JP2000283586A - Regenerative air conditioner and operation control therefor - Google Patents

Regenerative air conditioner and operation control therefor

Info

Publication number
JP2000283586A
JP2000283586A JP11089698A JP8969899A JP2000283586A JP 2000283586 A JP2000283586 A JP 2000283586A JP 11089698 A JP11089698 A JP 11089698A JP 8969899 A JP8969899 A JP 8969899A JP 2000283586 A JP2000283586 A JP 2000283586A
Authority
JP
Japan
Prior art keywords
heat storage
valve
indoor
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11089698A
Other languages
Japanese (ja)
Inventor
Toshiyuki Hojo
俊幸 北條
Kenji Togusa
健治 戸草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11089698A priority Critical patent/JP2000283586A/en
Publication of JP2000283586A publication Critical patent/JP2000283586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure reduction of electric power consumption. SOLUTION: A regenerative air conditioner comprises refrigerant piping in which an outdoor unit, a regenerative unit and one or more outdoor unit are connected so as to utilize heat, which has been stored during night time, for day time air conditioning. Specifically, the air conditioner comprises a first regenerative unit 2a for passing refrigerant which has been transferred from an outdoor unit 1 to indoor units 3a, 3b during the operation of a compressor 4, and comprises a second regenerative unit 2b for passing the refrigerant which is returning to a liquid refrigerant pump 16 from the indoor units 3a, 3b during the operation of the pump 1. The individual regenerative units 2a, 2b are connected parallel between the outdoor unit 1 and the indoor units 3a, 3b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱式空気調和機
とその運転制御方法に係り、特に、昼間の電力の消費量
の低減に好適な蓄熱式空気調和機とその運転制御方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative air conditioner and an operation control method thereof, and more particularly to a regenerative air conditioner suitable for reduction of power consumption during daytime and an operation control method thereof. is there.

【0002】[0002]

【従来の技術】特に真夏の昼間は電力消費量が急増する
ため、夜間の電力消費量が少なく、しかも電力料金の安
い時間帯に蓄熱を行い、この熱を昼間利用して昼間の電
力消費量を低減し、夜間と昼間の電力消費量を平準化す
るようにした、たとえば、特開平7−4721号公報、
特開平10−311585号公報に開示された蓄熱式空
気調和機が提案されている。
2. Description of the Related Art In particular, since power consumption increases rapidly during the daytime in the middle of summer, heat is stored during a time period when power consumption at night is low and power rates are low, and this heat is used during the daytime to consume power during the daytime. To reduce the power consumption during the night and day, for example, Japanese Patent Application Laid-Open No. 7-4721,
A regenerative air conditioner disclosed in Japanese Patent Application Laid-Open No. 10-311585 has been proposed.

【0003】これらの蓄熱式空気調和機は、室外ユニッ
トと室内ユニットとを接続する通常(非蓄熱式)の冷凍
サイクルと、蓄熱槽と前記室内ユニットとを接続する蓄
熱式の冷凍サイクルとを備え、予め設定された時刻によ
り通常の運転モードと蓄熱を利用した運転モードを切り
替えるように構成されている。
[0003] These regenerative air conditioners include a normal (non-thermal type) refrigeration cycle for connecting an outdoor unit and an indoor unit, and a regenerative refrigeration cycle for connecting a heat storage tank and the indoor unit. It is configured to switch between a normal operation mode and an operation mode using heat storage at a preset time.

【0004】したがって、電力消費量がピークに達する
時間帯の電力消費量を抑制し、昼夜間の平準化に寄与す
ることができる。
[0004] Therefore, it is possible to suppress the power consumption during the time when the power consumption reaches a peak, and to contribute to the leveling during the day and night.

【0005】[0005]

【発明が解決しようとする課題】しかし、蓄熱を利用し
た運転モードの前後に行われる通常の運転モードにおい
ては、電力消費量の低減が行われないため、蓄熱式空気
調和機としての電力消費量の低減が必ずしも十分ではな
かった。
However, in a normal operation mode performed before and after the operation mode using heat storage, the power consumption is not reduced, so that the power consumption of the heat storage type air conditioner is reduced. Was not always sufficient.

【0006】前記の事情に鑑み、本発明の目的は、電力
消費量を確実に低減させることができる蓄熱式空気調和
機とその運転制御方法を提供することにある。
[0006] In view of the above circumstances, an object of the present invention is to provide a regenerative air conditioner capable of reliably reducing power consumption and a method of controlling the operation thereof.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
め、本出願の請求項1に記載の発明は、室外ユニット
と、蓄熱ユニットと、1台以上の室内ユニットとを冷媒
配管で接続し、夜間に蓄えられた熱を昼間の空調に使用
するようにした蓄熱式空気調和機であって、圧縮機運転
時に前記室外ユニットから室内ユニットに向けて送り出
された冷媒を通過させる第1の蓄熱ユニットと、冷媒液
ポンプ運転時に前記室内ユニットから冷媒液ポンプに帰
還する冷媒を通過させる第2の蓄熱ユニットとを設け、
前記各蓄熱ユニットを前記室外ユニットと室内ユニット
との間に並列に接続した。
In order to achieve the above object, the invention according to claim 1 of the present application is to connect an outdoor unit, a heat storage unit, and one or more indoor units by a refrigerant pipe. A heat storage type air conditioner in which heat stored at night is used for air conditioning in daytime, wherein a first heat storage for passing a refrigerant sent from the outdoor unit toward the indoor unit during operation of the compressor. A unit, and a second heat storage unit that allows the refrigerant returning from the indoor unit to the refrigerant liquid pump to pass during operation of the refrigerant liquid pump,
Each of the heat storage units was connected in parallel between the outdoor unit and the indoor unit.

【0008】また、請求項2に記載の発明は、圧縮機
と、この圧縮機の吐出側に接続された室外熱交換器と、
この室外熱交換器に接続された第1の蓄熱流量調整弁
と、この蓄熱流量調整弁に接続され、第1の蓄熱槽内に
配置された第1の蓄熱熱交換器と、この蓄熱熱交換器に
接続された逆止弁と、この逆止弁に並列に接続された複
数の室内流量調整弁と、これらの室内流量調整弁に個別
に接続され、出口が前記圧縮機の吸入側に接続された複
数の室内熱交換器と、前記室外熱交換器と第1の蓄熱流
量調整弁との間と前記室内熱交換器と圧縮機の吸入側と
の間とに接続された第1の開閉弁と、前記室外熱交換器
と第1の開閉弁との間に接続された第2の蓄熱流量調整
弁と、この蓄熱流量調整弁に接続され、第2の蓄熱槽内
に配置された第2の蓄熱熱交換器と、この蓄熱熱交換器
に接続された冷媒液ポンプと、この冷媒液ポンプの吐出
側と前記逆止弁と室内流量調整弁との間に接続された第
2の開閉弁と、前記冷媒液ポンプの吐出側と前記逆止弁
と室内流量調整弁との間に、前記冷媒液ポンプおよび第
2の開閉弁と並列に接続された第3の開閉弁と、前記第
1の蓄熱熱交換器と逆止弁の間と前記室内熱交換器と圧
縮機の吸入側との間に接続された第4の開閉弁と、前記
第2の蓄熱熱交換器と冷媒液ポンプの間と前記室内熱交
換器と圧縮機の吸入側との間に接続された第5の開閉弁
とを設けた。
According to a second aspect of the present invention, there is provided a compressor, and an outdoor heat exchanger connected to a discharge side of the compressor.
A first heat storage flow control valve connected to the outdoor heat exchanger; a first heat storage heat exchanger connected to the heat storage flow control valve and disposed in the first heat storage tank; A check valve connected to the compressor, a plurality of indoor flow control valves connected in parallel to the check valve, and individually connected to these indoor flow control valves, and an outlet connected to the suction side of the compressor. First opening / closing connected between the plurality of indoor heat exchangers, the outdoor heat exchanger, and the first heat storage flow control valve, and between the indoor heat exchanger and the suction side of the compressor. A valve, a second heat storage flow control valve connected between the outdoor heat exchanger and the first opening / closing valve, and a second heat storage flow control valve connected to the heat storage flow control valve and arranged in the second heat storage tank. 2, a refrigerant liquid pump connected to the heat storage heat exchanger, a discharge side of the refrigerant liquid pump, the check valve, and the chamber. A second on-off valve connected between the refrigerant liquid pump and the second on-off valve, between the discharge side of the refrigerant liquid pump, the check valve, and the indoor flow regulating valve; A third on-off valve connected in parallel; a fourth on-off valve connected between the first heat storage heat exchanger and the check valve and between the indoor heat exchanger and the suction side of the compressor. And a fifth on-off valve connected between the second heat storage heat exchanger and the refrigerant liquid pump and between the indoor heat exchanger and the suction side of the compressor.

【0009】また、請求項3に記載の発明は、請求項2
に記載の発明において、前記冷媒液ポンプと、第2の開
閉弁および第3の開閉弁を一つのユニットとして構成し
た。
The invention described in claim 3 is the same as the invention in claim 2
In the invention described in (1), the refrigerant liquid pump, the second on-off valve, and the third on-off valve are configured as one unit.

【0010】さらに、請求項4に記載の発明は、室外ユ
ニットから送り出された冷媒を通過させて室内ユニット
に送る第1の蓄熱ユニットと、冷媒液ポンプにより前記
室内ユニットとの間で冷媒を循環させる第2の蓄熱ユニ
ットとを設け、前記各蓄熱ユニットを前記室外ユニット
と室内ユニットとの間に並列に接続した蓄熱式空気調和
機の運転制御方法であって、前記冷媒液ポンプの運転を
開始する前に必ず圧縮機を運転し、前記第2の蓄熱熱交
換器を通して過冷却された液冷媒を冷媒液ポンプに供給
するようにした。
Further, according to the present invention, the refrigerant is circulated between the first heat storage unit, which passes the refrigerant sent from the outdoor unit and sends it to the indoor unit, and a refrigerant liquid pump between the first heat storage unit and the indoor unit. A method for controlling the operation of a regenerative air conditioner in which a second heat storage unit is provided and the respective heat storage units are connected in parallel between the outdoor unit and the indoor unit. Before the operation, the compressor was always operated, and the subcooled liquid refrigerant was supplied to the refrigerant liquid pump through the second heat storage heat exchanger.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1ないし図2は、本発明の第1
の実施の形態を示すもので、図1は、本発明による蓄熱
式空気調和機の構成図、図2は、図1における蓄熱式空
気調和機の時間経過と運転パターンを示す図、図1にお
いて、1は室外ユニット。2aは第1の蓄熱ユニット、
2bは第2の蓄熱ユニットで、室外ユニット1に並列に
接続されている。3a、3bは室内ユニットで、室外ユ
ニット1に並列に接続されている。4は圧縮機で、室外
ユニット1内に配置されている。16は冷媒液ポンプ
で、第2の蓄熱ユニット2bに付設されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a first embodiment of the present invention.
FIG. 1 is a configuration diagram of a regenerative air conditioner according to the present invention, FIG. 2 is a diagram showing a time course and an operation pattern of the regenerative air conditioner in FIG. 1, and FIG. 1 is an outdoor unit. 2a is a first heat storage unit,
2b is a second heat storage unit, which is connected to the outdoor unit 1 in parallel. 3a and 3b are indoor units, which are connected to the outdoor unit 1 in parallel. Reference numeral 4 denotes a compressor, which is arranged in the outdoor unit 1. A refrigerant liquid pump 16 is attached to the second heat storage unit 2b.

【0012】26は時刻設定手段で、現在時刻や圧縮機
運転による空調と冷媒液運転による空調の開始時刻と切
替時刻、蓄熱運転の開始時刻などを設定する。21は計
時手段で、現在の時刻を計測し、時刻設定手段26に設
定された時刻になると切替信号を発信する。22は切替
手段で、計時手段からの切替信号に基づいて、圧縮機運
転による空調と冷媒液ポンプによる空調を切り替える。
Reference numeral 26 denotes time setting means for setting a current time, a start time and a switching time of air conditioning by compressor operation and air conditioning by refrigerant liquid operation, a start time of heat storage operation, and the like. Numeral 21 denotes a time counting means for measuring the current time and transmitting a switching signal when the time set in the time setting means 26 comes. A switching unit 22 switches between air conditioning by the compressor operation and air conditioning by the refrigerant liquid pump based on a switching signal from the timing unit.

【0013】このような構成で、図2に示すように、た
とえば、22時になると、室外ユニット1の圧縮機4を
運転する蓄熱運転を開始する。このとき、室外ユニット
1で凝縮され液状態になった冷媒は、その液冷媒が第1
の蓄熱ユニット2aと第2の蓄熱ユニット2b内で蒸発
して、各蓄熱ユニット2a、2b内の冷媒(たとえば、
水)を冷却(製氷)して気相冷媒となり圧縮機4に戻さ
れる。
With such a configuration, as shown in FIG. 2, for example, at 22:00, the heat storage operation for operating the compressor 4 of the outdoor unit 1 is started. At this time, the refrigerant condensed into a liquid state in the outdoor unit 1 is the first liquid refrigerant.
Is evaporated in the heat storage unit 2a and the second heat storage unit 2b, and the refrigerant in each of the heat storage units 2a and 2b (for example,
The water (water) is cooled (ice-formed) to become a gas-phase refrigerant and returned to the compressor 4.

【0014】翌朝8時になると、圧縮機4を運転した蓄
熱利用運転に切り替わる。このとき、室外ユニット1か
ら送り出された気液2相の冷媒は、第1の蓄熱ユニット
2aで過冷却された液冷媒となって、室内ユニット3
a、3bに送り込まれ、室内の空気と熱交換を行うこと
により、室内の冷房を行ない気相冷媒となって室外ユニ
ット1に戻される。
At 8:00 the next morning, the operation is switched to the heat storage operation in which the compressor 4 is operated. At this time, the gas-liquid two-phase refrigerant sent from the outdoor unit 1 becomes a liquid refrigerant supercooled by the first heat storage unit 2a, and becomes a liquid refrigerant.
a and 3b, and exchanges heat with the indoor air to cool the room and return to the outdoor unit 1 as a gas-phase refrigerant.

【0015】13時になると、室外ユニット1の圧縮機
4は停止し、第2の蓄熱ユニット2bに付設された冷媒
液ポンプ16が作動して、冷媒液ポンプ16による蓄熱
利用運転に切り替えられる。このとき、冷媒は第2の蓄
熱ユニット2bと室内ユニット3a、3bを循環し、第
2の蓄熱ユニット2bで過冷却される。
At 13:00, the compressor 4 of the outdoor unit 1 is stopped, the refrigerant liquid pump 16 attached to the second heat storage unit 2b is operated, and the operation is switched to the heat storage utilization operation by the refrigerant liquid pump 16. At this time, the refrigerant circulates through the second heat storage unit 2b and the indoor units 3a and 3b, and is supercooled by the second heat storage unit 2b.

【0016】16時になると、第2の蓄熱ユニット2b
内に蓄えられた氷をほぼ使い切り、冷媒液ポンプ16が
停止して、再び圧縮機4による冷房運転が開始される。
At 16:00, the second heat storage unit 2b
The ice stored in the inside is almost completely used up, the refrigerant liquid pump 16 is stopped, and the cooling operation by the compressor 4 is started again.

【0017】前記のように、特に夏場の電力消費量がピ
ーク値を示す13時から16時の時間帯に、電力消費量
の少ない冷媒液ポンプ16による冷房運転を行うことに
より電力消費量のピーク値を低く抑えることができる。
As described above, the cooling operation is performed by the refrigerant liquid pump 16 which consumes a small amount of electric power, particularly during the period from 13:00 to 16:00 when the electric power consumption in the summer season shows a peak value. The value can be kept low.

【0018】図3および図4は、本発明の第2の実施の
形態を示すもので、図3は、図1における冷凍サイクル
の構成図、図4は、圧縮機と冷媒液ポンプの運転切り替
え時における運転パターンを示す図である。
FIGS. 3 and 4 show a second embodiment of the present invention. FIG. 3 is a configuration diagram of the refrigeration cycle in FIG. 1, and FIG. 4 is a switching operation of the compressor and the refrigerant liquid pump. It is a figure which shows the driving pattern at the time.

【0019】図3において、4は圧縮機。5は室外熱交
換器で、圧縮機4の吐出側に接続されている。6は第1
の蓄熱流量調整弁で、室外熱交換器5に接続されてい
る。7は第1の蓄熱熱交換器で、第1の蓄熱槽8内に配
置され、蓄熱流量調整弁6に接続されている。9は逆止
弁で、蓄熱熱交換器7に接続されている。10a、10
bは室内流量調整弁で、逆止弁9に並列に接続されてい
る。11a、11bは室内熱交換器で、それぞれ室内流
量調整弁10a、10bに接続されている。室内熱交換
器11a、11bは圧縮機4の吸入側に接続されてい
る。
In FIG. 3, reference numeral 4 denotes a compressor. An outdoor heat exchanger 5 is connected to the discharge side of the compressor 4. 6 is the first
Is connected to the outdoor heat exchanger 5. Reference numeral 7 denotes a first heat storage heat exchanger, which is disposed in the first heat storage tank 8 and is connected to the heat storage flow control valve 6. A check valve 9 is connected to the heat storage heat exchanger 7. 10a, 10
b is an indoor flow control valve, which is connected to the check valve 9 in parallel. 11a and 11b are indoor heat exchangers connected to the indoor flow rate control valves 10a and 10b, respectively. The indoor heat exchangers 11a and 11b are connected to the suction side of the compressor 4.

【0020】12は第1の開閉弁で、室外熱交換器5と
蓄熱流量調整弁6の間と室内熱交換器11a、11bと
圧縮機4の間に接続されている。13は第2の蓄熱流量
調整弁で、室外熱交換器5と開閉弁12との間に接続さ
れている。14は第2の蓄熱熱交換器で、第2の蓄熱槽
15内に配置され、蓄熱流量調整弁13に接続されてい
る。
Reference numeral 12 denotes a first on-off valve, which is connected between the outdoor heat exchanger 5 and the heat storage flow control valve 6 and between the indoor heat exchangers 11a and 11b and the compressor 4. Reference numeral 13 denotes a second heat storage flow control valve, which is connected between the outdoor heat exchanger 5 and the on-off valve 12. Reference numeral 14 denotes a second heat storage heat exchanger which is arranged in the second heat storage tank 15 and connected to the heat storage flow control valve 13.

【0021】16は冷媒液ポンプで、蓄熱熱交換器14
に接続されている。17は第2の開閉弁で、冷媒液ポン
プ16の吐出側と逆止弁9と室内流量調整弁10a、1
0bの間に接続されている。18は第3の開閉弁で、蓄
熱熱交換器14冷媒液ポンプ16との間と逆止弁9と室
内流量調整弁10a、10bの間に、冷媒液ポンプ16
および開閉弁17と並列に接続されている。
Reference numeral 16 denotes a refrigerant liquid pump, which is a heat storage heat exchanger 14.
It is connected to the. Reference numeral 17 denotes a second opening / closing valve, which is the discharge side of the refrigerant liquid pump 16, the check valve 9, and the indoor flow rate regulating valves 10a, 1a.
0b. Reference numeral 18 denotes a third on-off valve, which is provided between the heat storage heat exchanger 14 and the refrigerant liquid pump 16 and between the check valve 9 and the indoor flow regulating valves 10a and 10b.
And the on-off valve 17 are connected in parallel.

【0022】19は第4の開閉弁で、蓄熱熱交換器7と
逆止弁9の間と室内熱交換器11a、11bと圧縮機4
の間に接続されている。20は第5の開閉弁で、蓄熱熱
交換器14と冷媒液ポンプ16の間と室内熱交換器11
a、11bと圧縮機4の間に接続されている。
A fourth opening / closing valve 19 is provided between the heat storage heat exchanger 7 and the check valve 9, the indoor heat exchangers 11a and 11b and the compressor 4
Connected between Reference numeral 20 denotes a fifth on-off valve which is provided between the heat storage heat exchanger 14 and the refrigerant liquid pump 16 and between the indoor heat exchanger 11
a, 11 b and the compressor 4.

【0023】このような構成で、蓄熱槽8および蓄熱槽
15に蓄熱する場合には、蓄熱流量調整弁6、13およ
び開閉弁12、19、20を開き、室内流量調整弁10
a、10bおよび開閉弁12、17を閉めた状態で圧縮
機4を作動させる。
With such a configuration, when storing heat in the heat storage tank 8 and the heat storage tank 15, the heat storage flow control valves 6, 13 and the opening / closing valves 12, 19, 20 are opened, and the indoor flow control valve 10 is opened.
Compressor 4 is operated with a, 10b and on-off valves 12, 17 closed.

【0024】すると、圧縮機4から吐出された冷媒は、
室外熱交換器5を通り凝縮された気液2相の冷媒となっ
て蓄熱流量調整弁6、13から蓄熱熱交換器7、14に
供給され、蓄熱槽8、14内の水と熱交換され蓄熱槽
8、14内の水を凍らせ製氷するとともに、蒸発して気
相冷媒となり、開閉弁19、20を通り圧縮機4の吸入
側に戻される。
Then, the refrigerant discharged from the compressor 4 is:
The condensed gas-liquid two-phase refrigerant passes through the outdoor heat exchanger 5 and is supplied to the heat storage heat exchangers 7 and 14 from the heat storage flow rate regulating valves 6 and 13 and exchanges heat with the water in the heat storage tanks 8 and 14. The water in the heat storage tanks 8 and 14 is frozen to make ice, and is evaporated to be a gas-phase refrigerant. The refrigerant is returned to the suction side of the compressor 4 through the on-off valves 19 and 20.

【0025】また、蓄熱運転中、各蓄熱槽8、14に付
設されたセンサ(図示せず)で蓄熱量(温度)を検出
し、所定の温度に到達した蓄熱槽8、14に接続された
蓄熱流量調整弁6、13を閉める。所定の蓄熱量に到達
していない蓄熱槽8、14については蓄熱運転を継続す
る。全ての蓄熱槽8、14が所定の蓄熱量に到達したら
圧縮機4の運転を止め待機する。
Further, during the heat storage operation, the heat storage amount (temperature) is detected by a sensor (not shown) attached to each of the heat storage tanks 8 and 14, and connected to the heat storage tanks 8 and 14 which have reached a predetermined temperature. The heat storage flow control valves 6 and 13 are closed. The heat storage operation is continued for the heat storage tanks 8 and 14 that have not reached the predetermined heat storage amount. When all the heat storage tanks 8 and 14 reach a predetermined heat storage amount, the operation of the compressor 4 is stopped and the apparatus stands by.

【0026】また、圧縮機4による蓄熱利用運転を行う
場合には、蓄熱流量調整弁6と室内流量調整弁10a、
10bを開き、蓄熱流量調整弁13、開閉弁12、1
7、18、19、20を閉めた状態で圧縮機4を作動さ
せる。
When the heat storage utilizing operation by the compressor 4 is performed, the heat storage flow control valve 6 and the indoor flow control valve 10a,
10b, open the heat storage flow control valve 13, the on-off valve 12,
Compressor 4 is operated with 7, 18, 19, and 20 closed.

【0027】すると、圧縮機4から吐出された冷媒は、
室外熱交換器5を通り凝縮された気液2相の冷媒となっ
て蓄熱流量調整弁6から蓄熱熱交換器7に送られ、蓄熱
熱交換器7でさらに冷却されて、過冷却された液相冷媒
となる。そして、逆止弁9を通り室内流量調整弁10
a、10bから室内熱交換器11a、11bに流入して
室内の空気と熱交換を行い、気相冷媒となって圧縮機4
の吸入側に戻される。
Then, the refrigerant discharged from the compressor 4 is
A liquid that is condensed through the outdoor heat exchanger 5 to be a gas-liquid two-phase refrigerant is sent from the heat storage flow control valve 6 to the heat storage heat exchanger 7, further cooled by the heat storage heat exchanger 7, and supercooled. It becomes a phase refrigerant. Then, it passes through the check valve 9 and the indoor flow control valve 10
a, 10b, flows into the indoor heat exchangers 11a, 11b and exchanges heat with the indoor air to become a gaseous refrigerant, and
Is returned to the suction side.

【0028】また、冷媒液ポンプ16による蓄熱利用運
転を行う場合には、蓄熱流量調整弁13と室内流量調整
弁10a、10b、開閉弁12、17を開き、蓄熱流量
調整弁6、開閉弁18、19、20を閉めた状態で冷媒
液ポンプ16を作動させる。
When the heat storage utilization operation is performed by the refrigerant liquid pump 16, the heat storage flow control valve 13, the indoor flow control valves 10a and 10b, and the on-off valves 12 and 17 are opened, and the heat storage flow control valve 6 and the on-off valve 18 are opened. , 19, and 20 are closed, and the refrigerant liquid pump 16 is operated.

【0029】すると、蓄熱槽15内の氷によって過冷却
され液化した冷媒は、冷媒液ポンプ16から吐出され、
開閉弁17を通り室内流量調整弁10a、10bから室
内熱交換器11a、11bに流入して室内の空気と熱交
換を行い、気相冷媒となって開閉弁12、蓄熱流量調整
弁13を通って蓄熱熱交換器14に戻される。
Then, the refrigerant supercooled and liquefied by the ice in the heat storage tank 15 is discharged from the refrigerant liquid pump 16,
The air flows into the indoor heat exchangers 11a and 11b from the indoor flow control valves 10a and 10b through the open / close valve 17, and exchanges heat with the indoor air. As a gaseous refrigerant, the refrigerant passes through the open / close valve 12 and the heat storage flow control valve 13. And returned to the heat storage heat exchanger 14.

【0030】前記の圧縮機4による蓄熱利用運転から冷
媒液ポンプ16による蓄熱利用運転に切り替える際に
は、圧縮機4と冷媒液ポンプ16の運転、停止と、蓄熱
流量調整弁6、13と開閉弁12、17、18の開閉
を、図4に示すように、所用の時間をかけて行う。
When switching from the operation using heat storage by the compressor 4 to the operation using heat storage by the refrigerant liquid pump 16, the operation and stop of the compressor 4 and the refrigerant liquid pump 16, and the opening and closing of the heat storage flow control valves 6 and 13 are performed. Opening and closing of the valves 12, 17, 18 is performed over a required time as shown in FIG.

【0031】圧縮機4による蓄熱利用運転が行われてい
るときに、図1における切替手段22から切替信号が印
加されると、まず、蓄熱流量調整弁13と第3の開閉弁
18が開弁される。
When a switching signal is applied from the switching means 22 in FIG. 1 while the compressor 4 is performing the heat storage operation, first, the heat storage flow control valve 13 and the third on-off valve 18 are opened. Is done.

【0032】すると、蓄熱流量調整弁6から蓄熱熱交換
器7および逆止弁9を通り、室内流量調整弁10a、1
0bに向けて流れていた冷媒の一部が、蓄熱流量調整弁
13から蓄熱熱交換器14へ分流し、冷媒液ポンプ16
に過冷却された液冷媒を供給する。また、蓄熱熱交換器
14で過冷却された液冷媒の一部は、開閉弁18を通り
蓄熱熱交換器7からの冷媒に合流する。したがって、冷
媒液ポンプ16の吸込側に過大な圧力が加わることを防
止することができる。
Then, the heat storage flow control valve 6 passes through the heat storage heat exchanger 7 and the check valve 9 and passes through the indoor flow control valves 10a and 10a.
A part of the refrigerant flowing toward 0b is diverted from the heat storage flow control valve 13 to the heat storage heat exchanger 14, and the refrigerant liquid pump 16
To the subcooled liquid refrigerant. A part of the liquid refrigerant supercooled by the heat storage heat exchanger 14 passes through the on-off valve 18 and joins the refrigerant from the heat storage heat exchanger 7. Therefore, it is possible to prevent an excessive pressure from being applied to the suction side of the refrigerant liquid pump 16.

【0033】蓄熱流量調整弁13が開いてから所定の時
間が経過すると、第2の開閉弁17が開弁し、第3の開
閉弁18が閉弁すると共に、冷媒液ポンプ16が作動し
て、吸込側に供給された液冷媒を送り出す。同時に、圧
縮機4が停止し、蓄熱流量調整弁6が閉弁すると共に、
第1の開閉弁12が開弁する。
When a predetermined time has elapsed since the heat storage flow control valve 13 was opened, the second on-off valve 17 is opened, the third on-off valve 18 is closed, and the refrigerant liquid pump 16 is operated. And sends out the liquid refrigerant supplied to the suction side. At the same time, the compressor 4 stops, the heat storage flow control valve 6 closes,
The first on-off valve 12 opens.

【0034】すると、冷媒液ポンプ16から吐出された
液冷媒は、開閉弁17、室内流量調整弁10a、10b
を通り室内熱交換器11a、11b送り込まれる。
Then, the liquid refrigerant discharged from the refrigerant liquid pump 16 is supplied to the on-off valve 17, the indoor flow rate adjusting valves 10a, 10b.
Through the indoor heat exchangers 11a and 11b.

【0035】このとき、冷媒液ポンプ16が作動する
と、一時的に冷媒液ポンプ16の吸込側の配管内の圧力
が低下するが、冷媒液が過冷却されているためキャビテ
ーション(気泡の発生)を防止することができる。
At this time, when the refrigerant liquid pump 16 is operated, the pressure in the pipe on the suction side of the refrigerant liquid pump 16 is temporarily reduced, but cavitation (bubble generation) occurs because the refrigerant liquid is supercooled. Can be prevented.

【0036】図5は、本発明の第3の実施の形態を示す
もので、冷媒液ポンプユニットの構成図である。
FIG. 5 shows a third embodiment of the present invention and is a configuration diagram of a refrigerant liquid pump unit.

【0037】同図において、16は冷媒液ポンプ。17
は第2の開閉弁で、冷媒液ポンプ16に直列に接続され
ている。18は第3の開閉弁で、冷媒液ポンプ16およ
び開閉弁17と並列に接続されている。
In the figure, reference numeral 16 denotes a refrigerant liquid pump. 17
Is a second on-off valve, which is connected in series to the refrigerant liquid pump 16. Reference numeral 18 denotes a third opening / closing valve, which is connected in parallel with the refrigerant liquid pump 16 and the opening / closing valve 17.

【0038】23は信号受信手段で、前記第1図におけ
る切替手段22からの切替信号を受信する。24は信号
処理手段で、信号受信手段23で受信した信号を処理し
冷媒液ポンプ16、開閉弁17、18の作動タイミング
を設定する。25は駆動手段で、信号処理手段24で設
定されたタイミングに基づいて、冷媒液ポンプ16、開
閉弁17、18を駆動する。
Reference numeral 23 denotes a signal receiving means for receiving a switching signal from the switching means 22 in FIG. 24 is a signal processing means for processing the signal received by the signal receiving means 23 and setting the operation timing of the refrigerant liquid pump 16 and the on-off valves 17 and 18. Reference numeral 25 denotes a driving unit that drives the refrigerant liquid pump 16 and the on-off valves 17 and 18 based on the timing set by the signal processing unit 24.

【0039】このような構成の冷媒液ポンプユニットを
用いることにより、蓄熱式空気調和機の据え付け現地に
おける工事を容易にすることができる。
By using the refrigerant liquid pump unit having such a configuration, it is possible to easily perform the work on the installation site of the regenerative air conditioner.

【0040】[0040]

【発明の効果】以上述べたように、本発明によれば、冷
媒液ポンプ運転時だけでなく、圧縮機運転による空気調
和時にも、冷媒を蓄熱槽を通過させるようにしたので、
圧縮機の出力を小さくすることができ、圧縮機運転時の
電力消費量を低減することができる。したがって、蓄熱
式空気調和機としての電力消費量を低減することができ
る。
As described above, according to the present invention, the refrigerant passes through the heat storage tank not only at the time of operating the refrigerant liquid pump but also at the time of air conditioning by operating the compressor.
The output of the compressor can be reduced, and power consumption during compressor operation can be reduced. Therefore, the power consumption of the regenerative air conditioner can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による蓄熱式空気調和機の構成図。FIG. 1 is a configuration diagram of a regenerative air conditioner according to the present invention.

【図2】図1における蓄熱式空気調和機の時間経過と運
転パターンを示す図。
FIG. 2 is a diagram showing a lapse of time and an operation pattern of the regenerative air conditioner in FIG.

【図3】図1における冷凍サイクルの構成図。FIG. 3 is a configuration diagram of a refrigeration cycle in FIG. 1;

【図4】圧縮機と冷媒液ポンプの運転切り替え時におけ
る運転パターンを示す図。
FIG. 4 is a diagram showing an operation pattern when the operation of the compressor and the refrigerant liquid pump is switched.

【図5】冷媒液ポンプユニットの構成図。FIG. 5 is a configuration diagram of a refrigerant liquid pump unit.

【符号の説明】[Explanation of symbols]

1…室外ユニット、2a、2b…蓄熱ユニット、3a、
3b…室内ユニット、4…圧縮機、5…室外熱交換器、
6…蓄熱流量調整弁、7…蓄熱熱交換器、8…蓄熱槽、
9…逆止弁、10a、10b…室内流量調整弁、11
a、11b…室内熱交換器、 12…開閉弁、 13…
蓄熱流量調整弁、14…蓄熱熱交換器、15…蓄熱槽、
16…冷媒液ポンプ、17…開閉弁、18…開閉弁、1
9…開閉弁、20…開閉弁、21…計時手段、22…切
替手段、23…信号受信手段、24…信号処理手段、2
5…駆動手段、26…時刻設定手段。
1 outdoor unit, 2a, 2b heat storage unit, 3a,
3b ... indoor unit, 4 ... compressor, 5 ... outdoor heat exchanger,
6: heat storage flow control valve, 7: heat storage heat exchanger, 8: heat storage tank,
9: check valve, 10a, 10b: indoor flow rate control valve, 11
a, 11b: indoor heat exchanger, 12: on-off valve, 13:
Heat storage flow control valve, 14: heat storage heat exchanger, 15: heat storage tank,
16: Refrigerant liquid pump, 17: On-off valve, 18: On-off valve, 1
9 opening / closing valve, 20 opening / closing valve, 21 timing means, 22 switching means, 23 signal receiving means, 24 signal processing means, 2
5: driving means, 26: time setting means.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】室外ユニットと、蓄熱ユニットと、1台以
上の室内ユニットとを冷媒配管で接続し、夜間に蓄えら
れた熱を昼間の空調に使用するようにした蓄熱式空気調
和機であって、圧縮機運転時に前記室外ユニットから室
内ユニットに向けて送り出された冷媒を通過させる第1
の蓄熱ユニットと、冷媒液ポンプ運転時に前記室内ユニ
ットから冷媒液ポンプに帰還する冷媒を通過させる第2
の蓄熱ユニットとを設け、前記各蓄熱ユニットを前記室
外ユニットと室内ユニットとの間に並列に接続したこと
を特徴とする蓄熱式空気調和機。
1. A regenerative air conditioner in which an outdoor unit, a heat storage unit, and one or more indoor units are connected by a refrigerant pipe, and heat stored at night is used for air conditioning in daytime. A first passage that allows the refrigerant sent from the outdoor unit to the indoor unit to pass during operation of the compressor.
A second heat storage unit for passing a refrigerant returning from the indoor unit to the refrigerant liquid pump during operation of the refrigerant liquid pump.
Wherein the heat storage units are connected in parallel between the outdoor unit and the indoor unit.
【請求項2】圧縮機と、この圧縮機の吐出側に接続され
た室外熱交換器と、この室外熱交換器に接続された第1
の蓄熱流量調整弁と、この蓄熱流量調整弁に接続され、
第1の蓄熱槽内に配置された第1の蓄熱熱交換器と、こ
の蓄熱熱交換器に接続された逆止弁と、この逆止弁に並
列に接続された複数の室内流量調整弁と、これらの室内
流量調整弁に個別に接続され、出口が前記圧縮機の吸入
側に接続された複数の室内熱交換器と、前記室外熱交換
器と第1の蓄熱流量調整弁との間と前記室内熱交換器と
圧縮機の吸入側との間とに接続された第1の開閉弁と、
前記室外熱交換器と第1の開閉弁との間に接続された第
2の蓄熱流量調整弁と、この蓄熱流量調整弁に接続さ
れ、第2の蓄熱槽内に配置された第2の蓄熱熱交換器
と、この蓄熱熱交換器に接続された冷媒液ポンプと、こ
の冷媒液ポンプの吐出側と前記逆止弁と室内流量調整弁
との間に接続された第2の開閉弁と、前記冷媒液ポンプ
の吐出側と前記逆止弁と室内流量調整弁との間に、前記
冷媒液ポンプおよび第2の開閉弁と並列に接続された第
3の開閉弁と、前記第1の蓄熱熱交換器と逆止弁の間と
前記室内熱交換器と圧縮機の吸入側との間に接続された
第4の開閉弁と、前記第2の蓄熱熱交換器と冷媒液ポン
プの間と前記室内熱交換器と圧縮機の吸入側との間に接
続された第5の開閉弁とを設けたことを特徴とする蓄熱
式空気調和機。
2. A compressor, an outdoor heat exchanger connected to a discharge side of the compressor, and a first heat exchanger connected to the outdoor heat exchanger.
Heat storage flow control valve, and connected to this heat storage flow control valve,
A first heat storage heat exchanger disposed in the first heat storage tank, a check valve connected to the heat storage heat exchanger, and a plurality of indoor flow control valves connected in parallel to the check valve. A plurality of indoor heat exchangers individually connected to these indoor flow rate control valves, the outlets of which are connected to the suction side of the compressor, and between the outdoor heat exchanger and the first heat storage flow rate control valve. A first on-off valve connected between the indoor heat exchanger and a suction side of the compressor;
A second heat storage flow control valve connected between the outdoor heat exchanger and the first opening / closing valve; and a second heat storage connected to the heat storage flow control valve and arranged in a second heat storage tank. A heat exchanger, a refrigerant liquid pump connected to the heat storage heat exchanger, a second on-off valve connected between the discharge side of the refrigerant liquid pump, the check valve, and the indoor flow regulating valve, A third on-off valve connected in parallel with the refrigerant liquid pump and a second on-off valve between a discharge side of the refrigerant liquid pump, the check valve, and the indoor flow rate regulating valve; A fourth on-off valve connected between the heat exchanger and the check valve and between the indoor heat exchanger and the suction side of the compressor; and a fourth on-off valve between the second heat storage heat exchanger and the refrigerant liquid pump. A regenerative air conditioner comprising a fifth on-off valve connected between the indoor heat exchanger and the suction side of the compressor.
【請求項3】前記冷媒液ポンプと、第2の開閉弁および
第3の開閉弁を一つの冷媒液ポンプユニットとして一体
に構成したことを特徴とする請求項2に記載の蓄熱式空
気調和機。
3. The regenerative air conditioner according to claim 2, wherein the refrigerant liquid pump, the second on-off valve and the third on-off valve are integrally formed as one refrigerant liquid pump unit. .
【請求項4】室外ユニットから送り出された冷媒を通過
させて室内ユニットに送る第1の蓄熱ユニットと、冷媒
液ポンプにより前記室内ユニットとの間で冷媒を循環さ
せる第2の蓄熱ユニットとを設け、前記各蓄熱ユニット
を前記室外ユニットと室内ユニットとの間に並列に接続
した蓄熱式空気調和機の運転制御方法であって、前記冷
媒液ポンプの運転を開始する前に必ず圧縮機を運転し、
前記第2の蓄熱熱交換器を通して過冷却された液冷媒を
冷媒液ポンプに供給することを特徴とする蓄熱式空気調
和機の運転制御方法。
4. A first heat storage unit for passing a refrigerant sent from an outdoor unit and sending it to an indoor unit, and a second heat storage unit for circulating a refrigerant between the indoor unit and a refrigerant liquid pump. An operation control method for a heat storage type air conditioner in which each of the heat storage units is connected in parallel between the outdoor unit and the indoor unit, wherein the compressor is always operated before starting the operation of the refrigerant liquid pump. ,
An operation control method for a regenerative air conditioner, wherein a subcooled liquid refrigerant is supplied to a refrigerant liquid pump through the second heat storage heat exchanger.
JP11089698A 1999-03-30 1999-03-30 Regenerative air conditioner and operation control therefor Pending JP2000283586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11089698A JP2000283586A (en) 1999-03-30 1999-03-30 Regenerative air conditioner and operation control therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11089698A JP2000283586A (en) 1999-03-30 1999-03-30 Regenerative air conditioner and operation control therefor

Publications (1)

Publication Number Publication Date
JP2000283586A true JP2000283586A (en) 2000-10-13

Family

ID=13978000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11089698A Pending JP2000283586A (en) 1999-03-30 1999-03-30 Regenerative air conditioner and operation control therefor

Country Status (1)

Country Link
JP (1) JP2000283586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112734A (en) * 2004-10-15 2006-04-27 Daikin Ind Ltd Storage-type heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112734A (en) * 2004-10-15 2006-04-27 Daikin Ind Ltd Storage-type heat exchanger

Similar Documents

Publication Publication Date Title
JP2000274859A (en) Refrigerator
CN110579036A (en) Multi-split cold and hot water system and control method thereof
JP2001263848A (en) Air conditioner
WO1990002300A1 (en) Heat pump for heating or cooling confined spaces, and also for heating tap water
JP2000283586A (en) Regenerative air conditioner and operation control therefor
KR100643689B1 (en) Heat pump air-conditioner
JP3583792B2 (en) Hot water supply / air conditioning system
JPH09159232A (en) Controlling method for ice storage type water chiller
JP3744763B2 (en) Air conditioner
JP3276013B2 (en) Thermal storage system
JP3605085B2 (en) Air conditioner
JPS59229118A (en) Operation controller for air conditioner
JPH0960991A (en) Air-conditioner and operation method thereof
JP2001336852A (en) Air conditioner
JP2735900B2 (en) Air conditioner
JPH1089795A (en) Heat pump system
JP2001074331A (en) Outdoor unit of air conditioner, and air conditioning system using the same
JP2001235249A (en) Air conditioner
JP2001235250A (en) Air conditioner
JPH07208824A (en) Controller for multi-room air conditioner
JP3241203B2 (en) Ice storage type air conditioner
JPH0123089Y2 (en)
JPH11325613A (en) Regenerative refrigerator
CN110762662A (en) CO (carbon monoxide)2Heat pump system
JPH0735422A (en) Refrigerating cycle