JP2011012567A - Method and device for controlling valve for warming steam turbine - Google Patents

Method and device for controlling valve for warming steam turbine Download PDF

Info

Publication number
JP2011012567A
JP2011012567A JP2009155506A JP2009155506A JP2011012567A JP 2011012567 A JP2011012567 A JP 2011012567A JP 2009155506 A JP2009155506 A JP 2009155506A JP 2009155506 A JP2009155506 A JP 2009155506A JP 2011012567 A JP2011012567 A JP 2011012567A
Authority
JP
Japan
Prior art keywords
valve
steam
turbine
downstream
warming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009155506A
Other languages
Japanese (ja)
Other versions
JP5478961B2 (en
Inventor
Shigeru Harada
茂 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009155506A priority Critical patent/JP5478961B2/en
Publication of JP2011012567A publication Critical patent/JP2011012567A/en
Application granted granted Critical
Publication of JP5478961B2 publication Critical patent/JP5478961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling a valve of a steam turbine, which quickly and efficiently warms a steam regulating valve through steam system piping, inhibits occurrence of erosion, enables prevention of breakdown of the piping, and eliminates the need for a structure in which a drain valve is provided on the steam regulating valve.SOLUTION: A steam stop valve 100 (upstream valve) is opened by prescribed opening and a steam regulating valve 101 (downstream valve) is fully opened after a gas turbine 3 gets into stable rotation. After completion of warming, the steam stop valve 100 is operated to fully open after the steam regulating valve 101 is operated to fully close or slightly open.

Description

本発明は、排熱回収方式を採用したガスタービン・コンバインドサイクルプラントに関し、ガスタービンの排ガスを利用して駆動される蒸気タービンの配管系にて、エロ-ジョンの発生を防止する技術に関する。   The present invention relates to a gas turbine combined cycle plant that employs an exhaust heat recovery system, and relates to a technique for preventing the occurrence of erosion in a piping system of a steam turbine that is driven using exhaust gas from a gas turbine.

コンバインドサイクルプラントの発電方式として、ガスタービンから排出された排ガスを排熱回収ボイラ(HRSG)に導き、その排熱を利用して蒸気を発生させた後、該蒸気により蒸気タービンを駆動する、いわゆる排熱回収方式が知られている。
そして、この種の排熱回収方式を採用したガスタービン・コンバインドサイクルプラント(GTCC)として、特許文献1に示されるコンパインドサイクル発電プラントが知られている。この発電プラントは、図5に示されるように、発電機1、ガスタービン2、蒸気タービン3、排熱回収ボイラー4、復水器5、復水ポンプ6を主な構成要素とする。
As a power generation method of a combined cycle plant, exhaust gas discharged from a gas turbine is guided to an exhaust heat recovery boiler (HRSG), steam is generated using the exhaust heat, and then the steam turbine is driven by the steam. An exhaust heat recovery method is known.
And the combined cycle power plant shown in patent documents 1 is known as a gas turbine combined cycle plant (GTCC) which adopted this kind of exhaust heat recovery system. As shown in FIG. 5, the power plant includes a generator 1, a gas turbine 2, a steam turbine 3, an exhaust heat recovery boiler 4, a condenser 5, and a condensate pump 6 as main components.

ガスタービン2は、取り込んだ空気を圧縮する圧縮機10と、外部から供給された燃料ガスを前記圧縮機10から供給された圧縮空気により燃焼させる燃焼器11と、該燃焼器11から供給された排ガスにより駆動されるタービン12と、を具備するものである。また、蒸気タービン3は、低圧、中圧、高圧の3つのタービン13〜15を具備するものであって、これらガスタービン2のタービン12と、蒸気タービン3とは主軸20を共有している。
そして、ガスタービン2においては、燃焼ガスがタービン12を作動させることにより生じる主軸20の回転力、また、蒸気タービン3においては、蒸気がタービン13〜15を作動させることにより生じる主軸20の回転力によって、圧縮機10及び発電機1を駆動する。
The gas turbine 2 includes a compressor 10 that compresses the taken-in air, a combustor 11 that combusts fuel gas supplied from the outside with compressed air supplied from the compressor 10, and a gas supplied from the combustor 11. And a turbine 12 driven by exhaust gas. The steam turbine 3 includes three turbines 13 to 15 having a low pressure, a medium pressure, and a high pressure. The turbine 12 of the gas turbine 2 and the steam turbine 3 share the main shaft 20.
In the gas turbine 2, the rotational force of the main shaft 20 generated by the combustion gas operating the turbine 12. In the steam turbine 3, the rotational force of the main shaft 20 generated by the steam operating the turbines 13 to 15. Thus, the compressor 10 and the generator 1 are driven.

そして、排熱回収ボイラー4で発生した蒸気は、上述した蒸気タービン3のタービン13〜15に供給されて、該タービン13〜15の駆動力として利用された後に、復水器5及び復水ポンプ6を経由して排熱回収ボイラー4に戻される。   The steam generated in the exhaust heat recovery boiler 4 is supplied to the turbines 13 to 15 of the steam turbine 3 and used as the driving force of the turbines 13 to 15, and then the condenser 5 and the condensate pump. 6 is returned to the exhaust heat recovery boiler 4.

ところで、上記のような排熱回収方式を採用したガスタービン・コンバインドサイクルプラントでは、排熱回収ボイラー4から蒸気タービン3に通じる蒸気系配管50(50A〜50C)にて、配管途中の弁内に残留するドレンによって、エロ−ジョンという現象が発生することが問題となる。具体的には、排熱回収ボイラー4から供給された水蒸気が、蒸気系配管50に残留するドレンに触れる、又は冷たい配管やバルブに触れて水滴を生じると、これらドレン又は水滴が高速で弁や配管に衝突して、破壊されるという問題があった。また、上記一軸コンバインドサイクルプラントでは、上記タービンのドレン処理を含むウォーミング工程が完了するまで実質的な全体起動が出来ず、起動に時間がかかりすぎるという問題があった。   By the way, in the gas turbine combined cycle plant which employ | adopted the above exhaust heat recovery systems, it is in the valve in the middle of piping by the steam system piping 50 (50A-50C) leading from the exhaust heat recovery boiler 4 to the steam turbine 3. The problem is that the phenomenon of erosion occurs due to the remaining drain. Specifically, when the water vapor supplied from the exhaust heat recovery boiler 4 touches the drain that remains in the steam system pipe 50 or touches the cold pipe or valve to generate water droplets, the drain or water droplets at high speed There was a problem that it collided with the pipe and was destroyed. Moreover, in the said single axis | shaft combined cycle plant, there existed a problem that a substantially whole starting could not be performed until the warming process including the drain process of the said turbine was completed, and starting took too much time.

一方、特許文献2には、蒸気タービンに流入する主蒸気を調節するための蒸気加減弁のプレウォーミング装置に関する技術が示されている。このプレウォーミング装置は、蒸気タービンに主蒸気を送り始める以前に、蒸気加減弁を全閉にして蒸気止め弁のバイパス弁を開閉操作し前記蒸気加減弁をプレウォーミングするものにおいて、前記主蒸気の状態に基づき前記蒸気加減弁のプレウォーミングの開始時点を決定するとともに前記プレウォーミングのための操作指令を出す演算部と、この演算部からの前記操作指令に従って前記バイパス弁に駆動指令を出す駆動部とからなり、前記駆動部は、通常時において前記バイパス弁の開閉操作を連続的に行う連続駆動部と、この連続駆動部に不具合が生じたときに前記バイパス弁の開閉操作を断続的に行う断続駆動部と、を具備したことを特徴とするものである。   On the other hand, Patent Document 2 discloses a technique related to a pre-warming device for a steam control valve for adjusting main steam flowing into a steam turbine. This pre-warming device is a device that pre-warms the steam control valve by opening and closing the bypass valve of the steam stop valve by fully closing the steam control valve before starting to send main steam to the steam turbine. A calculation unit that determines a start point of pre-warming of the steam control valve based on the state of the steam and issues an operation command for the pre-warming, and a drive command to the bypass valve according to the operation command from the calculation unit A drive unit that continuously opens and closes the bypass valve during normal operation, and when the malfunction occurs in the continuous drive unit, the drive unit opens and closes the bypass valve. And an intermittent drive unit that performs intermittently.

そして、このような蒸気止め弁と、蒸気加減弁が設けられた配管系においては、例えば、図6に示されるような弁操作が行われることがある。
この図6において、符号51で示すものは蒸気系配管50の途中でありかつ上流側に設けられた蒸気止め弁、符号52で示すものは蒸気系配管50の途中でありかつ該蒸気止め弁51の下流に設けられた蒸気加減弁、符号53で示すものは、蒸気加減弁52に接続されたドレン管54に設けられたドレン弁である。
そして、このような構成において、まず、蒸気止め弁51、蒸気加減弁52、ドレン弁53を全閉にした状態(図6(a)参照)から、ドレン弁53のみを開とし(図6(b)参照)、続いて、蒸気止め弁51を開とする(図6(c)参照)。これによって蒸気止め弁51、蒸気加減弁52を経て供給された蒸気は、ドレン管54を通じてドレン弁53へ導かれた後、外部に排出される。このとき、蒸気が蒸気加減弁52を経ることにより、該蒸気加減弁52のウォーミングを実施する。
And in such a piping system provided with such a steam stop valve and a steam control valve, for example, a valve operation as shown in FIG. 6 may be performed.
In FIG. 6, reference numeral 51 indicates a steam stop valve provided on the upstream side of the steam system pipe 50, and reference numeral 52 indicates a steam stop valve 51 provided in the middle of the steam system pipe 50. The steam control valve provided at the downstream side of the valve, indicated by reference numeral 53, is a drain valve provided in a drain pipe 54 connected to the steam control valve 52.
In such a configuration, first, from the state where the steam stop valve 51, the steam control valve 52, and the drain valve 53 are fully closed (see FIG. 6A), only the drain valve 53 is opened (FIG. 6 ( b)), and subsequently, the steam stop valve 51 is opened (see FIG. 6C). As a result, the steam supplied through the steam stop valve 51 and the steam control valve 52 is guided to the drain valve 53 through the drain pipe 54 and then discharged to the outside. At this time, when the steam passes through the steam control valve 52, the steam control valve 52 is warmed.

ここで、蒸気加減弁52の概略構成について説明すると、図7は加減弁筺体52A内の弁体52Bが吐出ポート52Cを閉じた状態を示しており、この状態で、吸込ポート52Dから蒸気が供給されると(図6(c)の状態)、該蒸気が矢印(イ)で示すようにドレン管54に向けて流れることになる。その結果、上述したような、蒸気加減弁52のウォーミングが実施されることになる。
なお、図6において、符号55で示すものは、蒸気加減弁52と蒸気タービン3との間に設けられたドレン管、符号56で示すものはドレン管55に設けられたドレン弁であって、蒸気加減弁52と蒸気タービン3との間にドレンが発生した場合に、該ドレン弁56を開にして該ドレンを外部に排出する。
Here, the schematic configuration of the steam control valve 52 will be described. FIG. 7 shows a state in which the valve body 52B in the control valve housing 52A closes the discharge port 52C. In this state, steam is supplied from the suction port 52D. When this occurs (the state shown in FIG. 6C), the steam flows toward the drain pipe 54 as indicated by an arrow (A). As a result, the warming of the steam control valve 52 as described above is performed.
In FIG. 6, reference numeral 55 indicates a drain pipe provided between the steam control valve 52 and the steam turbine 3, and reference numeral 56 indicates a drain valve provided on the drain pipe 55. When drain is generated between the steam control valve 52 and the steam turbine 3, the drain valve 56 is opened and the drain is discharged to the outside.

特開2008−255822号公報JP 2008-255822 A 特公昭59−25849号公報Japanese Patent Publication No.59-25849

しかしながら、図6に示すような方式では、ガスタービン2が駆動されている間、蒸気系配管50の途中に設けられた蒸気加減弁52を閉とした状態で、蒸気加減弁52をウォーミングさせるようにしているので、図7に示すように、該蒸気加減弁52のウォーミングが符号Aで示される部分しかなされず、蒸気に触れない符号Bで示される部分にまで、先の蒸気の熱が伝達されるまでに時間が掛かり、その結果、全体のウォーミングに時間が掛かり、蒸気タービン3の駆動が非効率になる上にドレン弁が多いという問題があった。   However, in the system as shown in FIG. 6, while the gas turbine 2 is being driven, the steam control valve 52 is warmed while the steam control valve 52 provided in the middle of the steam system pipe 50 is closed. Therefore, as shown in FIG. 7, the warming of the steam control valve 52 is performed only in the portion indicated by the symbol A, and the heat of the previous steam reaches the portion indicated by the symbol B that does not touch the steam. As a result, there is a problem that it takes a long time to be transmitted, and as a result, the entire warming takes time, the driving of the steam turbine 3 becomes inefficient, and there are many drain valves.

この発明は、上述した事情に鑑みてなされたものであって、蒸気系配管にて、蒸気加減弁を急速かつ効率良くウォーミングして、エロージョンの発生を抑え、配管の破壊を防止することが可能となり、かつ蒸気加減弁にドレン弁を設けるという構成も不要となる蒸気タービンのウォーミング用弁制御方法及びその装置を提供するものである。   The present invention has been made in view of the above-described circumstances, and it is possible to quickly and efficiently warm a steam control valve in a steam system pipe to suppress the occurrence of erosion and to prevent the pipe from being broken. The present invention provides a warming valve control method and apparatus for a steam turbine that can be used and that does not require a drain valve on the steam control valve.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明の蒸気タービンのウォーミング用弁制御方法及びその装置では、ガスタービンの排ガスが保有する熱を利用して、排熱回収ボイラーにて蒸気を発生させた後、上流弁及び下流弁を順次装備する蒸気系配管を通じて該蒸気を蒸気タービンに供給するものであって同一軸に前記蒸気タービンと前記ガスタービンが装備された一軸コンバインドサイクルプラントにおいて、廃熱回収ボイラーにて蒸気を発生させた後に、最初に前記下流弁を全開とし、次いで前記上流弁を微開又は中間開度とし、ウォーミング終了後、前記下流弁を全閉または微開とし、次いで前記上流弁を全開とした後に前記下流弁を通常の運転制御とすることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
In the steam turbine warming valve control method and apparatus of the present invention, steam is generated in the exhaust heat recovery boiler using heat stored in the exhaust gas of the gas turbine, and then the upstream valve and the downstream valve are sequentially installed. In a single-shaft combined cycle plant in which the steam is supplied to the steam turbine through the installed steam system pipe and the steam turbine and the gas turbine are mounted on the same shaft, after the steam is generated by the waste heat recovery boiler First, the downstream valve is fully opened, then the upstream valve is slightly opened or opened at an intermediate position, and after the warming is finished, the downstream valve is fully closed or slightly opened, and then the upstream valve is fully opened, and then the downstream The valve is set to normal operation control.

そして、このような蒸気タービンの弁制御によって、排熱回収ボイラーにて蒸気を発生させた後に、最初に下流弁を全開とし、次いで上流弁を微開又は中間開度とし、ウォーミング終了後、前記下流弁を全閉または微開とし、次いで前記上流弁を全開とした後に前記下流弁を通常の運転制御とするようにしたので、これら上流弁及び下流弁を介して流れる蒸気によって該下流弁のウォーミングができ、これによって該下流弁で生じるエロージョンを防止することができる。また、このような開度設定により、排熱回収ボイラーから供給された蒸気を一部、下流弁にて低い流速で流すことができるので、下流弁内にドレンが残留していたとしても、該ドレンを下流弁から徐々に排出することができ、下流弁にてドレンが飛散することで生じるエロージョンを防止することができる。   And, by generating steam in the exhaust heat recovery boiler by such valve control of the steam turbine, first the downstream valve is fully opened, then the upstream valve is slightly opened or the intermediate opening, after the warming ends, Since the downstream valve is fully closed or slightly opened and then the upstream valve is fully opened, the downstream valve is set to normal operation control. Therefore, the downstream valve is controlled by steam flowing through the upstream valve and the downstream valve. Thus, erosion caused by the downstream valve can be prevented. In addition, with such an opening setting, a part of the steam supplied from the exhaust heat recovery boiler can flow at a low flow rate in the downstream valve, so even if drain remains in the downstream valve, The drain can be gradually discharged from the downstream valve, and erosion caused by the drain scattering at the downstream valve can be prevented.

また、本発明の蒸気タービンのウォーミング用弁制御方法及びその装置では、前記上流弁が蒸気止め弁であり、前記下流弁が蒸気加減弁であることを特徴とする。   In the steam turbine warming valve control method and apparatus therefor according to the present invention, the upstream valve is a steam stop valve, and the downstream valve is a steam control valve.

そして、このような蒸気タービンの弁制御によって、下流弁となる蒸気加減弁のウォーミングができ、これによって該蒸気加減弁で生じるエロージョンを防止することができる。   And by valve | bulb control of such a steam turbine, the warming of the steam control valve used as a downstream valve can be performed, and this can prevent the erosion which arises in this steam control valve.

また、本発明の蒸気タービンのウォーミング用弁制御方法及びその装置では、前記上流弁を全開とした後は、蒸気タービンの運転状況に応じて前記下流弁の開度を調整することを特徴とする。   In the steam turbine warming valve control method and apparatus therefor according to the present invention, after the upstream valve is fully opened, the opening degree of the downstream valve is adjusted according to the operation state of the steam turbine. To do.

そして、このような蒸気タービンの弁制御では、該下流弁のウォーミングが完了した後、前記上流弁を全開とした後は、蒸気タービンの運転状況に応じて前記下流弁の開度を調整することによって、蒸気タービンの運転状況に応じた蒸気の供給ができる。   In such steam turbine valve control, after the warming of the downstream valve is completed and the upstream valve is fully opened, the opening degree of the downstream valve is adjusted in accordance with the operating state of the steam turbine. Thus, it is possible to supply steam according to the operation state of the steam turbine.

本発明によれば、排熱回収ボイラーにて蒸気を発生させた後に、最初に下流弁を全開とし、次いで上流弁を微開又は中間開度とし、ウォーミング終了後、前記下流弁を全閉または微開とし、次いで前記上流弁を全開とした後に前記下流弁を通常の運転制御とするようにしたので、これら上流弁及び下流弁を介して流れる蒸気によって該下流弁のウォーミングができ、これによって該下流弁で生じるエロージョンを防止することができる。また、このような開度設定により、排熱回収ボイラーから供給された蒸気を一部、下流弁にて低い流速で流すことができるので、下流弁内にドレンが残留していたとしても、該ドレンを下流弁から徐々に排出することができ、下流弁にてドレンが飛散することで生じるエロージョンを防止することができる。
また、下流弁内を流れる蒸気の流速及び流量は、上流弁の開度によって調節できることから、下流弁の高速のウォーミングも可能となる。
また、上流弁と下流弁の開度調整により該下流弁のウォーミングが可能となるので、従来のようなドレン弁も不要となり、全体構成の簡素化にも貢献することができる。
According to the present invention, after the steam is generated in the exhaust heat recovery boiler, the downstream valve is first fully opened, then the upstream valve is slightly opened or the intermediate opening is opened, and after the warming is finished, the downstream valve is fully closed. Or, since the downstream valve is normally opened after the upstream valve is fully opened, the downstream valve can be warmed by the steam flowing through the upstream valve and the downstream valve, As a result, erosion occurring in the downstream valve can be prevented. In addition, with such an opening setting, a part of the steam supplied from the exhaust heat recovery boiler can flow at a low flow rate in the downstream valve, so even if drain remains in the downstream valve, The drain can be gradually discharged from the downstream valve, and erosion caused by the drain scattering at the downstream valve can be prevented.
In addition, since the flow velocity and flow rate of the steam flowing in the downstream valve can be adjusted by the opening degree of the upstream valve, high-speed warming of the downstream valve is also possible.
Further, since the downstream valve can be warmed by adjusting the opening degree of the upstream valve and the downstream valve, a conventional drain valve is not required, which can contribute to simplification of the overall configuration.

本発明の一実施例となる蒸気タービンの弁制御方法を工程順に説明するための説明図である。It is explanatory drawing for demonstrating the valve control method of the steam turbine which becomes one Example of this invention to process order. 図2のコントローラCによる制御フローチャートを示す図である。It is a figure which shows the control flowchart by the controller C of FIG. 図1に対応した弁の開度を示すタイムチャートである。It is a time chart which shows the opening degree of the valve corresponding to FIG. 本発明に係わるウォーミングにより下流弁である蒸気加減弁内に蒸気が流れる様子を示す断面図である。It is sectional drawing which shows a mode that a vapor | steam flows in the steam control valve which is a downstream valve by warming concerning this invention. 本発明の背景技術となるガスタービン・コンバインドサイクルプラント(GTCC)の一例を示す配管図である。It is a piping diagram which shows an example of the gas turbine combined cycle plant (GTCC) used as the background art of this invention. 従来に係わる蒸気タービンの弁制御方法を工程順に説明するための説明図である。It is explanatory drawing for demonstrating the valve control method of the conventional steam turbine in order of a process. 従来に係わるウォーミングにより下流弁である蒸気加減弁内に蒸気が流れる様子を示す断面図である。It is sectional drawing which shows a mode that a vapor | steam flows in the steam control valve which is a downstream valve by warming concerning the past.

[実施例1]
本発明の一実施例について、図1の配管図、図2のコントローラCによる制御フローチャート、図3のタイムチャートを参照して説明する。
図1において符号50で示すものは、前述したように排熱回収ボイラー4で生成した蒸気を蒸気タービン3に供給するための蒸気系配管であって、この蒸気系配管50の途中には、上流弁となる蒸気止め弁100、及び下流弁となる蒸気加減弁101が蒸気の流れ方向に沿って直列的に設けられている。蒸気加減弁101と蒸気タービン3との間にはドレン管102があり、該ドレン管102にはドレン弁103が設けられている。
また、これら蒸気止め弁100、及び蒸気加減弁101は、図1(a)に示されるコントローラCからの制御信号により開閉制御される。
[Example 1]
An embodiment of the present invention will be described with reference to a piping diagram of FIG. 1, a control flowchart by the controller C of FIG. 2, and a time chart of FIG.
1 is a steam system pipe for supplying the steam generated in the exhaust heat recovery boiler 4 to the steam turbine 3 as described above. A steam stop valve 100 serving as a valve and a steam control valve 101 serving as a downstream valve are provided in series along the steam flow direction. A drain pipe 102 is provided between the steam control valve 101 and the steam turbine 3, and a drain valve 103 is provided in the drain pipe 102.
The steam stop valve 100 and the steam control valve 101 are controlled to open and close by a control signal from the controller C shown in FIG.

そして、本実施例では、これら蒸気止め弁100及び蒸気加減弁101の制御を、図1の配管図及び図2のフローを参照して説明する。
(1)まず、ウォーミング開始前には、図1(a)で示すように蒸気止め弁100及び蒸気加減弁101は共に全閉としておく(図2のSP1)。
(2)次に、排熱回収ボイラーからウォーミング可能な蒸気が発生しているか否かを判断し(図2のSP2)、YESの場合に、図1(b)で示すように、上流側の蒸気止め弁100は閉としたまま、下流側の蒸気加減弁101のみを全開とする(図2のSP3)。ここでドレンが発生した場合には、蒸気加減弁101と蒸気タービン3の間に設けられたドレン管102とドレン弁103を通じて排出される。
In this embodiment, control of the steam stop valve 100 and the steam control valve 101 will be described with reference to the piping diagram of FIG. 1 and the flow of FIG.
(1) First, before the warming is started, both the steam stop valve 100 and the steam control valve 101 are fully closed as shown in FIG. 1A (SP1 in FIG. 2).
(2) Next, it is determined whether or not steam capable of warming is generated from the exhaust heat recovery boiler (SP2 in FIG. 2), and in the case of YES, as shown in FIG. With the steam stop valve 100 closed, only the steam control valve 101 on the downstream side is fully opened (SP3 in FIG. 2). When drain is generated here, it is discharged through a drain pipe 102 and a drain valve 103 provided between the steam control valve 101 and the steam turbine 3.

(3)次に、図1(c)で示すように、蒸気タービン3に影響を与えない程度に、上流側の蒸気止め弁100を所定開度で開とし、排熱回収ボイラー4から供給された蒸気を一部、下流側の蒸気加減弁101に流すようにする(図2のSP4)。これにより、図4に示すように、全開にある蒸気加減弁101には、蒸気の流れが発生し、該蒸気により該蒸気加減弁101のウォーミングが行われることになる。すなわち、図4に示すように、加減弁筺体101A内の弁体101Bが吐出ポート101Cを開放しこの状態で、吸込ポート101Dから蒸気が供給されると、矢印(ロ)で示すように、吸込ポート101Dからの蒸気が吐出ポート101Cに向けて流れることになる。その結果、点線Cで示すような、蒸気加減弁101全体のウォーミングが行われることになる。 (3) Next, as shown in FIG. 1 (c), the upstream steam stop valve 100 is opened at a predetermined opening so as not to affect the steam turbine 3, and supplied from the exhaust heat recovery boiler 4. A part of the steam is allowed to flow to the steam control valve 101 on the downstream side (SP4 in FIG. 2). As a result, as shown in FIG. 4, a steam flow is generated in the steam control valve 101 that is fully open, and the steam control valve 101 is warmed by the steam. That is, as shown in FIG. 4, when the valve body 101B in the adjusting valve housing 101A opens the discharge port 101C and steam is supplied from the suction port 101D in this state, as shown by an arrow (b), Steam from the port 101D flows toward the discharge port 101C. As a result, warming of the entire steam control valve 101 as indicated by the dotted line C is performed.

(4)そして、上記(3)で述べたウォーミングが完了したか否かを判断し(図2のSP5)、YESの場合に、蒸気加減弁101を全閉または微開とし(図2のSP5)、さらに、図1(d)に示すように、上流側の蒸気止め弁100を全開とした後(図2のSP6)、下流側の蒸気加減弁101を、蒸気タービン3の通常の運転状況に応じて開度を調整する(図2のSP7)。
ウォーミングが完了したか否かの判断基準として、例えば、下記の測定結果を用いることができる。
・ 予め設定された規定時間の経過。この規定時間は、ウォーミングする蒸気の温度・圧力等により適宜可変に設定される。
・ 蒸気加減弁の本体メタル温度を測定し、予め設定された規定温度に達したらウォーミング完了とする。この規定温度は、ウォーミングする蒸気の圧力等により適宜可変に設定される。
(4) Then, it is determined whether or not the warming described in the above (3) is completed (SP5 in FIG. 2). If YES, the steam control valve 101 is fully closed or slightly opened (FIG. 2). SP5) Further, as shown in FIG. 1 (d), after the upstream steam stop valve 100 is fully opened (SP6 in FIG. 2), the downstream steam control valve 101 is operated in the normal operation of the steam turbine 3. The opening degree is adjusted according to the situation (SP7 in FIG. 2).
For example, the following measurement result can be used as a criterion for determining whether or not the warming is completed.
・ Pre-set time has passed. This specified time is appropriately variably set depending on the temperature and pressure of the warming steam.
・ Measure the metal temperature of the main body of the steam control valve, and complete warming when it reaches the specified temperature. This specified temperature is appropriately variably set depending on the pressure of the warming steam.

このような(1)〜(4)に対応した蒸気止め弁100及び蒸気加減弁101の開度設定を、まとめると図3に示すようになる。そして、このような開度設定により、該蒸気加減弁101のウォーミングが行われるとともに、蒸気加減弁101内にドレンが発生していた場合であっても、まず、図1(b)で示すように、蒸気加減弁101のみを全開とした後、図1(c)で示すように、蒸気タービン3の運用に影響を与えない程度に、上流側の蒸気止め弁100を所定開度で開とすることで、排熱回収ボイラー4から供給された蒸気を一部、下流側の蒸気加減弁101に低い流速で流すことができ、その結果、蒸気加減弁101内に残留するドレンによって、エロージョンが発生することを防止できる。
すなわち、本実施例に示される蒸気タービン3の弁制御方法では、該蒸気加減弁101のウォーミングとともに、該蒸気加減弁101に対して一度に大量の蒸気が、高速で送り込まれることを防止できるので、該蒸気加減弁101内に残留するドレンの飛散によるエロージョンの発生を防止することが可能となる。
The opening settings of the steam stop valve 100 and the steam control valve 101 corresponding to (1) to (4) are summarized as shown in FIG. And by such opening degree setting, while warming of this steam control valve 101 is performed, even if it is a case where drain has generate | occur | produced in the steam control valve 101, first, it shows in FIG.1 (b). Thus, after only the steam control valve 101 is fully opened, the upstream steam stop valve 100 is opened at a predetermined opening so as not to affect the operation of the steam turbine 3, as shown in FIG. 1 (c). As a result, a part of the steam supplied from the exhaust heat recovery boiler 4 can flow to the downstream steam control valve 101 at a low flow rate. As a result, erosion is caused by the drain remaining in the steam control valve 101. Can be prevented.
That is, in the valve control method of the steam turbine 3 shown in the present embodiment, a large amount of steam can be prevented from being sent to the steam control valve 101 at a high speed at the same time as the warming of the steam control valve 101. Therefore, it is possible to prevent the occurrence of erosion due to the scattering of the drain remaining in the steam control valve 101.

以上詳細に説明したように本実施例に係わる蒸気タービン3の弁制御によれば、排熱回収ボイラーにて蒸気を発生させた後に、最初に蒸気加減弁101を全開とし、次いで蒸気止め弁100を微開又は中間開度とし、ウォーミング終了後、蒸気加減弁101を全閉または微開とし、次いで蒸気止め弁100を全開とした後に蒸気加減弁101を通常の運転制御とするようにしたので、これら蒸気止め弁100及び蒸気加減弁101を介して流れる蒸気によって該蒸気加減弁101のウォーミングができ、これによって該蒸気加減弁101で生じるエロージョンを防止することができる。
また、このような開度設定により、排熱回収ボイラー4から供給された蒸気を一部、蒸気加減弁101にて低い流速で流すことができるので、蒸気加減弁101内にドレンが残留していたとしても、該ドレンを蒸気加減弁101から徐々に排出することができ、蒸気加減弁101にてドレンが飛散することで生じるエロージョンを防止することができる。
As described above in detail, according to the valve control of the steam turbine 3 according to the present embodiment, after the steam is generated by the exhaust heat recovery boiler, the steam control valve 101 is first fully opened, and then the steam stop valve 100. Is set to a slight opening or an intermediate opening, and after warming is completed, the steam control valve 101 is fully closed or slightly opened, and then the steam stop valve 100 is fully opened, and then the steam control valve 101 is set to normal operation control. Therefore, the steam control valve 101 can be warmed by the steam flowing through the steam stop valve 100 and the steam control valve 101, thereby preventing erosion that occurs in the steam control valve 101.
In addition, since the steam supplied from the exhaust heat recovery boiler 4 can partly flow at a low flow rate in the steam control valve 101 by such an opening degree setting, drain remains in the steam control valve 101. Even so, the drain can be gradually discharged from the steam control valve 101, and erosion caused by the drain scattering at the steam control valve 101 can be prevented.

また、図1(c)で示す状態において、蒸気加減弁101内を流れる蒸気の流速及び流量は、蒸気止め弁100の開度によっても調節できることから、蒸気加減弁101の高速のウォーミングも可能となる。また、蒸気止め弁100と蒸気加減弁101の開度調整により該蒸気加減弁101のウォーミングが可能となるので、従来のようなドレン弁53も不要となり、全体構成の簡素化にも貢献することが可能となる。   Further, in the state shown in FIG. 1C, the flow rate and flow rate of the steam flowing through the steam control valve 101 can be adjusted by the opening degree of the steam stop valve 100, so that the steam control valve 101 can be warmed at high speed. It becomes. Further, since the warming of the steam control valve 101 can be performed by adjusting the opening of the steam stop valve 100 and the steam control valve 101, the conventional drain valve 53 is not necessary, which contributes to the simplification of the overall configuration. It becomes possible.

なお、上記実施例では、以下のように構成を変更しても良い。
すなわち、図3のタイムチャートでは、蒸気止め弁100及び蒸気加減弁101の開閉を瞬時に行うようにしているが、段階的に開閉するようにしても良い。
In the above embodiment, the configuration may be changed as follows.
That is, in the time chart of FIG. 3, the steam stop valve 100 and the steam control valve 101 are opened and closed instantaneously, but may be opened and closed in stages.

また、上述した本実施例に係わる蒸気タービン3の弁制御では、図3に基づくような、ガスタービン・コンバインドサイクルプラントの一連の運転に対応したプログラムを予め設定しておき、該プログラムに基づきコントローラCが、これらの開度を自動調整するものであるが、コントローラCを使用しない場合には、作業員により手動で行うと良い。   In the valve control of the steam turbine 3 according to the above-described embodiment, a program corresponding to a series of operations of the gas turbine / combined cycle plant as shown in FIG. 3 is set in advance, and the controller is based on the program. C adjusts the opening degree automatically, but when the controller C is not used, it may be performed manually by an operator.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

本発明は、排熱回収方式を採用したガスタービン・コンバインドサイクルプラント(GTCC)に関し、ガスタービンの排ガスを利用して駆動される蒸気タービンの配管系に適用される技術である。   The present invention relates to a gas turbine combined cycle plant (GTCC) that employs an exhaust heat recovery system, and is a technique applied to a piping system of a steam turbine that is driven by using exhaust gas from a gas turbine.

1 発電機
2 ガスタービン
3 蒸気タービン
4 排熱回収ボイラー
50 蒸気系配管
100 蒸気止め弁(上流弁)
101 蒸気加減弁(下流弁)
C コントローラ
DESCRIPTION OF SYMBOLS 1 Generator 2 Gas turbine 3 Steam turbine 4 Waste heat recovery boiler 50 Steam system piping 100 Steam stop valve (upstream valve)
101 Steam control valve (downstream valve)
C controller

Claims (6)

ガスタービンの排ガスが保有する熱を利用して、排熱回収ボイラーにて蒸気を発生させた後、上流弁及び下流弁を順次装備する蒸気系配管を通じて該蒸気を蒸気タービンに供給するものであって同一軸に前記蒸気タービンと前記ガスタービンが装備された一軸コンバインドサイクルプラントにおいて、
前記排熱回収ボイラーにて蒸気を発生させた後に、最初に前記下流弁を全開とし、次いで前記上流弁を微開又は中間開度とし、ウォーミング終了後、前記下流弁を全閉または微開とし、次いで前記上流弁を全開とした後に、前記下流弁を通常の運転制御とすることを特徴とする蒸気タービンのウォーミング用弁制御方法。
The heat generated in the exhaust gas of the gas turbine is used to generate steam in the exhaust heat recovery boiler, and then the steam is supplied to the steam turbine through a steam system pipe that is sequentially equipped with an upstream valve and a downstream valve. In a single-shaft combined cycle plant equipped with the steam turbine and the gas turbine on the same shaft,
After steam is generated in the exhaust heat recovery boiler, the downstream valve is first fully opened, then the upstream valve is slightly opened or opened to an intermediate degree, and after the warming is finished, the downstream valve is fully closed or slightly opened. Then, after the upstream valve is fully opened, the downstream valve is set to normal operation control.
前記上流弁は蒸気止め弁であり、前記下流弁は蒸気加減弁であることを特徴とする請求項1に記載の蒸気タービンのウォーミング用弁制御方法。   The said upstream valve is a steam stop valve, The said downstream valve is a steam control valve, The warming valve control method of the steam turbine of Claim 1 characterized by the above-mentioned. 前記上流弁を全開とした後は、蒸気タービンの運転状況に応じて前記下流弁の開度を調整することを特徴とする請求項1又は2のいずれか1項に記載の蒸気タービンのウォーミング用弁制御方法。   3. The steam turbine warming according to claim 1, wherein after the upstream valve is fully opened, the degree of opening of the downstream valve is adjusted in accordance with the operation state of the steam turbine. 4. Valve control method. ガスタービンの排ガスが保有する熱を利用して、排熱回収ボイラーにて蒸気を発生させた後、上流弁及び下流弁を順次装備する蒸気系配管を通じて該蒸気を蒸気タービンに供給するものであって同一軸に前記蒸気タービンと前記ガスタービンが装備された一軸コンバインドサイクルプラントにおいて、
前記排熱回収ボイラーにて蒸気を発生させた後に、最初に前記下流弁を全開とし、次いで前記上流弁を微開又は中間開度とし、ウォーミング終了後、前記下流弁を全閉または微開とし、次いで前記上流弁を全開とした後に、前記下流弁を通常の運転制御とするコントローラを具備することを特徴とする蒸気タービンのウォーミング用弁制御装置。
The heat generated in the exhaust gas of the gas turbine is used to generate steam in the exhaust heat recovery boiler, and then the steam is supplied to the steam turbine through a steam system pipe that is sequentially equipped with an upstream valve and a downstream valve. In a single-shaft combined cycle plant equipped with the steam turbine and the gas turbine on the same shaft,
After steam is generated in the exhaust heat recovery boiler, the downstream valve is first fully opened, then the upstream valve is slightly opened or opened to an intermediate degree, and after the warming is finished, the downstream valve is fully closed or slightly opened. And a controller for warming the steam turbine, wherein after the upstream valve is fully opened, the downstream valve is controlled normally.
前記上流弁は蒸気止め弁であり、前記下流弁は蒸気加減弁であることを特徴とする請求項4に記載の蒸気タービンのウォーミング用弁制御装置。   5. The steam turbine warming valve control device according to claim 4, wherein the upstream valve is a steam stop valve, and the downstream valve is a steam control valve. 前記上流弁を全開とした後は、蒸気タービンの運転状況に応じて前記下流弁の開度を調整することを特徴とする請求項4又は5のいずれか1項に記載の蒸気タービンのウォーミング用弁制御装置。   6. The warming of the steam turbine according to claim 4, wherein after the upstream valve is fully opened, the degree of opening of the downstream valve is adjusted in accordance with the operation state of the steam turbine. Valve control device.
JP2009155506A 2009-06-30 2009-06-30 Valve control method and apparatus for warming of steam turbine Active JP5478961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009155506A JP5478961B2 (en) 2009-06-30 2009-06-30 Valve control method and apparatus for warming of steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009155506A JP5478961B2 (en) 2009-06-30 2009-06-30 Valve control method and apparatus for warming of steam turbine

Publications (2)

Publication Number Publication Date
JP2011012567A true JP2011012567A (en) 2011-01-20
JP5478961B2 JP5478961B2 (en) 2014-04-23

Family

ID=43591722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009155506A Active JP5478961B2 (en) 2009-06-30 2009-06-30 Valve control method and apparatus for warming of steam turbine

Country Status (1)

Country Link
JP (1) JP5478961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197789A (en) * 2011-03-18 2012-10-18 General Electric Co <Ge> Apparatus for starting up combined cycle power systems, and method for assembling same
JP2012217391A (en) * 2011-04-09 2012-11-12 Samson Co Ltd Heat sterilization device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934405A (en) * 1982-08-20 1984-02-24 Toshiba Corp Warming device of steam turbine
JPS60252109A (en) * 1984-05-29 1985-12-12 Hitachi Ltd Compound generation plant
JPS62233406A (en) * 1986-04-04 1987-10-13 Hitachi Ltd Warming device for stream regulating valve
JPH0196403A (en) * 1987-10-09 1989-04-14 Hitachi Ltd Warming device for turbine regulation valve
JPH02294503A (en) * 1989-05-10 1990-12-05 Hitachi Ltd Apparatus for warming up high pressure governor valve steam chamber in mixed pressure turbine
JPH03267509A (en) * 1990-03-16 1991-11-28 Fuji Electric Co Ltd Control method of reheating steam turbine
JPH03281904A (en) * 1990-03-30 1991-12-12 Hitachi Ltd Steam turbine starting method and apparatus therefor
JPH04262005A (en) * 1991-02-16 1992-09-17 Toshiba Corp Main steam control valve chest warming method
JPH04298602A (en) * 1991-03-27 1992-10-22 Toshiba Corp Steam turbine starting equipment
JPH11336509A (en) * 1998-05-21 1999-12-07 Mitsubishi Heavy Ind Ltd Governing valve control system in introducing cooled steam of steam turbine
JP2001342808A (en) * 2000-05-31 2001-12-14 Mitsubishi Heavy Ind Ltd Combined plant and starting method therefor
JP2003020905A (en) * 2001-07-06 2003-01-24 Mitsubishi Heavy Ind Ltd Operating system and operating method for reheating electric power plant
JP2006112402A (en) * 2004-10-18 2006-04-27 Toshiba Corp Nuclear power plant and method of operation control for the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934405A (en) * 1982-08-20 1984-02-24 Toshiba Corp Warming device of steam turbine
JPS60252109A (en) * 1984-05-29 1985-12-12 Hitachi Ltd Compound generation plant
JPS62233406A (en) * 1986-04-04 1987-10-13 Hitachi Ltd Warming device for stream regulating valve
JPH0196403A (en) * 1987-10-09 1989-04-14 Hitachi Ltd Warming device for turbine regulation valve
JPH02294503A (en) * 1989-05-10 1990-12-05 Hitachi Ltd Apparatus for warming up high pressure governor valve steam chamber in mixed pressure turbine
JPH03267509A (en) * 1990-03-16 1991-11-28 Fuji Electric Co Ltd Control method of reheating steam turbine
JPH03281904A (en) * 1990-03-30 1991-12-12 Hitachi Ltd Steam turbine starting method and apparatus therefor
JPH04262005A (en) * 1991-02-16 1992-09-17 Toshiba Corp Main steam control valve chest warming method
JPH04298602A (en) * 1991-03-27 1992-10-22 Toshiba Corp Steam turbine starting equipment
JPH11336509A (en) * 1998-05-21 1999-12-07 Mitsubishi Heavy Ind Ltd Governing valve control system in introducing cooled steam of steam turbine
JP2001342808A (en) * 2000-05-31 2001-12-14 Mitsubishi Heavy Ind Ltd Combined plant and starting method therefor
JP2003020905A (en) * 2001-07-06 2003-01-24 Mitsubishi Heavy Ind Ltd Operating system and operating method for reheating electric power plant
JP2006112402A (en) * 2004-10-18 2006-04-27 Toshiba Corp Nuclear power plant and method of operation control for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197789A (en) * 2011-03-18 2012-10-18 General Electric Co <Ge> Apparatus for starting up combined cycle power systems, and method for assembling same
JP2012217391A (en) * 2011-04-09 2012-11-12 Samson Co Ltd Heat sterilization device

Also Published As

Publication number Publication date
JP5478961B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
CN101815903B (en) Rankine cycle power plant heat source control
EP2604826B1 (en) System and Method for Warming up a Steam Turbine
TWI692576B (en) Plant control device, plant control method and power plant
US10526923B2 (en) Combined cycle plant, control method of same, and control device of same
CN101377135A (en) Electric generation system with exhaust temperature adjusting deivce and method for controlling exhaust temperature
WO2015141458A1 (en) Combined cycle plant, method for controlling same, and device for controlling same
JP2008128086A (en) Suction air heating control device for gas turbine
JP7167136B2 (en) Steam turbine plant and its cooling method
EP3712406A2 (en) Backup system for demand fuel pumping system
EP4012166A1 (en) Inlet air heating system for a gas turbine system
JP4657057B2 (en) Reheat steam turbine plant
US20170058717A1 (en) Multi-shaft combined cycle plant, and control device and operation method thereof
JP5563052B2 (en) Waste heat recovery system and waste heat recovery method
JP2011007111A (en) Regeneration cycle gas turbine system and method for operating the same
JP5478961B2 (en) Valve control method and apparatus for warming of steam turbine
RU2015133940A (en) GAS TURBINE INSTALLATION AND METHOD FOR REGULATING THE SPECIFIED INSTALLATION
EP3171005B1 (en) Fuel supply system for use in a gas turbine engine and method of controlling an overspeed event therein
JP2000130108A (en) Starting method for combined cycle power plant
JP5400850B2 (en) Method and apparatus for controlling exhaust heat boiler system
EP3181859A1 (en) System and method for controlling gas turbine exhaust energy via exhaust gas damper and compressed gas supply
JP5147766B2 (en) Gas turbine rotation control device
JP4163131B2 (en) Two-shaft gas turbine power generation system and its stopping method
JP2007270731A (en) Turbocharger control unit
JP5734117B2 (en) Combined cycle power plant and operation method thereof
JP7137397B2 (en) Combined cycle power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130701

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R151 Written notification of patent or utility model registration

Ref document number: 5478961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350