JP2005241145A - Heat exchanger and solid phase separating method for heat exchanger - Google Patents

Heat exchanger and solid phase separating method for heat exchanger Download PDF

Info

Publication number
JP2005241145A
JP2005241145A JP2004052222A JP2004052222A JP2005241145A JP 2005241145 A JP2005241145 A JP 2005241145A JP 2004052222 A JP2004052222 A JP 2004052222A JP 2004052222 A JP2004052222 A JP 2004052222A JP 2005241145 A JP2005241145 A JP 2005241145A
Authority
JP
Japan
Prior art keywords
medium
heat
solid phase
collapsible tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004052222A
Other languages
Japanese (ja)
Other versions
JP2005241145A5 (en
Inventor
Hiroshi Kishimoto
啓 岸本
Kanetoshi Hayashi
謙年 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2004052222A priority Critical patent/JP2005241145A/en
Publication of JP2005241145A publication Critical patent/JP2005241145A/en
Publication of JP2005241145A5 publication Critical patent/JP2005241145A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of preventing the impairing of heat transfer property caused by the attachment of a solid phase of a heat storage substance to a surface of a heat transfer face. <P>SOLUTION: This heat exchanger comprises a medium A capable of changing its phase from liquid phase to solid phase or from solid phase to liquid phase, a medium B for exchanging the heat with the medium A, and the heat transfer face 2c (outer peripheral face of collapsible tube 2) mounted between the medium A and the medium B and kept into contact with the medium A. Whereby the heat transfer face 2c can be deformed to separate the solid phase of the medium A attached to the heat transfer face 2c. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、媒体Aと媒体Bとで熱交換を行う熱交換装置に関し、特に媒体Aとして液相から固相へ又は固相から液相へ相変化する蓄熱物質を用いた熱交換装置、及び熱交換装置の固相剥離方法に関する。   The present invention relates to a heat exchange device that performs heat exchange between a medium A and a medium B, and in particular, a heat exchange device that uses a heat storage material that changes phase from a liquid phase to a solid phase or from a solid phase to a liquid phase as the medium A, and The present invention relates to a solid phase peeling method of a heat exchange device.

蓄熱物質が相変化するときに生じる潜熱を利用した熱交換装置として、潜熱蓄熱器が知られている。潜熱蓄熱器は、温度に応じて液相から固相へ又は固相から液相へ変化しうる蓄熱物質と、この蓄熱物質に接触する伝熱面を有する熱交換部と、熱交換部の内部を流れ、蓄熱物質と熱交換を行う媒体とを備える。   A latent heat regenerator is known as a heat exchange device using latent heat generated when a heat storage material undergoes phase change. The latent heat accumulator is composed of a heat storage material that can change from a liquid phase to a solid phase or from a solid phase to a liquid phase according to temperature, a heat exchange unit that has a heat transfer surface in contact with the heat storage material, and an interior of the heat exchange unit. And a medium for performing heat exchange with the heat storage material.

潜熱蓄熱器では、融点が高温での蓄熱の場合、熱交換部に蓄熱物質の融点よりも温度が高い媒体を流入させ、媒体から蓄熱物質へ伝熱面を介して伝熱し、これにより蓄熱物質を固相から液相へ相変化させる。一方、放熱の場合、熱交換部に蓄熱物質の融点よりも温度が低い媒体を流入させ、蓄熱物質から媒体へ伝熱面を介して熱を伝導させ、これにより蓄熱物質を液相から固相へ相変化させる。   In the case of heat storage with a high melting point, in the latent heat accumulator, a medium having a temperature higher than the melting point of the heat storage material is flowed into the heat exchange part, and heat is transferred from the medium to the heat storage material through the heat transfer surface, thereby the heat storage material. Is changed from a solid phase to a liquid phase. On the other hand, in the case of heat dissipation, a medium having a temperature lower than the melting point of the heat storage material is allowed to flow into the heat exchanging part, and heat is transferred from the heat storage material to the medium through the heat transfer surface, thereby transferring the heat storage material from the liquid phase to the solid phase. Change the phase.

しかしながら、特に放熱の場合、伝熱面に接触する部分の蓄熱物質が冷えることになるので、伝熱面に蓄熱物質の固相が付着する。この固相は液相よりも一般的に熱伝導率が悪いので、あたかも断熱材のような役割をし、この結果、蓄熱物質から媒体への伝熱性が悪くなり、熱をなかなか取り出せないという問題が生じていた。   However, particularly in the case of heat dissipation, the heat storage material in the portion in contact with the heat transfer surface is cooled, so that the solid phase of the heat storage material adheres to the heat transfer surface. Since this solid phase generally has a lower thermal conductivity than the liquid phase, it acts like a heat insulator, resulting in poor heat transfer from the heat storage material to the medium, making it difficult to extract heat. Has occurred.

このような熱応答性の悪さを解消するために、熱媒体流路を蛇行させたり、熱交換部としての鉄管にフィンを設けて伝熱面の面積を増やしたりすることが行われていた(例えば特許文献1、図10参照)。   In order to eliminate such poor thermal responsiveness, it has been performed to meander the heat medium flow path or to increase the area of the heat transfer surface by providing fins on the iron pipe as the heat exchange part ( For example, see Patent Document 1 and FIG.

特開2003−240465号公報JP 2003-240465 A

しかしながら、鉄管にフィンを設ける技術では、蓄熱物質が収容される蓄熱槽の容積が減るだけでなく、フィンにも蓄熱物質の固相が付着することには変わりない。この技術では、伝熱面に蓄熱物質の固相が付着してしまい、伝熱性が悪くなってしまうという根本的な問題を解決することができない。   However, in the technique of providing fins on the iron pipe, not only the volume of the heat storage tank in which the heat storage material is stored is reduced, but also the solid phase of the heat storage material is attached to the fins. This technique cannot solve the fundamental problem that the solid phase of the heat storage material adheres to the heat transfer surface, resulting in poor heat transfer.

そこで、本発明は、伝熱面の表面に蓄熱物質の固相が付着してしまい、伝熱性が悪くなるのを防止することができる熱交換装置を提供することを目的とする。   Then, an object of this invention is to provide the heat exchange apparatus which can prevent that the solid phase of a thermal storage substance adheres to the surface of a heat-transfer surface, and heat transfer property worsens.

上記課題を解決するために、本発明は、伝熱面を変形させてやることによって、伝熱面に付着した固相を剥ぎ取れるようにし、これにより熱交換装置の伝熱性を向上させた。   In order to solve the above-described problems, the present invention is configured to peel the solid phase adhering to the heat transfer surface by deforming the heat transfer surface, thereby improving the heat transfer performance of the heat exchange device.

具体的には請求項1に記載の発明は、液相から固相へ又は固相から液相へ相変化しうる媒体Aと、前記媒体Aと熱交換を行う媒体Bと、前記媒体Aと前記媒体Bとの間に設けられる伝熱面とを備え、前記伝熱面に付着した前記媒体Aの固相を剥がせるように、前記伝熱面が変形できることを特徴とする熱交換装置により、上述した課題を解決する。   Specifically, the invention described in claim 1 includes a medium A that can change phase from a liquid phase to a solid phase or from a solid phase to a liquid phase, a medium B that exchanges heat with the medium A, and the medium A. A heat transfer surface provided between the medium B, and the heat transfer surface can be deformed so that the solid phase of the medium A attached to the heat transfer surface can be peeled off. The above-described problems are solved.

請求項2に記載の発明は、請求項1に記載の熱交換装置において、前記伝熱面は、前記媒体Bがその内部を流れるチューブの外周面であり、前記媒体Bが前記チューブの内部を流れることによって、前記チューブが変形することを特徴とする。   According to a second aspect of the present invention, in the heat exchange device according to the first aspect, the heat transfer surface is an outer peripheral surface of a tube through which the medium B flows, and the medium B passes through the inside of the tube. The tube is deformed by flowing.

請求項3に記載の発明は、液相から固相へ又は固相から液相へ相変化しうる媒体Aと、前記媒体Aと熱交換を行う媒体Bと、前記媒体Bがその内部を流れ、伝熱面としての外周面が前記媒体Aに接触するチューブとを備え、前記伝熱面に付着した前記媒体Aの固相を剥がせるように、前記媒体Bが前記チューブの内部を流れることによって、前記チューブが変形することを特徴とする熱交換装置により、上述した課題を解決する。   The invention according to claim 3 is a medium A that can change phase from a liquid phase to a solid phase or from a solid phase to a liquid phase, a medium B that exchanges heat with the medium A, and the medium B flows through the inside. The outer peripheral surface as a heat transfer surface is provided with a tube in contact with the medium A, and the medium B flows through the tube so that the solid phase of the medium A attached to the heat transfer surface can be peeled off. Thus, the above-described problem is solved by a heat exchange device in which the tube is deformed.

請求項4に記載の発明は、液相から固相へ又は固相から液相へ相変化しうる媒体Aと、媒体Bとで、熱交換を行う際、前記媒体Aに接触する伝熱面に付着した前記媒体Aの固相を剥離する熱交換装置の固相剥離方法において、前記媒体Aに接触する伝熱面を変形させて、前記伝熱面に付着した前記媒体Aの固相を剥がすことを特徴とする熱交換装置の固相剥離方法により、上述した課題を解決する。   The invention according to claim 4 is a heat transfer surface that comes into contact with the medium A when heat exchange is performed between the medium A and the medium B that can change from a liquid phase to a solid phase or from a solid phase to a liquid phase. In the solid phase peeling method of the heat exchange apparatus for peeling the solid phase of the medium A attached to the medium, the heat transfer surface in contact with the medium A is deformed to change the solid phase of the medium A attached to the heat transfer surface. The above-mentioned problem is solved by a solid phase peeling method of a heat exchange device characterized by peeling.

この発明によれば、熱交換装置の伝熱面に付着する固相を剥ぎ取ることができるので、伝熱性を向上させることができる。   According to this invention, since the solid phase adhering to the heat transfer surface of the heat exchange device can be peeled off, the heat transfer property can be improved.

以下添付図面に基づいて本発明の熱交換装置を説明する。図1は熱交換装置の原理図を示す。蓄熱槽1には、液相から固相へ又は固相から液相へ相変化しうる媒体Aとして、蓄熱物質Aが充填される。蓄熱槽1の内部には、外周面2cが伝熱面となるコラプシブルチューブ2が通っている。コラプシブルチューブ2の内部には、蓄熱物質Aと熱交換を行う媒体Bとして、流体Bが軸線方向に流れる。   The heat exchange apparatus of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a principle diagram of a heat exchange device. The heat storage tank 1 is filled with a heat storage material A as a medium A that can change phase from a liquid phase to a solid phase or from a solid phase to a liquid phase. A collapsible tube 2 whose outer peripheral surface 2c serves as a heat transfer surface passes through the heat storage tank 1. Inside the collapsible tube 2, a fluid B flows in the axial direction as a medium B that exchanges heat with the heat storage material A.

このような熱交換装置は、蓄熱物質Aが相変化(液体・固体)するときに生じる潜熱を利用するもので潜熱蓄熱器とも呼ばれる。蓄熱方法には、例えば水の潜熱を利用した氷蓄熱や、例えば融点80℃の蓄熱物質の潜熱を利用した温熱蓄熱が考えられる。氷蓄熱の場合、蓄熱物質Aには水が用いられ、コラプシブルチューブ2の内部を流れる流体Bには、例えば−20℃まで凍らないクーラント等が用いられる。また、上記温熱蓄熱の場合、蓄熱物質Aには融点80℃の物質が用いられ、流体Bには例えば水が用いられる。   Such a heat exchange device uses latent heat generated when the heat storage material A undergoes a phase change (liquid / solid) and is also called a latent heat storage device. As the heat storage method, for example, ice heat storage using latent heat of water, or heat storage using latent heat of a heat storage material having a melting point of 80 ° C., for example, can be considered. In the case of ice heat storage, water is used as the heat storage material A, and a coolant that does not freeze up to −20 ° C., for example, is used as the fluid B flowing inside the collapsible tube 2. In the case of the thermal storage, the heat storage material A is a material having a melting point of 80 ° C., and the fluid B is water, for example.

蓄熱の場合、蓄熱物質Aの融点よりも温度が高い流体Bをコラプシブルチューブ2の内部に流入させる。これにより、流体Bから蓄熱物質Aへコラプシブルチューブ2を介して熱が伝導し、蓄熱物質Aが固相から液相へ相変化する。一方、放熱の場合、蓄熱物質Aの融点よりも温度が低い流体Bをコラプシブルチューブ2の内部に流入させる。これにより、蓄熱物質Aから流体Bへコラプシブルチューブ2を介して熱が伝導し、蓄熱物質Aが液相から固相へ相変化する。   In the case of heat storage, a fluid B having a temperature higher than the melting point of the heat storage material A is caused to flow into the collapsible tube 2. As a result, heat is conducted from the fluid B to the heat storage material A through the collapsible tube 2, and the heat storage material A changes from a solid phase to a liquid phase. On the other hand, in the case of heat dissipation, a fluid B having a temperature lower than the melting point of the heat storage material A is caused to flow into the collapsible tube 2. Thereby, heat is conducted from the heat storage material A to the fluid B through the collapsible tube 2, and the heat storage material A changes from a liquid phase to a solid phase.

なおこの原理図では、蓄熱物質Aは蓄熱槽1の内部に貯蔵され、流れていないが、蓄熱物質Aを流れるようにしてもよい。この場合、蓄熱槽1には蓄熱物質Aの入口と出口が設けられる。液体状の蓄熱物質Aが蓄熱槽1の入口から入り、固相と液相が混ざったスラリー状の蓄熱物質Aが蓄熱槽1の出口から出ることになる。   In this principle diagram, the heat storage material A is stored inside the heat storage tank 1 and does not flow, but the heat storage material A may flow. In this case, the heat storage tank 1 is provided with an inlet and an outlet for the heat storage material A. The liquid heat storage material A enters from the inlet of the heat storage tank 1, and the slurry heat storage material A mixed with the solid phase and the liquid phase exits from the outlet of the heat storage tank 1.

放熱の場合、コラプシブルチューブ2の外周面2cには、蓄熱物質Aが相変化した固相が付着する。本実施形態では、コラプシブルチューブ2の外周面2cに付着した固相を、コラプシブルチューブ2を変形させることによって剥離することを特徴にしている。   In the case of heat dissipation, a solid phase in which the heat storage material A has changed in phase adheres to the outer peripheral surface 2 c of the collapsible tube 2. The present embodiment is characterized in that the solid phase attached to the outer peripheral surface 2 c of the collapsible tube 2 is peeled off by deforming the collapsible tube 2.

コラプシブルチューブ2について説明する。コラプシブルチューブ2は、生体における静脈、気道、尿道などのように弾性的性質を有する管であり、管内圧に対して管外圧が相対的に高くなると容易に変形して潰れた形状となる。   The collapsible tube 2 will be described. The collapsible tube 2 is a tube having elastic properties, such as a vein, airway, urethra, etc. in a living body, and is easily deformed and crushed when the tube external pressure becomes relatively higher than the tube internal pressure.

図1に示されるように、コラプシブルチューブの上流側の圧力P1と下流側の圧力P2とで圧力差(P1>P2又はP1<P2)が生じると、コラプシブルチューブ2に部分的に膨らんだり、潰れたりする部分2a,2bが生じ、これら膨らんだり、潰れたりする部分2a,2bがコラプシブルチューブ2の軸線方向に伝播するようになる。コラプシブルチューブ2の上下流で圧力差が生じなくても、コラプシブルチューブ2の内部を流れる流体が脈動すると同様な現象が生じる。この現象は、コラプシブルチューブ2の内部を流れる流体と、コラプシブルチューブ2の変形が相互に干渉したコラプシブルチューブ2の自励振動とも呼ばれる。本実施形態では、このコラプシブルチューブ2の変形現象を利用して、コラプシブルチューブ2の外周面2cに付着した固相を剥がす。   As shown in FIG. 1, when a pressure difference (P1> P2 or P1 <P2) occurs between the pressure P1 on the upstream side of the collapsible tube and the pressure P2 on the downstream side, the collapsible tube 2 may partially expand. The parts 2 a and 2 b that are crushed are generated, and the parts 2 a and 2 b that are swelled and crushed propagate in the axial direction of the collapsible tube 2. Even if there is no pressure difference between the upstream and downstream of the collapsible tube 2, a similar phenomenon occurs when the fluid flowing inside the collapsible tube 2 pulsates. This phenomenon is also called self-excited vibration of the collapsible tube 2 in which the fluid flowing inside the collapsible tube 2 and the deformation of the collapsible tube 2 interfere with each other. In the present embodiment, the solid phase attached to the outer peripheral surface 2 c of the collapsible tube 2 is peeled off by utilizing the deformation phenomenon of the collapsible tube 2.

コラプシブルチューブ2の材質・肉厚・管径等には特に指定はなく、上下流の圧力差を与えてやることで潰れるものであればよい。コラプシブルチューブ2の材質には、樹脂系の弾性を有する材質、例えばシリコン等を用いることができる。   The material, thickness, pipe diameter, etc. of the collapsible tube 2 are not particularly specified as long as the collapsible tube 2 can be crushed by applying an upstream / downstream pressure difference. As the material of the collapsible tube 2, a resin-based material having elasticity such as silicon can be used.

図2は、本発明の第1の実施形態における熱交換装置を示す。蓄熱槽1には、蓄熱物質Aが充填されている。蓄熱槽1の内部を通過するコラプシブルチューブ2は、循環回路3の一部をなしている。循環回路3には、入力用三方弁4を介して流体の入力がされ、出力用三方弁5を介して流体の出力がされる。流体Bには、上記図1で説明したものと同様なものを用いる。   FIG. 2 shows a heat exchange device according to the first embodiment of the present invention. The heat storage tank 1 is filled with a heat storage material A. The collapsible tube 2 passing through the inside of the heat storage tank 1 forms a part of the circulation circuit 3. A fluid is input to the circulation circuit 3 via the input three-way valve 4 and a fluid is output via the output three-way valve 5. The fluid B is the same as that described in FIG.

循環回路3に組み込まれるポンプ6は、定常流れを発生する。ポンプによる定常流れによって、コラプシブルチューブ2の内部の流れの上流側と下流側との間には圧力差が生じる。一方、コラプシブルチューブ2の外圧は略一定である。コラプシブルチューブ2の内部の上下流の圧力差によって、コラプシブルチューブ2が部分的に膨らんだり、潰れたりする。このコラプシブルチューブ2の変形によって、コラプシブルチューブ2の表面に付着する固相が剥離される。   The pump 6 incorporated in the circulation circuit 3 generates a steady flow. Due to the steady flow by the pump, a pressure difference is generated between the upstream side and the downstream side of the flow inside the collapsible tube 2. On the other hand, the external pressure of the collapsible tube 2 is substantially constant. The collapsible tube 2 partially swells or collapses due to the pressure difference between the upstream and downstream inside the collapsible tube 2. Due to the deformation of the collapsible tube 2, the solid phase attached to the surface of the collapsible tube 2 is peeled off.

なお、ポンプ6とコラプシブルチューブ2との間に、弁などの流量調整機器7を配置してもよい。また、この図2において、ポンプ6、流量調整機器7をコラプシブルチューブ2の上流側に配置しているが、下流側に配置してもよい。   A flow rate adjusting device 7 such as a valve may be disposed between the pump 6 and the collapsible tube 2. In FIG. 2, the pump 6 and the flow rate adjusting device 7 are arranged on the upstream side of the collapsible tube 2, but may be arranged on the downstream side.

図3は、本発明の第2の実施形態における熱交換装置を示す。蓄熱槽1、蓄熱物質A、コラプシブルチューブ2、流体Bについては、上記第1の実施形態と同様な構成なので、同一の符号を附してその説明を省略する。この実施形態では、ポンプ6に脈動流を発生することができるポンプが用いられ、ポンプ6の脈動流を利用してコラプシブルチューブ2を変形させている。   FIG. 3 shows a heat exchange device according to the second embodiment of the present invention. About the thermal storage tank 1, the thermal storage substance A, the collapsible tube 2, and the fluid B, since it is the structure similar to the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted. In this embodiment, a pump capable of generating a pulsating flow is used for the pump 6, and the collapsible tube 2 is deformed using the pulsating flow of the pump 6.

なお、第2の実施形態における熱交換装置においても、ポンプ6とコラプシブルチューブ2との間に、弁などの流量調整機器7を配置してもよい。また、この図3において、ポンプ6、流量調整機器7をコラプシブルチューブ2の上流側に配置しているが、下流側に配置してもよい。   In the heat exchange apparatus according to the second embodiment, a flow rate adjusting device 7 such as a valve may be disposed between the pump 6 and the collapsible tube 2. Further, in FIG. 3, the pump 6 and the flow rate adjusting device 7 are arranged on the upstream side of the collapsible tube 2, but may be arranged on the downstream side.

図4は、本発明の第3の実施形態における熱交換装置を示す。蓄熱槽1、蓄熱物質A、コラプシブルチューブ2、流体B、ポンプ6については、上記第1の実施形態と同様な構成なので、同一の符号を附してその説明を省略する。この第3の実施形態では、コラプシブルチューブ2の固有振動数を利用してコラプシブルチューブ2を変形すべく、ポンプ6とコラプシブルチューブ2との間に分岐管8を設け、この分岐管8から流体に音波を導入している。   FIG. 4 shows a heat exchange device according to the third embodiment of the present invention. About the thermal storage tank 1, the thermal storage substance A, the collapsible tube 2, the fluid B, and the pump 6, since it is the same structure as the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted. In the third embodiment, a branch pipe 8 is provided between the pump 6 and the collapsible tube 2 in order to deform the collapsible tube 2 using the natural frequency of the collapsible tube 2. Sound waves are introduced into the fluid from

なお、第3の実施形態における熱交換装置においても、ポンプ6とコラプシブルチューブ2との間に、弁などの流量調整機器7を配置してもよい。また、この図4において、ポンプ6、流量調整機器7をコラプシブルチューブ2の上流側に配置しているが、下流側に配置してもよい。   In the heat exchange apparatus according to the third embodiment, a flow rate adjusting device 7 such as a valve may be disposed between the pump 6 and the collapsible tube 2. In FIG. 4, the pump 6 and the flow rate adjusting device 7 are arranged on the upstream side of the collapsible tube 2, but may be arranged on the downstream side.

図5は、本発明の第4の実施形態における熱交換装置を示す。蓄熱物質Aの固相と液相とで密度差(密度 固相>液相)がある場合、この実施形態のようにコラプシブルチューブ2を蓄熱槽1の上部に配置するのが望ましい。このように配置すると、コラプシブルチューブ2の下方に剥離した固相を溜めておく領域を大きくとることができるので、蓄熱効率が向上する。   FIG. 5 shows a heat exchange device according to a fourth embodiment of the present invention. When there is a density difference between the solid phase and the liquid phase of the heat storage material A (density solid phase> liquid phase), it is desirable to arrange the collapsible tube 2 at the top of the heat storage tank 1 as in this embodiment. When arranged in this way, the area for storing the solid phase peeled below the collapsible tube 2 can be made large, so that the heat storage efficiency is improved.

なお、第4の実施形態における熱交換装置においても、ポンプ6とコラプシブルチューブ2との間に、弁などの流量調整機器7を配置してもよい。また、この図5において、ポンプ6、流量調整機器7をコラプシブルチューブ2の上流側に配置しているが、下流側に配置してもよい。   In the heat exchange device according to the fourth embodiment, a flow rate adjusting device 7 such as a valve may be disposed between the pump 6 and the collapsible tube 2. In FIG. 5, the pump 6 and the flow rate adjusting device 7 are arranged on the upstream side of the collapsible tube 2, but may be arranged on the downstream side.

図6は、本発明の第5の実施形態における熱交換装置を示す。蓄熱物質Aの固相と液相とで密度差(密度 固相<液相)がある場合、この実施形態のようにコラプシブルチューブ2を蓄熱槽1の下部に配置するのが望ましい。このように配置すると、コラプシブルチューブ2の上方に剥離した固相を溜めておく領域を大きくとることができるので、蓄熱効率が向上する。   FIG. 6 shows a heat exchange device according to the fifth embodiment of the present invention. When there is a density difference between the solid phase and the liquid phase of the heat storage material A (density solid phase <liquid phase), it is desirable to arrange the collapsible tube 2 at the lower part of the heat storage tank 1 as in this embodiment. If arranged in this way, the area for storing the separated solid phase above the collapsible tube 2 can be made large, so that the heat storage efficiency is improved.

なお、第5の実施形態における熱交換装置においても、ポンプ6とコラプシブルチューブ2との間に、弁などの流量調整機器7を配置してもよい。また、この図6において、ポンプ6、流量調整機器7をコラプシブルチューブ2の上流側に配置しているが、下流側に配置してもよい。   In the heat exchange apparatus according to the fifth embodiment, a flow rate adjusting device 7 such as a valve may be disposed between the pump 6 and the collapsible tube 2. In FIG. 6, the pump 6 and the flow rate adjusting device 7 are arranged on the upstream side of the collapsible tube 2, but may be arranged on the downstream side.

図7は、本発明の第6の実施形態における熱交換装置を示す。この実施形態では、コラプシブルチューブ2の外側を覆う容器に流体の入口9と出口10が設けられ、コラプシブルチューブ2の外部をも流体が流れるようになっている。そして、実施形態としては、コラプシブルチューブ2の外部に流体Bを流し、コラプシブルチューブ2の内部に蓄熱物質Aを流す。   FIG. 7 shows a heat exchange device according to the sixth embodiment of the present invention. In this embodiment, a fluid inlet 9 and an outlet 10 are provided in a container covering the outside of the collapsible tube 2 so that the fluid flows also outside the collapsible tube 2. As an embodiment, the fluid B is allowed to flow outside the collapsible tube 2, and the heat storage material A is allowed to flow inside the collapsible tube 2.

また、この反対に、コラプシブルチューブ2の外部に蓄熱物質Aを流し、コラプシブルチューブ2の内部に流体Bを流してもよい。この場合、液体状の蓄熱物質Aが容器の入口9から入り、固相と液相が混ざったスラリー状の蓄熱物質Aが容器の出口10から出る。コラプシブルチューブは、上下流の圧力差によって変形する。   On the contrary, the heat storage material A may be flowed outside the collapsible tube 2 and the fluid B may be flowed inside the collapsible tube 2. In this case, the liquid heat storage material A enters from the inlet 9 of the container, and the slurry heat storage material A in which the solid phase and the liquid phase are mixed exits from the outlet 10 of the container. The collapsible tube is deformed by the pressure difference between the upstream and downstream.

なお、第6の実施形態における熱交換装置においても、ポンプ6とコラプシブルチューブ2との間に、弁などの流量調整機器7を配置してもよい。また、この図7において、ポンプ6、流量調整機器7をコラプシブルチューブ2の上流側に配置しているが、下流側に配置してもよい。   In the heat exchange apparatus according to the sixth embodiment, a flow rate adjusting device 7 such as a valve may be disposed between the pump 6 and the collapsible tube 2. In FIG. 7, the pump 6 and the flow rate adjusting device 7 are arranged on the upstream side of the collapsible tube 2, but may be arranged on the downstream side.

図8は、本発明の第7の実施形態における熱交換装置を示す。この熱交換装置は、熱交換をより早く行うためのものであり、蓄熱槽1の内部には、コラプシブルチューブ2が平行に複数本設置される。複数本のコラプシブルチューブ2は、循環回路中において、並列に接続される。すなわち循環回路は、コラプシブルチューブ2の両端との接続箇所近傍において、複数に分岐し、分岐管はそれぞれコラプシブルチューブ2の端部に接続されている。この実施形態ように、コラプシブルチューブ2の本数・配置は、熱交換の程度に応じてさまざまに設定することができる。   FIG. 8 shows a heat exchange apparatus according to the seventh embodiment of the present invention. This heat exchange device is for performing heat exchange more quickly, and a plurality of collapsible tubes 2 are installed in parallel inside the heat storage tank 1. The plurality of collapsible tubes 2 are connected in parallel in the circulation circuit. In other words, the circulation circuit is branched into a plurality of portions in the vicinity of the connection points with both ends of the collapsible tube 2, and the branch pipes are respectively connected to the end portions of the collapsible tube 2. As in this embodiment, the number and arrangement of the collapsible tubes 2 can be variously set according to the degree of heat exchange.

なお、第7の実施形態における熱交換装置においても、ポンプ6とコラプシブルチューブ2との間に、弁などの流量調整機器7を配置してもよい。また、この図8において、ポンプ6、流量調整機器7をコラプシブルチューブ2の上流側に配置しているが、下流側に配置してもよい。さらにコラプシブルチューブは垂直方向に向けられているが、水平方向に向けられてもよい。   In the heat exchange apparatus according to the seventh embodiment, a flow rate adjusting device 7 such as a valve may be disposed between the pump 6 and the collapsible tube 2. Further, in FIG. 8, the pump 6 and the flow rate adjusting device 7 are arranged on the upstream side of the collapsible tube 2, but may be arranged on the downstream side. Further, the collapsible tube is oriented in the vertical direction, but may be oriented in the horizontal direction.

本発明は上記実施形態に限られることなく、様々に変更できる。例えば上下流の圧力差によって変形できるものであれば、チューブはコラプシキブルチューブに限られるものではない。また、伝熱面は円筒形状(コラプシブルチューブの外周面2c)に形成されなくて、例えば平面であってもよい。さらに、伝熱面をピエゾアクチュエータ等の駆動機構を用いて変形させてもよい。   The present invention is not limited to the above embodiment and can be variously modified. For example, the tube is not limited to a collapsible tube as long as it can be deformed by a pressure difference between upstream and downstream. Further, the heat transfer surface is not formed in a cylindrical shape (the outer peripheral surface 2c of the collapsible tube), and may be a flat surface, for example. Further, the heat transfer surface may be deformed using a drive mechanism such as a piezo actuator.

熱交換装置の原理図。The principle diagram of a heat exchange device. 本発明の第1の実施形態における熱交換装置を示すシステム図。The system diagram which shows the heat exchange apparatus in the 1st Embodiment of this invention. 本発明の第2の実施形態における熱交換装置を示すシステム図。The system diagram which shows the heat exchange apparatus in the 2nd Embodiment of this invention. 本発明の第3の実施形態における熱交換装置を示すシステム図。The system diagram which shows the heat exchange apparatus in the 3rd Embodiment of this invention. 本発明の第4の実施形態における熱交換装置を示すシステム図。The system diagram which shows the heat exchange apparatus in the 4th Embodiment of this invention. 本発明の第5の実施形態における熱交換装置を示すシステム図。The system diagram which shows the heat exchange apparatus in the 5th Embodiment of this invention. 本発明の第6の実施形態における熱交換装置を示すシステム図。The system diagram which shows the heat exchange apparatus in the 6th Embodiment of this invention. 本発明の第7の実施形態における熱交換装置を示すシステム図。The system diagram which shows the heat exchange apparatus in the 7th Embodiment of this invention.

符号の説明Explanation of symbols

2…コラプシブルチューブ
A…蓄熱物質(媒体A)
B…流体(媒体B)
2. Collapsible tube A ... Thermal storage material (medium A)
B ... Fluid (medium B)

Claims (4)

液相から固相へ又は固相から液相へ相変化しうる媒体Aと、前記媒体Aと熱交換を行う媒体Bと、前記媒体Aと前記媒体Bとの間に設けられる伝熱面とを備え、
前記伝熱面に付着した前記媒体Aの固相を剥がせるように、前記伝熱面が変形できることを特徴とする熱交換装置。
A medium A that can change phase from a liquid phase to a solid phase or from a solid phase to a liquid phase; a medium B that exchanges heat with the medium A; and a heat transfer surface provided between the medium A and the medium B. With
The heat exchange device, wherein the heat transfer surface can be deformed so that the solid phase of the medium A adhering to the heat transfer surface can be peeled off.
前記伝熱面は、前記媒体Bがその内部を流れるチューブの外周面であり、
前記媒体Bが前記チューブの内部を流れることによって、前記チューブが変形することを特徴とする請求項1に記載の熱交換装置。
The heat transfer surface is an outer peripheral surface of a tube through which the medium B flows,
The heat exchange apparatus according to claim 1, wherein the tube is deformed when the medium B flows inside the tube.
液相から固相へ又は固相から液相へ相変化しうる媒体Aと、前記媒体Aと熱交換を行う媒体Bと、前記媒体Bがその内部を流れ、伝熱面としての外周面が前記媒体Aに接触するチューブとを備え、
前記伝熱面に付着した前記媒体Aの固相を剥がせるように、前記媒体Bが前記チューブの内部を流れることによって、前記チューブが変形することを特徴とする熱交換装置。
A medium A that can change phase from a liquid phase to a solid phase or from a solid phase to a liquid phase, a medium B that exchanges heat with the medium A, the medium B flows through the inside, and an outer peripheral surface serving as a heat transfer surface A tube in contact with the medium A,
The heat exchange apparatus, wherein the tube is deformed by flowing the medium B inside the tube so that the solid phase of the medium A attached to the heat transfer surface can be peeled off.
液相から固相へ又は固相から液相へ相変化しうる媒体Aと、媒体Bとで、熱交換を行う際、
前記媒体Aに接触する伝熱面に付着した前記媒体Aの固相を剥離する熱交換装置の固相剥離方法において、
前記媒体Aに接触する伝熱面を変形させて、前記伝熱面に付着した前記媒体Aの固相を剥がすことを特徴とする熱交換装置の固相剥離方法。
When performing heat exchange between the medium A and the medium B that can change phase from the liquid phase to the solid phase or from the solid phase to the liquid phase,
In the solid phase peeling method of the heat exchange apparatus for peeling the solid phase of the medium A attached to the heat transfer surface in contact with the medium A,
A method for solid phase separation of a heat exchange device, wherein the heat transfer surface contacting the medium A is deformed, and the solid phase of the medium A adhering to the heat transfer surface is peeled off.
JP2004052222A 2004-02-26 2004-02-26 Heat exchanger and solid phase separating method for heat exchanger Withdrawn JP2005241145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052222A JP2005241145A (en) 2004-02-26 2004-02-26 Heat exchanger and solid phase separating method for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052222A JP2005241145A (en) 2004-02-26 2004-02-26 Heat exchanger and solid phase separating method for heat exchanger

Publications (2)

Publication Number Publication Date
JP2005241145A true JP2005241145A (en) 2005-09-08
JP2005241145A5 JP2005241145A5 (en) 2006-03-09

Family

ID=35023059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052222A Withdrawn JP2005241145A (en) 2004-02-26 2004-02-26 Heat exchanger and solid phase separating method for heat exchanger

Country Status (1)

Country Link
JP (1) JP2005241145A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243141A (en) * 2009-03-18 2010-10-28 Nisso Engineering Co Ltd Method and device of making slurry ice
JP2013195053A (en) * 2012-03-21 2013-09-30 Nakagawa Ene Service Kk Flexible tube heat recovery device for washing drainage
GB2515069A (en) * 2013-06-13 2014-12-17 Jer Innovations Ltd Heat exchange apparatus
WO2018174735A3 (en) * 2017-03-22 2018-11-01 Osemlak Zenon Flexible heat exchanger channel
JP2020165639A (en) * 2019-03-29 2020-10-08 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. Heating and/or cooling system and method for reducing or removing solidified phase change material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243141A (en) * 2009-03-18 2010-10-28 Nisso Engineering Co Ltd Method and device of making slurry ice
JP2013195053A (en) * 2012-03-21 2013-09-30 Nakagawa Ene Service Kk Flexible tube heat recovery device for washing drainage
GB2515069A (en) * 2013-06-13 2014-12-17 Jer Innovations Ltd Heat exchange apparatus
GB2515069B (en) * 2013-06-13 2017-03-22 Jer Innovations Ltd Heat exchange apparatus
WO2018174735A3 (en) * 2017-03-22 2018-11-01 Osemlak Zenon Flexible heat exchanger channel
JP2020165639A (en) * 2019-03-29 2020-10-08 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. Heating and/or cooling system and method for reducing or removing solidified phase change material
US11499783B2 (en) 2019-03-29 2022-11-15 Mitsubishi Electric Corporation Heating and/or cooling system and method for reducing or removing solidified phase change material

Similar Documents

Publication Publication Date Title
US8915293B2 (en) Heat exchanger
JP5688416B2 (en) Gas hydrate production equipment
JP4517248B1 (en) Heat exchanger
JP2005241145A (en) Heat exchanger and solid phase separating method for heat exchanger
JP2009210232A (en) Heat exchanger
JP2014511989A (en) Latent heat storage device and operation method of latent heat storage device
JP2007271194A (en) Heat exchanger
JP2010019481A (en) Heat storage apparatus
JP2009257608A (en) Fin tube, heat exchanger, and manufacturing method of fin tube
JP2847343B2 (en) Closed system temperature controller
JP2006216906A (en) Liquid-cooing system and electronic device having the same
CN204630449U (en) The heat exchanger tube that a kind of finned tube and varying cross-section duct combine
JP2008057908A (en) Heat exchanger
JP2006078017A (en) Tube type heat exchanger and water heater with this
JP4690836B2 (en) Piping structure that mixes high and low temperature fluids
JP5169157B2 (en) Hot water system
JP2005077026A (en) Heat exchanger
JPS60232496A (en) Heat exchanger
JP2005241146A (en) Heat storage system and method
JP4567626B2 (en) Glass-lined multi-tube heat exchanger
US20110155357A1 (en) Heat exchanger
JP4805977B2 (en) How to use glass-lined multi-tube heat exchangers
JP2006112734A (en) Storage-type heat exchanger
JPH11257166A (en) Exhaust gas recirculation system
JP2010216666A (en) Heat accumulator and water heater equipped with the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070713