JP2006112402A - Nuclear power plant and method of operation control for the same - Google Patents

Nuclear power plant and method of operation control for the same Download PDF

Info

Publication number
JP2006112402A
JP2006112402A JP2004303356A JP2004303356A JP2006112402A JP 2006112402 A JP2006112402 A JP 2006112402A JP 2004303356 A JP2004303356 A JP 2004303356A JP 2004303356 A JP2004303356 A JP 2004303356A JP 2006112402 A JP2006112402 A JP 2006112402A
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
valve
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004303356A
Other languages
Japanese (ja)
Other versions
JP4575109B2 (en
Inventor
Masato Murakami
正人 村上
Tatsuya Okihara
達也 沖原
Masahito Sugiura
将人 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004303356A priority Critical patent/JP4575109B2/en
Publication of JP2006112402A publication Critical patent/JP2006112402A/en
Application granted granted Critical
Publication of JP4575109B2 publication Critical patent/JP4575109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nuclear power plant easily adjustable to meet the requirement for maintaining the output of a nuclear reactor constant even if the pressure of steam from a nuclear reactor pressure vessel varies up and down from a rated pressure by reducing an energy loss by utilizing a steam increasing/decreasing valve with less pressure loss and a method of operation control for the nuclear power plant. <P>SOLUTION: In this nuclear power plant, a pressure header 27, a main steam stop valve 29, and the steam increasing/decreasing valve 30 are interposed in a main steam pipe 25 connecting the nuclear reactor pressure vessel 20 to a steam turbine, and the flow of the steam from the nuclear reactor pressure vessel is fed to the steam turbine after being controlled by the steam increasing/decreasing valve. A power is generated in the steam turbine, turbine exhaust gases are condensed in a condenser 24 and returned to the nuclear reactor pressure vessel. Then, the pressure header is connected to the condenser through a turbine bypass pipe 32 for escaping the steam from the nuclear reactor pressure vessel to the condenser. The nuclear power plant also comprises a steam pressure regulating device 34 having an input side connected to the main steam pipe between the downstream side of the pressure header and the upstream side of the steam increasing/decreasing valve and regulating the pressure of the steam from the nuclear reactor pressure vessel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、原子炉圧力容器から蒸気タービンに供給される蒸気の圧力を一定に調整し、原子炉出力を一定に維持させるに好適な原子炉発電プラントおよびその運転制御方法に関する。   The present invention relates to a nuclear power plant suitable for adjusting the pressure of steam supplied from a reactor pressure vessel to a steam turbine to maintain a constant reactor output and an operation control method thereof.

沸騰水型原子力発電プラントでは、原子炉圧力容器の炉心内圧力が低下すると、炉水中ボイドの割合が増加して中性子を吸収するため、核分裂が抑制される。これに伴う原子炉出力の低下がないように調整するため、原子炉圧力容器からの蒸気を蒸気タービンに供給する際、蒸気圧力調整が行われており、その構成として図9に示すものがある。   In a boiling water nuclear power plant, when the pressure in the core of the reactor pressure vessel decreases, the proportion of voids in the reactor water increases and neutrons are absorbed, so that fission is suppressed. In order to adjust the reactor power so that there is no decrease in the reactor power, the steam pressure is adjusted when the steam from the reactor pressure vessel is supplied to the steam turbine. .

原子力発電プラントは、原子炉圧力容器1、高圧タービン2、組み合せ中間弁3、低圧タービン4、復水器5を備え、原子炉圧力容器1から発生した蒸気を高圧タービン2で膨張仕事して動力を発生させ、膨張仕事を終えた高圧タービン排気を組み合せ中間弁3を介して低圧タービン4に供給し、ここでも膨張仕事をして動力を発生させ、低圧タービン4で膨張仕事を終えた低圧タービン排気を復水器5で凝縮させ、復水・給水として原子炉圧力容器1に再び戻している。   The nuclear power plant includes a reactor pressure vessel 1, a high-pressure turbine 2, a combined intermediate valve 3, a low-pressure turbine 4, and a condenser 5. The steam generated from the reactor pressure vessel 1 is expanded by the high-pressure turbine 2 and powered. The high-pressure turbine exhaust that has completed the expansion work is supplied to the low-pressure turbine 4 through the combined intermediate valve 3, and the expansion work is also generated here to generate power, and the low-pressure turbine that has completed the expansion work by the low-pressure turbine 4. The exhaust gas is condensed by the condenser 5 and returned again to the reactor pressure vessel 1 as condensate / feed water.

また、原子力発電プラントは、原子炉圧力容器1と高圧タービン2とを、例えば、4本の主蒸気管6および主蒸気リード管7で接続させている。   In the nuclear power plant, the reactor pressure vessel 1 and the high-pressure turbine 2 are connected by, for example, four main steam pipes 6 and main steam reed pipes 7.

主蒸気管6および主蒸気リード管7には、管本数共用の圧力ヘッダ8のほかに、管本数に対応させて圧力計9、主蒸気止め弁10、蒸気加減弁11を備え、原子炉圧力容器1から供給された蒸気を一旦圧力ヘッダ8に集めた後、蒸気加減弁11で流量調整し、高圧タービン2に供給している。   The main steam pipe 6 and the main steam reed pipe 7 are provided with a pressure gauge 9, a main steam stop valve 10, and a steam control valve 11 corresponding to the number of pipes, in addition to the pressure header 8 that shares the number of pipes. After the steam supplied from the container 1 is once collected in the pressure header 8, the flow rate is adjusted by the steam control valve 11 and supplied to the high-pressure turbine 2.

また、圧力ヘッダ8は、途中にタービンバイパス弁12を介装させて復水器5に接続するタービンバイパス管14を備え、負荷遮断等緊急事象が発生したとき、主蒸気止め弁10または蒸気加減弁11を閉弁させ、原子炉圧力容器1から発生した蒸気を、直接、復水器13に流し、事故復帰までの間、原子炉圧力容器1を停止させずに待機運転を行わせている。   Further, the pressure header 8 includes a turbine bypass pipe 14 that is connected to the condenser 5 with a turbine bypass valve 12 interposed in the middle thereof. When an emergency event such as a load interruption occurs, the main steam stop valve 10 or the steam control valve is provided. The valve 11 is closed, and the steam generated from the reactor pressure vessel 1 is directly flowed to the condenser 13 to perform standby operation without stopping the reactor pressure vessel 1 until the accident is restored. .

このような構成を備える原子力発電プラントにおいて、原子炉圧力容器1から発生した蒸気を高圧タービン2に供給する際の蒸気圧力一定制御は、蒸気加減弁11が行っていた。   In the nuclear power plant having such a configuration, the steam control valve 11 performs constant steam pressure control when supplying steam generated from the reactor pressure vessel 1 to the high-pressure turbine 2.

すなわち、蒸気加減弁11には、圧力計9から検出した実蒸気圧力信号のほかに、設定蒸気圧力信号、タービン速度信号、タービン負荷信号等を演算する演算回路(図示せず)が設けられており、これら各信号を演算回路で演算させて弁開閉信号を作り出し、作り出された演算信号に基づいて弁体を開閉させ、蒸気圧力一定に調整し、調整した蒸気圧力一定に基づいて原子炉出力を一定に維持させていた。   That is, the steam control valve 11 is provided with an arithmetic circuit (not shown) for calculating a set steam pressure signal, a turbine speed signal, a turbine load signal and the like in addition to the actual steam pressure signal detected from the pressure gauge 9. Each of these signals is calculated by an arithmetic circuit to create a valve opening / closing signal, the valve body is opened / closed based on the generated calculation signal, the steam pressure is adjusted to be constant, and the reactor output is based on the adjusted constant steam pressure. Was kept constant.

なお、蒸気圧力一定に調整する発明には、例えば、特開平5−312995号公報(特許文献1)や特開昭61−218996号公報(特許文献2)等数多くの発明が開示されている。
特開平5−312995号公報 特開昭61−218996号公報
In addition, many inventions, such as Unexamined-Japanese-Patent No. 5-312995 (patent document 1) and Unexamined-Japanese-Patent No. 61-218996 (patent document 2), are disclosed by invention which adjusts vapor | steam pressure constant.
JP-A-5-312995 Japanese Patent Laid-Open No. 61-218996

上述特許文献1や特許文献2は、検出した蒸気圧力信号等を基にして演算し、弁開閉信号を作り出し、作り出した弁開閉信号を蒸気加減弁11に与え、原子炉圧力容器1からの蒸気圧力を一定に調整し、調整した蒸気圧力一定の基に原子炉一定出力を維持させているが、演算回路が比較的簡素であり、操作も容易であることから今日でもより多く使用されている。   In Patent Document 1 and Patent Document 2 described above, calculation is performed based on the detected steam pressure signal and the like, a valve opening / closing signal is generated, the generated valve opening / closing signal is given to the steam control valve 11, and steam from the reactor pressure vessel 1 is generated. Although the pressure is adjusted to be constant and the constant power of the reactor is maintained based on the adjusted steam pressure, the calculation circuit is relatively simple and easy to operate. .

しかし、それでも幾つかの問題も抱えており、その一つに弁開閉の際に発生する圧力損失がある。   However, it still has some problems, one of which is the pressure loss that occurs when the valve opens and closes.

従来、蒸気加減弁11は、運転中、系統周波数が変動し、これに伴って蒸気圧力が変動した場合、直ぐさま弁体、例えば4個の弁体を開閉させている。その際、4弁体を同時に開閉させる絞り運転(フル・アーク・アドミッション)を行う関係上、発生する圧力損失が大きくなっている。   Conventionally, when the system frequency fluctuates during operation and the steam pressure fluctuates accordingly, the steam control valve 11 immediately opens and closes the valve body, for example, four valve bodies. In that case, the pressure loss which generate | occur | produces becomes large on the relationship which performs the throttle | throttle operation (full arc admission) which opens and closes four valve bodies simultaneously.

圧力損失が大きくなると、電気出力(発電端出力)を発生させるに必要なエネルギ消費も大きくなり、例えば、100万kWクラスの発電所で蒸気加減弁の損失を1kg/cm低下させるだけで、年間数千万円の電気料金に見合うだけの余分のエネルギが消費される。 When the pressure loss increases, the energy consumption required to generate the electrical output (power generation end output) also increases. For example, by reducing the loss of the steam control valve by 1 kg / cm 2 in a 1 million kW class power plant, Excess energy is consumed to meet the electricity bill of tens of millions of yen per year.

このため、タービン産業分野では、競争力強化の下、タービン性能向上の一環として、例えば、特開2002−97903号公報に見られるように、蒸気通路を簡素化させる構造上の改良が行われ、圧力損失をより一層少なくさせ、電気出力をより一層増加させる技術が提案され、最近の蒸気加減弁の圧力損失は少なくなっている。   For this reason, in the turbine industry field, as a part of improving turbine performance under strengthening competitiveness, for example, as seen in JP-A-2002-97903, structural improvements that simplify the steam passage are performed, A technique for further reducing the pressure loss and further increasing the electric output has been proposed, and the pressure loss of the recent steam control valve has been reduced.

しかし、その反面、蒸気加減弁11は、圧力損失を少なくするあまり、制御特性上、大きな圧力変動があってもそれを調整できるだけの余裕がない設計になっている。このため、蒸気加減弁11の入口側で設計上許される範囲を超えて大きな蒸気圧力変動があった場合、蒸気圧力を一定に調整することができず、蒸気圧力一定の下、原子炉出力を一定に維持させる設計思想に大きなダメージを与える一抹の不安が残されていた。   On the other hand, the steam control valve 11 is so designed that there is not enough room to adjust even if there is a large pressure fluctuation in terms of control characteristics so as to reduce the pressure loss. For this reason, when the steam pressure fluctuates beyond the design allowable range on the inlet side of the steam control valve 11, the steam pressure cannot be adjusted to a constant value, and the reactor power is reduced under the constant steam pressure. There remained some anxiety that caused a great deal of damage to the design philosophy that kept it constant.

本発明は、このような事情に基づいてなされたもので、圧力損失を少なくさせた蒸気加減弁を有効に活用し、エネルギ損失を少なくさせて電気出力を増加させる一方、原子炉圧力容器からの蒸気の圧力が予め定められた圧力(定格圧力)よりも高低変動していても予め定められた圧力(定格圧力)に容易に調整でき、原子炉出力一定維持を充分に満たす原子力発電プラントおよびその運転制御方法を提供することを目的とする。   The present invention has been made based on such circumstances, and effectively uses a steam control valve with reduced pressure loss, reduces energy loss and increases electrical output, while reducing the pressure from the reactor pressure vessel. A nuclear power plant that can be easily adjusted to a predetermined pressure (rated pressure) even if the steam pressure fluctuates higher or lower than a predetermined pressure (rated pressure), and that sufficiently maintains a constant reactor output, and its An object is to provide an operation control method.

本発明に係る原子力発電プラントは、上述の目的を達成するために、原子炉圧力容器と蒸気タービンを接続する主蒸気管に、圧力ヘッダ、主蒸気止め弁および蒸気加減弁を介装させ、前記原子炉圧力容器からの蒸気の流量を前記蒸気加減弁で制御して蒸気タービンに供給し、前記蒸気タービンで動力を発生させ、タービン排気を復水器で凝縮させて前記原子炉圧力容器に戻し、前記原子炉圧力容器からの蒸気を復水器に逃がすタービンバイパス管で前記圧力ヘッダと前記復水器とを接続する構成の原子力発電プラントにおいて、前記圧力ヘッダの下流側と前記蒸気加減弁の上流側の間の前記主蒸気管に入力側が接続され、前記原子炉圧力容器からの蒸気の圧力を調整する蒸気圧力調整装置を備えたものである。   In order to achieve the above-mentioned object, the nuclear power plant according to the present invention includes a pressure header, a main steam stop valve, and a steam control valve in a main steam pipe connecting a reactor pressure vessel and a steam turbine, The steam flow from the reactor pressure vessel is controlled by the steam control valve and supplied to the steam turbine, power is generated by the steam turbine, and the turbine exhaust is condensed by the condenser and returned to the reactor pressure vessel. , In a nuclear power plant configured to connect the pressure header and the condenser with a turbine bypass pipe that allows steam from the reactor pressure vessel to escape to the condenser, the downstream side of the pressure header and the steam control valve An input side is connected to the main steam pipe between the upstream side, and a steam pressure adjusting device for adjusting the pressure of the steam from the reactor pressure vessel is provided.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、前記蒸気圧力調整装置の出力側を蒸気タービンの低圧タービンの入口側に接続させる構成にしたものである。   The nuclear power plant according to the present invention is configured to connect the output side of the steam pressure adjusting device to the inlet side of the low-pressure turbine of the steam turbine in order to achieve the above-described object.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、前記蒸気圧力調整装置は、リリーフ弁と蒸気リリーフ管とで構成したものである。   In addition, in the nuclear power plant according to the present invention, the steam pressure adjusting device includes a relief valve and a steam relief pipe in order to achieve the above-described object.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、前記蒸気リリーフ管は、減圧装置を備えたものである。   In addition, in the nuclear power plant according to the present invention, the steam relief pipe includes a decompression device in order to achieve the above-described object.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、原子炉圧力容器と蒸気タービンを接続する主蒸気管に、主蒸気止め弁および蒸気加減弁を介装させ、前記原子炉圧力容器からの蒸気の流量を前記蒸気加減弁で制御して蒸気タービンに供給し、前記蒸気タービンで動力を発生させ、タービン排気を復水器で凝縮させて前記原子炉圧力容器に戻す構成の原子力発電プラントにおいて、前記蒸気加減弁の上流側の間の前記主蒸気管と復水器との間に前記原子炉圧力容器からの蒸気の圧力を調整する蒸気圧力調整装置を備え、前記蒸気圧力調整装置には減圧装置を備えたものである。   In order to achieve the above-mentioned object, the nuclear power plant according to the present invention includes a main steam stop valve and a steam control valve interposed in a main steam pipe connecting a reactor pressure vessel and a steam turbine. A configuration in which the steam flow from the reactor pressure vessel is controlled by the steam control valve and supplied to the steam turbine, power is generated by the steam turbine, and the turbine exhaust is condensed by a condenser and returned to the reactor pressure vessel. In the nuclear power plant, a steam pressure adjusting device for adjusting a pressure of steam from the reactor pressure vessel is provided between the main steam pipe and a condenser between the upstream side of the steam control valve, and the steam The pressure adjusting device includes a pressure reducing device.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、前記蒸気圧力調整装置は、リリーフ弁と蒸気リリーフ管とで構成したものである。   In addition, in the nuclear power plant according to the present invention, the steam pressure adjusting device includes a relief valve and a steam relief pipe in order to achieve the above-described object.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、前記蒸気圧力調整装置は、主蒸気管の管本数分設けたものである。   Further, in the nuclear power plant according to the present invention, in order to achieve the above-described object, the steam pressure adjusting device is provided by the number of main steam pipes.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、原子炉圧力容器と蒸気タービンを接続する主蒸気管に、圧力ヘッダ、主蒸気止め弁および蒸気加減弁を介装させ、前記原子炉圧力容器からの蒸気の流量を前記蒸気加減弁で制御して蒸気タービンに供給し、前記蒸気タービンで動力を発生させ、タービン排気を復水器で凝縮させて前記原子炉圧力容器に戻し、前記原子炉圧力容器からの蒸気を復水器に逃がすタービンバイパス管で前記圧力ヘッダと前記復水器とを接続する構成の原子力発電プラントにおいて、前記主蒸気管の管本数分主蒸気止め弁を備えるとともに、前記主蒸気管の管本数より少ない蒸気加減弁を備えたものである。   In order to achieve the above-described object, the nuclear power plant according to the present invention includes a main header connecting a reactor pressure vessel and a steam turbine with a pressure header, a main steam stop valve, and a steam control valve. The flow rate of steam from the reactor pressure vessel is controlled by the steam control valve and supplied to the steam turbine, power is generated by the steam turbine, and the turbine exhaust is condensed by a condenser, and the reactor pressure vessel In the nuclear power plant in which the pressure header and the condenser are connected by a turbine bypass pipe for returning the steam from the reactor pressure vessel to the condenser, the main steam for the number of the main steam pipes A stop valve is provided, and fewer steam control valves than the number of the main steam pipes are provided.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、原子炉圧力容器と蒸気タービンを接続する主蒸気管に、蒸気加減弁を備え、前記原子炉圧力容器から前記蒸気タービンに蒸気を供給する際、予め定められた圧力に対し、前記原子炉圧力容器から前記蒸気タービンに供給する蒸気の圧力が変動しているとき、前記蒸気加減弁に弁絞り開度を与えるとともに、前記蒸気タービンのうち、高圧タービンと低圧タービンとの中間に設けた組み合せ中間弁に弁絞り開度を与え、前記蒸気の圧力を調整するものである。   In order to achieve the above object, a nuclear power plant according to the present invention includes a steam control valve in a main steam pipe connecting a reactor pressure vessel and a steam turbine, and the steam turbine is connected to the steam turbine from the reactor pressure vessel. When supplying steam to the steam pressure when the pressure of the steam supplied from the reactor pressure vessel to the steam turbine is fluctuating with respect to a predetermined pressure, the steam control valve is given a valve opening degree, Among the steam turbines, a valve opening degree is given to a combination intermediate valve provided in the middle between the high-pressure turbine and the low-pressure turbine to adjust the pressure of the steam.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、原子炉圧力容器と蒸気タービンを接続する主蒸気管に、蒸気加減弁を備え、前記原子炉圧力容器から前記蒸気タービンに蒸気を供給する際、予め定められた圧力に対し、前記原子炉圧力容器から前記蒸気タービンに供給する蒸気の圧力が変動しているとき、前記蒸気加減弁の上流側の前記主蒸気管に設けた蒸気圧力調整装置のリリーフ弁に開弁指令を与えるものである。   In order to achieve the above object, a nuclear power plant according to the present invention includes a steam control valve in a main steam pipe connecting a reactor pressure vessel and a steam turbine, and the steam turbine is connected to the steam turbine from the reactor pressure vessel. When supplying steam to the main steam pipe upstream of the steam control valve, when the pressure of steam supplied from the reactor pressure vessel to the steam turbine fluctuates with respect to a predetermined pressure, A valve opening command is given to the relief valve of the provided steam pressure adjusting device.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、原子炉圧力容器と蒸気タービンを接続する主蒸気管の管本数に対応させて主蒸気止め弁を備えるとともに、前記管本数のうち、少なくとも1本以上に蒸気加減弁を備え、前記原子炉圧力容器から前記蒸気タービンに蒸気を供給する際、前記主蒸気止め弁のうち、第1の主蒸気止め弁を開弁させた後、前記蒸気加減弁を開弁させ、さらに第2の主蒸気止め弁を開弁させた後、前記蒸気加減弁を閉弁させ、さらに残りの主蒸気止め弁を開弁させる間に前記蒸気加減弁の開弁、閉弁を繰り返し、最後に前記蒸気加減弁を開弁させるものである。   In order to achieve the above-mentioned object, the nuclear power plant according to the present invention includes a main steam stop valve corresponding to the number of main steam pipes connecting the reactor pressure vessel and the steam turbine. At least one of the number is provided with a steam control valve, and when supplying steam from the reactor pressure vessel to the steam turbine, the first main steam stop valve is opened among the main steam stop valves. Then, the steam control valve is opened, the second main steam stop valve is opened, the steam control valve is closed, and the remaining main steam stop valve is opened. The steam control valve is repeatedly opened and closed, and finally the steam control valve is opened.

また、本発明に係る原子力発電プラントは、上述の目的を達成するために、原子炉圧力容器と蒸気タービンを接続する主蒸気管の管本数に対応させて主蒸気止め弁を備えるとともに、前記管本数より少ない蒸気加減弁を備え、前記原子炉圧力容器から前記蒸気タービンに蒸気を供給する際、予め定められた圧力に対し、前記原子炉圧力容器から前記蒸気タービンに供給する蒸気の圧力が変動しているとき、前記蒸気加減弁に弁絞り開度を与えるか、あるいは下流側に前記蒸気加減弁をもつ主蒸気止め弁の一つを開弁させたまま、前記蒸気加減弁を閉弁させるとともに、前記主蒸気止め弁の残りを順次閉弁させるかを選択するものである。   In order to achieve the above-mentioned object, the nuclear power plant according to the present invention includes a main steam stop valve corresponding to the number of main steam pipes connecting the reactor pressure vessel and the steam turbine. When supplying steam from the reactor pressure vessel to the steam turbine, the steam pressure supplied from the reactor pressure vessel to the steam turbine fluctuates with respect to a predetermined pressure. When the valve is open, give the valve opening degree to the steam control valve or close the steam control valve with one of the main steam stop valves having the steam control valve on the downstream side opened. At the same time, it is selected whether to sequentially close the remainder of the main steam stop valve.

本発明に係る原子力発電プラントおよびその運転制御方法は、原子炉圧力容器から主蒸気止め弁および蒸気加減弁を介して蒸気タービンに蒸気を供給する際、変動した蒸気圧力を制御するので、予め定められた蒸気圧力(定格圧力)に容易に制御でき、原子炉出力を一定に維持させることができる。   The nuclear power plant and the operation control method thereof according to the present invention control the fluctuating steam pressure when supplying steam from the reactor pressure vessel to the steam turbine through the main steam stop valve and the steam control valve. The steam pressure (rated pressure) can be easily controlled and the reactor power can be maintained constant.

以下、本発明に係る原子力発電プラントおよびその運転制御方法の実施形態を図面および図面に付した符号を引用して説明する。   Hereinafter, embodiments of a nuclear power plant and an operation control method thereof according to the present invention will be described with reference to the drawings and the reference numerals attached to the drawings.

図1は、本発明に係る原子力発電プラントの第1実施形態を示す概略系統図である。   FIG. 1 is a schematic system diagram showing a first embodiment of a nuclear power plant according to the present invention.

本実施形態に係る原子力発電プラントは、主要構成要素として原子炉圧力容器20、高圧タービン21、組み合せ中間弁22、低圧タービン23、復水器24を備え、原子炉圧力容器20からの蒸気を高圧タービン21で膨張仕事をして動力を発生させ、膨張後の高圧タービン排気を組み合せ中間弁22を介して低圧タービン23に供給し、ここでも膨張仕事をして動力を発生させ、膨張後の低圧タービン排気を復水器24で凝縮させ、復水、給水として復水給水管33を介して原子炉圧力容器20に再び戻す閉サイクルになっている。   The nuclear power plant according to this embodiment includes a reactor pressure vessel 20, a high-pressure turbine 21, a combined intermediate valve 22, a low-pressure turbine 23, and a condenser 24 as main components, and steam from the reactor pressure vessel 20 is high-pressure. The turbine 21 performs expansion work to generate power, and the expanded high-pressure turbine exhaust is combined and supplied to the low-pressure turbine 23 via the intermediate valve 22. Again, expansion work is performed to generate power, and the low-pressure after expansion The turbine exhaust is condensed in the condenser 24, and is returned to the reactor pressure vessel 20 through the condensate water supply pipe 33 as condensate and feed water.

また、本実施形態に係る原子力発電プラントは、原子炉圧力容器20と高圧タービン21とを、例えば、4本の主蒸気管25および主蒸気リード管26で接続させている。   In the nuclear power plant according to the present embodiment, the reactor pressure vessel 20 and the high-pressure turbine 21 are connected by, for example, four main steam pipes 25 and main steam reed pipes 26.

主蒸気管25および主蒸気リード管26には、原子炉圧力容器20側から、管本数共用の圧力ヘッダ27、管本数に対応させて圧力計28、主蒸気止め弁29、蒸気加減弁30を備え、原子炉圧力容器20から供給された蒸気を一旦圧力ヘッダ27に集めた後、蒸気加減弁30で流量調整し、高圧タービン21に供給している。   From the reactor pressure vessel 20 side, the main steam pipe 25 and the main steam lead pipe 26 are provided with a pressure header 27 shared by the number of pipes, a pressure gauge 28, a main steam stop valve 29, and a steam control valve 30 corresponding to the number of pipes. The steam supplied from the reactor pressure vessel 20 is once collected in the pressure header 27, the flow rate is adjusted by the steam control valve 30, and the steam is supplied to the high pressure turbine 21.

また、圧力ヘッダ27は、途中にタービンバイパス弁31を介装させて復水器24に接続するタービンバイパス管32を備え、負荷遮断等緊急事象が発生したとき、主蒸気止め弁29を閉弁させ、原子炉圧力容器20から発生した蒸気をタービンバイパス管32を介して復水器24に逃している。   The pressure header 27 includes a turbine bypass pipe 32 that is connected to the condenser 24 with a turbine bypass valve 31 interposed in the middle thereof, and closes the main steam stop valve 29 when an emergency event such as load interruption occurs. The steam generated from the reactor pressure vessel 20 is released to the condenser 24 via the turbine bypass pipe 32.

また、圧力ヘッダ27の出口側と復水器24の間に、原子炉圧力容器20から発生した蒸気の圧力調整を行う蒸気圧力調整装置34を設けている。   Further, a steam pressure adjusting device 34 for adjusting the pressure of the steam generated from the reactor pressure vessel 20 is provided between the outlet side of the pressure header 27 and the condenser 24.

この蒸気圧力調整装置34は、原子炉圧力容器20から発生した蒸気の圧力が予め定められた圧力(定格圧力)よりも高低変動しているとき、予め定められた圧力に調整するので、途中にリリーフ弁35およびオリフィス36を介装させて復水器24に接続する蒸気リリーフ管37で構成される。   This steam pressure adjusting device 34 adjusts to a predetermined pressure when the pressure of the steam generated from the reactor pressure vessel 20 fluctuates higher or lower than a predetermined pressure (rated pressure). The steam relief pipe 37 is connected to the condenser 24 through a relief valve 35 and an orifice 36.

なお、蒸気リリーフ管37がオリフィス36を備えたのは、オリフィス36で高い蒸気圧を減圧させ、復水器24に供給するときの衝撃力を緩和させるためである。   The reason why the steam relief pipe 37 is provided with the orifice 36 is that the high steam pressure is reduced at the orifice 36 and the impact force when the steam relief pipe 37 is supplied to the condenser 24 is alleviated.

原子炉圧力容器20から発生した蒸気の圧力が予め定められた圧力よりも高低変動しているとき、蒸気の圧力調整は、蒸気加減弁30および蒸気圧力調整装置34によって行われる。   When the pressure of the steam generated from the reactor pressure vessel 20 fluctuates higher or lower than a predetermined pressure, the steam pressure is adjusted by the steam control valve 30 and the steam pressure adjusting device 34.

まず、蒸気加減弁30の入口側で、原子炉圧力容器20から発生した蒸気の圧力が予め定められた圧力よりも低くなっていることを圧力計28が検出したとき、蒸気加減弁30は、例えば、4個の弁体を同時に弁絞り開度にし、原子炉圧力容器20からの蒸気の圧力を増加させる。   First, when the pressure gauge 28 detects that the pressure of the steam generated from the reactor pressure vessel 20 is lower than a predetermined pressure on the inlet side of the steam control valve 30, the steam control valve 30 For example, four valve bodies are simultaneously set to the valve throttle opening, and the pressure of the steam from the reactor pressure vessel 20 is increased.

一方、例えば、送電線系統に事故が発生し、負荷遮断が発生した場合、高,低圧タービン21,23および発電機(図示せず)は定格回転数を超えてオーバスピードになる。この場合、蒸気加減弁30は、オーバスピードを抑制するために弁体の開度を絞って蒸気量を減少させる方向に制御させる。このとき、原子炉圧力容器20からの蒸気の圧力が上昇しようとするが、蒸気圧力調整装置34は、リリーフ弁35を開弁させ、リリーフ弁35から流れる蒸気をオリフィス36および蒸気リリーフ管37を経て復水器24に供給し、高,低圧タービン21,23に供給する蒸気量を減少させ、高,低圧タービン21,23および発電機の回転数を定格回転数に整定させる。   On the other hand, for example, when an accident occurs in the transmission line system and a load interruption occurs, the high and low pressure turbines 21 and 23 and the generator (not shown) exceed the rated speed and become overspeed. In this case, the steam control valve 30 is controlled to reduce the amount of steam by reducing the opening of the valve body in order to suppress overspeed. At this time, although the pressure of the steam from the reactor pressure vessel 20 tends to increase, the steam pressure adjusting device 34 opens the relief valve 35 and causes the steam flowing from the relief valve 35 to flow through the orifice 36 and the steam relief pipe 37. Then, the amount of steam supplied to the condenser 24 and supplied to the high and low pressure turbines 21 and 23 is decreased, and the rotational speeds of the high and low pressure turbines 21 and 23 and the generator are set to the rated rotational speed.

このように、本実施形態は、原子炉圧力容器20と高圧タービン21とを接続させる主蒸気管25における圧力ヘッダ27の出口側に蒸気圧力調整装置34を設け、原子炉圧力容器20からの蒸気の圧力が予め定められた圧力(定格圧力)よりも低いとき、蒸気加減弁30の弁体に弁絞り開度を与えて蒸気の圧力を増加させ、予め定められた圧力(定格圧力)に制御する一方、系統等の事故が発生し、蒸気加減弁30の弁体開度を絞る間に原子炉圧力容器20からの蒸気が予め定められた圧力(定格圧力)を超えたとき、蒸気圧力調整装置34で原子炉圧力容器20からの蒸気を復水器24に供給する構成にしたので、高,低圧タービン21,23等の回転数を定格回転数に容易に整定させることができる。   Thus, in the present embodiment, the steam pressure adjusting device 34 is provided on the outlet side of the pressure header 27 in the main steam pipe 25 connecting the reactor pressure vessel 20 and the high-pressure turbine 21, and the steam from the reactor pressure vessel 20 is provided. When the pressure of the steam is lower than a predetermined pressure (rated pressure), the valve throttle opening is given to the valve body of the steam control valve 30 to increase the steam pressure and control to a predetermined pressure (rated pressure). On the other hand, when an accident such as a system occurs and the steam from the reactor pressure vessel 20 exceeds a predetermined pressure (rated pressure) while the valve opening of the steam control valve 30 is reduced, the steam pressure is adjusted. Since the apparatus 34 is configured to supply the steam from the reactor pressure vessel 20 to the condenser 24, the rotational speeds of the high and low pressure turbines 21, 23, etc. can be easily set to the rated rotational speed.

図2および図3は、第1の実施形態の原子力発電プラント運転制御方法を説明する際の線図である。   2 and 3 are diagrams for explaining the nuclear power plant operation control method according to the first embodiment.

図2は、原子炉圧力容器20から発生した蒸気を、圧力ヘッダ27、主蒸気止め弁29、蒸気加減弁30、高圧タービン21、組み合せ中間弁22、低圧タービン23、復水器24の順に流して運転している間に、例えば系統事故による負荷変動があると、過渡時、軸結合させていた高圧タービン21、低圧タービン23および発電機(図示せず)が定格回転数を超えてオーバスピードになることを抑制したもので、蒸気加減弁30の弁体に弁絞り開度を与え、一点鎖線BPで示すように、蒸気を圧力降下させるとともに、組み合せ中間弁22の弁体にも弁絞り開度を与え、一点鎖線BPで示すように、蒸気を圧力降下させたものである。 In FIG. 2, steam generated from the reactor pressure vessel 20 flows in the order of the pressure header 27, the main steam stop valve 29, the steam control valve 30, the high pressure turbine 21, the combined intermediate valve 22, the low pressure turbine 23, and the condenser 24. For example, if there is a load fluctuation due to a system fault during operation, the high-pressure turbine 21, the low-pressure turbine 23, and the generator (not shown) that are shaft-coupled at the time of transition exceed the rated speed and overspeed. The valve throttle opening is given to the valve body of the steam control valve 30 to reduce the pressure of the steam as shown by the one-dot chain line BP 1 and the valve body of the combined intermediate valve 22 is also a valve. given aperture size, as indicated by a chain line BP 2, it is obtained by pressure drop vapor.

このように、高,低圧タービン21,23等のオーバスピードを蒸気加減弁30の弁体へ弁絞り開度を与えるのみならず、組み合せ中間弁22の弁体にも弁絞り開度を与え、蒸気加減弁30の蒸気の圧力降下BPに、組み合せ中間弁22の蒸気の圧力降下BPを加えて蒸気供給系統のシステムロスを増加させたので、蒸気加減弁30の圧力降下BPと組み合せ中間弁22の圧力降下BPとのそれぞれ少ない分担率でも高,低圧タービン21,23等のオーバスピードを容易に定格回転数に整定させることができる。 In this way, not only the overspeed of the high and low pressure turbines 21, 23 is given to the valve body of the steam control valve 30, but also the valve body of the combined intermediate valve 22 is given a valve opening degree, the pressure drop BP 1 steam steam control valve 30, since increased the system loss of the steam supply system by adding a combined pressure drop BP 2 steam of the intermediate valve 22, combined with the pressure drop BP 1 of the steam control valve 30 high in each small share of the pressure drop BP 2 intermediate valve 22, it is possible to settle easily rated rotational speed of the overspeed such as low-pressure turbine 21, 23.

図3は、図1で示した蒸気圧力調整装置34のリリーフ弁35を開弁させるときの頻度の数を多くし、繰返して行い、原子炉圧力容器20からの蒸気を復水器24に流出させたものである。   3 increases the frequency when the relief valve 35 of the steam pressure adjusting device 34 shown in FIG. 1 is opened, and is repeatedly performed, so that the steam from the reactor pressure vessel 20 flows out to the condenser 24. It has been made.

従来、高,低圧タービン21,23等に系統事故による負荷変動があると、蒸気加減弁30は、図5の実線で示すように、全開に対し、大きな弁絞り開度を弁体に与えて原子炉圧力容器20からの蒸気の圧力を予め定められた圧力(定格圧力)に戻していた。   Conventionally, when there is a load fluctuation due to a system fault in the high and low pressure turbines 21, 23, etc., the steam control valve 30 gives a large valve throttle opening to the valve body with respect to the full opening as shown by the solid line in FIG. 5. The pressure of the steam from the reactor pressure vessel 20 was returned to a predetermined pressure (rated pressure).

しかし、図3では、蒸気圧力調整装置のリリーフ弁を、原子炉圧力が定格圧力を超えた時に開弁し、定格圧力以下になった時に閉弁させ、繰り返し、数多く開閉させているので、蒸気加減弁の弁体に与えられる弁絞り開度も全開に対して僅かで済む。   However, in FIG. 3, the relief valve of the steam pressure regulator is opened when the reactor pressure exceeds the rated pressure, closed when the reactor pressure falls below the rated pressure, and repeatedly opened and closed. The throttle opening degree given to the valve body of the adjusting valve is also small with respect to the full opening.

このように、リリーフ弁を開弁および閉弁させる回数をより多くし、繰り返して行うようにするので、蒸気加減弁の弁体の弁絞り開度を小さくさせて圧力損失を少なくさせることができ、少ない圧力損失の下、原子炉圧力容器からの蒸気の圧力を、予め定められた圧力(定格圧力)に容易に整定させることができる。   In this way, the number of times the relief valve is opened and closed is increased and repeated, so that the pressure loss can be reduced by reducing the valve opening degree of the valve body of the steam control valve. The pressure of the steam from the reactor pressure vessel can be easily set to a predetermined pressure (rated pressure) with a small pressure loss.

そして、本実施形態は、蒸気圧力調整装置34を流れる蒸気をオリフィスを介して復水器に供給するので、タービンバイパス管の役割を果す。   And this embodiment plays the role of a turbine bypass pipe, since the steam which flows through the steam pressure adjusting device 34 is supplied to the condenser via the orifice.

なお、本実施形態は、例えば、4本の主蒸気管25のうち、1本の主蒸気管25に蒸気圧力調整装置34を設けたが、この例に限らず、例えば、図4に示すように、主蒸気管25の管本数に対応させて蒸気圧力調整装置34a,34b,…を設けてもよい(第2実施形態)。   In the present embodiment, for example, the steam pressure adjusting device 34 is provided in one main steam pipe 25 among the four main steam pipes 25. However, the present embodiment is not limited to this example. For example, as shown in FIG. Further, steam pressure adjusting devices 34a, 34b,... May be provided corresponding to the number of main steam pipes 25 (second embodiment).

また、例えば、図5に示すように、蒸気圧力調整装置34の蒸気リリーフ管37を組み合せ中間弁22の入口側に接続させてもよい(第3実施形態)。蒸気リリーフ管37を組み合せ中間弁22の入口側に設けた場合、回収した蒸気を低圧タービン23で膨張仕事をさせ、回収エネルギを再活用させる点で有効である。   For example, as shown in FIG. 5, the steam relief pipe 37 of the steam pressure adjusting device 34 may be connected to the inlet side of the combined intermediate valve 22 (third embodiment). When the steam relief pipe 37 is provided on the inlet side of the intermediate valve 22, it is effective in that the recovered steam is expanded by the low-pressure turbine 23 and the recovered energy is reused.

図6は、本発明に係る原子力発電プラントの第4実施形態を示す概略系統図である。   FIG. 6 is a schematic system diagram showing a fourth embodiment of the nuclear power plant according to the present invention.

本実施形態は、原子炉圧力容器20に高圧タービン21を接続させる複数本、例えば、4本の主蒸気管25および主蒸気リード管26のうち、少なくとも1つ以上の管に蒸気加減弁30を設けたものである。なお、圧力ヘッダ27、圧力計28、主蒸気止め弁29は、第1実施形態と同じ実施形態を採っている。   In the present embodiment, the steam control valve 30 is provided in at least one of the plural main steam pipes 25 and the main steam reed pipes 26 that connect the high pressure turbine 21 to the reactor pressure vessel 20. It is provided. In addition, the pressure header 27, the pressure gauge 28, and the main steam stop valve 29 have taken the same embodiment as 1st Embodiment.

このように、本実施形態は、原子炉圧力容器20に高圧タービン21を接続させる複数本、例えば4本の主蒸気管25および主蒸気リード管26のうち、少なくとも1つ以上に蒸気加減弁30を設け、主蒸気管25および主蒸気リード管26を流れる原子炉圧力容器20からの蒸気の圧力損失を少なくさせたので、高圧タービン21および低圧タービン23での膨張仕事を高くして電気出力を増加させることができる。   As described above, in the present embodiment, the steam control valve 30 is connected to at least one of the plurality of main steam pipes 25 and the main steam reed pipes 26 that connect the high-pressure turbine 21 to the reactor pressure vessel 20. The pressure loss of the steam from the reactor pressure vessel 20 flowing through the main steam pipe 25 and the main steam reed pipe 26 is reduced, so that the expansion work in the high-pressure turbine 21 and the low-pressure turbine 23 is increased, and the electric output is increased. Can be increased.

図7は、第4実施形態の原子力発電プラント運転制御方法を説明する際の線図である。   FIG. 7 is a diagram for explaining the nuclear power plant operation control method of the fourth embodiment.

図6で示した複数管本数、例えば、4本の主蒸気管25および主蒸気リード管26に、管本数に対応させて主蒸気止め弁29を設けるとともに、管本数の少なくとも1本以上に蒸気加減弁30を設けたことに伴って負荷上昇時、主蒸気止め弁29と蒸気加減弁30との開閉挙動モードに改良を加えたものである。   A plurality of pipes shown in FIG. 6, for example, four main steam pipes 25 and main steam reed pipes 26 are provided with main steam stop valves 29 corresponding to the number of pipes, and steam is provided to at least one of the pipes. The open / close behavior mode of the main steam stop valve 29 and the steam control valve 30 is improved when the load increases due to the provision of the control valve 30.

すなわち、従来の原子力発電プラントは、図9に示すように、複数の管本数、例えば、4本の主蒸気管6および主蒸気リード管7の管本数に対応させて主蒸気止め弁10、蒸気加減弁11を設けていた。   That is, as shown in FIG. 9, the conventional nuclear power plant has a main steam stop valve 10 and steam corresponding to a plurality of pipes, for example, four main steam pipes 6 and main steam reed pipes 7. An adjusting valve 11 was provided.

また、主蒸気管6および主蒸気リード管7の管本数に対応させて設けた主蒸気止め弁10、蒸気加減弁11の弁開度関係は、図10に示すように、4個の主蒸気止め弁10の全弁を全開させた後、4個の蒸気加減弁11の全弁を同時に開弁させ、その開度を徐々に増加させ、タービン負荷100%に至るまで弁開度増加を繰り返していた。   Further, as shown in FIG. 10, the valve opening relationship between the main steam stop valve 10 and the steam control valve 11 provided corresponding to the number of main steam pipes 6 and main steam lead pipes 7 is four main steams. After all the stop valves 10 are fully opened, all the four steam control valves 11 are simultaneously opened to gradually increase the degree of opening until the turbine load reaches 100%. It was.

しかし、本実施形態は、例えば、4本の主蒸気管25および主蒸気リード管26に対し、管本数に対応させて主蒸気止め弁29を設けるとともに、複数の管本数のうち、少なくとも1つ以上の管本数に蒸気加減弁30を設けたため、タービン負荷上昇中、主蒸気止め弁29と蒸気加減弁30との弁開度関係を、図7に示すように、改良を加えたものである。   However, in this embodiment, for example, the main steam stop valve 29 is provided corresponding to the number of pipes for the four main steam pipes 25 and the main steam lead pipes 26, and at least one of the plurality of pipes is provided. Since the steam control valves 30 are provided in the above number of pipes, the valve opening relationship between the main steam stop valve 29 and the steam control valve 30 is improved as shown in FIG. .

図7は、主蒸気止め弁29と蒸気加減弁30との弁開度関係を示す線図で、起動当初、主蒸気止め弁29の全弁を全閉にし、蒸気加減弁30の、例えば1弁を全閉の状態から第1主蒸気止め弁を全開させる。   FIG. 7 is a diagram showing the valve opening relationship between the main steam stop valve 29 and the steam control valve 30. At the beginning of the operation, all the main steam stop valves 29 are fully closed, and the steam control valve 30 is, for example, 1 The first main steam stop valve is fully opened from the fully closed state.

第1主蒸気止め弁が全開すると、蒸気加減弁を開弁させる。蒸気加減弁の全開後、第2主蒸気止め弁の開弁に合わせて蒸気加減弁を閉弁させ、第2主蒸気止め弁が全開すると同時に、蒸気加減弁は閉弁する。再び、蒸気加減弁を開弁させ、蒸気加減弁が全開後、第3主蒸気止め弁の開弁に合わせて蒸気加減弁を閉弁させ、第3主蒸気止め弁が全開すると同時に、蒸気加減弁を閉弁させる。   When the first main steam stop valve is fully opened, the steam control valve is opened. After the steam control valve is fully opened, the steam control valve is closed in accordance with the opening of the second main steam stop valve, and at the same time the second main steam stop valve is fully opened, the steam control valve is closed. The steam control valve is opened again. After the steam control valve is fully open, the steam control valve is closed in accordance with the opening of the third main steam stop valve. Close the valve.

このような弁開度挙動を、順次繰り返し、第4主蒸気止め弁を全開させた後、蒸気加減弁を全開させ、定格負荷に至らしめる。   Such valve opening behavior is sequentially repeated, and after the fourth main steam stop valve is fully opened, the steam control valve is fully opened to reach the rated load.

ところで、上述の主蒸気止め弁と蒸気加減弁との弁開度関係の下、負荷上昇運転中、または定格負荷運転中、原子炉圧力容器から供給された蒸気の圧力変動が比較的小さい場合、図8のA部で示すように、蒸気加減弁のみで対応させ、弁体に弁絞り開度を与えて蒸気圧力を上昇させる。   By the way, under the valve opening relationship between the main steam stop valve and the steam control valve described above, when the pressure fluctuation of the steam supplied from the reactor pressure vessel is relatively small during load increase operation or rated load operation, As shown by A part of FIG. 8, it respond | corresponds only by a steam control valve, gives a valve throttle opening to a valve body, and raises a steam pressure.

また、運転中、系統に事故が発生し、高低圧タービン等に比較的程度の低い負荷変動が生じ、主蒸気圧力にA部より大きな変動があった場合、本実施形態は、図8のB部で示すように、第1主蒸気止め弁を開弁させたまま、蒸気加減弁および第2主蒸気止め弁を閉弁させ、蒸気圧力を予め定められた圧力(定格圧力)に回復させる。   Further, when an accident occurs in the system during operation, a relatively low load fluctuation occurs in the high and low pressure turbines, and the main steam pressure fluctuates more than part A, this embodiment is shown in FIG. As shown in the section, the steam control valve and the second main steam stop valve are closed while the first main steam stop valve is opened, and the steam pressure is restored to a predetermined pressure (rated pressure).

さらにまた、大きな主蒸気圧力の変動(低下)があった場合、図8のC部で示すように、第1主蒸気止め弁を開弁させたまま、蒸気加減弁および第2主蒸気止め弁を閉弁させるほかに、残りの主蒸気止め弁の全弁を閉弁させ、蒸気圧を予め定められた圧力(定格圧力)に回復させる。   Furthermore, when there is a large fluctuation (decrease) in the main steam pressure, the steam control valve and the second main steam stop valve are kept open while the first main steam stop valve is opened, as shown in part C of FIG. In addition to closing the valve, all the remaining main steam stop valves are closed to restore the vapor pressure to a predetermined pressure (rated pressure).

このように、原子炉圧力容器と高圧タービンとを接続させる主蒸気管および主蒸気リード管が複数管本数のうち、例えば、4本の主蒸気管に対応させて主蒸気止め弁を4個備え、4本の主蒸気管のうち、少なくとも1本以上の管に対応させて蒸気加減弁を備えたことを条件とし、原子炉圧力容器から高圧タービンに供給される蒸気の圧力変動が大小の程度に応じて蒸気加減弁のみに弁絞り開度を与えるか、あるいは調整可能な蒸気加減弁のほかに第2〜第4種蒸気止め弁を閉弁させるので、原子炉圧力容器から供給される蒸気の圧力変動の大小に拘らず、容易に予め定められた圧力(定格圧力)に調整することができ、原子炉出力を一定に維持させることができる。   As described above, the main steam pipe and the main steam reed pipe for connecting the reactor pressure vessel and the high-pressure turbine are provided with four main steam stop valves corresponding to, for example, four main steam pipes among a plurality of pipes. Fluctuation in the pressure of steam supplied from the reactor pressure vessel to the high-pressure turbine is large or small on the condition that at least one of the four main steam pipes is provided with a steam control valve. Depending on the condition, the throttle opening is given only to the steam control valve, or in addition to the adjustable steam control valve, the second to fourth type steam stop valves are closed, so the steam supplied from the reactor pressure vessel Regardless of the pressure fluctuation, the pressure can be easily adjusted to a predetermined pressure (rated pressure), and the reactor power can be maintained constant.

本発明に係る原子力発電プラントの第1実施形態を示す概略系統図。1 is a schematic system diagram showing a first embodiment of a nuclear power plant according to the present invention. 第1実施形態の原子力発電プラント運転制御方法における蒸気の圧力降下を示す図。The figure which shows the pressure drop of the steam in the nuclear power plant operation control method of 1st Embodiment. 第1実施形態の原子力発電プラント運転制御方法における蒸気圧力変動時のリリーフ弁の開閉を示す図。The figure which shows opening and closing of the relief valve at the time of the steam pressure fluctuation | variation in the nuclear power plant operation control method of 1st Embodiment. 本発明に係る原子力発電プラントの第2実施形態を示す概略系統図。The schematic system diagram which shows 2nd Embodiment of the nuclear power plant which concerns on this invention. 本発明に係る原子力発電プラントの第3実施形態を示す概略系統図。The schematic system diagram which shows 3rd Embodiment of the nuclear power plant which concerns on this invention. 本発明に係る原子力発電プラントの第4実施形態を示す概略系統図。The schematic system diagram which shows 4th Embodiment of the nuclear power plant which concerns on this invention. 第4実施形態の原子力発電プラント運転制御方法を説明するための図。The figure for demonstrating the nuclear power plant operation control method of 4th Embodiment. 図7の蒸気加減弁と主蒸気止め弁との弁開度挙動を説明するための図。The figure for demonstrating the valve opening behavior of the steam control valve of FIG. 7, and the main steam stop valve. 従来の原子力発電プラントを示す概略系統図。Schematic system diagram showing a conventional nuclear power plant. 従来の主蒸気止め弁および蒸気加減弁の弁開度状況を説明するための図。The figure for demonstrating the valve opening condition of the conventional main steam stop valve and a steam control valve.

符号の説明Explanation of symbols

1 原子炉圧力容器
2 高圧タービン
3 組み合せ中間弁
4 低圧タービン
5 復水器
6 主蒸気管
7 主蒸気リード管
8 圧力ヘッダ
9 圧力計
10 主蒸気止め弁
11 蒸気加減弁
12 タービンバイパス弁
14 タービンバイパス管
20 原子炉圧力容器
21 高圧タービン
22 組み合せ中間弁
23 低圧タービン
24 復水器
25 主蒸気管
26 主蒸気リード管
27 圧力ヘッダ
28 圧力計
29 主蒸気止め弁
30 蒸気加減弁
31 タービンバイパス弁
32 タービンバイパス管
33 復水・給水管
34,34a,34b 蒸気圧力調整装置
35,35a,35b リリーフ弁
36,36a,36b オリフィス
37,37a,37b 蒸気リリーフ管
DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 2 High pressure turbine 3 Combination intermediate valve 4 Low pressure turbine 5 Condenser 6 Main steam pipe 7 Main steam lead pipe 8 Pressure header 9 Pressure gauge 10 Main steam stop valve 11 Steam control valve 12 Turbine bypass valve 14 Turbine bypass Pipe 20 Reactor pressure vessel 21 High pressure turbine 22 Combined intermediate valve 23 Low pressure turbine 24 Condenser 25 Main steam pipe 26 Main steam lead pipe 27 Pressure header 28 Pressure gauge 29 Main steam stop valve 30 Steam control valve 31 Turbine bypass valve 32 Turbine Bypass pipe 33 Condensate / feed water pipe 34, 34a, 34b Steam pressure adjusting device 35, 35a, 35b Relief valve 36, 36a, 36b Orifice 37, 37a, 37b Steam relief pipe

Claims (12)

原子炉圧力容器と蒸気タービンを接続する主蒸気管に、圧力ヘッダ、主蒸気止め弁および蒸気加減弁を介装させ、前記原子炉圧力容器からの蒸気の流量を前記蒸気加減弁で制御して蒸気タービンに供給し、前記蒸気タービンで動力を発生させ、タービン排気を復水器で凝縮させて前記原子炉圧力容器に戻し、前記原子炉圧力容器からの蒸気を復水器に逃がすタービンバイパス管で前記圧力ヘッダと前記復水器とを接続する構成の原子力発電プラントにおいて、
前記圧力ヘッダの下流側と前記蒸気加減弁の上流側の間の前記主蒸気管に入力側が接続され、前記原子炉圧力容器からの蒸気の圧力を調整する蒸気圧力調整装置を備えたことを特徴とする原子力発電プラント。
A main steam pipe connecting the reactor pressure vessel and the steam turbine is provided with a pressure header, a main steam stop valve and a steam control valve, and the steam flow rate from the reactor pressure vessel is controlled by the steam control valve. A turbine bypass pipe that supplies power to the steam turbine, generates power in the steam turbine, condenses the turbine exhaust in the condenser and returns it to the reactor pressure vessel, and releases the steam from the reactor pressure vessel to the condenser In the nuclear power plant configured to connect the pressure header and the condenser,
An input side is connected to the main steam pipe between the downstream side of the pressure header and the upstream side of the steam control valve, and a steam pressure adjusting device for adjusting the pressure of steam from the reactor pressure vessel is provided. A nuclear power plant.
前記蒸気圧力調整装置の出力側を蒸気タービンの低圧タービンの入口側に接続させる構成にしたことを特徴とする請求項1記載の原子力発電プラント。 2. The nuclear power plant according to claim 1, wherein an output side of the steam pressure adjusting device is connected to an inlet side of a low pressure turbine of the steam turbine. 前記蒸気圧力調整装置は、リリーフ弁と蒸気リリーフ管とで構成したことを特徴とする請求項1または2記載の原子力発電プラント。 The nuclear power plant according to claim 1 or 2, wherein the steam pressure adjusting device comprises a relief valve and a steam relief pipe. 前記蒸気リリーフ管は、減圧装置を備えたことを特徴とする請求項3記載の原子力発電プラント。 The nuclear power plant according to claim 3, wherein the steam relief pipe includes a decompression device. 原子炉圧力容器と蒸気タービンを接続する主蒸気管に、主蒸気止め弁および蒸気加減弁を介装させ、前記原子炉圧力容器からの蒸気の流量を前記蒸気加減弁で制御して蒸気タービンに供給し、前記蒸気タービンで動力を発生させ、タービン排気を復水器で凝縮させて前記原子炉圧力容器に戻す構成の原子力発電プラントにおいて、
前記蒸気加減弁の上流側の間の前記主蒸気管と復水器との間に前記原子炉圧力容器からの蒸気の圧力を調整する蒸気圧力調整装置を備え、前記蒸気圧力調整装置には減圧装置を備えたことを特徴とする原子力発電プラント。
A main steam pipe connecting the reactor pressure vessel and the steam turbine is provided with a main steam stop valve and a steam control valve, and the steam flow rate from the reactor pressure vessel is controlled by the steam control valve. In a nuclear power plant configured to supply, generate power with the steam turbine, condense the turbine exhaust with a condenser and return it to the reactor pressure vessel,
A steam pressure adjusting device for adjusting the pressure of steam from the reactor pressure vessel is provided between the main steam pipe and the condenser between the upstream side of the steam control valve, and the steam pressure adjusting device is depressurized. A nuclear power plant characterized by comprising an apparatus.
前記蒸気圧力調整装置は、リリーフ弁と蒸気リリーフ管とで構成したことを特徴とする請求項5記載の原子力発電プラント。 6. The nuclear power plant according to claim 5, wherein the steam pressure adjusting device comprises a relief valve and a steam relief pipe. 前記蒸気圧力調整装置を主蒸気管は、管本数分設けたことを特徴とする請求項1または5記載の原子力発電プラント。 The nuclear power plant according to claim 1 or 5, wherein the steam pressure adjusting device is provided by the number of main steam pipes. 原子炉圧力容器と蒸気タービンを接続する主蒸気管に、圧力ヘッダ、主蒸気止め弁および蒸気加減弁を介装させ、前記原子炉圧力容器からの蒸気の流量を前記蒸気加減弁で制御して蒸気タービンに供給し、前記蒸気タービンで動力を発生させ、タービン排気を復水器で凝縮させて前記原子炉圧力容器に戻し、前記原子炉圧力容器からの蒸気を復水器に逃がすタービンバイパス管で前記圧力ヘッダと前記復水器とを接続する構成の原子力発電プラントにおいて、
前記主蒸気管の管本数分主蒸気止め弁を備えるとともに、前記主蒸気管の管本数より少ない蒸気加減弁を備えたことを特徴とする原子力発電プラント。
A main steam pipe connecting the reactor pressure vessel and the steam turbine is provided with a pressure header, a main steam stop valve and a steam control valve, and the steam flow rate from the reactor pressure vessel is controlled by the steam control valve. A turbine bypass pipe that supplies power to the steam turbine, generates power in the steam turbine, condenses the turbine exhaust in the condenser and returns it to the reactor pressure vessel, and releases the steam from the reactor pressure vessel to the condenser In the nuclear power plant configured to connect the pressure header and the condenser,
A nuclear power plant comprising a number of main steam pipes corresponding to the number of main steam pipes and a number of steam control valves less than the number of main steam pipes.
原子炉圧力容器と蒸気タービンを接続する主蒸気管に、蒸気加減弁を備え、前記原子炉圧力容器から前記蒸気タービンに蒸気を供給する際、予め定められた圧力に対し、前記原子炉圧力容器から前記蒸気タービンに供給する蒸気の圧力が変動しているとき、前記蒸気加減弁に弁絞り開度を与えるとともに、前記蒸気タービンのうち、高圧タービンと低圧タービンとの中間に設けた組み合せ中間弁に弁絞り開度を与え、前記蒸気の圧力を調整することを特徴とする原子力発電プラント運転制御方法。 A main steam pipe connecting the reactor pressure vessel and the steam turbine is provided with a steam control valve, and when supplying steam from the reactor pressure vessel to the steam turbine, the reactor pressure vessel is set against a predetermined pressure. When the pressure of the steam supplied to the steam turbine fluctuates, a valve throttle opening is given to the steam control valve, and a combined intermediate valve provided between the high-pressure turbine and the low-pressure turbine in the steam turbine A method for controlling operation of a nuclear power plant, characterized in that a valve throttle opening is provided to adjust the pressure of the steam. 原子炉圧力容器と蒸気タービンを接続する主蒸気管に、蒸気加減弁を備え、前記原子炉圧力容器から前記蒸気タービンに蒸気を供給する際、予め定められた圧力に対し、前記原子炉圧力容器から前記蒸気タービンに供給する蒸気の圧力が変動しているとき、前記蒸気加減弁の上流側の前記主蒸気管に設けた蒸気圧力調整装置のリリーフ弁に開弁指令を与えることを特徴とする原子力発電プラント運転制御方法。 A main steam pipe connecting the reactor pressure vessel and the steam turbine is provided with a steam control valve, and when supplying steam from the reactor pressure vessel to the steam turbine, the reactor pressure vessel is set against a predetermined pressure. When the pressure of the steam supplied to the steam turbine fluctuates from, a valve opening command is given to a relief valve of a steam pressure adjusting device provided in the main steam pipe upstream of the steam control valve. Nuclear power plant operation control method. 原子炉圧力容器と蒸気タービンを接続する主蒸気管の管本数に対応させて主蒸気止め弁を備えるとともに、前記管本数のうち、少なくとも1本以上に蒸気加減弁を備え、前記原子炉圧力容器から前記蒸気タービンに蒸気を供給する際、前記主蒸気止め弁のうち、第1の主蒸気止め弁を開弁させた後、前記蒸気加減弁を開弁させ、さらに第2の主蒸気止め弁を開弁させた後、前記蒸気加減弁を閉弁させ、さらに残りの主蒸気止め弁を開弁させる間に前記蒸気加減弁の開弁、閉弁を繰り返し、最後に前記蒸気加減弁を開弁させることを特徴とする原子力発電プラント運転制御方法。 A main steam stop valve is provided corresponding to the number of main steam pipes connecting the reactor pressure vessel and the steam turbine, and at least one of the pipes is provided with a steam control valve, and the reactor pressure vessel When supplying steam to the steam turbine from the main steam stop valve, after opening the first main steam stop valve, the steam control valve is opened, and the second main steam stop valve is further opened. After the valve is opened, the steam control valve is closed, and the steam control valve is repeatedly opened and closed while the remaining main steam stop valves are opened, and finally the steam control valve is opened. A nuclear power plant operation control method characterized by causing a valve to operate. 原子炉圧力容器と蒸気タービンを接続する主蒸気管の管本数に対応させて主蒸気止め弁を備えるとともに、前記管本数より少ない蒸気加減弁を備え、前記原子炉圧力容器から前記蒸気タービンに蒸気を供給する際、予め定められた圧力に対し、前記原子炉圧力容器から前記蒸気タービンに供給する蒸気の圧力が変動しているとき、前記蒸気加減弁に弁絞り開度を与えるか、あるいは下流側に前記蒸気加減弁をもつ主蒸気止め弁の一つを開弁させたまま、前記蒸気加減弁を閉弁させるとともに、前記主蒸気止め弁の残りを順次閉弁させるかを選択することを特徴とする原子力発電プラント運転制御方法。 A main steam stop valve is provided corresponding to the number of main steam pipes connecting the reactor pressure vessel and the steam turbine, and a steam control valve less than the number of pipes is provided, and steam is supplied from the reactor pressure vessel to the steam turbine. When the pressure of the steam supplied from the reactor pressure vessel to the steam turbine fluctuates with respect to a predetermined pressure, a valve throttle opening is given to the steam control valve, or downstream Selecting whether to close the steam control valve and sequentially close the rest of the main steam stop valve while one of the main steam stop valves having the steam control valve on the side is opened. A nuclear power plant operation control method characterized by the above.
JP2004303356A 2004-10-18 2004-10-18 Nuclear power plant Expired - Fee Related JP4575109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303356A JP4575109B2 (en) 2004-10-18 2004-10-18 Nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303356A JP4575109B2 (en) 2004-10-18 2004-10-18 Nuclear power plant

Publications (2)

Publication Number Publication Date
JP2006112402A true JP2006112402A (en) 2006-04-27
JP4575109B2 JP4575109B2 (en) 2010-11-04

Family

ID=36381121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303356A Expired - Fee Related JP4575109B2 (en) 2004-10-18 2004-10-18 Nuclear power plant

Country Status (1)

Country Link
JP (1) JP4575109B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241579A (en) * 2007-03-28 2008-10-09 Toshiba Corp Method and device for operating nuclear power plant
JP2011012567A (en) * 2009-06-30 2011-01-20 Mitsubishi Heavy Ind Ltd Method and device for controlling valve for warming steam turbine
WO2019163438A1 (en) * 2018-02-21 2019-08-29 株式会社東芝 Control device for steam governing valve of power generation plant, and method for controlling steam governing valve of power generation plant
CN115126552A (en) * 2022-07-26 2022-09-30 中国船舶重工集团公司第七0四研究所 Through-flow valve block structure with safety valve arranged outside machine
WO2023188384A1 (en) * 2022-03-31 2023-10-05 日立Geニュークリア・エナジー株式会社 Nuclear power generation equipment and method for operating nuclear power generation equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237010A (en) * 1986-04-09 1987-10-17 Hitachi Ltd Excessive speed suppressing system for turbine
JPH1184078A (en) * 1997-09-12 1999-03-26 Hitachi Ltd Abnormal time cooperative control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237010A (en) * 1986-04-09 1987-10-17 Hitachi Ltd Excessive speed suppressing system for turbine
JPH1184078A (en) * 1997-09-12 1999-03-26 Hitachi Ltd Abnormal time cooperative control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241579A (en) * 2007-03-28 2008-10-09 Toshiba Corp Method and device for operating nuclear power plant
JP2011012567A (en) * 2009-06-30 2011-01-20 Mitsubishi Heavy Ind Ltd Method and device for controlling valve for warming steam turbine
WO2019163438A1 (en) * 2018-02-21 2019-08-29 株式会社東芝 Control device for steam governing valve of power generation plant, and method for controlling steam governing valve of power generation plant
JP2019143626A (en) * 2018-02-21 2019-08-29 株式会社東芝 Steam regulating valve control device for power generating plant and steam regulating valve control method for power generating plant
JP7110130B2 (en) 2018-02-21 2022-08-01 株式会社東芝 Steam control valve control device for power plant and method for controlling steam control valve for power plant
WO2023188384A1 (en) * 2022-03-31 2023-10-05 日立Geニュークリア・エナジー株式会社 Nuclear power generation equipment and method for operating nuclear power generation equipment
CN115126552A (en) * 2022-07-26 2022-09-30 中国船舶重工集团公司第七0四研究所 Through-flow valve block structure with safety valve arranged outside machine
CN115126552B (en) * 2022-07-26 2024-06-04 中国船舶集团有限公司第七〇四研究所 Flow valve group structure with safety valve arranged outside machine

Also Published As

Publication number Publication date
JP4575109B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
EP2060752B1 (en) Steam system, and its control system and control method
JP2010156332A (en) Device for starting up steam turbine against rated pressure
CN103791485A (en) Optimal control method of water supply system of thermal power generating unit
JP4764255B2 (en) Small once-through boiler power generation system and operation control method thereof
JP4575109B2 (en) Nuclear power plant
WO2014129467A1 (en) Valve control device for steam turbine and valve control method therefor
JP4898409B2 (en) Steam supply equipment
JP2007309194A (en) Steam turbine plant
JP4643470B2 (en) Steam turbine overspeed prevention device
JP4734184B2 (en) Steam turbine control device and steam turbine control method
US20130167504A1 (en) Method for regulating a short-term power increase of a steam turbine
US20110146279A1 (en) Steam turbine system for a power plant
JP2013148347A (en) Water supply control device, and water supply control method
JP2002004807A (en) Stam control device for turbine
JP7369732B2 (en) Output control device and output control method for nuclear power plant
CN115930200A (en) High temperature reactor main steam pressure control system and method
CN213510767U (en) Multi-dragging-one combined cycle unit reheat steam system
JP2587419B2 (en) Supercritical once-through boiler
JPH08260907A (en) Steam storing electric power plant
JP5656754B2 (en) Power generation facility for waste incinerator and control method thereof
JP5306000B2 (en) Water supply control device and water supply control method
JP4399381B2 (en) Operation method of nuclear power plant
JP4516438B2 (en) Operation method of nuclear power plant
JP4431512B2 (en) Nuclear power plant
JP5542421B2 (en) Thermal power plant control apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees