JP2006108475A - Process for producing soft magnetic material - Google Patents

Process for producing soft magnetic material Download PDF

Info

Publication number
JP2006108475A
JP2006108475A JP2004294709A JP2004294709A JP2006108475A JP 2006108475 A JP2006108475 A JP 2006108475A JP 2004294709 A JP2004294709 A JP 2004294709A JP 2004294709 A JP2004294709 A JP 2004294709A JP 2006108475 A JP2006108475 A JP 2006108475A
Authority
JP
Japan
Prior art keywords
soft magnetic
oxidation
oxide film
magnetic material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004294709A
Other languages
Japanese (ja)
Other versions
JP4562483B2 (en
Inventor
Masahiro Ishitani
雅宏 石谷
Yoshiaki Nishijima
義明 西島
Yurio Nomura
由利夫 野村
Kazuo Asaka
一夫 浅香
Chio Ishihara
千生 石原
Koichi Yamaguchi
浩一 山口
Yuichi Ishikawa
雄一 石川
Hidekazu Hayama
秀和 羽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Denso Corp filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2004294709A priority Critical patent/JP4562483B2/en
Publication of JP2006108475A publication Critical patent/JP2006108475A/en
Application granted granted Critical
Publication of JP4562483B2 publication Critical patent/JP4562483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce a sintered body having a fine and rigid high electric resistance layer on the surface of soft magnetic powder through a simple process using inexpensive soft magnetic powder principally comprising iron as a material. <P>SOLUTION: Fe-Si alloy powder is heated in weak oxidizing atmosphere to form an SiO<SB>2</SB>oxide film on the surface and after being pressed, it is calcinated in weak oxidizing atmosphere to produce a sintered body. Surface oxidation process is carried out in weak oxidizing atmosphere of steam, or the like, to oxide Si selectively thus forming a thin oxide film of high electric resistance, which is then further calcinated in weak oxidizing atmosphere. The oxide film cracked at the time of press molding is repaired by repeating oxidation in pressurization atmosphere and degassing in pressure reduction atmosphere thus obtaining a high quality sintered body. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ソレノイドアクチュエータやトランスのコア材等に適用される軟磁性材の製造方法に関し、詳しくは、表面を高電気抵抗の酸化膜で被覆した鉄系軟磁性粉末を焼成して軟磁性材を製造する方法に関するものである。   The present invention relates to a method of manufacturing a soft magnetic material applied to a solenoid actuator, a core material of a transformer, and the like. More specifically, the present invention relates to a soft magnetic material obtained by firing iron-based soft magnetic powder whose surface is covered with an oxide film having a high electrical resistance. It is related with the method of manufacturing.

内燃機関の燃料噴射システム等に利用されるソレノイドバルブを高速応答化するために、アクチュエータのコア材となる軟磁性材には、高飽和磁束密度、高透磁率であることが要求される。かかる用途に用いられる軟磁性材は、一般に粉体を焼結することにより製作され、原料粉体には、通常、安価で飽和磁束密度の高い鉄系軟磁性粉末が使用される。この際、得られた軟磁性材の渦電流に起因した損失(鉄損)を低減するために、焼結組織の中に高電気抵抗の粒界偏析層を形成し、かつ高透磁率・高強度な焼結体とする必要がある。   In order to make a solenoid valve used in a fuel injection system of an internal combustion engine high-speed response, a soft magnetic material that is a core material of an actuator is required to have a high saturation magnetic flux density and a high magnetic permeability. Soft magnetic materials used for such applications are generally manufactured by sintering powder, and iron-based soft magnetic powders that are inexpensive and have a high saturation magnetic flux density are generally used as raw material powders. At this time, in order to reduce the loss (iron loss) due to eddy current of the obtained soft magnetic material, a grain boundary segregation layer with high electrical resistance was formed in the sintered structure, and high permeability and high It is necessary to make it a strong sintered body.

そこで、近年、軟磁性材の高透磁率化、低鉄損化等の目的で、軟磁性粉末の表面に絶縁膜を形成した軟磁性粉末材料を使用し、そのプレス成形物を焼結して軟磁性材を製造する技術が研究されている。従来技術として、例えば、特許文献1があり、Fe系磁性金属よりなる母相粒子の表面を、フェライト等の高電気抵抗かつ高透磁率の第2の物質で覆い、さらに高電気抵抗の第3の物質からなる絶縁膜で覆った複合軟磁性粉末材料が提案されている。   Therefore, in recent years, soft magnetic powder materials with an insulating film formed on the surface of soft magnetic powder have been used for the purpose of increasing the magnetic permeability and lowering iron loss of the soft magnetic material, and sintering the press-molded product. Technology for producing soft magnetic materials has been studied. As a prior art, for example, there is Patent Document 1, and the surface of the mother phase particles made of Fe-based magnetic metal is covered with a second substance having a high electrical resistance and a high permeability such as ferrite, and further a third having a high electrical resistance. There has been proposed a composite soft magnetic powder material covered with an insulating film made of any of the above materials.

特許文献1に示される製造方法では、まず、Fe系アトマイズ合金の粉末をNiCl2 とZnCl2 の水溶液に浸して金属イオンを吸着させ、次いで空気中で酸化させてフェライト化反応を生じさせて、粉末表面に軟磁性のNi−Znフェライト薄膜(第2の物質)を形成する。さらに、窒素雰囲気中でAlのスパッタリングを行って、Ni−Znフェライト薄膜上にAlNを主成分とする絶縁膜(第3の物質)を形成する。このようにして三層構造の複合磁性粉体を調製し、その後、この複合磁性粉体にB2 3 粉末を添加して成形材料とする。これを所定形状に加圧成形した後、ホットプレス法により加圧しながら1000℃で焼結して、軟磁性材焼結体を製造する。
特開平5−36514号公報(第2頁〜第3頁等)
In the production method shown in Patent Document 1, first, an Fe-based atomized alloy powder is immersed in an aqueous solution of NiCl 2 and ZnCl 2 to adsorb metal ions, and then oxidized in air to cause a ferritization reaction. A soft magnetic Ni—Zn ferrite thin film (second material) is formed on the powder surface. Further, Al is sputtered in a nitrogen atmosphere to form an insulating film (third material) containing AlN as a main component on the Ni—Zn ferrite thin film. In this way, a composite magnetic powder having a three-layer structure is prepared, and then a B 2 O 3 powder is added to the composite magnetic powder to obtain a molding material. After this is pressure-molded into a predetermined shape, it is sintered at 1000 ° C. while being pressed by a hot press method to produce a soft magnetic material sintered body.
JP-A-5-36514 (Pages 2 to 3 etc.)

しかしながら、上記従来の製造方法では、アトマイズ合金粉末の表面を複数の異なる物質で覆う必要があり、Ni−Znフェライト薄膜を形成するために溶液に含浸して酸化させる工程を繰り返したり、絶縁膜を形成するために窒素雰囲気中でAlのスパッタリングを行う工程に手間がかかって、製造コストが高くなる。しかも、Alのスパッタリングのように、原料粉体の表面を他の物質を覆うことにより絶縁膜を形成する方法では、絶縁膜の膜厚が厚くなりやすく、ナノレベルの薄膜を均一に形成することは難しい。このため、軟磁性部材中の磁性材密度が低くなって飽和磁束密度が低下してしまい、磁気特性が悪化する。   However, in the above conventional manufacturing method, it is necessary to cover the surface of the atomized alloy powder with a plurality of different substances, and the process of impregnating and oxidizing the solution to form the Ni-Zn ferrite thin film is repeated, or the insulating film is formed. In order to form it, the process of performing sputtering of Al in a nitrogen atmosphere takes time, and the manufacturing cost increases. Moreover, in the method of forming an insulating film by covering the surface of the raw material powder with another material, such as sputtering of Al, the insulating film tends to be thick, and a nano-level thin film is uniformly formed. Is difficult. For this reason, the magnetic material density in the soft magnetic member is lowered, the saturation magnetic flux density is lowered, and the magnetic characteristics are deteriorated.

一方、磁気特性を向上させるために絶縁膜を薄膜化した場合には、軟磁性粉末を加圧成形する際に、プレス圧力により軟磁性粉末表面の絶縁膜に亀裂が生じるおそれがある。絶縁膜に損傷があると、軟磁性粉末間の絶縁性が低下して、焼結した軟磁性材料の鉄損(渦電流損)が増大するという問題がある。   On the other hand, when the insulating film is thinned in order to improve the magnetic characteristics, there is a possibility that cracking may occur in the insulating film on the surface of the soft magnetic powder due to the pressing pressure when the soft magnetic powder is pressed. If the insulating film is damaged, there is a problem that the insulation between the soft magnetic powders is lowered and the iron loss (eddy current loss) of the sintered soft magnetic material is increased.

本発明はこのような事情を考慮してなされたもので、安価な鉄を主成分とする粉末表面に薄膜の高電気抵抗の絶縁膜を形成し、かつ絶縁膜に亀裂等の損傷が生じるのを防止して、高飽和磁束密度、高透磁率、低鉄損、高強度、生産性の要求を同時に高いレベルで満足する軟磁性材焼結体を得ることを目的とするものである。   The present invention has been made in view of such circumstances, and a thin high-resistance insulating film is formed on the surface of an inexpensive iron-based powder, and damage such as cracks occurs in the insulating film. It is an object of the present invention to obtain a sintered soft magnetic material that satisfies the requirements of high saturation magnetic flux density, high magnetic permeability, low iron loss, high strength, and productivity at the same time.

上記目的を達成するために、請求項1の軟磁性粉末材の製造方法では、鉄を主成分とする軟磁性粉末の表面に酸化膜を形成し(表面酸化工程)、次いで、プレス成形して所定形状の成形体とし(プレス成形工程)、焼成することにより軟磁性材の焼結体とする(焼結工程)。この焼結工程において、成形体を不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気ガスと接触させる酸化処理と、雰囲気ガスを系外に排出する脱気処理を交互に繰り返す。   In order to achieve the above object, in the method for producing a soft magnetic powder material according to claim 1, an oxide film is formed on the surface of the soft magnetic powder mainly composed of iron (surface oxidation step), and then press-molded. A molded body having a predetermined shape (press molding process) is fired to form a sintered body of a soft magnetic material (sintering process). In this sintering step, an oxidation treatment in which the compact is brought into contact with a weak oxidizing atmosphere gas in which a weak oxidizing gas is mixed with an inert gas and a degassing treatment in which the atmospheric gas is discharged out of the system are alternately repeated.

表面に酸化膜を形成した軟磁性粉末を焼結させて軟磁性材を製造する場合、酸化膜が薄いとプレス成形時に破損が生じるおそれがあるが、本発明の方法によれば、プレス成形した後、焼成する過程において弱酸化性ガスを供給することで、粉末表面を再び酸化処理して亀裂等を埋め、酸化膜を補修することができる。この際、弱酸化性雰囲気とすることにより、酸化反応性の高い元素が選択的に酸化される。   When a soft magnetic material is produced by sintering a soft magnetic powder having an oxide film formed on the surface, if the oxide film is thin, there is a risk of breakage during press molding. Thereafter, by supplying a weak oxidizing gas in the firing process, the powder surface can be oxidized again to fill in cracks and repair the oxide film. At this time, an element having high oxidation reactivity is selectively oxidized by using a weak oxidizing atmosphere.

しかも、弱酸化性ガスの供給と脱気処理を交互に行なうことで、排出することができる。これにより、次の酸化処理時に成形体内部まで弱酸化性ガスが供給され、成形体全体で軟磁性粉末表面の酸化膜を再形成することができる。また、酸化速度が適度に抑制されるので、粉末表層に緻密で高電気抵抗の薄い酸化膜を形成することができる。   And it can discharge | emit by performing supply of a weak oxidizing gas, and a deaeration process alternately. Thereby, the weak oxidizing gas is supplied to the inside of the compact during the next oxidation treatment, and the oxide film on the surface of the soft magnetic powder can be re-formed with the entire compact. In addition, since the oxidation rate is moderately suppressed, a dense oxide film with a high electrical resistance can be formed on the powder surface layer.

これにより、従来より簡単な工程で、軟磁性粉末間の絶縁性を確保して、渦電流に起因する損失(鉄損)を低減するとともに、酸化膜の薄膜化により磁性材密度を高めて磁気特性を向上できる。よって、高飽和磁束密度、高透磁率、低鉄損、高強度、生産性の要求を同時に高いレベルで満足させることができる。   This makes it easier than ever to ensure insulation between soft magnetic powders, reduce losses (iron loss) due to eddy currents, and increase the magnetic material density by reducing the thickness of the oxide film. The characteristics can be improved. Therefore, the requirements for high saturation magnetic flux density, high magnetic permeability, low iron loss, high strength, and productivity can be satisfied at a high level at the same time.

請求項2記載の方法では、表面酸化工程において、鉄を主成分とし鉄よりも酸化反応性の高い第2の元素を含有する軟磁性合金粉末を用いる。この軟磁性合金粉末を、不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気中で加熱し、粉末表層部の前記第2の元素を主に酸化反応させて、表面に第2の元素の酸化膜を形成する。   In the method according to claim 2, in the surface oxidation step, soft magnetic alloy powder containing iron as a main component and containing a second element having higher oxidation reactivity than iron is used. The soft magnetic alloy powder is heated in a weak oxidizing atmosphere in which a weak oxidizing gas is mixed with an inert gas, and the second element on the powder surface layer portion is mainly subjected to an oxidation reaction, so that the second element is formed on the surface. The oxide film is formed.

好適には、酸化反応性の高い第2の元素を含有する軟磁性合金粉末を原料粉体とし、弱酸化性雰囲気中において酸化反応を行なうと、軟磁性合金粉末の表層部における鉄の酸化が抑制され、より酸化反応しやすい第2の元素のみが選択的に酸化される。また、酸化速度が適度に抑制されるので、高純度の鉄系軟磁性合金粉末表面に、緻密で強固なナノレベルの絶縁性薄膜が形成される。さらに、この第2の元素の酸化膜に、プレス成形工程で亀裂等が生じても、上述したように焼結工程において修復されるので、表層に緻密で薄い高抵抗層を有する小粒径の粉体の焼結体を、簡易な工程で製造することができる。   Preferably, when a soft magnetic alloy powder containing a second element having a high oxidation reactivity is used as a raw material powder and an oxidation reaction is performed in a weakly oxidizing atmosphere, iron is oxidized in the surface layer portion of the soft magnetic alloy powder. Only the second element that is suppressed and more easily oxidizes is selectively oxidized. Moreover, since the oxidation rate is moderately suppressed, a dense and strong nano-level insulating thin film is formed on the surface of the high-purity iron-based soft magnetic alloy powder. Furthermore, even if a crack or the like occurs in the oxide film of the second element in the press molding process, it is repaired in the sintering process as described above, so that the surface layer has a dense and thin high resistance layer with a small particle size. A powder sintered body can be manufactured by a simple process.

請求項3記載の方法では、表面酸化工程において、鉄を主成分とし鉄よりも酸化反応性の高い第2の元素を含有する軟磁性合金粉末を、不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気中において加熱する酸化処理と、還元性雰囲気中において加熱する還元処理とを交互に行い、粉末表層部の第2の元素を主に酸化反応させて、第2の元素の酸化膜を形成する。   In the method according to claim 3, in the surface oxidation step, soft magnetic alloy powder containing a second element having iron as a main component and higher oxidation reactivity than iron is mixed with a weak oxidizing gas in an inert gas. Oxidation treatment for heating in a weakly oxidizing atmosphere and reduction treatment for heating in a reducing atmosphere are alternately performed to mainly cause the second element in the powder surface layer portion to undergo an oxidation reaction, thereby forming an oxide film of the second element Form.

酸化反応性の高い第2の元素を含有する軟磁性合金粉末を原料粉体とし、弱酸化性雰囲気中において酸化反応を行なった後、さらに、還元性雰囲気中において還元反応させることを繰り返すこともできる。このようにすると、内部への酸化の進行を抑制しつつ、表層における第2の元素の酸化を促進して、より高純度で、高電気抵抗の表面酸化膜を形成することができる。その結果、磁性材の低鉄損化、磁気特性の向上をより効果的に行なうことができる。   A soft magnetic alloy powder containing a second element having high oxidation reactivity is used as a raw material powder, and after performing an oxidation reaction in a weakly oxidizing atmosphere, a reduction reaction in a reducing atmosphere may be repeated. it can. By doing so, it is possible to promote the oxidation of the second element in the surface layer while suppressing the progress of oxidation to the inside, and to form a surface oxide film with higher purity and higher electrical resistance. As a result, it is possible to more effectively reduce the iron loss and improve the magnetic properties of the magnetic material.

第2の元素をSi、Ti、Al、Crを代表とする鉄よりも酸化性の高い物質から選択される少なくとも一種とする。   The second element is at least one selected from substances having higher oxidizability than iron typified by Si, Ti, Al, and Cr.

これらの元素は、酸化反応させる際のギブスの自由エネルギーΔGが、鉄より小さく、酸化反応が進みやすいので、酸化膜の原料として好適である。   These elements are suitable as raw materials for oxide films because the Gibbs free energy ΔG during the oxidation reaction is smaller than that of iron and the oxidation reaction easily proceeds.

請求項5記載の方法では、焼結工程における酸化処理を大気圧ないしそれ以上の加圧雰囲気で行ない、脱気処理時には、雰囲気ガスを系外へ排気することにより大気圧以下に減圧するのがよい。   In the method according to claim 5, the oxidation treatment in the sintering step is performed in a pressurized atmosphere of atmospheric pressure or higher, and during the degassing treatment, the atmospheric gas is exhausted out of the system to reduce the pressure to atmospheric pressure or lower. Good.

酸化処理を加圧雰囲気下で行なうことで、成形体内部の軟磁性粉末表面まで弱酸化性ガスを均等に供給し、酸化膜の修復効果を向上させることができる。また、脱気処理により雰囲気圧力を大気圧以下に減圧することで、酸化反応と同時に進行する還元反応の生成ガスを成形体内部から引き出し、雰囲気ガスとともに系外に排出することができる。よって成形体内部にこれらガスが残って弱酸化性ガスの供給を阻害することがなく、軟磁性粉末表面の酸化を促進する効果が得られる。   By performing the oxidation treatment in a pressurized atmosphere, a weak oxidizing gas can be evenly supplied to the surface of the soft magnetic powder inside the compact, and the effect of repairing the oxide film can be improved. Further, by reducing the atmospheric pressure to the atmospheric pressure or lower by deaeration treatment, the product gas of the reduction reaction that proceeds simultaneously with the oxidation reaction can be drawn from the inside of the molded body and discharged together with the atmospheric gas to the outside of the system. Therefore, the effect of promoting the oxidation of the surface of the soft magnetic powder can be obtained without hindering the supply of the weak oxidizing gas due to these gases remaining in the molded body.

請求項6記載の方法では、焼結工程を、400〜1100℃の温度条件下で行なうものとする。   In the method of Claim 6, a sintering process shall be performed on 400-1100 degreeC temperature conditions.

焼結工程は、弱酸化性ガスによる鉄の反応を抑制しながら酸化膜の再形成効果が得られる温度以上で、軟磁性粉末のプレス成形体が焼結可能な温度まで昇温することにより行なう。焼結温度は、原料粉体によって異なり、鉄系軟磁性粉末であれば、通常、1100℃程度以下の温度範囲とするのがよい。   The sintering process is performed by raising the temperature to a temperature at which the press-molded body of the soft magnetic powder can be sintered at a temperature higher than the temperature at which the effect of re-forming the oxide film can be obtained while suppressing the reaction of iron by the weak oxidizing gas. . The sintering temperature differs depending on the raw material powder, and if it is an iron-based soft magnetic powder, it is usually preferable to set the temperature range to about 1100 ° C. or less.

請求項7記載の方法では、焼結工程において、まず、400〜600℃の温度条件下で酸化処理と脱気処理とを交互に繰り返すことにより酸化膜を再形成する(第1工程)。次いで、600〜1100℃の温度条件下で、軟磁性粉末を焼結させる(第2工程)。   In the method according to claim 7, in the sintering step, first, an oxide film is re-formed by alternately repeating an oxidation treatment and a deaeration treatment under a temperature condition of 400 to 600 ° C. (first step). Next, the soft magnetic powder is sintered under a temperature condition of 600 to 1100 ° C. (second step).

好適には、第1工程において、比較的低い温度で軟磁性粉末を弱酸化性ガスと接触させることにより、表面酸化膜を補修し、鉄系軟磁性合金粉末の表面に、緻密で強固なナノレベルの絶縁性薄膜を再度形成する。その後、第2工程にて焼結温度まで昇温することで、高電気抵抗の粒界偏析層を有する高透磁率で高強度な焼結体が得られる。   Preferably, in the first step, the soft magnetic powder is brought into contact with the weak oxidizing gas at a relatively low temperature to repair the surface oxide film, so that the surface of the iron-based soft magnetic alloy powder has a dense and strong nanostructure. A level insulating thin film is formed again. Thereafter, by raising the temperature to the sintering temperature in the second step, a high permeability and high strength sintered body having a high electric resistance grain boundary segregation layer is obtained.

請求項8記載の方法では、弱酸化性ガスを水蒸気または一酸化二窒素ガスとする。   In the method according to claim 8, the weak oxidizing gas is water vapor or dinitrogen monoxide gas.

水蒸気による酸化では、酸化反応がH2 Oの還元反応とともに進むので、大気中に比べて反応速度が遅くなる。特に鉄の酸化反応はほぼ平衡状態となり、ほとんど進行しなくなるため、より酸化しやすい第2の元素のみを選択酸化させることが可能になる。一酸化二窒素ガスの場合も、同様の反応形態をとる。 In the oxidation with water vapor, the oxidation reaction proceeds together with the reduction reaction of H 2 O, so the reaction rate is slower than in the atmosphere. In particular, since the oxidation reaction of iron is almost in an equilibrium state and hardly proceeds, only the second element that is more easily oxidized can be selectively oxidized. In the case of dinitrogen monoxide gas, the same reaction form is taken.

請求項9記載の方法では、弱酸化性ガスを水蒸気とし、常温での相対湿度が50%より高くなるように前記不活性ガスに混入する。   In the method according to claim 9, the weakly oxidizing gas is water vapor and is mixed in the inert gas so that the relative humidity at room temperature is higher than 50%.

具体的には、水蒸気を用いると容易に弱酸化性雰囲気を形成することができ、特に、50%を超える高湿度雰囲気中で酸化させると、上記効果が得やすい。   Specifically, when steam is used, a weakly oxidizing atmosphere can be easily formed. In particular, when the oxidation is performed in a high-humidity atmosphere exceeding 50%, the above-described effect can be easily obtained.

請求項10記載の方法では、弱酸化性ガスを水蒸気とし、常温での相対湿度が70%〜100%となるように不活性ガスに混入する。   In the method according to claim 10, the weakly oxidizing gas is water vapor and mixed in the inert gas so that the relative humidity at room temperature is 70% to 100%.

好適には、より高湿度の水蒸気雰囲気下で酸化させると、生成する酸化膜の酸化物数密度を高くし、緻密で高電気抵抗の薄膜を形成することができる。   Preferably, when oxidation is performed in a steam atmosphere with higher humidity, the oxide number density of the generated oxide film can be increased, and a dense and high electric resistance thin film can be formed.

請求項11記載の方法では、表面酸化工程を、400〜600℃の温度条件下で行なうものとする。   In the method according to claim 11, the surface oxidation step is performed under a temperature condition of 400 to 600 ° C.

雰囲気温度が上記範囲より低いと、弱酸化ガスによる鉄の酸化反応系の自由エネルギー変化ΔG<0となって、反応抑制効果が低下する。また、上記範囲より高いと、第2の元素の酸化は進行しやすくなるが、得られる磁性材の特性が低下するおそれがある。上記範囲とすることで、酸化物数密度が高く、緻密で高電気抵抗の酸化膜を形成することができる。   When the atmospheric temperature is lower than the above range, the free energy change ΔG <0 in the iron oxidation reaction system by the weak oxidizing gas, and the reaction suppressing effect is lowered. Moreover, when higher than the said range, although the oxidation of a 2nd element will advance easily, there exists a possibility that the characteristic of the magnetic material obtained may fall. By setting the content in the above range, an oxide film having a high oxide number density, a dense and high electric resistance can be formed.

請求項12記載の方法では、軟磁性粉末を平均粒径が0.1〜500μmのアトマイズ合金粉末とする。   In the method of claim 12, the soft magnetic powder is an atomized alloy powder having an average particle size of 0.1 to 500 μm.

上述した表面酸化膜の薄膜化により、軟磁性粉末の小粒径化が可能となるので、圧縮性のよいアトマイズ粒子を用い、0.1〜500μmの微小粒径とすることで、軟磁性部材を高強度化でき、成形時の形成自由度が大きくなる。   By reducing the surface oxide film thickness described above, it is possible to reduce the particle size of the soft magnetic powder. Therefore, by using atomized particles with good compressibility and a fine particle size of 0.1 to 500 μm, the soft magnetic member Can be strengthened, and the degree of freedom in forming during molding increases.

以下、本発明を実施するための最良の形態について、具体的な実施例に基づいて説明する。
図1は、本発明による軟磁性材の製造工程を示すもので、原料となる軟磁性合金粉末を調製する工程(1)と、軟磁性合金粉末を表面酸化して酸化膜を形成する表面酸化工程(2)と、表面に酸化膜を形成した軟磁性合金粉末をプレス成形して所望形状の成形体とするプレス成形工程(3)と、プレス成形体のバインダーを除去する脱バインダー工程(4)と、脱バインダー成形体を焼成して軟磁性材の焼結体とする焼結工程(5)、(6)とを有する。
Hereinafter, the best mode for carrying out the present invention will be described based on specific examples.
FIG. 1 shows a process for producing a soft magnetic material according to the present invention, a process (1) for preparing a soft magnetic alloy powder as a raw material, and a surface oxidation for forming an oxide film by surface oxidizing the soft magnetic alloy powder. A step (2), a press molding step (3) in which a soft magnetic alloy powder having an oxide film formed on the surface thereof is press-molded to form a molded body having a desired shape, and a binder removal step (4) for removing the binder of the press-molded body ), And sintering steps (5) and (6) to sinter the binder-free molded body to obtain a sintered body of a soft magnetic material.

(1):原料粉末調製工程
本発明において、原料となる軟磁性合金粉末は、鉄(Fe)を主成分とし、鉄よりも酸化反応性の高い第2の元素を含有する粉末とする。第2の元素としては例えば、Si、Ti、Al、Cr等が挙げられ、これら元素から選択される少なくとも一種ないし二種以上を含有する合金、具体的には、Fe−Si合金、Fe−Ti合金、Fe−Al合金、Fe−Cr合金、Fe−Al−Si合金等の粉末が使用される。これらのうち、Fe−Si合金は、例えばFe:95〜99.9%、Si:0.1〜5%の組成比のものを、Fe−Al合金は、例えば、Fe:92.5〜97.5%、Al:2.5〜7.5%の組成比のものを、Fe−Al−Si合金は、例えばFe:90〜97%、Al:3.5〜6.5%、Si:0.1〜5%の組成比のものを用いることができる。
(1): Raw material powder preparation step In the present invention, the soft magnetic alloy powder as the raw material is a powder containing iron (Fe) as a main component and a second element having a higher oxidation reactivity than iron. Examples of the second element include Si, Ti, Al, Cr, and the like. An alloy containing at least one or more selected from these elements, specifically, an Fe-Si alloy, Fe-Ti, and the like. Powders of alloys, Fe—Al alloys, Fe—Cr alloys, Fe—Al—Si alloys and the like are used. Among these, the Fe—Si alloy has a composition ratio of, for example, Fe: 95 to 99.9% and Si: 0.1 to 5%, and the Fe—Al alloy has, for example, Fe: 92.5 to 97. Fe: Al-Si alloy having a composition ratio of 0.5%, Al: 2.5-7.5%, for example, Fe: 90-97%, Al: 3.5-6.5%, Si: Those having a composition ratio of 0.1 to 5% can be used.

ここで、一般に、SiやAl等の組成比は、次の3つの要因(i)〜(iii )、
(i)磁気特性を向上させるには、SiやAl等が少ない方がよい。
(ii)金属間化合物を形成しない固溶限界内とする。
(iii )酸化膜の膜厚は、目標電気抵抗値を確保できる膜厚以上とする。
を考慮して決定される。例えば、(i)の磁気特性の向上のためには、これら元素の組成比を2%以下、好ましくは1%以下とするのがよく、この範囲で十分な酸化膜を形成できる最小限の組成比を選択するとよい。図1中には、FeにSiのみを含有させた合金粉末(Fe−1%Si)を例として示している。なお、上記軟磁性合金粉末を二種以上混合して使用してもよい。
Here, in general, the composition ratio of Si, Al, and the like is determined by the following three factors (i) to (iii),
(I) In order to improve the magnetic characteristics, it is better that there is less Si, Al or the like.
(Ii) It is within the solid solution limit where no intermetallic compound is formed.
(Iii) The film thickness of the oxide film is not less than the film thickness that can ensure the target electric resistance value.
Is determined in consideration of For example, in order to improve the magnetic characteristics of (i), the composition ratio of these elements should be 2% or less, preferably 1% or less, and the minimum composition capable of forming a sufficient oxide film within this range. Select a ratio. In FIG. 1, an alloy powder (Fe-1% Si) containing only Si in Fe is shown as an example. Two or more of the above soft magnetic alloy powders may be mixed and used.

原料となる軟磁性合金粉末は、水、不活性ガス等の噴霧媒体を用いて合金溶湯を粉化するアトマイズ法で調製されたアトマイズ粒子を用いるのがよい。アトマイズ合金粉末は高純度で圧縮性がよいので、高密度で良好な磁気特性を有する軟磁性材を実現できる。軟磁性合金粉末の平均粒径は、通常、0.1〜500μm、好ましくは100〜200μmとし、所望の平均粒径となるように、粉砕装置(アトライター)を用いて粉砕する。この粉砕工程で、軟磁性合金粉末の表面に高活性の破面が形成される。軟磁性合金粉末の製造原料は、粉砕しやすいように、焼鈍(アニール)前のものを用い、粉砕中は、粉砕熱による軟磁性合金粉末の昇温を抑制するために、粉砕用のステンレス容器を水冷するとよい。   As the soft magnetic alloy powder as a raw material, atomized particles prepared by an atomization method in which a molten alloy is pulverized using a spray medium such as water or an inert gas are preferably used. Since the atomized alloy powder has high purity and good compressibility, a soft magnetic material having high density and good magnetic properties can be realized. The average particle size of the soft magnetic alloy powder is usually 0.1 to 500 μm, preferably 100 to 200 μm, and is pulverized using a pulverizer (attritor) so as to have a desired average particle size. In this pulverization step, a highly active fracture surface is formed on the surface of the soft magnetic alloy powder. The raw material for the production of soft magnetic alloy powder is the one before annealing (annealing) so that it can be easily pulverized. The water should be cooled.

なお、上記したアトマイズ法で調製されたアトマイズ粒子を用いる場合と、上記した粉砕装置(アトライター)を用いて粉砕された粉末粒子を用いる場合とのいずれかを単独に用いて、原料となる軟磁性合金粉末を得るようにしてもよい。   In addition, when using the atomized particles prepared by the atomization method described above, or using the powder particles pulverized by using the above-described pulverizer (attritor) alone, the softening material as the raw material is used. Magnetic alloy powder may be obtained.

(2):表面酸化工程
次いで、原料となる軟磁性合金粉末の表面に酸化膜を形成する。この表面酸化工程は、不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気中にて行ない、軟磁性合金粉末を、高温に加熱して、表層部の第2の元素を主に酸化反応させる。不活性ガスとしては、窒素(N2 )ガス等が好適に用いられ、弱酸化性ガスとしては、例えば、水蒸気(H2 O)が好適に用いられる。弱酸化性雰囲気とすることで、Feの酸化が抑制され、より酸化しやすい第2の元素を選択的に酸化させて、第2の元素の酸化膜を形成することができる。図1に例示するFe−Si合金粉末を水蒸気(H2 O)により酸化させた場合には、粉末表面において、第2の元素であるSiが選択的に酸化され、粉末の表面を覆う高電気抵抗のSiO2 酸化膜が、例えば数nm程度の薄い膜厚で形成される。
(2): Surface oxidation step Next, an oxide film is formed on the surface of the soft magnetic alloy powder as a raw material. This surface oxidation process is performed in a weakly oxidizing atmosphere in which a weakly oxidizing gas is mixed with an inert gas, and the soft magnetic alloy powder is heated to a high temperature to mainly oxidize the second element in the surface layer portion. Let Nitrogen (N 2 ) gas or the like is preferably used as the inert gas, and water vapor (H 2 O) is preferably used as the weak oxidizing gas, for example. By setting the atmosphere to be weakly oxidizing, the oxidation of Fe is suppressed, and the second element that is more easily oxidized can be selectively oxidized to form an oxide film of the second element. When the Fe—Si alloy powder illustrated in FIG. 1 is oxidized with water vapor (H 2 O), Si, which is the second element, is selectively oxidized on the powder surface, and the high electricity covering the powder surface is obtained. A resistive SiO 2 oxide film is formed with a thin film thickness of about several nm, for example.

ここで、Fe−Si合金粉末の弱酸化性雰囲気における表面酸化のメカニズムについて説明する。図2は、酸素(O2 )雰囲気および水蒸気(H2 O)雰囲気下におけるFeとSiの酸化反応性を比較して示すものである。FeとSiの各雰囲気における酸化反応式は、以下のようになる。
酸素(O2 )による酸化の場合
2Fe+O2 →2FeO ・・・(式1)
Si+O2 →SiO2 ・・・(式2)
水蒸気(H2 O)による酸化の場合
Fe+H2 O →FeO+H2 ・・・(式3)
Si+2H2 O→SiO2 +H2 ・・・(式4)
Here, a mechanism of surface oxidation of the Fe—Si alloy powder in a weakly oxidizing atmosphere will be described. FIG. 2 shows a comparison of oxidation reactivity of Fe and Si in an oxygen (O 2 ) atmosphere and a water vapor (H 2 O) atmosphere. The oxidation reaction formula in each atmosphere of Fe and Si is as follows.
In the case of oxidation with oxygen (O 2 ) 2Fe + O 2 → 2FeO (Formula 1)
Si + O 2 → SiO 2 (Formula 2)
In the case of oxidation with water vapor (H 2 O) Fe + H 2 O → FeO + H 2 (Formula 3)
Si + 2H 2 O → SiO 2 + H 2 (Formula 4)

図2の縦軸は、各反応系におけるギブスの自由エネルギー変化ΔGであり、ΔGが大きくなるほど酸化しにくくなる。図2においては、Siに比べてFeの酸化が起こりにくく、また、酸素(O2 )による酸化反応(式1、2)よりも、水蒸気(H2 O)による酸化反応(式3、4)が起こりにくい。また、酸素(O2 )による酸化では、FeとSiのいずれの場合も、反応前より反応後の自由エネルギーが低くなり、より安定した状態となっている。つまり、ギブスの自由エネルギーΔGは、いずれもマイナスとなり、ΔGの絶対値が大きいSiの方がより酸化しやすいものの、式1、2の反応はいずれも進行する。 The vertical axis in FIG. 2 represents the Gibbs free energy change ΔG in each reaction system. As ΔG increases, oxidation becomes difficult. In FIG. 2, the oxidation of Fe is less likely to occur than Si, and the oxidation reaction with water vapor (H 2 O) (formulas 3 and 4) rather than the oxidation reaction with oxygen (O 2 ) (formulas 1 and 2). Is unlikely to occur. Further, in the oxidation with oxygen (O 2 ), in both cases of Fe and Si, the free energy after the reaction is lower than that before the reaction, and the state is more stable. That is, the Gibbs free energy ΔG is both negative, and Si having a larger absolute value of ΔG is more easily oxidized, but the reactions of Formulas 1 and 2 proceed.

これに対し、水蒸気(H2 O)による酸化では、FeとSiのいずれの場合も、ギブスの自由エネルギーΔGの絶対値が、酸素(O2 )による酸化よりも小さくなる。特に、Feは反応前後でギブスの自由エネルギーΔGがほぼ0となるので、式3の反応はほとんど進行せず、式4の反応のみが進むことになる。 On the other hand, in the oxidation with water vapor (H 2 O), the absolute value of Gibbs free energy ΔG is smaller than the oxidation with oxygen (O 2 ) in both cases of Fe and Si. In particular, since the Gibbs free energy ΔG before and after the reaction of Fe is almost 0, the reaction of Formula 3 hardly proceeds and only the reaction of Formula 4 proceeds.

従って、水蒸気(H2 O)で酸化させる場合には、Feの酸化を抑制しながら、SiO2 酸化膜を選択的に形成することができる。図2に示されるように、水蒸気(H2 O)によるFeの酸化では、全温度範囲でギブスの自由エネルギ−ΔGが0近傍にあり、特に、400℃程度ないしそれ以上の温度範囲では、ギブスの自由エネルギ−ΔGがほぼ0となって、Feの酸化を抑制する効果が高くなる。また、水蒸気(H2 O)によるSiの酸化では、H2 Oの還元反応が同時に進行するために、酸素(O2 )雰囲気下よりも反応が進みにくく、適度な速度で酸化が進行する。このため、内部まで酸化が進行せず磁性材密度を高く保つとともに、粉末表層部に均一なSiO2 酸化膜を高密度で形成し、緻密で電気抵抗の高い数nm程度の薄膜とすることができる。 Therefore, when oxidizing with water vapor (H 2 O), a SiO 2 oxide film can be selectively formed while suppressing oxidation of Fe. As shown in FIG. 2, in the oxidation of Fe by water vapor (H 2 O), the Gibbs free energy −ΔG is close to 0 in the entire temperature range, and particularly in the temperature range of about 400 ° C. or higher, The free energy −ΔG becomes substantially 0, and the effect of suppressing the oxidation of Fe is enhanced. In addition, in the oxidation of Si with water vapor (H 2 O), the reduction reaction of H 2 O proceeds simultaneously, so that the reaction is less likely to proceed than in an oxygen (O 2 ) atmosphere, and the oxidation proceeds at an appropriate rate. For this reason, the oxidation does not proceed to the inside, the magnetic material density is kept high, and a uniform SiO 2 oxide film is formed at a high density on the powder surface layer portion to form a dense thin film having a high electrical resistance of about several nanometers. it can.

このように、弱酸化性ガスとしては、酸素化合物のガスであり酸化反応と同時に還元反応が進むガスが好適である。同様の反応形態をとるガスとして、例えば、一酸化二窒素(N2 O)ガスを用いても、同様の効果が得られる。 Thus, as the weak oxidizing gas, a gas that is an oxygen compound gas and that undergoes a reduction reaction simultaneously with the oxidation reaction is suitable. The same effect can be obtained by using, for example, dinitrogen monoxide (N 2 O) gas as a gas having the same reaction form.

弱酸化性ガスが水蒸気(H2 O)である場合には、雰囲気中に水蒸気を混入させる際に、常温での相対湿度が50%より高くなるようにするとよい。一般に、雰囲気湿度が高いほど形成される酸化膜の厚さが厚くなり、低湿度条件下では、酸化膜が十分成長しない。湿度が高いほど粉末表層部でのSiやAl等の第2の元素の酸化反応が促進され、酸化膜中の酸化物数密度が高くなって、緻密で高電気抵抗の絶縁酸化膜が得られる。好適には、常温で70〜100%(相対湿度)の高湿度となるように混入させるとよい。雰囲気湿度を100%近傍とすれば、高酸化物数密度で十分な膜厚の酸化膜が得られ、目標とする電気抵抗を確保できる。 When the weak oxidizing gas is water vapor (H 2 O), the relative humidity at room temperature is preferably higher than 50% when water vapor is mixed into the atmosphere. In general, the higher the atmospheric humidity, the thicker the oxide film formed, and the oxide film does not grow sufficiently under low humidity conditions. The higher the humidity, the more the oxidation reaction of the second element such as Si and Al in the powder surface layer portion is promoted, and the oxide number density in the oxide film is increased, thereby obtaining a dense and high electric resistance insulating oxide film. . Preferably, it is good to mix so that it may become 70-100% (relative humidity) high humidity at normal temperature. If the atmospheric humidity is near 100%, an oxide film having a high oxide number density and a sufficient thickness can be obtained, and a target electric resistance can be ensured.

表面酸化工程における加熱手段としては、電気炉等の一般的な加熱炉が用いられる。例えば、電気炉で酸化膜を形成する場合は、雰囲気温度(加熱温度)、加熱時間、軟磁性合金粉末のSi含有量やAl含有量によって酸化膜の膜厚を調整すればよい。雰囲気温度は、通常、400〜600℃の範囲内で、適宜設定するとよい。雰囲気温度を400℃以上とすることで、鉄の酸化反応のギブスの自由エネルギー変化ΔGを0近傍とすることができ、鉄の酸化を抑制する効果が得られる。雰囲気温度を高くすると酸化膜の形成は進行しやすくなるが、得られる磁性材の特性が低下するおそれがあるため、600℃以下とするのがよい。好ましくは、雰囲気温度を、400〜550℃の範囲とするとよい。   As a heating means in the surface oxidation step, a general heating furnace such as an electric furnace is used. For example, when forming an oxide film with an electric furnace, the film thickness of the oxide film may be adjusted according to the atmospheric temperature (heating temperature), the heating time, the Si content or the Al content of the soft magnetic alloy powder. The ambient temperature is usually suitably set within a range of 400 to 600 ° C. By setting the ambient temperature to 400 ° C. or higher, the Gibbs free energy change ΔG of the iron oxidation reaction can be made close to 0, and the effect of suppressing iron oxidation can be obtained. When the atmospheric temperature is increased, the formation of the oxide film is likely to proceed, but the characteristics of the obtained magnetic material may be deteriorated. Preferably, the ambient temperature is in the range of 400 to 550 ° C.

図3、図4に、上記方法による軟磁性合金粉末の表面酸化の一実施例を示す。図3(a)のように、原料粉体としてFe−1%Siアトマイズ合金粒子を用い、平均粒径が約100μmとなるように調製したものを、不活性高湿度雰囲気にて加熱することにより表面酸化させた。図4(b)は、この時使用した酸化膜の生成装置で、電気炉内に位置する炉芯管の中央に、原料粉体を収容した容器を配置し(図4(a)参照)、窒素(N2 )ガスに加湿器で水蒸気(H2 O)を混入して相対湿度100%(常温)となるようにした雰囲気ガスを、炉芯管内に所定流量で導入した。温度制御熱電対にて電気炉内を450℃の温度に加熱して、2時間、酸化反応させたところ、Fe−1%Si合金粉末の表面に、膜厚5nmのSiO2 酸化膜が形成された。 3 and 4 show an example of surface oxidation of soft magnetic alloy powder by the above method. As shown in FIG. 3 (a), by using Fe-1% Si atomized alloy particles as a raw material powder and heating an average particle size of about 100 μm in an inert high-humidity atmosphere. The surface was oxidized. FIG. 4B is an oxide film generator used at this time, in which a container containing raw material powder is arranged in the center of the furnace core tube located in the electric furnace (see FIG. 4A), An atmosphere gas in which water vapor (H 2 O) was mixed with nitrogen (N 2 ) gas with a humidifier to achieve a relative humidity of 100% (normal temperature) was introduced into the furnace core tube at a predetermined flow rate. When the inside of the electric furnace was heated to a temperature of 450 ° C. with a temperature-controlled thermocouple and oxidized for 2 hours, a SiO 2 oxide film having a thickness of 5 nm was formed on the surface of the Fe-1% Si alloy powder. It was.

図3(b)は、Fe−1%Siアトマイズ合金粒子の表層部における酸化膜の形成の様子を示している。図中に1〜3で示す通り、粉末表面に酸素(O2 )を供給する代わりに、上記装置により水蒸気(H2 O)を供給すると、上述したように、粉体表層部においてFeよりも酸化しやすいSiとH2 Oの反応が進行する。すると、表面のSi濃度が低下するので、内部からSiが表面に拡散し、H2 Oと反応して選択的に酸化される。一方、図中に4〜5で示す通り、相対的に濃度が高くなるFeは内部へ押し戻されるように移動し、Feの酸化は抑制される。これにより、Fe−1%Si合金粉末の表面が、SiO2 酸化膜で均一に覆われる。 FIG. 3B shows the state of formation of an oxide film in the surface layer portion of Fe-1% Si atomized alloy particles. As indicated by 1 to 3 in the figure, instead of supplying oxygen (O 2 ) to the powder surface, when water vapor (H 2 O) is supplied by the above device, as described above, the powder surface layer portion is more than Fe. The reaction between Si and H 2 O, which are easily oxidized, proceeds. Then, since the Si concentration on the surface is lowered, Si diffuses from the inside to the surface and reacts with H 2 O to be selectively oxidized. On the other hand, as indicated by 4 to 5 in the figure, Fe having a relatively high concentration moves so as to be pushed back into the inside, and the oxidation of Fe is suppressed. As a result, the surface of the Fe-1% Si alloy powder is uniformly covered with the SiO 2 oxide film.

また、酸素(O2 )による酸化の場合と異なり、Fe−Si合金粉末を水蒸気(H2 O)により酸化させた場合には、上述したように、粉末表面においてSiの酸化反応とH2 Oの還元によるH2 の生成反応が同時に進行する。このような条件下では、酸化速度が適度に制御され、内部への酸化の進行が抑制されるので、SiO2 の選択酸化膜を高密度に形成可能である。従って、上記図3(a)の実施例のように表面酸化膜が5nm程度の薄膜であっても、高い電気抵抗を実現できる。 Further, unlike the case of oxidation with oxygen (O 2 ), when the Fe—Si alloy powder is oxidized with water vapor (H 2 O), as described above, the oxidation reaction of Si and H 2 O on the powder surface. The production reaction of H 2 due to the reduction of is proceeded simultaneously. Under such conditions, the oxidation rate is moderately controlled and the progress of oxidation toward the inside is suppressed, so that a selective oxide film of SiO 2 can be formed at a high density. Therefore, even when the surface oxide film is a thin film of about 5 nm as in the embodiment of FIG.

このように不活性高湿度雰囲気下で表面酸化を行なうことで、軟磁性合金粉末の表層部に、緻密で高電気抵抗の絶縁性ナノ薄膜を形成することができる。   By performing surface oxidation in an inert high-humidity atmosphere in this way, a dense and high electrical resistance insulating nano thin film can be formed on the surface layer portion of the soft magnetic alloy powder.

(3):プレス成形工程
図1において、表面にSiO2 酸化膜を形成した軟磁性合金粉末は、次いで、プレス成形工程に供される。ここでは、まず、表面酸化膜を形成した軟磁性合金粉末にバインダーと溶剤を配合して十分に混練した成形材料を作製する。バインダーとしては、例えば、高密度化のために粘着性とスリップ性の高い樟脳が用いられる。溶剤としては、アセトン等の有機溶剤を用いればよい。この軟磁性合金粉末の成形材料を成形型内に注入し、加圧圧縮成形することにより、緻密化された所定形状の成形体となる。プレス圧力は、例えば980Pa(10ton/cm2 )程度とすればよい。なお、表面酸化膜を形成した軟磁性合金粉末を、そのまま加圧圧縮成形することも可能である。
(3): Press forming step In FIG. 1, the soft magnetic alloy powder having the SiO 2 oxide film formed on the surface is then subjected to a press forming step. Here, first, a molding material in which a soft magnetic alloy powder having a surface oxide film is blended with a binder and a solvent and kneaded sufficiently is prepared. As the binder, for example, camphor with high adhesiveness and slip property is used for densification. As the solvent, an organic solvent such as acetone may be used. The soft magnetic alloy powder molding material is poured into a mold and subjected to pressure compression molding to obtain a densified compact with a predetermined shape. The press pressure may be about 980 Pa (10 ton / cm 2 ), for example. The soft magnetic alloy powder on which the surface oxide film is formed can be directly compression-molded.

このプレス成形工程の過程で、Fe−Si合金粉末粒子が互いの隙間を埋めるように変形し、圧縮される。このため、粉体の接触部において表面のSiO2 酸化膜に亀裂等の破壊が生じるおそれがある。この修復工程については後述する。 In the course of this press forming process, the Fe—Si alloy powder particles are deformed and compressed so as to fill the gaps between each other. For this reason, there is a possibility that breakage such as cracks may occur in the SiO 2 oxide film on the surface at the contact portion of the powder. This repair process will be described later.

(4):脱バインダー工程
プレス成形工程による得られる成形体は、表面に酸化膜を有するFe−1%Si粒子がバインダーで結合された状態となっており、焼結工程に供する前に、バインダー等を除去することが望ましい。具体的には、軟磁性合金粉末のプレス成形体を、例えば電気炉等で加熱してバインダーと溶剤を気化させて取り除く。加熱温度は、例えば、50〜100℃程度とするのがよい。
(4): Debinding process The molded body obtained by the press molding process is in a state where Fe-1% Si particles having an oxide film on the surface are bound with a binder, and before being subjected to the sintering process, the binder Etc. are desirable. Specifically, the press-molded body of soft magnetic alloy powder is removed by heating with, for example, an electric furnace to vaporize the binder and the solvent. The heating temperature is preferably about 50 to 100 ° C., for example.

(5):焼結工程(第1工程)
次いで、この脱バインダー成形体を焼成することにより、軟磁性材の焼結体とする。ただし、前工程の表面酸化工程において形成されるSiO2 酸化膜が数nmと薄く、またガラス質で脆いことから、プレス成形工程において粉体が変形する過程で、表面の酸化膜に亀裂等が生じる可能性がある。そこで、本発明では、焼結工程において、脱バインダー成形体を弱酸化性雰囲気ガスと接触させることにより、表面酸化膜に生じた亀裂等を補修する。
(5): Sintering process (first process)
Next, this debinding binder is fired to obtain a sintered body of a soft magnetic material. However, since the SiO 2 oxide film formed in the surface oxidation process of the previous process is as thin as several nanometers, and it is glassy and brittle, there is a crack in the oxide film on the surface during the process of powder deformation in the press molding process. It can happen. Therefore, in the present invention, in the sintering step, the debonded molded body is brought into contact with a weakly oxidizing atmosphere gas to repair cracks and the like generated in the surface oxide film.

具体的には、第1工程において、軟磁性合金粉末の成形体を、不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気中にて加熱する酸化処理と、雰囲気ガスを系外に排出する脱気処理を交互に繰り返し行なう。ここで、酸化処理時に使用される不活性ガスとしては、窒素(N2 )ガス等が挙げられ、弱酸化性ガスとしては、例えば、水蒸気(H2 O)、一酸化二窒素(N2 O)ガスが好適に用いられる。この酸化処理により軟磁性合金粉末の表面に水蒸気(H2 O)等が供給されて、再度酸化膜形成雰囲気とすることができる。 Specifically, in the first step, the soft magnetic alloy powder compact is heated in a weak oxidizing atmosphere in which a weak oxidizing gas is mixed with an inert gas, and the atmospheric gas is discharged out of the system. The deaeration process is repeated alternately. Here, examples of the inert gas used during the oxidation treatment include nitrogen (N 2 ) gas, and examples of the weak oxidizing gas include water vapor (H 2 O) and dinitrogen monoxide (N 2 O). ) Gas is preferably used. By this oxidation treatment, water vapor (H 2 O) or the like is supplied to the surface of the soft magnetic alloy powder, and an atmosphere for forming an oxide film can be obtained again.

弱酸化性ガスが水蒸気(H2 O)である場合には、雰囲気中に水蒸気を混入させる際に、常温での相対湿度が50%より高くなるようにするとよい。一般に、雰囲気湿度が高いほど酸化反応が進みやすく、湿度が低いと酸化反応が進行しないので、好適には、常温で70〜100%(相対湿度)の高湿度となるように混入させるとよい。上記表面酸化工程と同様、湿度が高いほど、表面酸化膜の亀裂端におけるSiやAl等の第2の元素の酸化反応が促進され、修復効果が高くなる。また、再形成される酸化膜中の酸化物数密度が高くなって、緻密で高電気抵抗の絶縁酸化膜が得られる。雰囲気湿度を100%近傍とすれば、高酸化物数密度で十分な膜厚の酸化膜が得られ、目標とする電気抵抗を確保できる。 When the weak oxidizing gas is water vapor (H 2 O), the relative humidity at room temperature is preferably higher than 50% when water vapor is mixed into the atmosphere. In general, the higher the atmospheric humidity, the easier the oxidation reaction proceeds. When the humidity is low, the oxidation reaction does not proceed. Therefore, it is preferable to mix them so that the humidity is 70 to 100% (relative humidity) at room temperature. Similar to the surface oxidation step, the higher the humidity, the more the oxidation reaction of the second element such as Si or Al at the crack end of the surface oxide film is promoted, and the repair effect is enhanced. In addition, the oxide number density in the re-formed oxide film is increased, and a dense and high electrical resistance insulating oxide film can be obtained. If the atmospheric humidity is near 100%, an oxide film having a high oxide number density and a sufficient thickness can be obtained, and a target electric resistance can be ensured.

酸化処理時の雰囲気圧力は、大気圧ないしそれ以上の加圧雰囲気とすることが望ましい。酸化処理を加圧雰囲気下で行なうことで、成形体内部への弱酸化性ガスの拡散を促進し、成形体内部の軟磁性合金粉末表面に水蒸気(H2 O)等を均等に供給して、酸化膜の修復効果を向上させることができる。 The atmospheric pressure during the oxidation treatment is preferably a pressurized atmosphere of atmospheric pressure or higher. By performing the oxidation treatment in a pressurized atmosphere, the diffusion of weak oxidizing gas into the molded body is promoted, and water vapor (H 2 O) or the like is evenly supplied to the soft magnetic alloy powder surface inside the molded body. The effect of repairing the oxide film can be improved.

酸化処理時の加熱手段としては、電気炉等の一般的な加熱炉が用いられる。雰囲気温度は、上記表面酸化工程と同様、400〜600℃の範囲内で適宜設定することができる。雰囲気温度を400℃以上とすることで、鉄の酸化反応のギブスの自由エネルギー変化ΔGを0近傍とすることができ、鉄の酸化を抑制しながら酸化膜を再形成する効果が得られる。雰囲気温度が600℃より高いと酸化膜が十分補修されないまま焼結が進行するおそれがある。好ましくは、雰囲気温度を、450〜550℃の範囲とし、所定時間維持することで、軟磁性合金粉末の表面を再び強固な電気絶縁性の薄膜で被覆することができる。   As a heating means during the oxidation treatment, a general heating furnace such as an electric furnace is used. The ambient temperature can be appropriately set within the range of 400 to 600 ° C., as in the surface oxidation step. By setting the ambient temperature to 400 ° C. or higher, the Gibbs free energy change ΔG of the iron oxidation reaction can be made close to 0, and the effect of re-forming the oxide film while suppressing iron oxidation can be obtained. If the atmospheric temperature is higher than 600 ° C., sintering may proceed without the oxide film being sufficiently repaired. Preferably, the surface of the soft magnetic alloy powder can be covered again with a strong electrically insulating thin film by keeping the atmospheric temperature in the range of 450 to 550 ° C. and maintaining it for a predetermined time.

脱気処理は、真空ポンプ等を用いて系内の雰囲気ガスを系外へ排出することによって行なう。脱気処理時の雰囲気圧力は、酸化処理時の雰囲気圧力より低ければよく、通常、大気圧ないしそれ以下の減圧雰囲気とする。酸化処理時、軟磁性合金粉末表面では酸化反応と同時に還元反応が進行するので、脱気処理により還元反応の生成ガスである水素(H2 )等を成形体内部から吸い出し、系外へ排出することができる。 The deaeration process is performed by discharging atmospheric gas in the system to the outside using a vacuum pump or the like. The atmospheric pressure during the deaeration process may be lower than the atmospheric pressure during the oxidation process, and is usually a reduced pressure atmosphere of atmospheric pressure or lower. At the time of oxidation treatment, the reduction reaction proceeds simultaneously with the oxidation reaction on the surface of the soft magnetic alloy powder, so that hydrogen (H 2 ), which is a product gas of the reduction reaction, is sucked out of the compact and discharged out of the system by degassing treatment. be able to.

好適には、酸化処理に先立って脱気処理を行なうことで、続く酸化処理をより効果的に行なうことができる。脱気処理時の雰囲気温度は、酸化処理時の雰囲気温度と同様とし、400〜600℃の範囲内で適宜設定することができる。好適には、系内を450〜550℃に加熱して減圧しながら所定時間維持した後、系内に弱酸化性雰囲気ガスを導入して酸化処理を行なうことを繰り返す。また、焼結工程の開始時に、まず系内に水素(H2 )ガス等の還元雰囲気として成形体を還元処理することもできる。 Preferably, the subsequent oxidation treatment can be performed more effectively by performing the deaeration treatment prior to the oxidation treatment. The atmospheric temperature during the deaeration treatment is the same as the atmospheric temperature during the oxidation treatment, and can be appropriately set within a range of 400 to 600 ° C. Preferably, the inside of the system is heated to 450 to 550 ° C. and maintained for a predetermined time while reducing the pressure, and then the oxidation treatment is performed by introducing a weak oxidizing atmosphere gas into the system. Further, at the start of the sintering process, first, the compact can be reduced in a reducing atmosphere such as hydrogen (H 2 ) gas in the system.

図5は、雰囲気圧力と分子の平均自由行程の関係を示す図で、雰囲気圧力が低くなるほど、分子の平均自由行程が増加していることがわかる。つまり、脱気処理時の雰囲気圧力が低いほど、続く酸化処理時に弱酸化性ガスが拡散しやすくなる。また、雰囲気温度を高くすることで、分子が移動しやすくなり、より効果的である。好適には真空雰囲気とすることにより、水蒸気(H2 O)分子の平均自由行程を増大させて、成形体内部への拡散を促進する効果を高めることができる。 FIG. 5 is a diagram showing the relationship between the atmospheric pressure and the mean free path of molecules, and it can be seen that the mean free path of molecules increases as the atmospheric pressure decreases. That is, the lower the atmospheric pressure during the degassing process, the easier the weak oxidizing gas diffuses during the subsequent oxidation process. In addition, by increasing the atmospheric temperature, the molecules can move easily, which is more effective. A vacuum atmosphere is preferably used to increase the mean free path of water vapor (H 2 O) molecules and enhance the effect of promoting diffusion into the molded body.

脱気処理と酸化処理の繰り返し回数(脱気処理1回+酸化処理1回で1サイクルとする)は、通常、 1ないし10サイクル程度とし、好適には2サイクル以上繰り返すことが望ましい。1サイクルにおける処理時間については、特に制限されず、例えば、脱気処理を1〜60分程度、酸化処理を1〜60分程度の範囲で適宜組み合わせればよい。   The number of repetitions of degassing treatment and oxidation treatment (one degassing treatment + one oxidation treatment is one cycle) is usually about 1 to 10 cycles, preferably 2 cycles or more. The treatment time in one cycle is not particularly limited, and for example, the degassing treatment may be appropriately combined in the range of about 1 to 60 minutes and the oxidation treatment in the range of about 1 to 60 minutes.

(6):焼結工程(第2工程)
その後、表面酸化膜が再形成された脱バインダ−成形体を、例えば、600〜1100℃に温度上昇させて、弱酸化性雰囲気中にて所定時間保持することにより、軟磁性材の焼結体とする。
(6): Sintering process (second process)
Thereafter, the binder-molded body on which the surface oxide film is re-formed is heated to, for example, 600 to 1100 ° C. and held in a weakly oxidizing atmosphere for a predetermined time, whereby a soft magnetic material sintered body is obtained. And

本発明の焼結方法によれば、第1工程において軟磁性粉末の成形体に弱酸化性ガスを間歇的に供給し、表面の酸化膜を効率よく補修しているので、第2工程において高品質の軟磁性材の焼結体を得ることができる。   According to the sintering method of the present invention, a weak oxidizing gas is intermittently supplied to the soft magnetic powder compact in the first step, and the oxide film on the surface is efficiently repaired. A sintered body of quality soft magnetic material can be obtained.

図6、図7に、上記方法による軟磁性合金粉末の焼結工程の一実施例を示す。焼結用のサンプルとして、上記図3(a)の工程で表面酸化させたFe−1%Si合金粉末の成形体を用い、これを図7に示す焼結装置の電気炉内の台座に固定した。図6(a)は焼結工程における処理温度の変化を示す図、図6(b)は第1工程の処理の詳細を示すものである。   FIG. 6 and FIG. 7 show an embodiment of the sintering process of the soft magnetic alloy powder by the above method. As a sample for sintering, a molded body of Fe-1% Si alloy powder that has been surface-oxidized in the step of FIG. 3A is used, and this is fixed to a pedestal in an electric furnace of the sintering apparatus shown in FIG. did. FIG. 6A shows a change in processing temperature in the sintering process, and FIG. 6B shows details of the processing in the first process.

第1工程では、まず、窒素(N2 )−5%水素(H2 )混合ガスを電気炉内に導入し、450℃に加熱して、加圧雰囲気で所定時間(例えば1時間)の還元処理を行なった。次いで、系内の雰囲気ガスを真空ポンプ(R.P.)を用いて排出し、所定時間(例えば30分)維持した。この真空脱気処理の後、系内に加湿器で水蒸気(H2 O)を混入して相対湿度100%(常温)となるようにし、加圧雰囲気で所定時間(例えば45分)の酸化処理を行なった。この真空脱気処理と加圧酸化処理を4サイクル繰り返し、さらに真空脱気処理と還元処理を行なった。 In the first step, first, a nitrogen (N 2 ) -5% hydrogen (H 2 ) mixed gas is introduced into an electric furnace, heated to 450 ° C., and reduced for a predetermined time (for example, 1 hour) in a pressurized atmosphere. Processing was performed. Next, the atmospheric gas in the system was discharged using a vacuum pump (RP) and maintained for a predetermined time (for example, 30 minutes). After this vacuum degassing treatment, steam (H 2 O) is mixed in the system with a humidifier so that the relative humidity becomes 100% (room temperature), and oxidation treatment is performed for a predetermined time (for example, 45 minutes) in a pressurized atmosphere. Was done. This vacuum degassing treatment and pressure oxidation treatment were repeated for 4 cycles, and vacuum degassing treatment and reduction treatment were further performed.

このように、真空脱気処理と加圧水蒸気供給のサイクルを繰り返すことで、粉体表面への水蒸気(H2 O)分子の供給と水素(H2 )分子の排出を促進し、表面のSiO2 酸化膜が修復される。次いで、第2工程において、系内を880℃まで温度上昇させ、所定時間維持することにより焼成した。その後、徐々に温度降下させながら焼鈍(アニール)処理し、一連の焼結工程においての形成体を確保した。 In this way, by repeating the cycle of the vacuum degassing treatment and pressurized steam supply, to facilitate the discharge of feed and hydrogen (H 2) molecules of water vapor (H 2 O), molecules of the powder surface, SiO surface 2 The oxide film is repaired. Next, in the second step, the temperature in the system was raised to 880 ° C., and the firing was performed by maintaining for a predetermined time. Thereafter, annealing (annealing) was performed while gradually lowering the temperature, and a formed body in a series of sintering steps was secured.

このように、本発明方法によれば、焼結工程においてFe−Si合金粉末の表面酸化膜を成形体内部まで確実に補修し、再び強固な電気絶縁性ナノ薄膜で被覆することができる。よって、安価なFeを主成分とし緻密かつ高抵抗な絶縁膜が形成された低鉄損な軟磁性合金粉末の焼結体が得られる。また、表面酸化工程において形成されるSiO2 酸化膜が5nm程度の薄膜であっても、十分な絶縁性を確保できるので、軟磁性材中の磁性材密度を高めて、高飽和磁束密度化、高透磁率化を実現でき、磁気特性を向上することができる。しかも、酸化膜の薄膜化によって軟磁性粉末の小粒径化が可能となり、例えば、軟磁性粉末の平均粒径を0.01〜10μmの微小粒径とすることで、下記のホールペッチの法則から明らかなように、高強度化が可能となる。
ホールペッチの法則:σy =σ0 +k・d-1/2
ここで、σy は降伏応力、kは定数、dは軟磁性粉末の粒径である。
さらに、製造工程が簡素で、生産性にも優れている。このようにして得られた軟磁性材の焼結体は、内燃機関のソレノイドバルブやトランスのコア材といった各種軟磁性部品として有用である。
Thus, according to the method of the present invention, the surface oxide film of the Fe—Si alloy powder can be surely repaired to the inside of the molded body in the sintering step, and it can be coated again with a strong electrically insulating nano thin film. Therefore, it is possible to obtain a sintered body of soft magnetic alloy powder having a low iron loss and having a dense and high resistance insulating film mainly composed of inexpensive Fe. Further, even if the SiO 2 oxide film formed in the surface oxidation process is a thin film of about 5 nm, sufficient insulation can be secured, so that the density of the magnetic material in the soft magnetic material is increased to increase the saturation magnetic flux density, High permeability can be realized and magnetic characteristics can be improved. In addition, it is possible to reduce the particle size of the soft magnetic powder by reducing the thickness of the oxide film. For example, by setting the average particle size of the soft magnetic powder to a fine particle size of 0.01 to 10 μm, the following Hall Petch's law can be obtained. As can be seen, the strength can be increased.
Hall-Petch's law: σy = σ0 + k · d -1/2
Here, σy is the yield stress, k is a constant, and d is the particle size of the soft magnetic powder.
Furthermore, the manufacturing process is simple and the productivity is excellent. The sintered body of the soft magnetic material thus obtained is useful as various soft magnetic parts such as a solenoid valve of an internal combustion engine and a core material of a transformer.

図8(a)は、不活性ガスに水蒸気を混入した雰囲気下で、常温での相対湿度を100%、50%とした時の表面酸化膜の表層からの深さと酸化物数密度を比較して示すものである。図示されるように、相対湿度50%の条件では、表面の酸化物数密度が低下して、良好な酸化膜が形成されない上、内部まで酸化が進んでおり、湿度が表面酸化膜の形成に大きく影響していることがわかる。また、一般に、雰囲気湿度と形成される酸化膜の厚さは、図8(b)のような関係にあり、低湿度条件下では、酸化膜が十分成長していない。雰囲気湿度が70%程度ないしそれ以上であれば、ほぼ十分な酸化膜厚さを得ることができ、好適には、雰囲気湿度を100%近傍とすれば、高酸化物数密度で高電気抵抗の酸化膜を実現できることがわかる。   FIG. 8A compares the depth from the surface layer of the surface oxide film and the oxide number density when the relative humidity at room temperature is 100% and 50% in an atmosphere in which water vapor is mixed in an inert gas. It is shown. As shown in the figure, under the condition of relative humidity of 50%, the surface oxide number density is reduced, a good oxide film is not formed, and oxidation is progressing to the inside. It can be seen that it has a great influence. In general, the atmospheric humidity and the thickness of the oxide film formed are in a relationship as shown in FIG. 8B, and the oxide film does not grow sufficiently under low humidity conditions. If the atmospheric humidity is about 70% or more, an almost sufficient oxide film thickness can be obtained. Preferably, if the atmospheric humidity is near 100%, high oxide number density and high electrical resistance can be obtained. It can be seen that an oxide film can be realized.

なお、上記製造方法では、表面酸化工程における雰囲気を弱酸化性雰囲気のみとしたが、図9に示すように、不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気中における酸化処理と、還元性雰囲気中における還元処理とを交互に行って、酸化膜を形成することもできる。ここで、酸化処理は、上述したのと同様に行い、不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気中において、軟磁性合金粉末を、400〜600℃、好適には、450〜550℃の高温に加熱する。不活性ガスとしては、窒素(N2 )ガス等を、弱酸化性ガスとしては、例えば、水蒸気(H2 O)を用い、常温での相対湿度が50%より高く、好適には、70〜100%になるようにする。 In the above manufacturing method, the atmosphere in the surface oxidation step is only a weak oxidizing atmosphere, but as shown in FIG. 9, an oxidation treatment in a weak oxidizing atmosphere in which a weak oxidizing gas is mixed in an inert gas, An oxide film can also be formed by alternately performing a reduction treatment in a reducing atmosphere. Here, the oxidation treatment is performed in the same manner as described above, and the soft magnetic alloy powder is heated to 400 to 600 ° C., preferably 450 to 600 ° C. in a weak oxidizing atmosphere in which a weak oxidizing gas is mixed with an inert gas. Heat to a high temperature of 550 ° C. Nitrogen (N 2 ) gas or the like is used as the inert gas, and water vapor (H 2 O) is used as the weak oxidizing gas, for example, and the relative humidity at room temperature is higher than 50%, preferably 70 to Try to be 100%.

この酸化処理によって、表面に酸化膜を形成した軟磁性合金粉末を、引き続き、還元性雰囲気中において400〜600℃、好適には、450〜550℃の高温に加熱し、還元処理を行う。還元性ガスとしては、例えば、水素(H2 )ガス等が好適に用いられる。このように、酸化処理の後、還元処理を施す場合には、表層部が還元雰囲気に晒されることによって、内部への酸素の拡散が抑制され、表層部のみを高純度化することが可能になるものと推測される。 By this oxidation treatment, the soft magnetic alloy powder having an oxide film formed on the surface is subsequently heated to a high temperature of 400 to 600 ° C., preferably 450 to 550 ° C. in a reducing atmosphere to perform the reduction treatment. For example, hydrogen (H 2 ) gas is preferably used as the reducing gas. As described above, when the reduction treatment is performed after the oxidation treatment, the surface layer portion is exposed to the reducing atmosphere, so that the diffusion of oxygen to the inside is suppressed, and only the surface layer portion can be highly purified. Presumed to be.

よって、酸化処理と還元処理とを繰り返すことで、形成される表面酸化膜の純度を向上させ、より緻密で高電気抵抗の薄い酸化膜を均一に形成できるので、より高品質の軟磁性材の焼結体を得ることができる。   Therefore, by repeating the oxidation treatment and the reduction treatment, the purity of the formed surface oxide film can be improved, and a denser and thinner oxide film with high electrical resistance can be uniformly formed. A sintered body can be obtained.

本発明方法による軟磁性材の製造工程の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing process of the soft-magnetic material by the method of this invention. 本発明方法による表面酸化のメカニズムを説明するための、FeおよびSiの酸化反応の自由エネルギ−変化ΔGを示す図である。It is a figure which shows the free energy change (DELTA) G of the oxidation reaction of Fe and Si for demonstrating the mechanism of the surface oxidation by the method of this invention. (a)は本発明方法によるFe−Si粉末の表面酸化工程を説明するための図、(b)は表面酸化のメカニズムを説明するための図で、Fe−Si粉末表面の拡大図である。(A) is a figure for demonstrating the surface oxidation process of Fe-Si powder by the method of this invention, (b) is a figure for demonstrating the mechanism of surface oxidation, and is an enlarged view of the Fe-Si powder surface. (a)は(b)の部分拡大図、(b)は本発明の表面酸化工程で使用する酸化膜生成装置の全体構成図である。(A) is the elements on larger scale of (b), (b) is the whole block diagram of the oxide film production | generation apparatus used by the surface oxidation process of this invention. 本発明方法の焼結工程における酸化処理雰囲気圧力と分子の平均自由行程の関係を示す図である。It is a figure which shows the relationship between the oxidation process atmospheric pressure in the sintering process of this invention method, and the mean free path of a molecule | numerator. (a)は本発明方法による焼結工程の第1工程および第2工程の温度条件を説明するための図、(b)は第1工程における酸化処理および脱気処理の繰り返し例を示す図である。(A) is a figure for demonstrating the temperature conditions of the 1st process of a sintering process by this invention method, and a 2nd process, (b) is a figure which shows the repetition example of the oxidation process and deaeration process in a 1st process. is there. 本発明の焼結工程で使用する焼結装置の全体構成図である。It is a whole block diagram of the sintering apparatus used at the sintering process of this invention. (a)は雰囲気湿度100%、50%とした時の、酸化膜の表層からの深さと酸化物数密度の関係を示す図、(b)は雰囲気湿度を変化させて酸化膜を形成した時の、雰囲気湿度と形成される酸化膜厚さとの関係を示す図である。(A) is a figure which shows the relationship between the depth from the surface layer of an oxide film and oxide number density when atmospheric humidity is set to 100% and 50%, (b) is the case where an atmospheric humidity is changed and an oxide film is formed It is a figure which shows the relationship between atmospheric humidity and the oxide film thickness formed. 本発明方法による表面酸化工程の他の例を説明するための図である。It is a figure for demonstrating the other example of the surface oxidation process by the method of this invention.

Claims (12)

鉄を主成分とする軟磁性粉末の表面に酸化膜を形成する表面酸化工程と、
表面に酸化膜を形成した軟磁性粉末をプレス成形して所定形状の成形体とするプレス成形工程と、
前記軟磁性粉末の成形体を焼成することにより、軟磁性材の焼結体とする焼結工程とを有し、
前記焼結工程において、前記成形体を不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気ガスと接触させる酸化処理と、雰囲気ガスを系外に排出する脱気処理を交互に繰り返すことを特徴とする軟磁性材の製造方法。
A surface oxidation step of forming an oxide film on the surface of the soft magnetic powder containing iron as a main component;
A press molding process in which a soft magnetic powder having an oxide film formed on the surface thereof is press-molded to form a molded body having a predetermined shape;
Sintering the soft magnetic powder molded body to have a sintered body of a soft magnetic material,
In the sintering step, an oxidation treatment in which the compact is brought into contact with a weak oxidizing atmosphere gas in which a weak oxidizing gas is mixed with an inert gas and a degassing treatment in which the atmospheric gas is discharged out of the system are alternately repeated. A method for producing a soft magnetic material.
前記表面酸化工程において、鉄を主成分とし鉄よりも酸化反応性の高い第2の元素を含有する軟磁性合金粉末を、不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気中で加熱し、粉末表層部の前記第2の元素を主に酸化反応させて、表面に前記第2の元素の酸化膜を形成することを特徴とする請求項1記載の軟磁性材の製造方法。   In the surface oxidation step, the soft magnetic alloy powder containing the second element having iron as a main component and higher oxidation reactivity than iron is heated in a weak oxidizing atmosphere in which a weak oxidizing gas is mixed in an inert gas. The method for producing a soft magnetic material according to claim 1, wherein the second element in the powder surface layer part is mainly oxidized to form an oxide film of the second element on the surface. 前記表面酸化工程において、鉄を主成分とし鉄よりも酸化反応性の高い第2の元素を含有する軟磁性合金粉末を、不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気中において加熱する酸化処理と、還元性雰囲気中において加熱する還元処理とを交互に行ない、粉末表層部の前記第2の元素を主に酸化反応させて、表面に前記第2の元素の酸化膜を形成することを特徴とする請求項1記載の軟磁性材の製造方法。   In the surface oxidation step, the soft magnetic alloy powder containing the second element having iron as a main component and higher oxidation reactivity than iron is heated in a weak oxidizing atmosphere in which a weak oxidizing gas is mixed in an inert gas. The oxidation treatment to be performed and the reduction treatment to be heated in a reducing atmosphere are alternately performed to mainly oxidize the second element in the powder surface layer portion to form an oxide film of the second element on the surface. The method for producing a soft magnetic material according to claim 1. 前記第2の元素がSi、Ti、Al、Crを代表とする鉄よりも酸化性の高い物質から選択される少なくとも一種であることを特徴とする請求項2または3に記載の軟磁性材の製造方法。   4. The soft magnetic material according to claim 2, wherein the second element is at least one selected from substances having a higher oxidation property than iron typified by Si, Ti, Al, and Cr. Production method. 前記焼結工程における前記酸化処理を大気圧ないしそれ以上の加圧雰囲気で行ない、前記脱気処理により大気圧以下に減圧することを特徴とする請求項1ないし4のいずれかに記載の軟磁性材の製造方法。   5. The soft magnetism according to claim 1, wherein the oxidation treatment in the sintering step is performed in a pressurized atmosphere of atmospheric pressure or higher and the pressure is reduced to atmospheric pressure or lower by the degassing treatment. A method of manufacturing the material. 前記焼結工程を、400〜1100℃の温度条件下で行なうことを特徴とする請求項1ないし5のいずれかに記載の軟磁性材の製造方法。   The method for producing a soft magnetic material according to any one of claims 1 to 5, wherein the sintering step is performed under a temperature condition of 400 to 1100 ° C. 前記焼結工程が、400〜600℃の温度条件下で前記酸化処理と前記脱気処理とを交互に繰り返すことにより前記酸化膜を再形成する第1工程と、600〜1100℃の温度条件下で前記軟磁性粉末を焼結させる第2工程を有することを特徴とする請求項1ないし6のいずれかに記載の軟磁性材の製造方法。   The sintering step includes a first step of re-forming the oxide film by alternately repeating the oxidation treatment and the deaeration treatment under a temperature condition of 400 to 600 ° C, and a temperature condition of 600 to 1100 ° C. The method for producing a soft magnetic material according to claim 1, further comprising a second step of sintering the soft magnetic powder. 前記弱酸化性ガスが水蒸気または一酸化二窒素ガスであることを特徴とする請求項1ないし7のいずれかに記載の軟磁性材の製造方法。   The method for producing a soft magnetic material according to claim 1, wherein the weak oxidizing gas is water vapor or dinitrogen monoxide gas. 前記弱酸化性ガスを水蒸気とし、常温での相対湿度が50%より高くなるように前記不活性ガスに混入することを特徴とする請求項1ないし8のいずれかに記載の軟磁性材の製造方法。   The soft magnetic material according to any one of claims 1 to 8, wherein the weak oxidizing gas is water vapor and is mixed into the inert gas so that the relative humidity at room temperature is higher than 50%. Method. 前記弱酸化性ガスを水蒸気とし、常温での相対湿度が70%〜100%となるように前記不活性ガスに混入することを特徴とする請求項1ないし9のいずれかに記載の軟磁性材の製造方法。   The soft magnetic material according to any one of claims 1 to 9, wherein the weakly oxidizing gas is water vapor and is mixed into the inert gas so that the relative humidity at room temperature is 70% to 100%. Manufacturing method. 前記表面酸化工程を、400〜600℃の温度条件下で行なうことを特徴とする請求項1ないし10のいずれかに記載の軟磁性材の製造方法。   The method for producing a soft magnetic material according to any one of claims 1 to 10, wherein the surface oxidation step is performed under a temperature condition of 400 to 600 ° C. 前記軟磁性粉末は、平均粒径が0.1〜500μmのアトマイズ合金粉末であることを特徴とする請求項1ないし11のいずれかに記載の軟磁性材の製造方法。   The method for producing a soft magnetic material according to claim 1, wherein the soft magnetic powder is an atomized alloy powder having an average particle size of 0.1 to 500 μm.
JP2004294709A 2004-10-07 2004-10-07 Method for producing soft magnetic material Expired - Fee Related JP4562483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294709A JP4562483B2 (en) 2004-10-07 2004-10-07 Method for producing soft magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294709A JP4562483B2 (en) 2004-10-07 2004-10-07 Method for producing soft magnetic material

Publications (2)

Publication Number Publication Date
JP2006108475A true JP2006108475A (en) 2006-04-20
JP4562483B2 JP4562483B2 (en) 2010-10-13

Family

ID=36377824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294709A Expired - Fee Related JP4562483B2 (en) 2004-10-07 2004-10-07 Method for producing soft magnetic material

Country Status (1)

Country Link
JP (1) JP4562483B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906972B1 (en) * 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same
JP2012156477A (en) * 2011-06-15 2012-08-16 Taiyo Yuden Co Ltd Coil component
JP2013045927A (en) * 2011-08-25 2013-03-04 Taiyo Yuden Co Ltd Electronic component and manufacturing method therefor
JP2013243292A (en) * 2012-05-22 2013-12-05 Denso Corp Soft magnetic powder particle, method of manufacturing the same, and green compact
JP2013253303A (en) * 2012-06-08 2013-12-19 Denso Corp Method for manufacturing sintering-diffusion-bonded component
JP2020111794A (en) * 2019-01-11 2020-07-27 トヨタ自動車株式会社 Method of manufacturing soft magnetic member
JP2020141080A (en) * 2019-02-28 2020-09-03 太陽誘電株式会社 Magnetic material, manufacturing method thereof, coil component arranged by using the magnetic material, and circuit board with the coil component mounted thereon
CN114578015A (en) * 2022-04-12 2022-06-03 安徽龙磁金属科技有限公司 Intelligent quality detection method for soft magnetic ferrite

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128406A (en) * 1978-03-29 1979-10-05 Fujitsu Ltd Manufacture of sintered iron-cobalt product
JPS56150155A (en) * 1980-04-22 1981-11-20 Sumitomo Electric Ind Ltd Preparation of ferrous sintered material
JPS5983703A (en) * 1982-11-02 1984-05-15 Nippon Funmatsu Gokin Kk Preparation of sintered iron member
JPS6179702A (en) * 1984-09-27 1986-04-23 Toshiba Corp Production of sintered soft magnetic iron-silicon parts
JPS63227730A (en) * 1987-03-16 1988-09-22 Takeshi Masumoto Manufacture of high-density amorphous compact
JP2001510286A (en) * 1997-07-18 2001-07-31 ホガナス アクチボラゲット Soft magnetic synthetic material and method for producing the same
JP2003109810A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Dust core and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128406A (en) * 1978-03-29 1979-10-05 Fujitsu Ltd Manufacture of sintered iron-cobalt product
JPS56150155A (en) * 1980-04-22 1981-11-20 Sumitomo Electric Ind Ltd Preparation of ferrous sintered material
JPS5983703A (en) * 1982-11-02 1984-05-15 Nippon Funmatsu Gokin Kk Preparation of sintered iron member
JPS6179702A (en) * 1984-09-27 1986-04-23 Toshiba Corp Production of sintered soft magnetic iron-silicon parts
JPS63227730A (en) * 1987-03-16 1988-09-22 Takeshi Masumoto Manufacture of high-density amorphous compact
JP2001510286A (en) * 1997-07-18 2001-07-31 ホガナス アクチボラゲット Soft magnetic synthetic material and method for producing the same
JP2003109810A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Dust core and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906972B1 (en) * 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same
JP2012156477A (en) * 2011-06-15 2012-08-16 Taiyo Yuden Co Ltd Coil component
JP2013045927A (en) * 2011-08-25 2013-03-04 Taiyo Yuden Co Ltd Electronic component and manufacturing method therefor
JP2013243292A (en) * 2012-05-22 2013-12-05 Denso Corp Soft magnetic powder particle, method of manufacturing the same, and green compact
JP2013253303A (en) * 2012-06-08 2013-12-19 Denso Corp Method for manufacturing sintering-diffusion-bonded component
JP2020111794A (en) * 2019-01-11 2020-07-27 トヨタ自動車株式会社 Method of manufacturing soft magnetic member
JP7260304B2 (en) 2019-01-11 2023-04-18 トヨタ自動車株式会社 Method for manufacturing soft magnetic member
JP2020141080A (en) * 2019-02-28 2020-09-03 太陽誘電株式会社 Magnetic material, manufacturing method thereof, coil component arranged by using the magnetic material, and circuit board with the coil component mounted thereon
JP7387269B2 (en) 2019-02-28 2023-11-28 太陽誘電株式会社 Magnetic material and its manufacturing method, coil parts using magnetic material and circuit board on which it is mounted
US11901103B2 (en) 2019-02-28 2024-02-13 Taiyo Yuden Co., Ltd. Magnetic body and method for manufacturing same, as well as coil component using magnetic body and circuit board carrying same
CN114578015A (en) * 2022-04-12 2022-06-03 安徽龙磁金属科技有限公司 Intelligent quality detection method for soft magnetic ferrite
CN114578015B (en) * 2022-04-12 2024-02-13 安徽龙磁金属科技有限公司 Intelligent quality detection method for soft magnetic ferrite

Also Published As

Publication number Publication date
JP4562483B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP4548035B2 (en) Method for producing soft magnetic material
JP4010296B2 (en) Method for producing soft magnetic powder material
US7871474B2 (en) Method for manufacturing of insulated soft magnetic metal powder formed body
JP4971886B2 (en) Soft magnetic powder, soft magnetic molded body, and production method thereof
WO2006028100A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP3861288B2 (en) Method for producing soft magnetic material
JP4562483B2 (en) Method for producing soft magnetic material
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2006097124A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
JP5427664B2 (en) SOFT MAGNETIC POWDER FOR Dust Magnetic Material, Dust Magnetic Material Using the Same, and Manufacturing Method
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP2006241583A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM, AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
KR101441745B1 (en) Metal alloy powders, powder cores and their manufacturing method
JP5016513B2 (en) Insulating film-forming metal powder using peelable double hydroxide and method for producing the same
JP4576206B2 (en) Method for producing soft magnetic material
WO2005024859A1 (en) Soft magnetic material and method for producing same
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP5382424B2 (en) Method for producing magnetic core powder
JP2006089791A (en) Method for manufacturing composite soft-magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density
JP4480628B2 (en) Composite soft magnetic powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees