JP2006104788A - Bridge girder structure using section steel - Google Patents

Bridge girder structure using section steel Download PDF

Info

Publication number
JP2006104788A
JP2006104788A JP2004293650A JP2004293650A JP2006104788A JP 2006104788 A JP2006104788 A JP 2006104788A JP 2004293650 A JP2004293650 A JP 2004293650A JP 2004293650 A JP2004293650 A JP 2004293650A JP 2006104788 A JP2006104788 A JP 2006104788A
Authority
JP
Japan
Prior art keywords
steel
bridge
girder
section
bridge girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004293650A
Other languages
Japanese (ja)
Other versions
JP4410650B2 (en
Inventor
Kei Toyoshima
径 豊島
Masataka Takagi
優任 高木
Masataka Kinoshita
雅敬 木下
Tetsuo Kimura
哲夫 木村
Koji Honma
宏二 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004293650A priority Critical patent/JP4410650B2/en
Publication of JP2006104788A publication Critical patent/JP2006104788A/en
Application granted granted Critical
Publication of JP4410650B2 publication Critical patent/JP4410650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bridge girder structure using section steels, which facilitates the manufacture of a steel segment, contributes to efficient working and labor saving in design, and can efficiently resist a cross sectional force occurring on a bridge girder, without drastically increasing a girder height or a steel weight. <P>SOLUTION: The bridge girder structure is constructed by arranging the plurality of steel segments 1 each formed of the section steel having flanges 8 and a web, or each formed of the plurality of section steels connected together via the flanges 8 as a joint, such that a longitudinal direction of each steel segment extends along a bridge axial direction, and by connecting the mutually adjacent steel segments 1 to each other via the flanges 8 at lateral edges of the respective steel segments 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、橋梁の桁構造に係り、特に形鋼を用いた橋桁構造に関するものである。   The present invention relates to a bridge girder structure, and more particularly to a bridge girder structure using shape steel.

設計の省力化、運搬・架設作業の容易化を図るため、ユニットとなる部材を用いて、現場にて連結して橋桁を構築する技術が知られている。   In order to save labor in design and facilitate transportation and erection work, a technique for constructing a bridge girder by connecting members at a site using a unit member is known.

図9ならびに図10は従来技術を示した図である。図9は特許文献1に記載されているパネル型の鋼製セグメントで構成された橋桁構造を示す斜視図である。本技術は、設計の省力化、運搬・架設作業の容易化を図るため、溶接集成もしくは冷間曲げ成形で製作されたパネル型の鋼製セグメント18を橋軸方向と橋軸直角方向にボルト接合で組立てることにより、逆台形の開断面箱桁27を構成し、その上部に床版28を構築したものである。図10は特許文献2に記載されているに段積みH形鋼を用いた橋梁の構造を示す斜視図である。本技術は、主桁にきわめてシンプルな段積みH形鋼を用いており、橋梁構造物の主桁29が、H形鋼30をH形鋼の最大曲げモーメント方向に複数段積みしてフランジ31を介して高力ボルト32で相互に締結された段積みH形鋼よりなることを特徴とするものである。
特開2004−156291号公報 特開平8−338007公報
9 and 10 are diagrams showing the prior art. FIG. 9 is a perspective view showing a bridge girder structure composed of panel-type steel segments described in Patent Document 1. FIG. This technology uses panel-type steel segments 18 manufactured by welding assembly or cold bending to join the bridge axis and the direction perpendicular to the bridge axis in order to save design and facilitate transportation and erection work. As a result, an inverted trapezoidal open section box girder 27 is constructed, and a floor slab 28 is constructed on the top. FIG. 10 is a perspective view showing the structure of a bridge described in Patent Document 2 using a stacked H-section steel. In this technology, a very simple stacked H-section steel is used for the main girder, and the main girder 29 of the bridge structure stacks the H-section steel 30 in a plurality of stages in the direction of the maximum bending moment of the H-section steel, and the flange 31. It consists of the stacked H-section steel mutually fastened with the high strength volt | bolt 32 through the.
JP 2004-156291 A JP-A-8-338007

特許文献1(図9)に開示された技術では、パネル型の鋼製セグメントは、溶接集成もしくは冷間曲げ成形により製作される。しかし鋼製セグメントの製作に溶接集成を用いた場合、鋼板を所定の寸法に切断した後、鋼板同士を溶接する必要があり、製作工数が増加するという課題を有していた。また溶接にともない鋼製セグメントには部材強度の低下を招く初期曲がりや残留応力が生じるため、矯正作業等が必要となり、鋼製セグメントの加工における効率化の点で課題を有していた。そしてこれらに起因し鋼製セグメントの製作工数がさらに増加するという課題をも引き起こしていた。   In the technique disclosed in Patent Document 1 (FIG. 9), the panel-type steel segment is manufactured by welding assembly or cold bending. However, when the welding assembly is used for the production of the steel segment, it is necessary to weld the steel plates to each other after cutting the steel plates to a predetermined size, which increases the number of manufacturing steps. Moreover, since the initial bending and the residual stress that cause a reduction in member strength are generated in the steel segment as a result of welding, correction work or the like is required, and there is a problem in terms of efficiency in the processing of the steel segment. And it also caused the subject that the manufacturing man-hour of the steel segment increased further due to these.

一方、鋼製セグメントの製作に冷間曲げ成形を用いた場合、鋼板を所定の寸法に切断した後、冷間曲げ加工が必要となるため、溶接集成と同様に、製作工数が増加してしまうという課題を有していた。さらに冷間曲げ加工には、高価な専用の型が必要となり、加えて板厚が20mm以上となると、冷間曲げ加工が困難となる課題を有していた。また曲げ加工時の初期曲がりが生じやすいため、前述した矯正作業が伴い、鋼製セグメントの加工効率化、製作工数が増加する点で大きな課題を有していた。   On the other hand, when cold bending is used for the production of a steel segment, it is necessary to perform cold bending after cutting the steel sheet to a predetermined dimension, so that the number of manufacturing steps increases as with welding assembly. It had the problem that. Furthermore, the cold bending process requires an expensive dedicated die. In addition, when the plate thickness is 20 mm or more, there is a problem that the cold bending process becomes difficult. Moreover, since the initial bending at the time of bending is likely to occur, the above-described correction work is accompanied, and there is a big problem in that the processing efficiency of the steel segment is increased and the number of manufacturing steps is increased.

特許文献2(図10)に開示された技術を使用する場合、H形鋼を該H形鋼の最大曲げモーメント方向に複数段積みするため、フランジの幅が桁高に比べて小さく、効率的に断面の曲げ剛性を向上できず、支間長の長い橋に適用することが困難となる課題を有している。つまり支間長が長くなるにつれて、橋桁の断面に生じる曲げモーメントが大きくなり、これに抵抗するために断面の曲げ剛性を支配する断面2次モーメントを効率的に向上する必要がある。そのためには、橋桁の高さを大きくするとともに、橋桁断面の図心の位置から出来る限り離れた位置に大きな面積を有する断面を設ける必要がある。特に効果的な構造は、桁高の上下方向の端縁部に幅の広いフランジを設けることで、断面2次モーメントを向上する構造である。   When the technique disclosed in Patent Document 2 (FIG. 10) is used, since the H-section steel is stacked in a plurality of stages in the direction of the maximum bending moment of the H-section steel, the width of the flange is smaller than the digit height, which is efficient. However, the bending rigidity of the cross section cannot be improved, and there is a problem that it is difficult to apply to a bridge having a long span length. In other words, as the span length increases, the bending moment generated in the cross section of the bridge girder increases, and in order to resist this, it is necessary to efficiently improve the secondary moment of inertia that governs the bending rigidity of the cross section. For this purpose, it is necessary to increase the height of the bridge girder and provide a cross section having a large area at a position as far as possible from the position of the centroid of the cross section of the bridge girder. A particularly effective structure is a structure that improves the secondary moment of section by providing a wide flange at the vertical edge of the girder height.

しかし特許文献2に開示された技術では、H形鋼を段積みすることで橋桁の高さを大きくすることはできるものの、桁高の上下方向の端縁部のみならず橋桁の高さ全域にわたり段積みしたH形鋼分、H形鋼のフランジの数が増加する。すなわち、橋桁の端縁部に配置されないフランジは断面2次モーメントの向上に寄与し難く、且つ鋼重のみが増加してしまい、効率的に橋桁に生じる断面力に抵抗できないという大きな課題を有している。   However, in the technique disclosed in Patent Document 2, although the height of the bridge girder can be increased by stacking H-section steel, not only the vertical edge of the girder height but also the entire height of the bridge girder. The number of flanges of the H-section steel and the H-section steel increases. That is, the flange not arranged at the edge of the bridge girder has a big problem that it is difficult to contribute to the improvement of the moment of inertia of the cross section, and only the steel weight is increased, and the cross section force generated in the bridge girder cannot be effectively resisted. ing.

一方、断面2次モーメントを向上するために橋桁の高さを大きくすると、河川における流域面積の確保、道路や鉄道の建築限界を確保するために、橋桁の下に所定の空間を確保する必要が生じた場合、特に上路橋の場合は、橋桁の高さの増加に伴い、路面の位置が高くなる。このため橋脚ならびに橋にアプローチする道路等の構造が大きくなり、橋全体の構造を合理化する点で課題を有する。また鋼重が増加すると、橋桁を支える橋脚の構造を強固な構造とする必要があり、経済性の点で課題を有する。   On the other hand, if the height of the bridge girder is increased to improve the moment of inertia of the section, it is necessary to secure a predetermined space under the bridge girder in order to secure the basin area in the river and the construction limit of roads and railways. When this occurs, especially in the case of upper road bridges, the position of the road surface increases as the height of the bridge girder increases. For this reason, the structure of the bridge pier and the road approaching the bridge becomes larger, and there is a problem in rationalizing the structure of the entire bridge. Moreover, when steel weight increases, it is necessary to make the structure of the bridge pier which supports a bridge girder into a firm structure, and there exists a subject by the point of economical efficiency.

本発明は、前記従来技術の課題に鑑みて提案されるもので、その目的は、鋼製セグメントの製作が容易となり、加工を効率化でき、設計の省力化が可能で、桁高や鋼重を大幅に増加させることなく、効率的に橋桁に生じる断面力に抵抗できる形鋼を用いた橋桁構造を提供することにある。   The present invention is proposed in view of the above-mentioned problems of the prior art, and its purpose is to facilitate manufacture of a steel segment, to improve the processing efficiency, to save labor in design, An object of the present invention is to provide a bridge girder structure using a shape steel that can effectively resist the cross-sectional force generated in the bridge girder without significantly increasing the cross section.

本第1発明は、フランジとウェブを有し断面コの字状の形鋼形鋼からなる鋼製セグメント、又は該フランジを継手として複数連結した該形鋼からなる鋼製セグメントが、各該鋼製セグメントの長手方向が橋軸方向となるように複数配設され、該鋼製セグメントの幅方向端部のフランジにて隣接する該鋼製セグメント同士が連結されていることを特徴とする。   According to the first aspect of the present invention, there is provided a steel segment made of a shaped steel shape steel having a flange and a web having a U-shaped cross section, or a steel segment made of the shaped steel having a plurality of the flanges connected as joints. A plurality of the steel segments are arranged in such a manner that the longitudinal direction thereof is the bridge axis direction, and the adjacent steel segments are connected to each other by a flange at the end in the width direction of the steel segment.

本第2発明は、橋軸に直角方向の橋桁断面が、箱型形状、L型形状、T型形状、又はH型形状の橋桁構造において、フランジとウェブを有し断面コの字状の形鋼形鋼からなる鋼製セグメント、又は該フランジを継手として複数連結した該形鋼からなる鋼製セグメントが、各該鋼製セグメントの長手方向が橋軸方向となるように複数配設され、該鋼製セグメントの幅方向端部のフランジにて隣接する該鋼製セグメント同士が連結されていることを特徴とする。   This second invention is a bridge girder structure having a box-shaped, L-shaped, T-shaped, or H-shaped bridge girder cross section perpendicular to the bridge axis, and having a flange and a web and having a U-shaped cross section. A plurality of steel segments made of steel-shaped steel, or a plurality of steel segments made of the shaped steel obtained by connecting a plurality of the flanges as joints, are arranged so that the longitudinal direction of each steel segment is the bridge axis direction, The steel segments adjacent to each other are connected by a flange at the end in the width direction of the steel segment.

本第3発明は、前記橋桁構造の少なくとも隅角部は、前記フランジと前記ウェブ、又は前記ウェブ同士が連結されていることを特徴とする。
本第4発明は、前記形鋼が、溝形鋼であることを特徴とする。
The third invention is characterized in that the flange and the web, or the webs are connected to each other at least at the corners of the bridge girder structure.
The fourth aspect of the present invention is characterized in that the shape steel is a channel steel.

尚、本第2発明において、橋軸に直角方向の橋桁断面が箱型形状の橋桁構造とは、橋桁全体の橋軸に対して直角方向の橋桁垂直断面の形状が矩形、台形、又は逆台形となっている橋桁構造であり、床版を含んで箱型となったものも含む。また、橋軸に直角方向の橋桁断面が、L型形状、T型形状、又はH型形状の橋桁構造とは、床版の幅方向に橋桁が複数ある場合に、それぞれの橋桁において、橋軸に対して直角方向の橋桁垂直断面の形状が、L形状、T形状、H形状、又はこれらの形状を横や逆さにした形状となっている橋桁構造であり、H形鋼を段積みしただけの橋桁構造は、橋軸に直角方向の橋桁断面はI型形状であり本発明と区別する。
In the second invention, the bridge girder structure having a box-shaped bridge girder cross section perpendicular to the bridge axis means that the shape of the bridge girder vertical cross section perpendicular to the bridge axis of the whole bridge girder is rectangular, trapezoidal, or inverted trapezoid. It also has a bridge girder structure, including a box shape including a floor slab. In addition, a bridge girder structure having a bridge girder cross section perpendicular to the bridge axis and having an L shape, T shape, or H shape means that when there are a plurality of bridge girders in the width direction of the floor slab, Is a bridge girder structure in which the shape of the vertical section of the bridge girder in the direction perpendicular to the L shape, T shape, H shape, or a shape obtained by laterally inverting these shapes is simply stacked in H-section steel In the bridge girder structure, the cross section of the bridge girder perpendicular to the bridge axis has an I-shape and is distinguished from the present invention.

本発明によると、橋梁の桁(橋桁)を構成する部材を、溝形鋼等の形鋼を使用した鋼製セグメントで構成し、該鋼製セグメントを継手を介して組立てることにより、所定の断面形状の桁を構成できる。また本発明によると、鋼製セグメントの製作に溶接集成や冷間曲げ成形を実施しなくてもよいため、鋼板の切断作業や溶接作業や冷間曲げ成形作業さらに初期曲がりを許容値以下とする矯正作業が不要となり、鋼製セグメントの加工を効率化でき、製作工数を低減することができる。
According to the present invention, a member constituting a bridge girder (bridge girder) is constituted by a steel segment using a shape steel such as a grooved steel, and the steel segment is assembled via a joint to obtain a predetermined cross section. Shape girders can be configured. Further, according to the present invention, it is not necessary to carry out welding assembly or cold bending forming for the production of the steel segment, so that the steel sheet cutting operation, welding operation or cold bending forming operation, and the initial bending is less than the allowable value. Straightening work becomes unnecessary, the processing of the steel segment can be made more efficient, and the number of manufacturing steps can be reduced.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明における形鋼からなる鋼製セグメントとは、フランジとウェブを有する複数の形鋼(例えば2〜5個程度の溝形鋼)同士をフランジのボルト接合や溶接接合により工場で組立てて形成した部材である。但し、単体の形鋼を用いて鋼製セグメントとしても構わない。
橋桁の架設現場等で、この鋼製セグメントの長手方向(フランジやウェブに沿った方向)が橋軸方向となるように鋼製セグメントを複数配設し、それぞれの鋼製セグメントの幅方向端部のフランジにおいて隣接する鋼製セグメント同士を、ボルト接合又は溶接接合によって連結することにより、橋桁構造を形成するものである。この際、隅角部等の橋桁断面において角度を有する(つまり平面ではない)部位では、フランジ同士の連結に限らず、フランジとウェブ、又はウェブ同士(ウェブは必要に応じて切断しても構わない)で連結して、角度を付けることができる。
In the present invention, a steel segment made of section steel is formed by assembling a plurality of section steels having flanges and webs (for example, about 2 to 5 channel steels) at the factory by flange bolting or welding joints. It is a member. However, a steel segment may be used by using a single section steel.
At the bridge girder construction site, etc., multiple steel segments are arranged so that the longitudinal direction of this steel segment (the direction along the flange or web) is the bridge axis direction, and the width direction end of each steel segment In this flange, adjacent steel segments are connected by bolt joint or weld joint to form a bridge girder structure. At this time, in a portion having an angle in the cross section of the bridge girder such as a corner portion (that is, not a plane), not only the connection between the flanges but also the flange and the web, or the webs (the web may be cut as necessary). Can be connected and angled.

すなわち、鋼製セグメントは、製作効率の向上、規格化による設計の省力化、小型化による運搬・架設作業の容易化を図れるように、工場で製作可能な寸法に分割したパネル型の標準部材である。   In other words, the steel segment is a panel-type standard member divided into dimensions that can be manufactured at the factory so that the production efficiency can be improved, the design labor can be saved by standardization, and the transportation and erection work can be facilitated by miniaturization. is there.

なお、鋼製セグメントを単体の形鋼から製作する場合は、形鋼(鋼製セグメント)を工場で所定のサイズに切断(例えば長手方向)、又は、切断後にフランジ等への孔開け加工、等を行うだけでよい。   In addition, when manufacturing a steel segment from a single shape steel, the shape steel (steel segment) is cut into a predetermined size at the factory (for example, in the longitudinal direction), or drilled into a flange or the like after cutting, etc. Just do it.

鋼製セグメントの継手は、形鋼のフランジで構成され、この継手は補剛材の機能を具備している。   The steel segment joint is composed of a flange of a section steel, and this joint has the function of a stiffener.

すなわち、橋桁の桁フランジや桁ウェブ(形鋼のフランジやウェブとは異なる)に圧縮応力が作用した場合、座屈といった面外変形に伴う強度の低下を防ぎ、必要な圧縮強度を確保するためには、橋桁の桁フランジや桁ウェブに補剛材(リブ)が必要となるが、これらにフランジを有する形鋼を使用した場合、形鋼のフランジが継手のみならず、補剛材を兼ねるため、鋼製セグメントに新たな補剛材を取り付ける必要はなく、必要な圧縮強度を確保することができる。   In other words, when compressive stress is applied to bridge girder flanges and girder webs (which are different from shape steel flanges and webs), the strength reduction due to out-of-plane deformation such as buckling is prevented, and the necessary compressive strength is secured. Requires a stiffener (rib) for the girder flange and girder web of the bridge girder, but when using shape steel with a flange for these, the shape steel flange serves not only as a joint but also as a stiffener Therefore, it is not necessary to attach a new stiffener to the steel segment, and the necessary compressive strength can be ensured.

但し条件により、形鋼のフランジだけでは必要な補剛材の剛性を確保できない場合は、隣接する鋼製セグメントの継手のフランジ間に、平鋼を設けることで剛性を高めて、これを確保することができる。また、鋼製セグメント同士の接続を平鋼を介してボルト接合にて行う場合は、継手のフランジ間に設ける該平鋼にボルト孔を穿孔するだけよく、溶接作業は不要となり、鋼製セグメントの製作を効率化することができる。勿論、鋼製セグメントの継手はボルト接合でなくてもよく、楔等を用いた嵌合方式の接合であっても構わない。   However, if the required rigidity of the stiffener cannot be secured by the shape steel flange alone, depending on the conditions, a flat steel is provided between the flanges of the joints of adjacent steel segments to increase the rigidity and ensure this. be able to. Also, when connecting steel segments with bolts via flat bars, it is only necessary to drill bolt holes in the flat bars provided between the flanges of the joints. Production can be made more efficient. Of course, the joint of the steel segments may not be a bolt joint, but may be a joint type joint using a wedge or the like.

鋼製セグメントを構成する形鋼の種類は、溝形鋼、H形鋼等のフランジとウェブを有する形鋼であれば良く、該形鋼を連結して桁幅を拡幅することから、フランジを幅方向の両端に備えている形鋼であることが好ましい。   The shape of the steel segment that constitutes the steel segment may be any shape steel having a flange and web, such as channel steel and H-shape steel. A shape steel provided at both ends in the width direction is preferable.

但し、橋桁の隅角部などは、隣接する鋼製セグメント同士を連結する際、角度を付ける(平面としない)ため、フランジではなくウェブの平板端部にて隣接する鋼製セグメントと溶接等により連結することが好ましいことから、桁幅方向の片端にフランジを有するだけで、もう一方の端がウェブの平板端部である形鋼(例えば、T形鋼)も使用することができる。   However, the corners of the bridge girder are angled (not flat) when connecting adjacent steel segments, so they are welded to the adjacent steel segments at the end of the flat plate of the web instead of the flange. Since it is preferable to connect, a shape steel (for example, T-shaped steel) in which the other end is the flat plate end of the web can be used only by having a flange at one end in the width direction.

なお、本発明を橋軸に直角方向の橋桁断面が箱型形状の橋桁構造に適用する場合に、形鋼として断面コの字状の溝形鋼を使用することは、溝形鋼のフランジの突出方向が片方向となり、箱型断面の内側のみにフランジが突出し、断面の外側にフランジが突出しないため、防せい(錆)防食のための塗装の面積を減少させる点で好ましい。   In addition, when the present invention is applied to a bridge girder structure having a box-shaped bridge girder cross section perpendicular to the bridge axis, it is necessary to use a U-shaped grooved steel as the shape steel. Since the projecting direction is unidirectional, the flange projects only on the inside of the box-shaped cross section, and the flange does not project on the outside of the cross section, which is preferable in terms of reducing the coating area for anticorrosion (rust) and corrosion protection.

また、形鋼としてH形鋼を使用した場合は、箱型断面の外側に突出する片側のフランジを切断して断面コの字状の形鋼として防せい防食のための塗装の面積を減少させることができる。両方向にH形鋼のフランジを突出した構造とした場合は、断面全体をステンレス製やチタン製もしくは非金属製のカバーで覆うことにより、防せい防食の性能を向上することもできる。この場合、鋼板とH形鋼の間に閉空間が形成され、さらなる防せい防食効果を図るために、この空間に断熱材を設けることもできる。   When H-section steel is used as the shape steel, the flange on one side protruding to the outside of the box-shaped cross section is cut to reduce the coating area for anticorrosion and anticorrosion as a U-shaped section steel. be able to. When the H-shaped steel flange is protruded in both directions, the anticorrosion and anticorrosion performance can be improved by covering the entire cross section with a cover made of stainless steel, titanium or nonmetal. In this case, a closed space is formed between the steel plate and the H-shaped steel, and a heat insulating material can be provided in this space in order to achieve further anticorrosive and anticorrosive effects.

以下、本発明の実施形態を図1〜図8ならびに図11〜図23を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 8 and FIGS.

図1は、本発明の第一の実施形態を示す橋桁構造の斜視図である。本実施形態では、箱桁3は複数の鋼製セグメント1、1’および1’’を鋼製セグメントの幅方向(橋軸直角方向に)ボルト4にて接合することで、桁の下フランジ5と桁のウェブ6ならびに桁の上フランジ7からなる逆台形型の開断面の箱断面形状である桁が構築されている。   FIG. 1 is a perspective view of a bridge girder structure showing a first embodiment of the present invention. In this embodiment, the box girder 3 joins a plurality of steel segments 1, 1 ′ and 1 ″ with bolts 4 in the width direction of the steel segments (in the direction perpendicular to the bridge axis), thereby lowering the lower flange 5 of the girder. A girder having a box cross-sectional shape of an inverted trapezoidal shape including a web 6 of a girder and an upper flange 7 of the girder is constructed.

すなわち、箱桁3においては、フランジとウェブを有する形鋼22(図では溝形鋼)からなる鋼製セグメント1、1’および1’’を、長手方向が各々橋軸方向となるように5個配設し、形鋼のフランジ8にて隣接する鋼製セグメント同士を連結して橋桁を構成している。鋼製セグメント1は3個の形鋼から形成され、鋼製セグメント1’は3個の形鋼、鋼製セグメント1’’は2個の形鋼から形成されて、橋桁全体では13個の形鋼ならびに桁の上フランジ7により構成されている。   That is, in the box girder 3, the steel segments 1, 1 ′, and 1 ″ made of the shape steel 22 having a flange and a web (in the figure, a groove shape steel) are arranged so that the longitudinal direction thereof is the bridge axis direction. Individual steel segments are connected to each other by a flange 8 of the shape steel to form a bridge girder. The steel segment 1 is formed from three sections, the steel segment 1 ′ is formed from three sections, the steel segment 1 ″ is formed from two sections, and the entire bridge girder has thirteen shapes. The upper flange 7 is made of steel and girders.

形鋼22のフランジ8は継手と共に補剛材を兼ねる構造となっている。この第一の実施形態における橋桁は、逆台形の断面が箱形形状の開断面である箱桁3が示されており、この箱桁3の上端部に床版2が構築されている。床版2は、コンクリート床版、合成床版、鋼製床版等である。   The flange 8 of the section steel 22 has a structure that serves as a stiffener together with the joint. The bridge girder in the first embodiment shows a box girder 3 whose inverted trapezoidal cross section is a box-shaped open cross section, and a floor slab 2 is constructed at the upper end of the box girder 3. The floor slab 2 is a concrete floor slab, a synthetic floor slab, a steel floor slab or the like.

箱桁(橋桁)3において、必要な橋長を確保するためには、橋軸方向に隣合う鋼製セグメントにおいて、長手方向の端部にそれぞれボルト孔を設け、それぞれのボルト孔に跨るようにボルト孔を有する添接板を配置し、ボルト接合することにより連結する。または、鋼製セグメントの長手方向の端部に、更に別の鋼製セグメントを隣り合わせて橋軸方向に配設し、隣り合う端部同士を溶接して橋軸方向へ連結することもできる。   In the box girder (bridge girder) 3, in order to secure the necessary bridge length, in the steel segment adjacent to the bridge axis direction, a bolt hole is provided at each end in the longitudinal direction so as to straddle each bolt hole. An attachment plate having a bolt hole is arranged and connected by bolting. Alternatively, another steel segment may be arranged adjacent to the longitudinal end of the steel segment in the bridge axis direction, and the adjacent ends may be welded to be connected in the bridge axis direction.

ここで、橋桁の下フランジ5の中央部を形成する鋼製セグメント1は、3個の形鋼22を有し、隣接する形鋼22同士は、形鋼22のフランジ8’を継手として幅方向に連結されている。橋桁の隅角部23を含む鋼製セグメント1’は、桁のウェブ6を構成する2個の形鋼22と、桁の下フランジ5を構成する1個の形鋼22の合計3個の形鋼22を有している。隅角部23においては、形鋼22の一端側のフランジ8が長手方向に切断除去されて形鋼22の切断面があるウェブ26端部にて、隣接する形鋼22(同様に片側のフランジが長手方向に切断除去されている)のウェブ26端部と溶接により連結されている。これらは工場にて予め加工される。   Here, the steel segment 1 that forms the central portion of the lower flange 5 of the bridge girder has three section steels 22, and the adjacent section steels 22 use the flange 8 ′ of the section steel 22 as a joint in the width direction. It is connected to. The steel segment 1 ′ including the corner portion 23 of the bridge girder has a total of three shapes: two shape steels 22 constituting the girder web 6 and one shape steel 22 constituting the lower flange 5 of the girder. It has steel 22. At the corner 23, the flange 8 on one end side of the section steel 22 is cut and removed in the longitudinal direction and the end of the web 26 having the cut surface of the section steel 22 is adjacent to the adjacent section steel 22 (similarly, the flange on one side). Is cut and removed in the longitudinal direction) and connected to the end of the web 26 by welding. These are processed in advance at the factory.

また、桁の上フランジ7と隣接し、桁のウェブ6上部を構成する鋼製セグメント1’’(2個の形鋼22を有する)においては、上フランジ7に隣接する側の形鋼22のフランジが長手方向に切断されている。この形鋼22において切断面があるウェブ端部にて、鋼製セグメント1’’と桁の上フランジ7とが、現場にて溶接接合される。   Further, in the steel segment 1 ″ (having two section steels 22) adjacent to the upper flange 7 of the spar and constituting the upper part of the web 6 of the spar, the section steel 22 on the side adjacent to the upper flange 7 is provided. The flange is cut in the longitudinal direction. The steel segment 1 ″ and the upper flange 7 of the spar are welded and joined at the site at the end of the web having a cut surface in the section steel 22.

鋼製セグメント1、1’、1’’は、溝形鋼などの圧延された形鋼を用いて製作され、上述した通り、主として、鋼製セグメントのフランジ8同士をボルト4にて接合することにより構成されている。鋼製セグメント1、1’、1’’に使用する形鋼は、製鐵所等において圧延された形鋼であるため、溶接集成や冷間曲げ成形は不要となり、鋼製セグメントの製作効率を向上することができる。また上フランジ7は鋼板により構成されていても、形鋼から構成されていてもどちらでもよい。   The steel segments 1, 1 ′, 1 ″ are manufactured using rolled shape steel such as channel steel, and as described above, the flanges 8 of the steel segments are mainly joined together by the bolts 4. It is comprised by. Since the shape steel used for the steel segments 1, 1 ', 1' 'is a shape steel rolled at a steelworks, etc., welding assembly and cold bending are not required, and the production efficiency of the steel segment is improved. Can be improved. Further, the upper flange 7 may be made of a steel plate or a shape steel.

鋼製セグメントの形状、寸法は規格化して製作されるが、その寸法を何れにするかは、各種橋桁の設計事例や運搬の容易性、施工時の取り扱いの容易性、施工性など種々の観点から基準となる最適寸法を決めることができる。規格品である形鋼を使用しても、形鋼は複数の規格サイズを有しているため、最適寸法の決定にあたり何ら問題とならない。なお箱桁3の構築にあたり、工場で製作された鋼製セグメント1を架橋現場に搬入し、現場で接続することができる。この場合、比較的小型の鋼製セグメントに分割することができるため、架設重機が小型のものですむため経済的となる。もしくは工場にて複数の鋼製セグメント1をブロックに組み立て、ブロックを架橋現場に搬入し、現場でブロックを接続することもできる。この場合、架設重機が若干大きくなるものの、現場での接続作業を低減することができる。なおブロックの幅は輸送限界まで幅広くすることで、箱桁3の分割数を低減することができる。   The shape and dimensions of the steel segments are standardized and manufactured, but the dimensions are determined according to various viewpoints such as various bridge girder design examples, ease of transportation, ease of handling during construction, and workability. From the above, it is possible to determine the optimum standard dimension. Even if the shape steel that is a standard product is used, the shape steel has a plurality of standard sizes, and therefore there is no problem in determining the optimum dimension. In constructing the box girder 3, the steel segment 1 manufactured at the factory can be carried into the bridge site and connected at the site. In this case, since it can be divided into relatively small steel segments, it is economical because a construction heavy machine is small. Alternatively, it is also possible to assemble a plurality of steel segments 1 into blocks at a factory, carry the blocks to the bridge site, and connect the blocks at the site. In this case, although the construction heavy machine becomes slightly larger, connection work at the site can be reduced. The number of divisions of the box girder 3 can be reduced by increasing the width of the block up to the transport limit.

形鋼は規格品であるため、所定の品質が確保されているので、鋼製セグメントへの使用に適している。また鋼製セグメント1を組立てるとき、形鋼が若干の製作誤差を有していてもわずかな矯正作業により、所定の寸法に矯正することができる。また図1に示す箱桁3の形状は逆台形型の上部が開断面形状であるが、上フランジ7が左右の桁のウェブ6間に橋軸直角方向に通じた閉断面であってもよい。なお橋軸方向の数m間隔には中間ダイヤフラム17を設置し、桁の断面剛性を確保することもできる(図3参照)。   Since the shape steel is a standard product, a predetermined quality is ensured, so that it is suitable for use in a steel segment. Further, when the steel segment 1 is assembled, even if the shape steel has a slight manufacturing error, it can be corrected to a predetermined dimension by a slight correction operation. The box girder 3 shown in FIG. 1 has an open trapezoidal upper part of the inverted trapezoidal shape, but may have a closed cross section in which the upper flange 7 communicates between the left and right girder webs 6 in the direction perpendicular to the bridge axis. . An intermediate diaphragm 17 can be installed at intervals of several meters in the bridge axis direction to ensure the cross-sectional rigidity of the girder (see FIG. 3).

橋桁の隅角部23は、形鋼のウェブ同士を溶接により連結した構造であるが、フランジを連結してもよいし、接合形式は溶接接合に限らずボルト接合であってもよい。   The corner portion 23 of the bridge girder has a structure in which the steel webs are connected to each other by welding. However, the flange may be connected, and the joining type may be not only welding joining but bolt joining.

図2は、本発明の第一の実施形態に係る橋桁構造を有する橋梁の側面図である。この例は、橋長160mの3径間連続橋9(側径間10(長さ50m)+中央径間11(長さ60m)+側径間10(長さ50m)、有効幅員7.5m)の道路橋を想定している。   FIG. 2 is a side view of a bridge having a bridge girder structure according to the first embodiment of the present invention. This example is a three-span continuous bridge 9 with a bridge length of 160 m (side span 10 (length 50 m) + center span 11 (length 60 m) + side span 10 (length 50 m), effective width 7.5 m) ) Is assumed.

箱桁3を構成する鋼製セグメント1は、工場内で輸送可能な寸法(例えば鋼製セグメントの幅は2m程度、長さ10m程度)にまで形鋼を複数個ボルト接合等により組み合わせた後、現場に搬送し、現場にて断面を構築する。もしくは、現場にて形鋼をボルト接合することにより構築してもいずれの方法であってもよい。なお後者の場合、鋼製セグメントの寸法が小さくなるので運搬、組立ては容易になるという利点は有しているが、現場でのボルト接合作業は増加する。   The steel segment 1 constituting the box girder 3 is combined with a plurality of shape steels by bolting or the like to a dimension that can be transported in the factory (for example, the width of the steel segment is about 2 m and the length is about 10 m). Transport to the site and build a cross section at the site. Alternatively, any method may be used, which is constructed by bolting the shape steel at the site. In the latter case, the size of the steel segment is small, so that it has the advantage of being easy to transport and assemble, but the bolt joining work at the site increases.

図3は、本発明の第二の実施形態を示す橋桁構造の斜視図である。本実施形態では、鋼製セグメント1のフランジ8の間に、平鋼12を挟んで設け、セグメント同士が連結されて構成されている。この実施形態における橋桁は、逆台形型の開断面である箱桁3の例が示されており、この桁の上端部にコンクリート床版あるいは合成床版もしくは鋼製床版等の床版2が構築されている点では、図1に示す実施例と同じである。箱桁3は複数のパネル型の鋼製セグメント1を橋軸方向と橋軸直角方向にボルト4により接合することで、桁の下フランジ5と桁のウェブ6ならびに桁の上フランジ7を有した逆台形型の開断面の箱断面形状が構築されている。鋼製セグメント1同士を接合する継手は形鋼のフランジ8であるが、このフランジは箱桁3の下フランジや桁のウェブの補剛材(リブ)として機能する。   FIG. 3 is a perspective view of a bridge girder structure showing a second embodiment of the present invention. In the present embodiment, a flat steel 12 is provided between the flanges 8 of the steel segment 1 and the segments are connected to each other. The bridge girder in this embodiment is an example of a box girder 3 having an inverted trapezoidal open section, and a floor slab 2 such as a concrete slab, a synthetic slab or a steel slab is provided at the upper end of this girder. This is the same as the embodiment shown in FIG. The box girder 3 has a lower flange 5, a girder web 6, and a girder upper flange 7 by joining a plurality of panel-type steel segments 1 with bolts 4 in the bridge axis direction and a direction perpendicular to the bridge axis. An inverted trapezoidal open cross-section box cross-sectional shape is constructed. The joint for joining the steel segments 1 is a flange 8 of a shape steel. This flange functions as a lower flange of the box girder 3 and a web stiffener (rib).

この形鋼のフランジ8からなる補剛材により、桁の下フランジ5や桁のウェブ6が圧縮応力に対して面外方向に変形するといった座屈を生じることなく、橋桁は必要な圧縮強度を確保することができる。しかし形鋼のフランジ8の幅が狭く、補剛材として必要な剛性が不足する場合には、本実施形態のように、橋軸直角方向に隣接するパネル型の鋼製セグメント1の間にボルト孔を有する平鋼12を間に設けこれらをボルト接合することで、鋼製セグメントへの溶接作業といった作業を要することなく、必要な剛性を確保することができる。なお平鋼12のかわりに形鋼を設けていてもよい。   The stiffener made of the flange 8 of the steel shape allows the bridge girder to have the necessary compressive strength without causing buckling such that the lower flange 5 of the girder and the web 6 of the girder are deformed in the out-of-plane direction against compressive stress. Can be secured. However, when the width of the flange 8 of the shape steel is narrow and the rigidity required as a stiffener is insufficient, a bolt is provided between the panel-type steel segments 1 adjacent in the direction perpendicular to the bridge axis as in this embodiment. By providing the flat steel 12 having holes between them and bolting them together, the necessary rigidity can be ensured without requiring a work such as welding work to the steel segment. A shape steel may be provided instead of the flat steel 12.

また、第二の実施形態では、橋軸方向の数m間隔には中間ダイヤフラム17を設置し、桁の断面剛性を確保することもできる構成としている。   Moreover, in 2nd embodiment, it is set as the structure which can install the intermediate | middle diaphragm 17 in the several m space | interval of a bridge axis direction, and can ensure the cross-sectional rigidity of a girder.

図4は、本発明の第二の実施形態に係る橋桁構造の詳細を説明するために箱桁(橋桁)3の下フランジ5の拡大して示した斜視図である。3径間連続橋の支点付近の箱桁に負曲げが生じると、桁の下フランジ5には、圧縮力が作用する。この圧縮力に対して下フランジ5が抵抗するためには、圧縮力により面外方向に突如、変形するといった座屈を防ぐため下フランジ5を補剛する補剛材が必要となる。前述したとおり形鋼のフランジ8の幅(補剛材の高さに等しい)が狭い場合、平鋼12を形鋼のフランジ8の間に挟んでボルトとナットによるボルト接合等で設けることにより、新たな補剛材を溶接により固着することなく、補剛材の剛性を向上することができる。なお補剛材に必要な剛性を鋼製セグメントのフランジ8のみで確保できる場合は、平鋼12を鋼製セグメント1の間に設けなくてもよい。また、平鋼12に替えて、山形鋼や、断面がT字状のCT形鋼等を用い、その山形鋼又はCT形鋼のフランジ又はウェブを、形鋼のフランジ8の間に挟んでボルト接合しても構わない。   FIG. 4 is an enlarged perspective view of the lower flange 5 of the box girder (bridge girder) 3 in order to explain the details of the bridge girder structure according to the second embodiment of the present invention. When negative bending occurs in the box girder near the fulcrum of the 3-span continuous bridge, compressive force acts on the lower flange 5 of the girder. In order for the lower flange 5 to resist this compressive force, a stiffening material that stiffens the lower flange 5 is required to prevent buckling such as sudden deformation in the out-of-plane direction due to the compressive force. As described above, when the width of the flange 8 of the shape steel (equal to the height of the stiffener) is narrow, the flat steel 12 is sandwiched between the flanges 8 of the shape steel and is provided by bolting with bolts and nuts, etc. The rigidity of the stiffener can be improved without fixing a new stiffener by welding. In addition, when the rigidity required for the stiffener can be ensured only by the flange 8 of the steel segment, the flat bar 12 may not be provided between the steel segments 1. Instead of the flat steel 12, angle steel or CT-shaped steel having a T-shaped cross section is used, and the flange or web of the angle steel or CT-shaped steel is sandwiched between the flanges 8 of the shape steel and bolts are used. You may join.

図5は、本発明に係る橋桁の橋軸方向の接続部を示す断面図である。また図12は橋軸方向の接続部を拡大した平面図である。橋軸方向の継手部14では、鋼製セグメント1の長手方向の端部において、長手方向に隣接する鋼製セグメントの端部同士に跨るように添接板13を配置し、ボルト孔を有する添接板13と隣接する鋼製セグメントの両端部を、セグメント端部に設けた添接板接続用ボルト孔19(図4参照)を介してボルト4‘より接合する。これにより橋軸方向の鋼製セグメント同士の連接ができる。尚、添接板13は、鋼製セグメントの表裏両面に設けて接続することが連結部の強度を確保できる点で好ましい。なお本実施例では、高力ボルト摩擦接合を想定した継手を示しているが、接合形式は、図による詳細な説明は割愛するものの引張接合であっても、支圧接合であってもいずれの形式であってもよい。   FIG. 5 is a cross-sectional view showing the connecting portion in the bridge axis direction of the bridge girder according to the present invention. FIG. 12 is an enlarged plan view of the connecting portion in the bridge axis direction. In the joint portion 14 in the bridge axis direction, the attachment plate 13 is disposed at the end portion in the longitudinal direction of the steel segment 1 so as to straddle the end portions of the steel segments adjacent in the longitudinal direction, and the attachment portion 13 having a bolt hole is provided. Both ends of the steel segment adjacent to the contact plate 13 are joined together by bolts 4 'through the attachment plate connecting bolt holes 19 (see FIG. 4) provided at the end of the segment. Thereby, the steel segments in the bridge axis direction can be connected to each other. In addition, it is preferable that the attachment plate 13 is provided and connected to both the front and back surfaces of the steel segment in terms of securing the strength of the connecting portion. In the present embodiment, a joint assuming high-strength bolt friction bonding is shown, but the bonding type is either a tensile bonding or a bearing bonding although a detailed description with the drawings is omitted. It may be in the form.

図6は、本発明の第二の実施形態に係る橋桁構造の拡大斜視図である。図6の平鋼12には溝16を、形鋼のフランジ8と隣接する両側面に設けている。この溝16に止水材を挿入し、ボルト4を締め付けることにより、箱桁の外部から進入する雨水等を止水することができ、箱桁の内部の防せい(錆)防食を行うことができる。また止水溝は鋼製セグメントのフランジ8に設けてもよいが、製作効率を向上するためには、平鋼12に設けておいた方が好ましい。なぜならば鋼製セグメントに比べ平鋼の方が寸法が小さい傾向にあること、また平鋼を用いた場合、溝を圧延により設けることもできるためである。なお溝の形状はV型断面であっても台形断面であっても円形断面であってもよく、止水材の形状を止水溝の形状に併せて設定することができる。   FIG. 6 is an enlarged perspective view of a bridge girder structure according to the second embodiment of the present invention. 6 is provided with grooves 16 on both side surfaces adjacent to the flange 8 of the shape steel. By inserting a water-stopping material into the groove 16 and tightening the bolt 4, it is possible to stop rainwater entering from the outside of the box girder, and to prevent corrosion (rust) and corrosion inside the box girder. it can. The water stop groove may be provided in the flange 8 of the steel segment, but it is preferable to provide the water stop groove in the flat steel 12 in order to improve the production efficiency. This is because the flat steel tends to be smaller in size than the steel segment, and when the flat steel is used, the groove can be provided by rolling. The shape of the groove may be a V-shaped cross section, a trapezoidal cross section, or a circular cross section, and the shape of the water stop material can be set together with the shape of the water stop groove.

図7は、本発明に係る橋桁構造を有する橋桁(箱桁3)の中央径間部を拡大した側面図である。橋軸方向の継手部14として、添接板とボルトを用いた高力ボルト摩擦接合の継手を用いた実施例である。なお橋軸方向には、死荷重によるたわみ分のそり(キャンバー)をあらかじめ上向きに設けることも可能である。   FIG. 7 is an enlarged side view of the central span portion of the bridge girder (box girder 3) having the bridge girder structure according to the present invention. In this embodiment, a high-strength bolt friction joint using an attachment plate and a bolt is used as the joint portion 14 in the bridge axis direction. In the bridge axis direction, a deflection (camber) for deflection due to dead load can be provided in an upward direction in advance.

図8は、本発明に係る橋桁構造を有する橋桁(箱桁3)の中央径間部を拡大した平面図である。橋軸方向の数m間隔に中間ダイヤフラム17(図3に斜視図を示す)を設置し、桁の断面剛性を確保している。   FIG. 8 is an enlarged plan view of a central span portion of a bridge girder (box girder 3) having a bridge girder structure according to the present invention. An intermediate diaphragm 17 (shown in perspective view in FIG. 3) is installed at intervals of several meters in the bridge axis direction to ensure the cross-sectional rigidity of the girder.

図11ならびに図14は、H形鋼からなる鋼製セグメントを連結して形成した、橋軸方向の垂直断面が、箱型形状の橋桁構造を示す断面図である。図11の橋桁構造では、H形鋼20からなる鋼製セグメント1により箱型形状の断面を構成し、隅角部23は隣接する一方のH形鋼20のウェブ同士を溶接接合により接続して形成されている。図11は桁のウェブ6を垂直方向に対し斜めに配置したもので、図14は垂直に配置したものである。また、図14では、隅角部23は隣接する一方のH形鋼20のフランジと他方のH形鋼20のウェブを溶接接合により接続して形成されている。   FIG. 11 and FIG. 14 are cross-sectional views showing a box girder structure in which the vertical cross section in the bridge axis direction is formed by connecting steel segments made of H-section steel. In the bridge girder structure of FIG. 11, a box-shaped cross section is formed by the steel segment 1 made of the H-section steel 20, and the corner portion 23 is formed by connecting adjacent one of the H-section steel 20 webs by welding. Is formed. FIG. 11 shows the girder webs 6 arranged obliquely with respect to the vertical direction, and FIG. 14 shows the girder webs arranged vertically. Moreover, in FIG. 14, the corner part 23 is formed by connecting the flange of one adjacent H-section steel 20 and the web of the other H-section steel 20 by welding.

図11ならびに図14の構造とも、H形鋼20を橋軸直角方向(断面方向)に配設して形成した桁の下フランジ5を有することにより橋桁の断面の剛性向上に寄与することができ、桁高ならびに鋼重を大幅に増加させることなく、支間長を比較的長くすることができる。なおウェブ6を斜めに配置した場合、床版2を水平方向に幅広く支持することができ、下フランジ5の幅をも狭くすることができる点が利点であるが、下フランジ5等と接続する際、直角とはならないため、隅角部23の構造が複雑となり、加工効率化の点で課題を有する。   Both the structures of FIGS. 11 and 14 can contribute to improving the rigidity of the cross section of the bridge girder by having the lower flange 5 of the girder formed by arranging the H-shaped steel 20 in the direction perpendicular to the bridge axis (cross-sectional direction). The span length can be made relatively long without significantly increasing the girder height and the steel weight. When the web 6 is disposed diagonally, the floor slab 2 can be widely supported in the horizontal direction, and the width of the lower flange 5 can be reduced. However, the web 6 is connected to the lower flange 5 and the like. At this time, since it does not become a right angle, the structure of the corner portion 23 becomes complicated, and there is a problem in terms of processing efficiency.

一方ウェブ6を垂直に配置した場合、隅角部23が直角のため、加工を効率化できる利点を有しているが、床版2を水平方向に幅広く支持するためには下フランジ5も水平方向に幅広くする必要がある点で課題を有している。さらにウェブを垂直に配置した構造の鉛直方向に荷重が負荷した際、断面は矩形であるため、水平方向の付加力(鉛直荷重の分力として断面を開く方向に働く力)が生じない点でも有利である。なおこの場合、床版の端部の鉛直方向のたわみ量を小さくするため等に,形鋼の外側から床版の端部を下方より支持する部材を具備することもできる。   On the other hand, when the web 6 is arranged vertically, the corner portion 23 has a right angle, so that there is an advantage that the processing can be made efficient. However, in order to support the floor slab 2 in the horizontal direction, the lower flange 5 is also horizontal. It has a problem in that it needs to be wide in the direction. In addition, when the load is applied in the vertical direction of the structure in which the web is arranged vertically, the cross section is rectangular, so that there is no additional force in the horizontal direction (force that acts in the direction of opening the cross section as a component of vertical load). It is advantageous. In this case, in order to reduce the amount of vertical deflection of the end portion of the floor slab, a member that supports the end portion of the floor slab from below can be provided from the outside of the shape steel.

なお隅角部23はH形鋼のフランジ同士を連結してもよいし、接合形式は溶接接合に限らずボルト接合であってもよい。   In addition, the corner part 23 may connect the flanges of H-section steel, and a joining type may be not only welding joining but bolt joining.

図13は、溝形鋼21からなる鋼製セグメントを連結して形成した橋軸に直角方向の橋桁断面が、箱型形状の橋桁構造を示す断面図である。本実施例の隅角部23は、隣接する一方の溝形鋼21のフランジと他方の溝形鋼21のウェブをボルト接合又は溶接接合により接続して形成されている。ウェブ6を垂直に配置することにより、隅角部23が直角のため、加工を効率化できる利点を有しているが、床版2を水平方向に幅広く支持するためには下フランジ5も水平方向に幅広くする必要がある点で課題を有している。   FIG. 13 is a cross-sectional view showing a box girder structure in which a cross section of a bridge girder perpendicular to a bridge axis formed by connecting steel segments made of channel steel 21 is box-shaped. The corner portion 23 of this embodiment is formed by connecting a flange of one adjacent groove steel 21 and a web of the other groove steel 21 by bolt bonding or welding bonding. By arranging the web 6 vertically, the corner portion 23 has a right angle, so that there is an advantage that the processing can be made efficient. However, in order to widely support the floor slab 2 in the horizontal direction, the lower flange 5 is also horizontal. It has a problem in that it needs to be wide in the direction.

図15は、溝形鋼21からなる鋼製セグメント1を連結して形成した橋軸に直角方向の橋桁断面が、L型形状の桁33を左右に配設した橋桁構造を示す断面図である。左右の桁33の間に、床版2が配置され、桁33同士は橋軸方向に離散的に配置された横つなぎ材24で接続されていることが好ましい。   FIG. 15 is a cross-sectional view showing a bridge girder structure in which a bridge girder section perpendicular to a bridge axis formed by connecting steel segments 1 made of channel steel 21 is arranged with L-shaped girder 33 on the left and right. . It is preferable that the floor slab 2 is arranged between the left and right girders 33, and the girders 33 are connected to each other by horizontal connecting members 24 arranged discretely in the bridge axis direction.

図16は、H形鋼20と溝形鋼21とからなる鋼製セグメントを連結して形成した橋軸に直角方向の橋桁断面が、L型形状の桁33を左右に配設した橋桁構造を示す断面図である。L型形状に限らず、箱型形状であっても鋼製セグメントに用いる形鋼はH形鋼20や溝形鋼21等を組合わせて使用してもよい。   FIG. 16 shows a bridge girder structure in which a cross section of a bridge girder perpendicular to a bridge shaft formed by connecting steel segments composed of an H-shaped steel 20 and a grooved steel 21 is arranged with L-shaped girder 33 on the left and right. It is sectional drawing shown. Not only the L shape but also the box shape, the shape steel used for the steel segment may be a combination of the H-section steel 20, the groove-shaped steel 21 and the like.

図17は、H形鋼20からなる鋼製セグメントを連結して形成した橋軸に直角方向の橋桁断面が、L型形状の桁33を左右に配設した橋桁構造を示す断面図である。   FIG. 17 is a cross-sectional view showing a bridge girder structure in which a bridge girder cross section perpendicular to a bridge axis formed by connecting steel segments made of H-section steel 20 is provided with L-shaped girder 33 on the left and right.

図18は、溝形鋼21からなる鋼製セグメントを連結して形成した橋軸に直角方向の橋桁断面が、逆T型形状の桁34を左右に配設した橋桁構造を示す断面図である。橋桁の断面は、箱型やL型形状のみならず、T型形状であってもよい。   FIG. 18 is a cross-sectional view showing a bridge girder structure in which a bridge girder cross section perpendicular to a bridge shaft formed by connecting steel segments made of channel steel 21 is provided with inverted T-shaped girder 34 on the left and right. . The cross section of the bridge girder may be T-shaped as well as box-shaped or L-shaped.

図19は、H形鋼20からなる鋼製セグメントを連結して形成した橋軸に直角方向の橋桁断面が、逆T型形状の桁34を左右に配設した橋桁構造を示す断面図である。   FIG. 19 is a cross-sectional view showing a bridge girder structure in which a bridge girder cross section perpendicular to a bridge axis formed by connecting steel segments made of H-section steel 20 is arranged with inverted T-shaped girder 34 on the left and right. .

図20は、溝形鋼21からなる鋼製セグメントを連結して形成した橋軸に直角方向の橋桁断面が、H型形状の桁35を左右に配設した橋桁構造を示す断面図である。箱型やL型形状やT型形状のみならず、H型形状であってもよい。   FIG. 20 is a cross-sectional view showing a bridge girder structure in which a bridge girder section perpendicular to a bridge axis formed by connecting steel segments made of channel steel 21 is provided with H-shaped girder 35 on the left and right. Not only a box shape, an L shape, or a T shape, but an H shape may be used.

図21は、H形鋼20からなる鋼製セグメントを連結して形成した橋軸に直角方向の橋桁断面が、H型形状の桁35を左右に配設した橋桁構造を示す断面図である。   FIG. 21 is a cross-sectional view showing a bridge girder structure in which a bridge girder cross section perpendicular to a bridge shaft formed by connecting steel segments made of H-section steel 20 is provided with H-shaped girder 35 on the left and right.

図22は、溝形鋼21からなる鋼製セグメントを連結して形成した橋軸に直角方向の橋桁断面が、閉断面の箱型形状の橋桁構造(箱桁36)を示すもので、上部に溝形鋼からなる桁の上フランジ7を配設することで、閉断面を形成したものである。   FIG. 22 shows a box girder structure (box girder 36) having a box-shaped bridge girder cross section perpendicular to a bridge axis formed by connecting steel segments made of channel steel 21 and having a closed cross section. A closed cross section is formed by disposing the upper flange 7 of a girder made of channel steel.

図23は、H形鋼20と溝形鋼21とからなる鋼製セグメントを連結して形成した橋軸に直角方向の橋桁断面が、H型形状の桁37を左右に配設し、カバー25を設けた橋桁構造を示す断面図である。カバー25は橋桁の防せい防食、また遮音(高架橋下の道路を通行する車等の反射音を低減)を目的に設けられるもので、鋼製であっても非金属製であってもよい。   FIG. 23 shows a cross section of a bridge girder perpendicular to a bridge shaft formed by connecting steel segments composed of an H-section steel 20 and a groove-shaped steel 21, and H-shaped girders 37 are arranged on the left and right sides. It is sectional drawing which shows the bridge girder structure which provided. The cover 25 is provided for the purpose of anticorrosion and anticorrosion of the bridge girder, and sound insulation (reducing reflected sound of a car or the like traveling on the road under the viaduct), and may be made of steel or nonmetal.

(実施例1)
本発明を適用し、形鋼に溝形鋼を用いた橋軸に直角方向の橋桁断面が箱型形状の3径間連続橋(橋長160m、側径間(長さ50m)+中央径間(長さ60m)+側径間(長さ50m)、有効幅員7.5m、道路橋(B活荷重))に対して試設計を実施した。この橋桁は橋軸方向について、18個の箱桁3より構成されており、箱桁3を形成する1つの鋼製セグメント1の寸法は、幅約1m、長さ約10m、鋼重1〜3tにて構成されている。特許文献1に開示される技術と比較して、本発明を適用した場合、橋桁の製作工数(工場での加工)は、30〜40%程度低減できる結果となり、本発明により、加工の効率化、製作工数の大幅な低減が図れることが明確になった。
Example 1
The present invention is applied, and a three-diameter continuous bridge with a box-shaped bridge girder cross-section perpendicular to the bridge axis using grooved steel as the shape steel (bridge length 160m, side span (length 50m) + center span Trial design was carried out for (length 60 m) + side span (length 50 m), effective width 7.5 m, road bridge (B live load)). This bridge girder is composed of 18 box girders 3 in the direction of the bridge axis. The dimensions of one steel segment 1 forming the box girder 3 are about 1 m wide, about 10 m long, and 1 to 3 t steel weight. It is composed of. Compared to the technique disclosed in Patent Document 1, when the present invention is applied, the man-hours for manufacturing the bridge girder (processing at the factory) can be reduced by about 30 to 40%, and the present invention improves the processing efficiency. It became clear that the production man-hours could be greatly reduced.

(実施例2)
また、橋軸に直角方向の橋桁断面が、開断面の箱型形状(図2)、L型形状(図16)、及び特許文献2に開示される段積みH形鋼による橋桁(断面I型形状、図10)の3つの形状の橋桁に対して試設計した結果、桁高の比で100:100:150,鋼重の比で100:110:140となり、本発明では、段積みH形鋼による橋桁に比べて、桁高、鋼重共に大幅に減少できる結果となり、本発明により、桁高や鋼重を従来技術よりも抑えて、効率的に橋桁に生じる断面力に抵抗できることが明確になった。
(Example 2)
In addition, the cross section of the bridge girder perpendicular to the bridge axis has an open section box shape (FIG. 2), an L shape (FIG. 16), and a bridge girder made of stacked H-section steel disclosed in Patent Document 2 (cross section I type). As a result of trial design with respect to the bridge girder of the three shapes of the shape, Fig. 10), the ratio of the girder height is 100: 100: 150, and the ratio of the steel weight is 100: 110: 140. Compared to steel bridge girders, both the girder height and the steel weight can be significantly reduced, and it is clear that the present invention can effectively resist the cross-sectional force generated in the bridge girder by suppressing the girder height and the steel weight as compared with the prior art. Became.

本発明の第一の実施形態を示す橋桁構造の斜視図である。It is a perspective view of a bridge girder structure showing a first embodiment of the present invention. 本発明の第一の実施形態に係る橋桁構造を有する橋桁の側面図である。It is a side view of a bridge girder which has a bridge girder structure concerning a first embodiment of the present invention. 本発明の第二の実施形態を示す橋桁構造の斜視図である。It is a perspective view of a bridge girder structure showing a second embodiment of the present invention. 本発明に係る橋桁の橋軸方向の接続部を示す断面図である。It is sectional drawing which shows the connection part of the bridge axis direction of the bridge girder which concerns on this invention. 本発明の第二の実施形態に係る橋桁構造を示した斜視図および桁の下フランジの一部を示す図である。It is the perspective view which showed the bridge girder structure concerning 2nd embodiment of this invention, and the figure which shows a part of lower flange of a girder. 本発明の第二の実施形態に係る橋桁構造の拡大斜視図である。It is an expansion perspective view of the bridge girder structure concerning a second embodiment of the present invention. 本発明に係る橋桁構造を有する橋桁の中央径間部を拡大した側面図である。It is the side view to which the center span part of the bridge girder which has a bridge girder structure concerning the present invention was expanded. 本発明に係る橋桁構造を有する橋桁の中央径間部を拡大した平面図である。It is the top view to which the center span part of the bridge girder which has a bridge girder structure concerning the present invention was expanded. 従来のパネル型の鋼製セグメントで構成された橋桁構造を示す斜視図である。It is a perspective view which shows the bridge girder structure comprised by the conventional panel type steel segments. 従来の段積みH形鋼橋梁を示す断面図である。It is sectional drawing which shows the conventional stacked H-shaped steel bridge. H形鋼からなる鋼製セグメントを連結して形成した桁のウェブを垂直方向に斜めに配置した箱型形状の橋桁構造を示す断面図である。It is sectional drawing which shows the box-shaped bridge girder structure which has arrange | positioned diagonally the web of the girder formed by connecting the steel segments which consist of H-shaped steel. 橋軸方向の接続部を示す平面図である。It is a top view which shows the connection part of a bridge axis direction. 溝形鋼からなる鋼製セグメントを連結して形成した箱型形状の橋桁構造を示す断面図である。It is sectional drawing which shows the box-shaped bridge girder structure formed by connecting the steel segments which consist of channel steel. H形鋼からなる鋼製セグメントを連結して形成した桁のウェブを垂直方向に垂直に配置した箱型形状の橋桁構造を示す断面図である。It is sectional drawing which shows the box-shaped bridge girder structure which arrange | positioned the web of the girder formed by connecting the steel segments which consist of H-section steel perpendicularly | vertically. 溝形鋼からなる鋼製セグメントを連結して形成したL型形状の桁を左右に配設した橋桁構造を示す断面図である。It is sectional drawing which shows the bridge girder structure which arrange | positioned the L-shaped girder formed by connecting the steel segments which consist of channel steel to the left and right. H形鋼と溝形鋼とからなる鋼製セグメントを連結して形成したL型形状の桁を左右に配設した橋桁構造を示す断面図である。It is sectional drawing which shows the bridge girder structure which arrange | positioned the L-shaped girder formed by connecting the steel segment which consists of H-shaped steel and a channel steel. H形鋼からなる鋼製セグメントを連結して形成したL型形状の桁を左右に配設した橋桁構造を示す断面図である。It is sectional drawing which shows the bridge girder structure which has arrange | positioned the L-shaped girder formed by connecting the steel segment which consists of H-section steel in right and left. 溝形鋼からなる鋼製セグメントを連結して形成したT型形状の桁を左右に配設した橋桁構造を示す断面図である。橋桁の断面は、箱型やL型形状のみならず、T型形状であってもよい。It is sectional drawing which shows the bridge girder structure which has arrange | positioned the T-shaped girder formed by connecting the steel segments which consist of channel steel. The cross section of the bridge girder may be T-shaped as well as box-shaped or L-shaped. H形鋼からなる鋼製セグメントを連結して形成したT型形状の桁を左右に配設した橋桁構造を示す断面図である。It is sectional drawing which shows the bridge girder structure which has arrange | positioned the T-shaped girder formed by connecting the steel segment which consists of H-section steel in right and left. 溝形鋼からなる鋼製セグメントを連結して形成したH型形状の桁を左右に配設した橋桁構造を示す断面図である。It is sectional drawing which shows the bridge girder structure which has arrange | positioned the H-shaped girder formed by connecting the steel segments which consist of channel steel. H形鋼からなる鋼製セグメントを連結して形成したH型形状の桁を左右に配設した橋桁構造を示す断面図である。It is sectional drawing which shows the bridge girder structure which has arrange | positioned the H-shaped girder formed by connecting the steel segments which consist of H-section steel in right and left. 溝形鋼からなる鋼製セグメントを連結して形成した閉断面の箱型形状の橋桁構造を示すである。It is a box-shaped bridge girder structure with a closed cross section formed by connecting steel segments made of channel steel. H形鋼と溝形鋼とからなる鋼製セグメントを連結して形成したH型形状の桁を左右に配設し、カバーを設けた橋桁構造を示す断面図である。It is sectional drawing which shows the bridge girder structure which arrange | positioned the H-shaped girder formed by connecting the steel segment which consists of H-shaped steel and a channel steel, and provided the cover in right and left.

符号の説明Explanation of symbols

1、1’、1’ ’ 形鋼を使用した鋼製セグメント
2 床版
3 箱桁
4、4’ ボルト
5 桁の下フランジ
6 桁のウェブ
7 桁の上フランジ
8、8’ 形鋼のフランジ
9 3径間連続橋
10 側径間
11 中央径間
12 平鋼
13 添接板
14 橋軸方向の継手
15 橋軸直角方向の継手
16 溝
17 中間ダイヤフラム
18 溶接集成もしくは冷間曲げ成形で製作されたパネル型の鋼製セグメント
19 添接板接続用ボルト孔
20 H形鋼
21 溝形鋼
22 形鋼
23 隅角部
24 横つなぎ材
25 カバー
26 形鋼のウェブ
27 開断面箱桁
28 床板
29 主桁
30 H形鋼
31 フランジ
32 高力ボルト
33 L型形状の桁
34 逆T型形状の桁
35 H型形状の桁
36 箱桁
37 H型形状の桁
1, 1 ', 1''Steel segment using shape steel 2 Floor slab 3 Box girder 4, 4' bolt 5 Girder lower flange 6 Girder web 7 Girder upper flange 8, 8 'Shaped flange 9 Three span continuous bridge 10 Side span 11 Center span 12 Flat bar 13 Joint plate 14 Joint in the bridge axis direction 15 Joint in the direction perpendicular to the bridge axis 16 Groove 17 Intermediate diaphragm 18 Made by welding assembly or cold bending molding Panel type steel segment 19 Bolt hole for connecting plate 20 H-shaped steel 21 Channel steel 22 Shaped steel 23 Corner section 24 Horizontal connecting material 25 Cover 26 Shape steel web 27 Open section box girder 28 Floor girder 29 Main girder 30 H-shaped steel 31 Flange 32 High strength bolt 33 L-shaped girder 34 Reverse T-shaped girder 35 H-shaped girder 36 Box girder 37 H-shaped girder

Claims (4)

フランジとウェブを有し断面コの字状の形鋼からなる鋼製セグメント、又は該フランジを継手として複数連結した該形鋼からなる鋼製セグメントが、各該鋼製セグメントの長手方向が橋軸方向となるように複数配設され、該鋼製セグメントの幅方向端部のフランジにて隣接する該鋼製セグメント同士が連結されていることを特徴とする形鋼を用いた橋桁構造。   A steel segment having a flange and a web having a U-shaped cross section, or a steel segment having a plurality of the flanges connected to each other as a joint. The longitudinal direction of each steel segment is a bridge axis. A bridge girder structure using section steel, wherein a plurality of steel segments are arranged so as to be in a direction, and the steel segments adjacent to each other are connected by a flange at an end portion in the width direction of the steel segment. 橋軸に直角方向の橋桁断面が、箱型形状、L型形状、T型形状、又はH型形状の橋桁構造において、フランジとウェブを有し断面コの字状の形鋼形鋼からなる鋼製セグメント、又は該フランジを継手として複数連結した該形鋼からなる鋼製セグメントが、各該鋼製セグメントの長手方向が橋軸方向となるように複数配設され、該鋼製セグメントの幅方向端部のフランジにて隣接する該鋼製セグメント同士が連結されていることを特徴とする形鋼を用いた橋桁構造。   A steel bridge made of a steel section with a U-shaped cross section having a flange and a web in a bridge girder structure having a box-shaped, L-shaped, T-shaped or H-shaped bridge girder cross section perpendicular to the bridge axis. A plurality of steel segments, or a plurality of steel segments formed by connecting the flanges as joints, so that the longitudinal direction of each steel segment is the bridge axis direction, and the width direction of the steel segments A bridge girder structure using a structural steel, wherein the adjacent steel segments are connected to each other by a flange at an end. 前記橋桁構造の少なくとも隅角部は、前記フランジと前記ウェブ、又は前記ウェブ同士が連結されていることを特徴とする請求項1又は2記載の形鋼を用いた橋桁構造。   The bridge structure using a steel bar according to claim 1 or 2, wherein the flange and the web, or the webs are connected to each other at least at a corner portion of the bridge structure. 前記形鋼が、溝形鋼であることを特徴とする請求項1〜3のいずれか1項に記載の形鋼を用いた橋桁構造。   The bridge beam structure using the shape steel according to any one of claims 1 to 3, wherein the shape steel is a groove shape steel.
JP2004293650A 2004-10-06 2004-10-06 Bridge girder structure using shape steel Expired - Fee Related JP4410650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293650A JP4410650B2 (en) 2004-10-06 2004-10-06 Bridge girder structure using shape steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293650A JP4410650B2 (en) 2004-10-06 2004-10-06 Bridge girder structure using shape steel

Publications (2)

Publication Number Publication Date
JP2006104788A true JP2006104788A (en) 2006-04-20
JP4410650B2 JP4410650B2 (en) 2010-02-03

Family

ID=36374840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293650A Expired - Fee Related JP4410650B2 (en) 2004-10-06 2004-10-06 Bridge girder structure using shape steel

Country Status (1)

Country Link
JP (1) JP4410650B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132308A (en) * 2004-10-06 2006-05-25 Nippon Steel Corp Stiffening structure of plate-like member and column structure using the same
JP2009102826A (en) * 2007-10-22 2009-05-14 Mitsui Eng & Shipbuild Co Ltd Girder bridge with reinforced concrete composite steel floor slab
CN115162182A (en) * 2022-07-20 2022-10-11 中国五冶集团有限公司 Cantilever type steel box girder high-precision cable hoisting construction method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132308A (en) * 2004-10-06 2006-05-25 Nippon Steel Corp Stiffening structure of plate-like member and column structure using the same
JP4589789B2 (en) * 2004-10-06 2010-12-01 新日本製鐵株式会社 Structure and its corner structure and column structure
JP2009102826A (en) * 2007-10-22 2009-05-14 Mitsui Eng & Shipbuild Co Ltd Girder bridge with reinforced concrete composite steel floor slab
CN115162182A (en) * 2022-07-20 2022-10-11 中国五冶集团有限公司 Cantilever type steel box girder high-precision cable hoisting construction method
CN115162182B (en) * 2022-07-20 2023-09-15 中国五冶集团有限公司 Cantilever type steel box girder high-precision cable hoisting construction method

Also Published As

Publication number Publication date
JP4410650B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
US8281534B2 (en) Formed steel beam for steel-concrete composite beam and slab
JP5053016B2 (en) Girder structure using corrugated steel web
US8621797B2 (en) Steel structure including pre-stressing brackets for improving load-carrying capacity and serviceability
JP2007023714A (en) Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method
US7069614B1 (en) Modular span multi-cell box girder bridge system
WO2010122992A1 (en) Composite steel sheet pile and steel sheet pile wall using the composite steel sheet pile
US20210017722A1 (en) Shallow single plate steel tub girder
JP4897643B2 (en) Reinforced concrete composite steel slab girder bridge
JP4025708B2 (en) Square steel box column
JP2007077658A (en) Construction method for bridge girder
US20240183157A1 (en) Joist tie used in structural decking systems and method of installing
JP4576899B2 (en) Method for manufacturing column-beam joint structure and column-beam joint structure
KR101404513B1 (en) Steel Reinforced Concrete with Steel Angles or T Bars
KR101354499B1 (en) Longitudinal and transverse pre-moment girder and its manufacturing method
KR20080093261A (en) Composite bridge construction method
JP4410650B2 (en) Bridge girder structure using shape steel
JP4696843B2 (en) Composite beam structure
JP7237668B2 (en) Receiving material for deck and mounting method of the receiving material for deck
JP4287755B2 (en) Joint structure of steel girder and composite deck
KR101825580B1 (en) Steel and precast concrete hybrid beam
CN209874082U (en) Double-steel-plate combined shear wall and combined floor slab connecting joint connected by H-shaped steel
JP4589789B2 (en) Structure and its corner structure and column structure
JP2002155507A (en) Bridge
CN211080091U (en) Assembled steel-concrete coincide panel structure
KR20200137334A (en) Advanced Interlocking Girder adapt to Load Factor Resistance Design Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees