WO2023188384A1 - Nuclear power generation equipment and method for operating nuclear power generation equipment - Google Patents

Nuclear power generation equipment and method for operating nuclear power generation equipment Download PDF

Info

Publication number
WO2023188384A1
WO2023188384A1 PCT/JP2022/016855 JP2022016855W WO2023188384A1 WO 2023188384 A1 WO2023188384 A1 WO 2023188384A1 JP 2022016855 W JP2022016855 W JP 2022016855W WO 2023188384 A1 WO2023188384 A1 WO 2023188384A1
Authority
WO
WIPO (PCT)
Prior art keywords
nuclear power
plant
power
power generation
power plant
Prior art date
Application number
PCT/JP2022/016855
Other languages
French (fr)
Japanese (ja)
Inventor
俊也 守田
洋平 村上
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Priority to PCT/JP2022/016855 priority Critical patent/WO2023188384A1/en
Publication of WO2023188384A1 publication Critical patent/WO2023188384A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements

Definitions

  • the present invention relates to nuclear power generation equipment and a method of operating nuclear power generation equipment.
  • nuclear power plants will lose off-site power for a long period of time. In this case, in order to restart the plant, the nuclear power plant started up its internal loads using electric power generated by a hydroelectric power plant or the like. In addition, nuclear power plants did not have the ability to actively contribute to resolving power outages in the event of long-term power outages.
  • Patent Document 1 describes an invention that starts a gas turbine generator that serves as a black start power source during a station blackout (power outage) and supplies power to the high voltage side (primary side) of a startup transformer.
  • black start refers to generating electricity to resolve a power outage without receiving electricity generated from an external power source from a blackout state.
  • a black start power source is a power source that generates power to resolve power outages.
  • Patent Document 1 supplies black start power through a startup transformer using a gas turbine generator during a station blackout (long-term power outage) of the power system.
  • a gas turbine generator In order to start the thermal power generator or nuclear power generator, it is necessary to operate the power plant's internal equipment (water pumps, fans, etc.), and in order to operate these, a certain amount of power is required. Therefore, the gas turbine generator to be applied also needs to be larger.
  • the gas turbine generator is configured to be used only for power supply to the in-house power source of thermal power generation or nuclear power generation.
  • Patent Document 1 uses a nuclear power plant as a blackout power source, the purpose of the gas turbine generator is determined to be power supply to the in-house power source of thermal power generation or nuclear power generation. Therefore, an object of the present invention is to use nuclear power generation equipment as a black start power source during station blackout.
  • the nuclear power generation equipment of the present invention includes a nuclear power plant that can supply hydrogen to the outside, and a nuclear power plant that can use the hydrogen generated in the nuclear plant as fuel and supply electric power to the load of the nuclear plant.
  • a gas turbine generator is a nuclear power plant that can supply hydrogen to the outside.
  • the method for operating a nuclear power generation facility includes a step in which a nuclear power plant supplies hydrogen to the outside, a step in which a gas turbine generator generates power using hydrogen generated in the nuclear power plant as fuel, and a step in which the gas turbine generator generates power using the hydrogen generated in the nuclear power plant as fuel. and supplying power to a load of the nuclear power plant.
  • a nuclear power plant supplies hydrogen to the outside
  • a gas turbine generator generates power using hydrogen generated in the nuclear power plant as fuel
  • the gas turbine generator generates power using the hydrogen generated in the nuclear power plant as fuel.
  • FIG. 1 is a configuration diagram of a nuclear power generation facility according to the present embodiment.
  • FIG. 1 is a schematic configuration diagram of a nuclear power plant. It is a flow chart of control processing of a nuclear power plant and a gas turbine plant. It is a flowchart of processing when blackout is detected. It is a flowchart of black start processing.
  • the first step is to start up a generator that is large enough to supply power to internal equipment at a thermal power plant or nuclear power plant, using an even smaller power source. Only after preparing a plurality of these generators will it be possible to supply power to equipment within a thermal power plant or nuclear power plant.
  • FIG. 1 is a configuration diagram of a nuclear power generation facility 1 according to this embodiment.
  • the nuclear power generation facility 1 includes a nuclear power plant 2, a gas turbine plant 3, switches 41 to 43, a main transformer 44, an in-station transformer 45, an in-station load 46, an in-station wiring 47, and a control section 5. It is equipped with The nuclear power generation facility 1 is configured by combining a nuclear power plant 2 and a gas turbine plant 3 that operates with fuel mainly consisting of hydrogen, directly connected to a main circuit on the low voltage side of a main transformer 44 .
  • the power generation capacity of the nuclear power generation facility 1 is the total capacity of the nuclear power plant 2 and the gas turbine plant 3.
  • the response to load fluctuations required of the power system 6 is implemented by changing the operating capacity of the gas turbine plant 3.
  • the nuclear power plant 2 side supplies base power to the electric power system 6 during rated capacity operation, and also produces hydrogen and supplies it as fuel to the gas turbine plant 3 .
  • the nuclear power generation facility 1 supplies the power system 6 with the total of the power generated by the nuclear power plant 2 and the power generated by the gas turbine plant 3, and also functions as a black start power source when the power system 6 experiences a station blackout.
  • the main transformer 44 is connected between the power system 6 and the in-house wiring 47, and has the function of mutually converting both AC voltages.
  • the switch 43 is connected between the high voltage side of the main transformer 44 and the power system 6, and switches between conduction and disconnection between the two.
  • the switch 41 is connected between the nuclear power plant 2 and the in-house wiring 47 on the low voltage side of the main transformer 44, and switches between conduction and disconnection between the two.
  • the switch 42 is connected between the gas turbine plant 3 and the in-house wiring 47 on the low-pressure side of the main transformer 44, and switches between conduction and disconnection between the two. Note that the switch 41 also has a function of causing the nuclear power plant 2 and the power system 6 to operate synchronously.
  • the switch 42 also has a function of causing the gas turbine plant 3 and the power system 6 to operate synchronously.
  • the station transformer 45 is connected between the station load 46 and the station wiring 47, and steps down the AC voltage of the station wiring 47 to the AC voltage required by the station load 46.
  • the in-house load 46 refers to all types of equipment that need to be operated, for example, when the nuclear power plant 2 is started up and during normal operation.
  • the in-house loads 46 include auxiliary equipment that is in-house equipment for starting the generator, and in-house equipment for safety that needs to be operated in the event of a plant accident or the like.
  • the auxiliary machine starts the nuclear power plant 2 or assists the power generation of the nuclear power plant 2.
  • the auxiliary equipment receives power supply, starts the nuclear power plant 2, and causes the nuclear power plant 2 to continue generating electricity.
  • the auxiliary equipment is, for example, a pump, a blower, or a valve.
  • Safety equipment is the minimum equipment necessary to protect human life and facilities, such as water injection pumps that maintain the safety of nuclear reactors and emergency lights during power outages.
  • the power required by safety equipment is smaller than the power used to operate auxiliary equipment.
  • the nuclear power plant 2 includes a reactor 23 that generates steam, a turbine 21 that is rotationally driven by the generated steam, and a generator 22 that is directly connected to the turbine 21.
  • the reactor 23 of the nuclear power plant 2 supplies hydrogen generated using the heat source of the reactor 23 to the gas turbine plant 3 located outside the nuclear power plant 2. Note that there are other ways to generate hydrogen in the nuclear power plant 2, such as using generated electricity, but the following explanation will be based on the method of generating hydrogen using the heat source of the reactor 23. .
  • the gas turbine plant 3 includes an LNG (natural gas) tank 34, a hydrogen tank 36, and a mixer 35 that mixes these natural gas and hydrogen.
  • the gas turbine plant 3 includes a gas turbine 31 that is driven to rotate using a mixed gas mixed in a mixer 35 as fuel, and a generator 32 that is directly connected to the gas turbine 31.
  • the gas turbine plant 3 burns hydrogen and natural gas as fuel to obtain power.
  • the gas turbine 31 sucks in a large amount of air, and first compresses the air with a compressor. In the following combustor, fuel is injected into high-pressure air and combusted. Finally, the high-temperature, high-pressure gas rotates the gas turbine 31, extracts power as rotational force, and rotates the generator 32. In gas turbine power generation, rotational force is used to rotate the shaft of the generator 32, and rotational energy is converted into electric power. Further, a part of the rotational force of the gas turbine 31 is also used to rotate the compressor. This device is called a gas turbine 31 because the turbine is rotated using high-temperature, high-pressure gas.
  • the hydrogen tank 36 stores hydrogen generated in the reactor 23. Since the gas turbine plant 3 generates electricity using the hydrogen produced in the reactor 23 as fuel, the hydrogen produced in the nuclear power plant 2 can be utilized as an energy source without waste. Furthermore, the gas turbine plant 3 has the ability to supply electric power to the in-house load 46 for starting the nuclear power plant 2 .
  • the gas turbine plant 3 performs grid-connected operation by connecting to the electric power system 6 and autonomous operation by connecting to the in-house load 46.
  • the gas turbine plant 3 is, for example, a plant that burns a mixed gas of hydrogen and natural gas to rotate a turbine and generate electricity.
  • the gas turbine plant 3 can be started and generate electricity even when there is no grid power. This is a black start.
  • the electric power generated by the gas turbine plant 3 can sufficiently operate the station load 46. As a result, the nuclear power plant 2 can be activated and black started.
  • the gas turbine plant 3 can be used to provide power to the internal load 46 of the nuclear power generation facility 1 as a backup power source for the nuclear power generation facility 1 during a long-term station blackout in the event of a large-scale disaster.
  • the control unit 5 is, for example, an information processing device or a computer that includes a central processing unit, a storage device, and various interfaces.
  • the control unit 5 controls, for example, the power generation operations of the nuclear power plant 2 and the gas turbine plant 3, and displays, stores, and transmits information indicating the status of the nuclear power plant 2, the gas turbine plant 3, and the power system 6. It outputs various information regarding the power generation equipment 1. This information may be output to equipment within the nuclear power generation facility 1 or may be output to equipment outside the nuclear power generation facility 1.
  • control unit 5 When a station blackout occurs, the control unit 5 operates the nuclear power plant 2 in full bypass for a short period of time and waits for recovery. If the station blackout continues for a long period of time, the control unit 5 also stops the nuclear power plant 2.
  • the control unit 5 is communicably connected to the central power dispatch center 9, and receives, for example, a notification of the occurrence of a blackout in the power system 6.
  • the central power dispatch center 9 plays the following three roles in order to stably supply electricity to users.
  • the first role of the central power dispatch center 9 is to control the amount of electricity generated so that the amount of electricity used is equal to the amount of electricity generated, and to keep the frequency constant. If the balance between the amount of electricity used by users and the amount of electricity generated by power plants is disrupted, the frequency will be disrupted, making it impossible to provide a stable supply of electricity. For this reason, the central power dispatch center 9 predicts the amount of electricity used, which changes from moment to moment, and adjusts the power generation amount of the power plant accordingly to maintain the AC frequency at a predetermined value.
  • the generated electricity is supplied to users through facilities such as power plants, power transmission lines, substations, distribution lines, and service lines.
  • the power system 6 is a system configured by combining all of these facilities.
  • the second role of the central power dispatch center 9 is to grasp the overall status of the power system 6 in the power grid area of the power company that spans each prefecture, and to stabilize the power system 6 while controlling the electricity flowing there. It is to operate.
  • the third role of the central power dispatch center 9 is to collect weather information, which has a major impact on electricity usage, data such as electricity usage at any given time, and accident information on equipment in the power system 6. , to quickly transmit the necessary information to the relevant locations.
  • the central power dispatch center 9 controls the amount of power generation in accordance with the amount of electricity used. Note that the control unit 5 is not limited to this, as long as it is configured to be able to detect the occurrence of a blackout in the power system 6.
  • the control unit 5 starts up the nuclear power plant 2 using the electric power of the gas turbine plant 3.
  • the control unit 5 By starting up the large-capacity nuclear power generation facility 1 as soon as possible upon recovery from a station blackout, it can play a role in the early recovery of the power system 6.
  • the ability of the nuclear power generation facility 1 to follow the load on the power system 6 is also improved, and added value such as station blackout support is added.
  • Blackstart is the process of bringing the power grid back into service from a power outage without relying on external power transmission networks. At this time, it is necessary to disconnect renewable energy whose output fluctuates and start using hydropower or thermal power.
  • the power system black starts, for example, we start with hydroelectric power generation, increase demand and supply while balancing supply and demand, and then connect nuclear power generation and thermal power generation.
  • hydropower there may also be small-scale gas turbines, etc.
  • the procedure for recovering from a power system black start is as follows. (1) Start the emergency generator and supply on-site power to the power station with black start power. Note that there are also cases where a general hydroelectric generator is used. (2) Secure on-site power at the power plant that will be the starting point of a black start. (3) Start up the black start power supply and gradually expand the power system while also utilizing phase adjustment equipment, which is a function to keep the system stable if necessary. (4) Connect the generators of other power plants in parallel while securing their on-site power supply. (5) Transmit power to the load.
  • FIG. 2 is a schematic configuration diagram of the nuclear power plant 2.
  • the reactor 23 supplies steam to the turbine 21 via piping and steam control valves 241, 242, 243.
  • the turbine 21 is rotationally driven by steam supplied from the reactor 23, and causes the generator 22 to generate electricity.
  • the steam supplied to the turbine 21 and the steam passing through the steam control valve 241 and the turbine bypass valve 244 are condensed by the condenser 25 to become water.
  • the feed water heater 26 heats the water in the condenser 25.
  • the water supply pump 27 supplies water from the water supply heater 26 and water supplied from the outside to the reactor 23 .
  • the turbine bypass valve 244 of the nuclear power plant 2 has the ability to allow 100% of the steam generated in the nuclear reactor (reactor 23) to flow into the condenser 25 for a short time, and the condenser 25 also It has the ability to convert water into water.
  • 100% of the steam generated in the nuclear reactor flows into the condenser 25 and the condenser 25 receives a plurality of steam, this is called full bypass operation.
  • full bypass operation By performing full bypass operation when a blackout occurs in the power system 6, it is possible to maintain the operation of the nuclear power plant 2.
  • the reactor 23 further includes an internal pump 28 that recirculates water in the reactor 23, and a control rod drive device that inserts the control rod into the reactor 23 and controls insertion and withdrawal of the control rod into the fuel assembly of the reactor 23. It is equipped with 29.
  • the pressure control system 52 controls the steam control valve 243 so that the reactor pressure and turbine load are at predetermined values.
  • the water supply control system 55 controls the rotation speed of the water supply pump 27 so that the water level in the reactor falls within a predetermined range.
  • the recirculation flow rate control system 53 controls the output of the reactor by adjusting the recirculation flow rate of water in the reactor core using the internal pump 28 and controlling the amount of voids in the fuel assembly.
  • the control rod operation monitoring system 54 controls the output of the nuclear reactor by controlling the number and insertion positions of control rods (CR) inserted into the fuel assembly.
  • the automatic power adjustment system 51 collectively controls the power of the reactor and the load of the turbine 21 .
  • the control unit 5 in FIG. 1 includes an automatic output adjustment system 51, a pressure control system 52, a recirculation flow rate control system 53, a control rod operation monitoring system 54, and a water supply control system 55.
  • FIG. 3 is a flowchart of control processing for the nuclear power plant 2 and the gas turbine plant 3.
  • the control unit 5 performs the following steps S10 and S11 in parallel.
  • the control unit 5 operates the nuclear power plant 2 to maintain a predetermined output (step S10).
  • the control unit 5 operates the gas turbine generator to follow the load on the system (step S11).
  • the control unit 5 repeatedly executes the processing in steps S10 and S11.
  • the nuclear power generation facility 1 has a load following ability that satisfies the load operation requirements requested by the power system 6 side. Moreover, by using the hydrogen gas generated in the reactor 23 of the nuclear power plant 2 as fuel for the gas turbine plant 3, energy can be converted into electric power without any waste as a whole.
  • FIG. 4 is a flowchart of processing when a blackout of the power system 6 is detected.
  • the control unit 5 detects the occurrence of a blackout in the power system 6 (step S20), it starts the process shown in FIG. 4.
  • the control unit 5 may receive a notification of the occurrence of a blackout in the power system 6 from the central power dispatch center 9 and start processing.
  • the control unit 5 In response to the blackout occurrence signal of the power system 6, the control unit 5 opens the switch 43, controls the turbine bypass valve 244 of the nuclear power plant 2 in the opening direction and the steam control valve 243 in the closing direction, and controls the turbine 21 side.
  • the nuclear power plant 2 is operated in full bypass by rapidly reducing the amount of steam flowing into the condenser 25 and increasing the flow rate of steam to the condenser 25 (step S21). Thereby, the control unit 5 can stop the power generation by the nuclear power plant 2 and immediately return the nuclear power plant 2 from this state to normal operation.
  • control unit 5 stops the gas turbine plant 3 and maintains that state.
  • the control unit 5 determines whether the power system 6 has recovered from the blackout (step S22).
  • step S22 if the control unit 5 determines that the power system 6 has been restored from the blackout in a short time, it returns the nuclear power plant 2 from full bypass operation to normal operation, and restarts the gas turbine plant 3. (step S23), and the process of FIG. 4 is ended. If the control unit 5 determines in step S22 that the power system 6 has not recovered from the blackout in a short time (No), the process proceeds to step S24.
  • step S24 the control unit 5 determines that the blackout of the power system 6 will be prolonged, and stops the nuclear power plant 2.
  • the control unit 5 ends the process of FIG. 4 because the nuclear power plant 2 is in the stopped state. Thereby, the control unit 5 can prevent the power generated by the nuclear power plant 2 from being excessively supplied to the in-plant load 46.
  • the control unit 5 may start the gas turbine plant 3 as appropriate to supply power to the in-house load 46.
  • FIG. 5 is a flowchart of a process when an instruction is received from the central power dispatch center 9 to supply power necessary for the black start to the nuclear power generation facility 1 during a black start of the electric power system 6.
  • the control unit 5 receives a black start instruction for the nuclear power generation facility 1 from the central power dispatch center 9 (step S30), it starts a series of black start processes.
  • the control unit 5 starts the nuclear power plant 2 via the in-house transformer 45 using the electric power of the gas turbine plant 3 that was started earlier (step S31), so that the AC output of the nuclear power plant 2 becomes the AC output of the gas turbine plant 3. Wait until it is synchronized with the output (step S32). Note that the control unit 5 is connected to a voltage sensor that detects the AC output of the nuclear power plant 2 and a voltage sensor that detects the AC output of the gas turbine plant 3.
  • control unit 5 closes the switch 41 to synchronize the nuclear power plant 2 and the gas turbine plant 3 in parallel (step S33).
  • control unit 5 waits until the AC output of the nuclear power plant 2 and the AC output of the gas turbine plant 3 are synchronized with the power grid 6, closes the switch 43, and connects the nuclear power plant 2 and the gas turbine plant 3 to the power grid 6. 5 (step S34), the process of FIG. 5 ends.
  • the nuclear power plant 2 Even if the nuclear power plant 2 is shut down, the nuclear reaction continues for a while and hydrogen gas is produced.
  • the nuclear power plant 2 can be started while suppressing the consumption of fuel such as natural gas.
  • the nuclear power generation facility 1 is configured to operate the gas turbine plant 3 to supply the in-station load 46 of the nuclear power plant 2 via the in-station transformer 45 even during a long-term blackout of the power system 6. It is configured to supply power. Therefore, during a long-term blackout of the power system 6, the nuclear power generation facility 1 according to the present embodiment supplies power to the in-plant load 46 without limiting it to the power plant security load as in conventional nuclear power plants. Since it can supply power to the plant, it is possible to maintain the plant more safely and also to provide a black start function.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is also possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
  • Part or all of the above configurations, functions, processing units, processing means, etc. may be realized by hardware such as an integrated circuit.
  • Each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, and files that realize each function can be stored in storage devices such as memory, hard disks, SSDs (Solid State Drives), or recording media such as flash memory cards and DVDs (Digital Versatile Disks). can.
  • control lines and information lines are shown to be considered necessary for explanation, and not all control lines and information lines are necessarily shown in the product. In reality, almost all components may be considered interconnected.

Abstract

This nuclear power generation equipment (1) is used as a black start power source when a station blackout occurs. The nuclear power generation equipment (1) comprises: a nuclear power plant (2) that can supply hydrogen to the outside; and a gas turbine plant (3) that can supply power to a load of the nuclear power plant (2) using hydrogen generated by the nuclear power plant (2) as fuel.

Description

原子力発電設備、および、原子力発電設備の運転方法Nuclear power generation equipment and operating method of nuclear power generation equipment
 本発明は、原子力発電設備、および、原子力発電設備の運転方法に関する。 The present invention relates to nuclear power generation equipment and a method of operating nuclear power generation equipment.
 近年、自然エネルギーの台頭により電力系統の不安定要因が増加しており、大規模停電の可能性が増大している。大規模な長期停電が発生した場合、原子力発電所にとっては、長期の外部電源の喪失となる。この場合、原子力発電所は、プラントの再稼動のため、水力発電所等で発電した電力により所内負荷を起動させていた。また、原子力発電所は、長期停電事象に対して、その停電解消のための積極的な寄与能力を有していなかった。 In recent years, with the rise of natural energy, the number of unstable factors in power systems has increased, increasing the possibility of large-scale power outages. If a large-scale, long-term power outage occurs, nuclear power plants will lose off-site power for a long period of time. In this case, in order to restart the plant, the nuclear power plant started up its internal loads using electric power generated by a hydroelectric power plant or the like. In addition, nuclear power plants did not have the ability to actively contribute to resolving power outages in the event of long-term power outages.
 特許文献1には、ステーションブラックアウト(停電)時のブラックスタート電源となるガスタービン発電機を起動し、起動変圧器の高圧側(一次側)に電力を供給する発明が記載されている。なお、ブラックスタートとは、ブラックアウトの状態から、外部電源より発電された電気を受電することなく、停電解消のための発電を行うことをいう。ブラックスタート電源とは、停電解消のための発電を行う電源のことをいう。 Patent Document 1 describes an invention that starts a gas turbine generator that serves as a black start power source during a station blackout (power outage) and supplies power to the high voltage side (primary side) of a startup transformer. Note that black start refers to generating electricity to resolve a power outage without receiving electricity generated from an external power source from a blackout state. A black start power source is a power source that generates power to resolve power outages.
特願昭63-190529号公報Patent Application No. 1985-190529
 特許文献1に記載されている発明は、電力系統のステーションブラックアウト(長期停電)時に、ガスタービン発電機により起動変圧器を通じてブラックスタート電源を供給する。その火力発電機や原子力発電機を起動するためには、その発電所の所内機器(給水ポンプやファンなど)を運転する必要があり、これらを運転するためには、ある程度大きな電力の供給が必要であり、適用するガスタービン発電機も大型化が必要である。本発明ではガスタービン発電機は火力発電や原子力発電の所内電源への給電にのみ使用する構成としている。 The invention described in Patent Document 1 supplies black start power through a startup transformer using a gas turbine generator during a station blackout (long-term power outage) of the power system. In order to start the thermal power generator or nuclear power generator, it is necessary to operate the power plant's internal equipment (water pumps, fans, etc.), and in order to operate these, a certain amount of power is required. Therefore, the gas turbine generator to be applied also needs to be larger. In the present invention, the gas turbine generator is configured to be used only for power supply to the in-house power source of thermal power generation or nuclear power generation.
 電力系統にある程度の電力がある通常時には、その大きな電力は電力系統から安定的に供給される。しかしながら、ブラックアウトの状態では、電力系統に電力がないことから、一から安定な電力を作る必要がある。しかし、従来は、電力系統に接続された原子力プラントを、外部電源の喪失時に起動することはできず、ブラックスタート電源とすることはできなかった。また、特許文献1の構成は、原子力プラントをブラックアウト電源とすることにはなるが、ガスタービン発電機の目的を火力発電や原子力発電の所内電源への給電に断定していた。
 そこで、本発明は、ステーションブラックアウト時に、原子力発電設備をブラックスタート電源とすることを課題とする。
During normal times when there is a certain amount of power in the power grid, that large amount of power is stably supplied from the power grid. However, in a blackout situation, there is no power in the power grid, so it is necessary to generate stable power from scratch. However, conventionally, a nuclear power plant connected to an electric power system cannot be started when an external power source is lost, and cannot be used as a black start power source. Further, although the configuration of Patent Document 1 uses a nuclear power plant as a blackout power source, the purpose of the gas turbine generator is determined to be power supply to the in-house power source of thermal power generation or nuclear power generation.
Therefore, an object of the present invention is to use nuclear power generation equipment as a black start power source during station blackout.
 前記した課題を解決するため、本発明の原子力発電設備は、水素を外部に供給可能な原子力プラントと、前記原子力プラントで生成された水素を燃料とし、前記原子力プラントの負荷に電力を供給可能なガスタービン発電機と、を備えることを特徴とする。 In order to solve the above-mentioned problems, the nuclear power generation equipment of the present invention includes a nuclear power plant that can supply hydrogen to the outside, and a nuclear power plant that can use the hydrogen generated in the nuclear plant as fuel and supply electric power to the load of the nuclear plant. A gas turbine generator.
 本発明の原子力発電設備の運転方法は、原子力プラントが、水素を外部に供給するステップと、ガスタービン発電機が、前記原子力プラントで生成された水素を燃料として発電するステップと、前記ガスタービン発電機が、前記原子力プラントの負荷に電力を供給するステップと、を実行することを特徴とする。
 その他の手段については、発明を実施するための形態のなかで説明する。
The method for operating a nuclear power generation facility according to the present invention includes a step in which a nuclear power plant supplies hydrogen to the outside, a step in which a gas turbine generator generates power using hydrogen generated in the nuclear power plant as fuel, and a step in which the gas turbine generator generates power using the hydrogen generated in the nuclear power plant as fuel. and supplying power to a load of the nuclear power plant.
Other means will be explained in the detailed description.
 本発明によれば、ステーションブラックアウト時に、原子力発電設備をブラックスタート電源とすることが可能となる。 According to the present invention, it is possible to use nuclear power generation equipment as a black start power source during station blackout.
本実施形態に係る原子力発電設備の構成図である。FIG. 1 is a configuration diagram of a nuclear power generation facility according to the present embodiment. 原子力プラントの概略構成図である。FIG. 1 is a schematic configuration diagram of a nuclear power plant. 原子力プラントとガスタービンプラントの制御処理のフローチャートである。It is a flow chart of control processing of a nuclear power plant and a gas turbine plant. ブラックアウト検知時の処理のフローチャートである。It is a flowchart of processing when blackout is detected. ブラックスタート処理のフローチャートである。It is a flowchart of black start processing.
 以降、本発明を実施するための形態を、各図を参照して詳細に説明する。
 ブラックスタートからの復旧には、まず、火力発電所や原子力発電所の所内機器に電力を供給できる程度の発電機を、更に小さい電源で起動することとなる。これら発電機を複数台用意してから初めて、火力発電所や原子力発電所の所内機器への電力供給が可能となる。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the respective figures.
To recover from a black start, the first step is to start up a generator that is large enough to supply power to internal equipment at a thermal power plant or nuclear power plant, using an even smaller power source. Only after preparing a plurality of these generators will it be possible to supply power to equipment within a thermal power plant or nuclear power plant.
 なお、従来、火力発電所や原子力発電所に電力を供給するために、まず送電線に電力を送電するが、電気が流れていない状態から送電線に電力を送電した際には、電圧が高くなり、機器を損壊させるおそれがある。このため、電圧を常に監視・調整しながら、復旧を進めることとなる。 Conventionally, in order to supply power to a thermal power plant or nuclear power plant, power is first transmitted to a power transmission line, but when power is transmitted to a power transmission line from a state where no electricity is flowing, the voltage is high. This may cause damage to the equipment. For this reason, restoration efforts will be carried out while constantly monitoring and adjusting the voltage.
 図1は、本実施形態に係る原子力発電設備1の構成図である。
 原子力発電設備1は、原子力プラント2と、ガスタービンプラント3と、開閉器41~43と、主変圧器44と、所内変圧器45と、所内負荷46と、所内配線47と、制御部5とを備えている。原子力発電設備1は、原子力プラント2と水素を主体とする燃料にて運転するガスタービンプラント3を主変圧器44の低圧側の主回路直結で組み合わせて構成される。原子力発電設備1としての発電容量は、原子力プラント2とガスタービンプラント3の合計容量となる。電力系統6に要求されている負荷変動への対応はガスタービンプラント3の運転容量の変化にて実施する。原子力プラント2側は、定格容量運転として、電力系統6へのベース電源の給電を実施すると共に、水素を製造してガスタービンプラント3の燃料として供給する。
FIG. 1 is a configuration diagram of a nuclear power generation facility 1 according to this embodiment.
The nuclear power generation facility 1 includes a nuclear power plant 2, a gas turbine plant 3, switches 41 to 43, a main transformer 44, an in-station transformer 45, an in-station load 46, an in-station wiring 47, and a control section 5. It is equipped with The nuclear power generation facility 1 is configured by combining a nuclear power plant 2 and a gas turbine plant 3 that operates with fuel mainly consisting of hydrogen, directly connected to a main circuit on the low voltage side of a main transformer 44 . The power generation capacity of the nuclear power generation facility 1 is the total capacity of the nuclear power plant 2 and the gas turbine plant 3. The response to load fluctuations required of the power system 6 is implemented by changing the operating capacity of the gas turbine plant 3. The nuclear power plant 2 side supplies base power to the electric power system 6 during rated capacity operation, and also produces hydrogen and supplies it as fuel to the gas turbine plant 3 .
 原子力発電設備1は、原子力プラント2で発電した電力と、ガスタービンプラント3で発電した電力の合計を電力系統6に供給すると共に、電力系統6のステーションブラックアウト時に、ブラックスタート電源として機能する。 The nuclear power generation facility 1 supplies the power system 6 with the total of the power generated by the nuclear power plant 2 and the power generated by the gas turbine plant 3, and also functions as a black start power source when the power system 6 experiences a station blackout.
 主変圧器44は、電力系統6と所内配線47の間に接続されて、両交流電圧を相互に変換する機能を有している。開閉器43は、主変圧器44の高圧側と電力系統6の間に接続されて、両者の導通と遮断とを切り替える。開閉器41は、主変圧器44の低圧側で原子力プラント2と所内配線47の間に接続されて、両者の導通と遮断とを切り替える。開閉器42は、主変圧器44の低圧側でガスタービンプラント3と所内配線47の間に接続されて、両者の導通と遮断とを切り替える。なお、開閉器41は、原子力プラント2と電力系統6とを同期運転させる機能も有する。開閉器42は、ガスタービンプラント3と電力系統6とを同期運転させる機能も有する。 The main transformer 44 is connected between the power system 6 and the in-house wiring 47, and has the function of mutually converting both AC voltages. The switch 43 is connected between the high voltage side of the main transformer 44 and the power system 6, and switches between conduction and disconnection between the two. The switch 41 is connected between the nuclear power plant 2 and the in-house wiring 47 on the low voltage side of the main transformer 44, and switches between conduction and disconnection between the two. The switch 42 is connected between the gas turbine plant 3 and the in-house wiring 47 on the low-pressure side of the main transformer 44, and switches between conduction and disconnection between the two. Note that the switch 41 also has a function of causing the nuclear power plant 2 and the power system 6 to operate synchronously. The switch 42 also has a function of causing the gas turbine plant 3 and the power system 6 to operate synchronously.
 所内変圧器45は、所内負荷46と所内配線47の間に接続されて、所内配線47の交流電圧を所内負荷46で必要な交流電圧に降圧する。所内負荷46は、例えば原子力プラント2の起動時と通常運転時などに運転が必要となる各種設備全般を指している。所内負荷46には、発電機起動のための所内機器である補機と、プラント事故などの際に運転が必要な保安用所内機器がある。補機は、原子力プラント2を起動させ、または、原子力プラント2の発電を補助する。また、補機は、電力の供給を受けて、原子力プラント2を起動させ、原子力プラント2の発電を継続させる。補機は、例えば、ポンプやブロワーや弁である。 The station transformer 45 is connected between the station load 46 and the station wiring 47, and steps down the AC voltage of the station wiring 47 to the AC voltage required by the station load 46. The in-house load 46 refers to all types of equipment that need to be operated, for example, when the nuclear power plant 2 is started up and during normal operation. The in-house loads 46 include auxiliary equipment that is in-house equipment for starting the generator, and in-house equipment for safety that needs to be operated in the event of a plant accident or the like. The auxiliary machine starts the nuclear power plant 2 or assists the power generation of the nuclear power plant 2. In addition, the auxiliary equipment receives power supply, starts the nuclear power plant 2, and causes the nuclear power plant 2 to continue generating electricity. The auxiliary equipment is, for example, a pump, a blower, or a valve.
 発電機の起動には、発電機起動のための所内機器である補機への電力の供給が必要であり、特に、その始動時には定格時より大きな電源が必要となる。保安用所内機器は、人命および施設を保護するために必要な最小限度の機器であり、例えば、原子炉の安全を維持する注水ポンプや停電時の非常灯等である。保安用所内機器が必要とする電力は、補機の運転に使用する電力よりも小さい。 To start the generator, it is necessary to supply power to the auxiliary equipment, which is in-house equipment for starting the generator, and in particular, when starting the generator, a larger power source than the rated one is required. Safety equipment is the minimum equipment necessary to protect human life and facilities, such as water injection pumps that maintain the safety of nuclear reactors and emergency lights during power outages. The power required by safety equipment is smaller than the power used to operate auxiliary equipment.
 原子力プラント2は、蒸気を生成するリアクタ23と、生成された蒸気で回転駆動するタービン21と、タービン21に直結した発電機22を備えて構成される。原子力プラント2のリアクタ23は、リアクタ23の熱源を利用して生成した水素を、この原子力プラント2の外部に位置するガスタービンプラント3に供給する。なお、原子力プラント2の水素の生成方法は、これ以外にも発電した電力を使った方法等もあるが、ここでは、リアクタ23の熱源を利用して水素を生成する方式をベースに以下説明する。 The nuclear power plant 2 includes a reactor 23 that generates steam, a turbine 21 that is rotationally driven by the generated steam, and a generator 22 that is directly connected to the turbine 21. The reactor 23 of the nuclear power plant 2 supplies hydrogen generated using the heat source of the reactor 23 to the gas turbine plant 3 located outside the nuclear power plant 2. Note that there are other ways to generate hydrogen in the nuclear power plant 2, such as using generated electricity, but the following explanation will be based on the method of generating hydrogen using the heat source of the reactor 23. .
 ガスタービンプラント3は、LNG(天然ガス)タンク34と、水素タンク36と、これら天然ガスと水素を混合する混合器35を備える。ガスタービンプラント3は、混合器35で混合された混合ガスを燃料として回転駆動するガスタービン31と、ガスタービン31に直結した発電機32を備えて構成される。 The gas turbine plant 3 includes an LNG (natural gas) tank 34, a hydrogen tank 36, and a mixer 35 that mixes these natural gas and hydrogen. The gas turbine plant 3 includes a gas turbine 31 that is driven to rotate using a mixed gas mixed in a mixer 35 as fuel, and a generator 32 that is directly connected to the gas turbine 31.
 ガスタービンプラント3とは、燃料となる水素と天然ガスを燃やして動力を得る。ガスタービン31は、大量の空気を吸い込み、まず圧縮機で空気を圧縮する。続く燃焼器で高圧の空気に燃料を噴射し、燃焼させる。最後に高温高圧となった気体がガスタービン31を回転させ、動力を回転力として取り出し、発電機32を回転させる。ガスタービン発電では回転力を発電機32の軸回転に利用し、回転エネルギーを電力に変換している。また、ガスタービン31の回転力の一部は圧縮機の回転にも使われる。このように高温高圧のガスでタービンを回すことから、この装置はガスタービン31と呼ばれている。 The gas turbine plant 3 burns hydrogen and natural gas as fuel to obtain power. The gas turbine 31 sucks in a large amount of air, and first compresses the air with a compressor. In the following combustor, fuel is injected into high-pressure air and combusted. Finally, the high-temperature, high-pressure gas rotates the gas turbine 31, extracts power as rotational force, and rotates the generator 32. In gas turbine power generation, rotational force is used to rotate the shaft of the generator 32, and rotational energy is converted into electric power. Further, a part of the rotational force of the gas turbine 31 is also used to rotate the compressor. This device is called a gas turbine 31 because the turbine is rotated using high-temperature, high-pressure gas.
 水素タンク36には、リアクタ23で生成される水素を貯える。ガスタービンプラント3は、リアクタ23で生成される水素を燃料として発電するので、原子力プラント2で生成される水素を無駄なくエネルギー源として活用できる。また、ガスタービンプラント3は、原子力プラント2を起動するための所内負荷46に電力を供給できる能力を有している。 The hydrogen tank 36 stores hydrogen generated in the reactor 23. Since the gas turbine plant 3 generates electricity using the hydrogen produced in the reactor 23 as fuel, the hydrogen produced in the nuclear power plant 2 can be utilized as an energy source without waste. Furthermore, the gas turbine plant 3 has the ability to supply electric power to the in-house load 46 for starting the nuclear power plant 2 .
 ガスタービンプラント3は、電力系統6と接続する系統連系運転および所内負荷46と接続する自立運転を行う。ガスタービンプラント3は、例えば、水素と天然ガスの混合ガスを燃焼してタービンを回転させて発電するプラントである。ガスタービンプラント3は、系統電力が無い状態から起動して発電することができる。これは、ブラックスタートである。ガスタービンプラント3が発電する電力は、所内負荷46を充分に稼働可能である。これにより原子力プラント2を起動して、ブラックスタートさせることができる。 The gas turbine plant 3 performs grid-connected operation by connecting to the electric power system 6 and autonomous operation by connecting to the in-house load 46. The gas turbine plant 3 is, for example, a plant that burns a mixed gas of hydrogen and natural gas to rotate a turbine and generate electricity. The gas turbine plant 3 can be started and generate electricity even when there is no grid power. This is a black start. The electric power generated by the gas turbine plant 3 can sufficiently operate the station load 46. As a result, the nuclear power plant 2 can be activated and black started.
 本実施形態では、ガスタービンプラント3を使って、大規模災害時における長期のステーションブラックアウト時の原子力発電設備1のバックアップ電源として、原子力発電設備1の所内負荷46に電力を融通可能である。 In this embodiment, the gas turbine plant 3 can be used to provide power to the internal load 46 of the nuclear power generation facility 1 as a backup power source for the nuclear power generation facility 1 during a long-term station blackout in the event of a large-scale disaster.
 制御部5は、例えば中央処理装置と記憶装置と各種インタフェースを備える情報処理装置またはコンピュータである。制御部5は、例えば、原子力プラント2とガスタービンプラント3の発電動作を制御し、これら原子力プラント2とガスタービンプラント3や電力系統6の状態を示す情報を表示、保存、発信するなど、原子力発電設備1に関する種々の情報を出力したりする。この情報は、原子力発電設備1内の機器に出力してもよいし、原子力発電設備1外の機器に出力してもよい。 The control unit 5 is, for example, an information processing device or a computer that includes a central processing unit, a storage device, and various interfaces. The control unit 5 controls, for example, the power generation operations of the nuclear power plant 2 and the gas turbine plant 3, and displays, stores, and transmits information indicating the status of the nuclear power plant 2, the gas turbine plant 3, and the power system 6. It outputs various information regarding the power generation equipment 1. This information may be output to equipment within the nuclear power generation facility 1 or may be output to equipment outside the nuclear power generation facility 1.
 制御部5は、ステーションブラックアウトが発生すると、短時間だけ原子力プラント2をフルバイパスで運転して復旧を待つ。ステーションブラックアウトが長期に亘る場合、制御部5は、原子力プラント2も停止させる。制御部5は、中央給電指令所9と通信可能に接続されており、例えば電力系統6のブラックアウト発生の通知を受信する。 When a station blackout occurs, the control unit 5 operates the nuclear power plant 2 in full bypass for a short period of time and waits for recovery. If the station blackout continues for a long period of time, the control unit 5 also stops the nuclear power plant 2. The control unit 5 is communicably connected to the central power dispatch center 9, and receives, for example, a notification of the occurrence of a blackout in the power system 6.
 中央給電指令所9は、ユーザに電気を安定して供給するため、以下の3つの役割を担っている。
 中央給電指令所9の第1の役割は、電気の使用量と発電量が等しくなるように発電量をコントロールし、周波数を一定に保つことである。ユーザの電気の使用量と発電所で作られる電気の発電量のバランスが崩れると、周波数が乱れ、電気を安定して供給できなくなる。このため中央給電指令所9は、時々刻々と変化する電気の使用量を予測しながら、それに合わせて発電所の発電量を調整し、交流周波数を所定値に保つようにしている。発電された電気は、発電所・送電線・変電所・配電線・引込線などの設備を経てユーザに供給される。その全ての設備が組み合わされて構成されるシステムが、電力系統6である。
The central power dispatch center 9 plays the following three roles in order to stably supply electricity to users.
The first role of the central power dispatch center 9 is to control the amount of electricity generated so that the amount of electricity used is equal to the amount of electricity generated, and to keep the frequency constant. If the balance between the amount of electricity used by users and the amount of electricity generated by power plants is disrupted, the frequency will be disrupted, making it impossible to provide a stable supply of electricity. For this reason, the central power dispatch center 9 predicts the amount of electricity used, which changes from moment to moment, and adjusts the power generation amount of the power plant accordingly to maintain the AC frequency at a predetermined value. The generated electricity is supplied to users through facilities such as power plants, power transmission lines, substations, distribution lines, and service lines. The power system 6 is a system configured by combining all of these facilities.
 中央給電指令所9の第2の役割は、各都県にまたがる電力会社のパワーグリッドエリアの電力系統6の全体の状況を把握し、そこを流れる電気をコントロールしながら電力系統6を安定して運用することである。 The second role of the central power dispatch center 9 is to grasp the overall status of the power system 6 in the power grid area of the power company that spans each prefecture, and to stabilize the power system 6 while controlling the electricity flowing there. It is to operate.
 中央給電指令所9の第3の役割は、電気の使用量に大きな影響を与える気象情報をはじめ、その時々の電気の使用量などのデータや、電力系統6の設備の事故情報などを収集し、必要な情報を関係箇所に速やかに伝達することである。
 中央給電指令所9は、これら3つの役割を確実に果たすため、電気の使用量に合わせて発電量をコントロールする。
 なお、これに限られず制御部5は、電力系統6のブラックアウト発生を検知可能に構成されていればよく、限定されない。
The third role of the central power dispatch center 9 is to collect weather information, which has a major impact on electricity usage, data such as electricity usage at any given time, and accident information on equipment in the power system 6. , to quickly transmit the necessary information to the relevant locations.
In order to reliably fulfill these three roles, the central power dispatch center 9 controls the amount of power generation in accordance with the amount of electricity used.
Note that the control unit 5 is not limited to this, as long as it is configured to be able to detect the occurrence of a blackout in the power system 6.
 電力系統6が復旧した場合、制御部5は、ガスタービンプラント3の電力を使用して原子力プラント2を起動する。ステーションブラックアウトからの復旧時にいち早く大容量の原子力発電設備1を起動させることで、電力系統6の早期復旧の一翼を担うことができる。本実施形態では、原子力発電設備1の電力系統6への負荷追従能力も向上させ、併せてステーションブラックアウト対応等の付加価値を追加している。 When the power system 6 is restored, the control unit 5 starts up the nuclear power plant 2 using the electric power of the gas turbine plant 3. By starting up the large-capacity nuclear power generation facility 1 as soon as possible upon recovery from a station blackout, it can play a role in the early recovery of the power system 6. In this embodiment, the ability of the nuclear power generation facility 1 to follow the load on the power system 6 is also improved, and added value such as station blackout support is added.
《電力系統のブラックスタートの手順》
 ブラックスタートとは、外部の送電ネットワークに依存することなく、電力網を停電状態から稼働状態に戻すプロセスである。 この時には、出力が変動する再エネを切り離して、水力や火力で立ち上げないといけない。
《Power system black start procedure》
Blackstart is the process of bringing the power grid back into service from a power outage without relying on external power transmission networks. At this time, it is necessary to disconnect renewable energy whose output fluctuates and start using hydropower or thermal power.
 具体的には、電力系統のブラックスタート時には、例えばまず水力発電から立ち上げ、需給バランスを取りながら需要と供給を大きくして、原子力発電と火力発電をつないでゆく。なお水力以外には、小規模なガスタービン等もありうる。 Specifically, when the power system black starts, for example, we start with hydroelectric power generation, increase demand and supply while balancing supply and demand, and then connect nuclear power generation and thermal power generation. In addition to hydropower, there may also be small-scale gas turbines, etc.
 なおこの際、大型火力発電所は、ブラックスタートの最初ではないが、供給力が大きいため、供給力を積み上げる過程で威力を発揮する。他方で、自然変動型再生エネルギー発電機は「出力」が変動するので、すぐには系統に接続できない。他の発電設備が全て接続された後に、自然変動型再生エネルギー発電機が接続されるのが基本となる。 At this time, although large thermal power plants are not the first in the black start, they have a large supply capacity, so they will be effective in the process of building up supply capacity. On the other hand, naturally variable renewable energy generators cannot be connected to the grid immediately because their "output" fluctuates. Basically, the naturally variable renewable energy generator is connected after all other power generation equipment is connected.
 電力系統のブラックスタートからの復旧の手順は以下の通りである。
(1) 非常用発電機を起動し、ブラックスタート電源のある発電所へ所内電源を供給する。なお、一般の水力発電機を介する場合もある。
(2) ブラックスタートの起点となる発電所の所内電力を確保する。
(3) ブラックスタート電源を起動し、必要により系統を安定に保つ機能である調相設備も活用しながら、順次、電力系統を拡大する。
(4) 他発電所の所内電源を確保しつつ、その発電機を並列する。
(5) 負荷に送電する。
The procedure for recovering from a power system black start is as follows.
(1) Start the emergency generator and supply on-site power to the power station with black start power. Note that there are also cases where a general hydroelectric generator is used.
(2) Secure on-site power at the power plant that will be the starting point of a black start.
(3) Start up the black start power supply and gradually expand the power system while also utilizing phase adjustment equipment, which is a function to keep the system stable if necessary.
(4) Connect the generators of other power plants in parallel while securing their on-site power supply.
(5) Transmit power to the load.
 図2は、原子力プラント2の概略構成図である。
 リアクタ23は、配管および蒸気加減弁241,242,243を介してタービン21に蒸気を供給する。タービン21はリアクタ23から供給された蒸気で回転駆動し、発電機22に発電させる。タービン21は供給された蒸気と、蒸気加減弁241およびタービンバイパス弁244を通る蒸気は、復水器25によって復水されて水となる。給水加熱器26は、復水器25の水を加熱する。給水ポンプ27は、給水加熱器26の水と外部から供給される水をリアクタ23に給水する。
FIG. 2 is a schematic configuration diagram of the nuclear power plant 2. As shown in FIG.
The reactor 23 supplies steam to the turbine 21 via piping and steam control valves 241, 242, 243. The turbine 21 is rotationally driven by steam supplied from the reactor 23, and causes the generator 22 to generate electricity. The steam supplied to the turbine 21 and the steam passing through the steam control valve 241 and the turbine bypass valve 244 are condensed by the condenser 25 to become water. The feed water heater 26 heats the water in the condenser 25. The water supply pump 27 supplies water from the water supply heater 26 and water supplied from the outside to the reactor 23 .
 また、原子力プラント2のタービンバイパス弁244は、原子炉(リアクタ23)で発生する蒸気の100%を復水器25に短時間だけ流入させる能力を有しており、復水器25もその蒸気を水に変換する能力を有する。原子炉で発生する蒸気の100%を復水器25に流入させて、復水器25がその蒸気を複数することを、フルバイパス運転という。電力系統6のブラックアウト発生時にフルバイパス運転を行うことにより、原子力プラント2の運転を維持することが可能である。ただし、タービンバイパス弁244と復水器25の能力上、長時間に亘ってフルバイパス運転を継続することは不可能である。 Further, the turbine bypass valve 244 of the nuclear power plant 2 has the ability to allow 100% of the steam generated in the nuclear reactor (reactor 23) to flow into the condenser 25 for a short time, and the condenser 25 also It has the ability to convert water into water. When 100% of the steam generated in the nuclear reactor flows into the condenser 25 and the condenser 25 receives a plurality of steam, this is called full bypass operation. By performing full bypass operation when a blackout occurs in the power system 6, it is possible to maintain the operation of the nuclear power plant 2. However, due to the capabilities of the turbine bypass valve 244 and condenser 25, it is impossible to continue full bypass operation for a long time.
 リアクタ23は更に、リアクタ23内の水を再循環させるインターナルポンプ28と、リアクタ23に制御棒を挿入し、リアクタ23の燃料集合体内への制御棒の挿入と引き出しを制御する制御棒駆動装置29とを備えている。
 圧力制御系52は、蒸気加減弁243を制御して原子炉圧力とタービン負荷とが所定値になるよう制御する。
The reactor 23 further includes an internal pump 28 that recirculates water in the reactor 23, and a control rod drive device that inserts the control rod into the reactor 23 and controls insertion and withdrawal of the control rod into the fuel assembly of the reactor 23. It is equipped with 29.
The pressure control system 52 controls the steam control valve 243 so that the reactor pressure and turbine load are at predetermined values.
 給水制御系55は、原子炉の水位が所定範囲になるように、給水ポンプ27の回転速度を制御する。再循環流量制御系53は、インターナルポンプ28によって炉心の水の再循環流量を調整し、燃料集合体内のボイド量を制御することで原子炉の出力を制御する。制御棒操作監視系54は、燃料集合体内への制御棒(CR:Control Rod)の挿入本数と挿入位置を制御することで原子炉の出力を制御する。自動出力調整系51は、原子炉の出力、および、タービン21の負荷を統括制御する。図1の制御部5は、自動出力調整系51と、圧力制御系52と、再循環流量制御系53と、制御棒操作監視系54と、給水制御系55とを含んで構成される。 The water supply control system 55 controls the rotation speed of the water supply pump 27 so that the water level in the reactor falls within a predetermined range. The recirculation flow rate control system 53 controls the output of the reactor by adjusting the recirculation flow rate of water in the reactor core using the internal pump 28 and controlling the amount of voids in the fuel assembly. The control rod operation monitoring system 54 controls the output of the nuclear reactor by controlling the number and insertion positions of control rods (CR) inserted into the fuel assembly. The automatic power adjustment system 51 collectively controls the power of the reactor and the load of the turbine 21 . The control unit 5 in FIG. 1 includes an automatic output adjustment system 51, a pressure control system 52, a recirculation flow rate control system 53, a control rod operation monitoring system 54, and a water supply control system 55.
 図3は、原子力プラント2とガスタービンプラント3の制御処理のフローチャートである。
 制御部5は、以下のステップS10、S11を並列に実施する。
 制御部5は、原子力プラント2に、所定の出力を維持させるよう運転する(ステップS10)。これと並列に、制御部5は、系統の負荷に追従するようガスタービン発電機を運転する(ステップS11)。制御部5は、これらステップS10、S11の処理を繰り返し実行する。
FIG. 3 is a flowchart of control processing for the nuclear power plant 2 and the gas turbine plant 3.
The control unit 5 performs the following steps S10 and S11 in parallel.
The control unit 5 operates the nuclear power plant 2 to maintain a predetermined output (step S10). In parallel with this, the control unit 5 operates the gas turbine generator to follow the load on the system (step S11). The control unit 5 repeatedly executes the processing in steps S10 and S11.
 これにより、原子力発電設備1は、電力系統6側が要求する負荷運転の要求を満足する負荷追従能力を有することになる。また原子力プラント2のリアクタ23で発生する水素ガスをガスタービンプラント3の燃料として使用することで、全体として無駄なくエネルギーを電力に変換可能である。 As a result, the nuclear power generation facility 1 has a load following ability that satisfies the load operation requirements requested by the power system 6 side. Moreover, by using the hydrogen gas generated in the reactor 23 of the nuclear power plant 2 as fuel for the gas turbine plant 3, energy can be converted into electric power without any waste as a whole.
 図4は、電力系統6のブラックアウト検知時の処理のフローチャートである。
 制御部5は、電力系統6のブラックアウト発生を検知すると(ステップS20)、図4の処理を開始する。なお、制御部5は、中央給電指令所9から電力系統6のブラックアウト発生の通知を受信し、処理を開始してもよい。
FIG. 4 is a flowchart of processing when a blackout of the power system 6 is detected.
When the control unit 5 detects the occurrence of a blackout in the power system 6 (step S20), it starts the process shown in FIG. 4. Note that the control unit 5 may receive a notification of the occurrence of a blackout in the power system 6 from the central power dispatch center 9 and start processing.
 制御部5は、電力系統6のブラックアウト発生信号により、開閉器43を開放するとともに、原子力プラント2のタービンバイパス弁244の開方向に、蒸気加減弁243を閉方向に制御し,タービン21側への蒸気を急減させるとともに、復水器25への蒸気流量を増やして原子力プラント2をフルバイパスで運転させる処理を実施する(ステップS21)。これにより制御部5は、原子力プラント2による発電を停止させると共に、原子力プラント2を、この状態からすぐさま通常運転に戻すことができる。 In response to the blackout occurrence signal of the power system 6, the control unit 5 opens the switch 43, controls the turbine bypass valve 244 of the nuclear power plant 2 in the opening direction and the steam control valve 243 in the closing direction, and controls the turbine 21 side. The nuclear power plant 2 is operated in full bypass by rapidly reducing the amount of steam flowing into the condenser 25 and increasing the flow rate of steam to the condenser 25 (step S21). Thereby, the control unit 5 can stop the power generation by the nuclear power plant 2 and immediately return the nuclear power plant 2 from this state to normal operation.
 また、制御部5は、ガスタービンプラント3は停止させたうえで、その状態を維持させる。制御部5は、電力系統6がブラックアウトから復旧したか否かを判定する(ステップS22)。 Further, the control unit 5 stops the gas turbine plant 3 and maintains that state. The control unit 5 determines whether the power system 6 has recovered from the blackout (step S22).
 ステップS22にて、制御部5は、電力系統6がブラックアウトから短時間で復旧したと判定したならば、原子力プラント2をフルバイパス運転から通常運転に戻し、また、ガスタービンプラント3を再起動させて(ステップS23)、図4の処理を終了する。
 ステップS22にて、制御部5は、電力系統6がブラックアウトから短時間で復旧していないと判定したならば(No)、ステップS24に進む。
In step S22, if the control unit 5 determines that the power system 6 has been restored from the blackout in a short time, it returns the nuclear power plant 2 from full bypass operation to normal operation, and restarts the gas turbine plant 3. (step S23), and the process of FIG. 4 is ended.
If the control unit 5 determines in step S22 that the power system 6 has not recovered from the blackout in a short time (No), the process proceeds to step S24.
 ステップS24にて、電力系統6のブラックアウトが長期化すると判断した制御部5は、原子力プラント2を停止させる。制御部5は、原子力プラント2が停止状態となったことで、図4の処理を終了する。これにより制御部5は、原子力プラント2が発電した電力を、所内負荷46に過剰に供給することを抑止できる。なお制御部5は、適宜、ガスタービンプラント3を起動して、所内負荷46に電力を供給してもよい。 In step S24, the control unit 5 determines that the blackout of the power system 6 will be prolonged, and stops the nuclear power plant 2. The control unit 5 ends the process of FIG. 4 because the nuclear power plant 2 is in the stopped state. Thereby, the control unit 5 can prevent the power generated by the nuclear power plant 2 from being excessively supplied to the in-plant load 46. Note that the control unit 5 may start the gas turbine plant 3 as appropriate to supply power to the in-house load 46.
 図5は、電力系統6のブラックスタートにおいて、この原子力発電設備1にそのブラックスタートに必要となる電力を給電するように中央給電指令所9から指示を受けた場合の処理のフローチャートである。
 制御部5が、中央給電指令所9からこの原子力発電設備1としてブラックスタートの指示を受信すると(ステップS30)、一連のブラックスタート処理を開始する。
FIG. 5 is a flowchart of a process when an instruction is received from the central power dispatch center 9 to supply power necessary for the black start to the nuclear power generation facility 1 during a black start of the electric power system 6.
When the control unit 5 receives a black start instruction for the nuclear power generation facility 1 from the central power dispatch center 9 (step S30), it starts a series of black start processes.
 制御部5は、先に起動していたガスタービンプラント3の電力で、所内変圧器45を介して原子力プラント2を起動し(ステップS31)、原子力プラント2の交流出力がガスタービンプラント3の交流出力に同期するまで待つ(ステップS32)。なお制御部5は、原子力プラント2の交流出力を検知する電圧センサと、ガスタービンプラント3の交流出力を検知する電圧センサに接続されている。 The control unit 5 starts the nuclear power plant 2 via the in-house transformer 45 using the electric power of the gas turbine plant 3 that was started earlier (step S31), so that the AC output of the nuclear power plant 2 becomes the AC output of the gas turbine plant 3. Wait until it is synchronized with the output (step S32). Note that the control unit 5 is connected to a voltage sensor that detects the AC output of the nuclear power plant 2 and a voltage sensor that detects the AC output of the gas turbine plant 3.
 そして制御部5は、開閉器41を閉じて、原子力プラント2をガスタービンプラント3に同期並列させる(ステップS33)。 Then, the control unit 5 closes the switch 41 to synchronize the nuclear power plant 2 and the gas turbine plant 3 in parallel (step S33).
 次に制御部5は、原子力プラント2の交流出力とガスタービンプラント3の交流出力が電力系統6に同期するまで待ち、開閉器43を閉じて、原子力プラント2とガスタービンプラント3を電力系統6に併入させると(ステップS34)、図5の処理を終了する。 Next, the control unit 5 waits until the AC output of the nuclear power plant 2 and the AC output of the gas turbine plant 3 are synchronized with the power grid 6, closes the switch 43, and connects the nuclear power plant 2 and the gas turbine plant 3 to the power grid 6. 5 (step S34), the process of FIG. 5 ends.
 従来の原子力発電所は、電力系統6の長期のブラックアウト時の対応能力を有していなかった。しかし、本実施形態の原子力発電設備1をこのように制御することで、電力系統6の長期のブラックアウト時に、原子力発電設備1にブラックアウト対応能力を付与することができる。 Conventional nuclear power plants did not have the ability to respond in the event of a long-term blackout of the power system 6. However, by controlling the nuclear power generation equipment 1 of this embodiment in this manner, it is possible to provide the nuclear power generation equipment 1 with blackout response capability in the event of a long-term blackout of the power system 6.
 原子力プラント2を停止したとしても、その後に暫くは核反応が継続して、水素ガスが生じる。その水素ガスをガスタービンプラント3の燃料の一部として用いることで、天然ガスなどの燃料の消費量を抑制しつつ、この原子力プラント2を起動することができる。 Even if the nuclear power plant 2 is shut down, the nuclear reaction continues for a while and hydrogen gas is produced. By using the hydrogen gas as part of the fuel for the gas turbine plant 3, the nuclear power plant 2 can be started while suppressing the consumption of fuel such as natural gas.
 電力系統6の長期のブラックアウト時、従来の原子力発電所は、所内の非常用ディーゼル発電機による電源供給により、発電所の保安用の負荷に限定して給電することで、プラントの安全を維持する構成としている。 In the event of a long-term blackout of the power grid6, conventional nuclear power plants maintain plant safety by supplying power only to the power plant's safety loads using the on-site emergency diesel generator. It is configured to do this.
 これに対して本実施形態に係る原子力発電設備1は、電力系統6の長期のブラックアウト時においても、ガスタービンプラント3の運転により、所内変圧器45を介して原子力プラント2の所内負荷46に電源を給電する構成としている。そのため、本実施形態に係る原子力発電設備1は、電力系統6の長期のブラックアウト時において、従来の原子力発電所のようにより発電所の保安用の負荷に限定することなく、電力を所内負荷46に給電できるため、より安全にプラントを維持できると共に、ブラックスタート機能を付与することができる。 On the other hand, the nuclear power generation facility 1 according to the present embodiment is configured to operate the gas turbine plant 3 to supply the in-station load 46 of the nuclear power plant 2 via the in-station transformer 45 even during a long-term blackout of the power system 6. It is configured to supply power. Therefore, during a long-term blackout of the power system 6, the nuclear power generation facility 1 according to the present embodiment supplies power to the in-plant load 46 without limiting it to the power plant security load as in conventional nuclear power plants. Since it can supply power to the plant, it is possible to maintain the plant more safely and also to provide a black start function.
(変形例)
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
(Modified example)
The present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is also possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
 上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリ、ハードディスク、SSD(Solid State Drive)などの記録装置、または、フラッシュメモリカード、DVD(Digital Versatile Disk)などの記録媒体に置くことができる。 Part or all of the above configurations, functions, processing units, processing means, etc. may be realized by hardware such as an integrated circuit. Each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, and files that realize each function can be stored in storage devices such as memory, hard disks, SSDs (Solid State Drives), or recording media such as flash memory cards and DVDs (Digital Versatile Disks). can.
 各実施形態に於いて、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、殆ど全ての構成が相互に接続されていると考えてもよい。 In each embodiment, control lines and information lines are shown to be considered necessary for explanation, and not all control lines and information lines are necessarily shown in the product. In reality, almost all components may be considered interconnected.
1 原子力発電設備
2 原子力プラント
21 タービン
22 発電機
23 リアクタ
241~243 蒸気加減弁
244 タービンバイパス弁
25 復水器
26 給水加熱器
27 給水ポンプ
28 インターナルポンプ
29 制御棒駆動装置
3 ガスタービンプラント (ガスタービン発電機)
31 ガスタービン
32 発電機
34 LNGタンク
35 混合器
36 水素タンク
41~43 開閉器
44 主変圧器
45 所内変圧器
46 所内負荷
47 所内配線
5 制御部
51 自動出力調整系
52 圧力制御系
53 再循環流量制御系
54 制御棒操作監視系
55 給水制御系
6 電力系統
9 中央給電指令所
1 Nuclear power generation equipment 2 Nuclear power plant 21 Turbine 22 Generator 23 Reactors 241 to 243 Steam control valve 244 Turbine bypass valve 25 Condenser 26 Feed water heater 27 Feed water pump 28 Internal pump 29 Control rod drive device 3 Gas turbine plant (gas turbine generator)
31 Gas turbine 32 Generator 34 LNG tank 35 Mixer 36 Hydrogen tanks 41 to 43 Switch 44 Main transformer 45 Station transformer 46 Station load 47 Station wiring 5 Control unit 51 Automatic output adjustment system 52 Pressure control system 53 Recirculation flow rate Control system 54 Control rod operation monitoring system 55 Water supply control system 6 Power system 9 Central power dispatch center

Claims (14)

  1.  水素を外部に供給可能な原子力プラントと、
     前記原子力プラントで生成された水素を燃料とし、前記原子力プラントの負荷に電力を供給可能なガスタービン発電機と、
     を備えることを特徴とする原子力発電設備。
    A nuclear power plant that can supply hydrogen externally,
    a gas turbine generator that uses hydrogen generated in the nuclear power plant as fuel and is capable of supplying power to the load of the nuclear power plant;
    Nuclear power generation equipment characterized by being equipped with.
  2.  ブラックスタート時に前記ガスタービン発電機による電力により、前記原子力プラントを起動する制御部、
     を更に備えることを特徴とする請求項1に記載の原子力発電設備。
    a control unit that starts the nuclear power plant with electric power from the gas turbine generator during a black start;
    The nuclear power generation facility according to claim 1, further comprising:
  3.  前記原子力プラントで生成された水素を貯える水素タンク、
     を更に備えることを特徴とする請求項1に記載の原子力発電設備。
    a hydrogen tank for storing hydrogen generated at the nuclear power plant;
    The nuclear power generation facility according to claim 1, further comprising:
  4.  前記原子力プラントおよび前記ガスタービン発電機と電力系統とを接続する主変圧器を更に備え、
     前記制御部は、前記原子力プラントおよび前記ガスタービン発電機を、前記電力系統に同期並列させるように運転する、
     ことを特徴とする請求項2に記載の原子力発電設備。
    further comprising a main transformer connecting the nuclear power plant and the gas turbine generator to a power system,
    The control unit operates the nuclear power plant and the gas turbine generator so as to be synchronously parallel to the power system.
    The nuclear power generation facility according to claim 2, characterized in that:
  5.  前記制御部は、電力系統の負荷に追従するよう前記ガスタービン発電機を運転する、
     ことを特徴とする請求項2に記載の原子力発電設備。
    The control unit operates the gas turbine generator to follow the load of the power system.
    The nuclear power generation facility according to claim 2, characterized in that:
  6.  前記制御部は、所定の出力を維持するように前記原子力プラントを運転する、
     ことを特徴とする請求項2に記載の原子力発電設備。
    The control unit operates the nuclear power plant to maintain a predetermined output.
    The nuclear power generation facility according to claim 2, characterized in that:
  7.  前記原子力プラントの出力を所内配線から遮断する開閉器、
     を備えることを特徴とする請求項2に記載の原子力発電設備。
    a switch that cuts off the output of the nuclear power plant from in-house wiring;
    The nuclear power generation facility according to claim 2, comprising:
  8.  前記ガスタービン発電機の出力を所内配線から遮断する開閉器、
     を備えることを特徴とする請求項2に記載の原子力発電設備。
    a switch that cuts off the output of the gas turbine generator from in-house wiring;
    The nuclear power generation facility according to claim 2, comprising:
  9.  前記制御部は、ブラックアウト時に前記原子力プラントを所定時間に亘ってブルバイパス運転させる、
     ことを特徴とする請求項2に記載の原子力発電設備。
    The control unit causes the nuclear power plant to operate by bull bypass for a predetermined period of time during a blackout.
    The nuclear power generation facility according to claim 2, characterized in that:
  10.  前記制御部は、ブラックアウト時に前記原子力プラントを所定時間に亘ってブルバイパス運転させ、所定時間内にブラックアウトから復旧しなかったならば、当該原子力プラントを停止させる、
     ことを特徴とする請求項9に記載の原子力発電設備。
    The control unit operates the nuclear power plant for a predetermined period of time during a blackout, and if the blackout has not been recovered within a predetermined period of time, the control unit shuts down the nuclear power plant.
    The nuclear power generation facility according to claim 9, characterized in that:
  11.  前記制御部は、ブラックアウト時に前記原子力プラントを所定時間に亘ってブルバイパス運転させ、所定時間内にブラックアウトから復帰したならば、当該原子力プラントを通常運転に戻す、
     ことを特徴とする請求項9に記載の原子力発電設備。
    The control unit causes the nuclear power plant to operate by bull bypass for a predetermined time during a blackout, and returns the nuclear power plant to normal operation if the nuclear power plant recovers from the blackout within the predetermined time.
    The nuclear power generation facility according to claim 9, characterized in that:
  12.  前記制御部は、ブラックアウト時に前記原子力プラントと前記ガスタービン発電機を系統から解列させる、
     ことを特徴とする請求項2に記載の原子力発電設備。
    The control unit disconnects the nuclear power plant and the gas turbine generator from the grid during a blackout.
    The nuclear power generation facility according to claim 2, characterized in that:
  13.  前記制御部は、ブラックアウト時に前記ガスタービン発電機で所内負荷に電力を供給する、
     ことを特徴とする請求項2に記載の原子力発電設備。
    The control unit supplies power to an in-plant load using the gas turbine generator during a blackout.
    The nuclear power generation facility according to claim 2, characterized in that:
  14.  原子力プラントが、水素を外部に供給するステップと、
     ガスタービン発電機が、前記原子力プラントで生成された水素を燃料として発電するステップと、
     前記ガスタービン発電機が、前記原子力プラントの負荷に電力を供給するステップと、
     を実行することを特徴とする原子力発電設備の運転方法。
    a step in which the nuclear power plant supplies hydrogen to the outside;
    a gas turbine generator generating electricity using hydrogen generated at the nuclear power plant as fuel;
    the gas turbine generator supplying power to a load of the nuclear plant;
    A method of operating a nuclear power generation facility characterized by carrying out the following.
PCT/JP2022/016855 2022-03-31 2022-03-31 Nuclear power generation equipment and method for operating nuclear power generation equipment WO2023188384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016855 WO2023188384A1 (en) 2022-03-31 2022-03-31 Nuclear power generation equipment and method for operating nuclear power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016855 WO2023188384A1 (en) 2022-03-31 2022-03-31 Nuclear power generation equipment and method for operating nuclear power generation equipment

Publications (1)

Publication Number Publication Date
WO2023188384A1 true WO2023188384A1 (en) 2023-10-05

Family

ID=88200395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016855 WO2023188384A1 (en) 2022-03-31 2022-03-31 Nuclear power generation equipment and method for operating nuclear power generation equipment

Country Status (1)

Country Link
WO (1) WO2023188384A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360483A (en) * 1976-11-10 1978-05-31 Toshiba Corp Output controling method for boiling water type atomic power plant
JPS63190529A (en) * 1987-01-29 1988-08-08 株式会社東芝 Generator
JPS63283436A (en) * 1987-05-11 1988-11-21 Mitsubishi Electric Corp Simultaneous operation of emergency generator to power system
JPS63285495A (en) * 1987-05-19 1988-11-22 Toshiba Corp Controlling apparatus of reactor
JP2005354753A (en) * 2004-06-08 2005-12-22 Hitachi Ltd Power generation plant
JP2006112402A (en) * 2004-10-18 2006-04-27 Toshiba Corp Nuclear power plant and method of operation control for the same
JP2007218604A (en) * 2006-02-14 2007-08-30 Japan Atomic Energy Agency Nuclear power generation system adaptable to load fluctuations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360483A (en) * 1976-11-10 1978-05-31 Toshiba Corp Output controling method for boiling water type atomic power plant
JPS63190529A (en) * 1987-01-29 1988-08-08 株式会社東芝 Generator
JPS63283436A (en) * 1987-05-11 1988-11-21 Mitsubishi Electric Corp Simultaneous operation of emergency generator to power system
JPS63285495A (en) * 1987-05-19 1988-11-22 Toshiba Corp Controlling apparatus of reactor
JP2005354753A (en) * 2004-06-08 2005-12-22 Hitachi Ltd Power generation plant
JP2006112402A (en) * 2004-10-18 2006-04-27 Toshiba Corp Nuclear power plant and method of operation control for the same
JP2007218604A (en) * 2006-02-14 2007-08-30 Japan Atomic Energy Agency Nuclear power generation system adaptable to load fluctuations

Similar Documents

Publication Publication Date Title
CN108964115B (en) DC coupling power electronic system of fuel cell power system
JP5641679B2 (en) Wind power plant startup method, wind power plant and wind power plant utilization method
US7966102B2 (en) Method and system for power plant block loading
JP6134498B2 (en) Power generation device with energy storage means and control process for this type of device
Adibi et al. Power system restoration-a task force report
EP2240993B1 (en) Backup power system and method
Hirose et al. The sendai microgrid operational experience in the aftermath of the tohoku earthquake: a case study
Veyo et al. Status of pressurized SOFC/GAS turbine power system development at Siemens Westinghouse
CN104033197B (en) For starting and operate the method for combined cycle power plant
CN103457296B (en) A kind of independent operating micro-grid master control power-supply switching method
CA2914758A1 (en) Combined power plant
JP2014173600A (en) Method of operating plant for combined cycle power generation
JP2016103968A (en) Induction generator system with grid-loss ride-through capability
WO2021023356A1 (en) Providing auxiliary power using offshore wind turbines
Zhao et al. Energy storage for black start services: A review
EP3391376A1 (en) Multi-modular power plant with dedicated electrical grid
JP2008170439A (en) Method and system of nuclear power generation
WO2023188384A1 (en) Nuclear power generation equipment and method for operating nuclear power generation equipment
Kaestle et al. Improved requirements for the connection to the low voltage grid
Barsali et al. Restoration islands supplied by gas turbines
CN113839425A (en) Thermal power plant black start system and method combining small-sized combustion engine with FCB function
US11527888B2 (en) Power plant-connected energy storage system and method of controlling same
JP2008131694A (en) Gas turbine power generator
WO2023181415A1 (en) Power generation plant and system stabilization method
Lu et al. Increasing black start capacity by fast cut back function of thermal power plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935522

Country of ref document: EP

Kind code of ref document: A1