchanger
CN112747616B (en) Heat pipe type concrete heat accumulator
CN203248249U (en) Automobile water tank
JP6100459B2 (en) Fuel cell heat exchanger
JP7099082B2 (en) Equipment temperature control device
RU159637U1 (en) MICROCHANNEL HEAT EXCHANGER
JP3133086U (en) Simple cooling device
JP2006112727A (en) Cold release control device for storage-type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831