JP2006104547A - Highly corrosion resistant steel coated with zinc-rich primer - Google Patents

Highly corrosion resistant steel coated with zinc-rich primer Download PDF

Info

Publication number
JP2006104547A
JP2006104547A JP2004295706A JP2004295706A JP2006104547A JP 2006104547 A JP2006104547 A JP 2006104547A JP 2004295706 A JP2004295706 A JP 2004295706A JP 2004295706 A JP2004295706 A JP 2004295706A JP 2006104547 A JP2006104547 A JP 2006104547A
Authority
JP
Japan
Prior art keywords
mass
steel
iron
corrosion
rich primer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004295706A
Other languages
Japanese (ja)
Other versions
JP4407458B2 (en
Inventor
Kazuhiko Shiotani
和彦 塩谷
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004295706A priority Critical patent/JP4407458B2/en
Publication of JP2006104547A publication Critical patent/JP2006104547A/en
Application granted granted Critical
Publication of JP4407458B2 publication Critical patent/JP4407458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly corrosion resistant steel in which the properties of preventing the generation of iron rust by interaction between the surface of a matrix and a zinc-rich primer are improved, and rust prevention effect is further improved. <P>SOLUTION: The highly corrosion resistant steel is obtained by coating the surface of a matrix freed from scale with a zinc-rich primer, and the matrix has a composition comprising, by mass, 0.01 to 0.2% C, 0.05 to 1.0% Si, 0.1 to 3.0% Mn, 0.02 to 1.0% Ni, and the balance Fe with inevitable impurities, and the vicinity of the surface of the matrix is provided with an Ni-concentrated layer having a thickness of ≥1 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼材(たとえば厚鋼板等)の地鉄の表面にジンクリッチプライマーを塗布した高耐食鋼材に関し、特に優れた耐鉄錆発生性を有する高耐食鋼材に関するものである。   The present invention relates to a high corrosion resistance steel material in which a zinc rich primer is applied to the surface of a steel base (such as a thick steel plate), and particularly to a high corrosion resistance steel material having excellent iron rust resistance.

厚鋼板等の鋼材は、強度が高く、かつ加工性に優れており、しかも安価で入手し易いという利点を有しているので、大型の輸送機器(たとえば船舶等),鋼建築物(たとえば建物等)あるいは鋼構造物(たとえば橋梁,鉄塔,タンク等)に広く使用されている。これらの用途に供される鋼材は、屋外で使用されるので、腐食を防止するために塗装を施される。   Steel materials such as thick steel plates have the advantages of high strength and excellent workability, and are inexpensive and easy to obtain. Therefore, large transport equipment (for example, ships), steel buildings (for example, buildings) Etc.) or steel structures (eg bridges, steel towers, tanks, etc.). Since steel materials used for these applications are used outdoors, they are painted to prevent corrosion.

ところが鋼材の製造工程は、溶鋼を鋳込んで製造した鋼スラブを加熱し、さらに熱間圧延して所定の寸法に仕上げるものであるから、加熱する際に鋼スラブの表面にスケールと呼ばれるFe酸化物が不可避的に生成し、熱間圧延の後も鋼材の表面にスケールが残留する。   However, the steel manufacturing process involves heating a steel slab produced by casting molten steel, and then hot rolling to finish it to a predetermined size. A product is inevitably generated, and a scale remains on the surface of the steel after hot rolling.

鋼材に塗装を施すためには、予め鋼材の金属相(以下、地鉄という)の表面を洗浄してスケールを除去(いわゆる表面処理)する必要がある。表面処理は、一次表面処理と二次表面処理に大別される。   In order to coat steel, it is necessary to remove the scale (so-called surface treatment) by previously cleaning the surface of the metal phase of the steel (hereinafter referred to as “base metal”). The surface treatment is roughly classified into a primary surface treatment and a secondary surface treatment.

一次表面処理は、鋼材の加工ないし組み立て期間中に鉄錆の発生を防止するために行なう。つまり、製鉄所,造船所,加工工場等にて、地面表面のスケールや鉄錆を除去した後、プライマーを塗布する。   The primary surface treatment is performed to prevent the occurrence of iron rust during the processing or assembling of the steel material. In other words, after removing scale and iron rust on the ground surface at a steelworks, shipyard, processing factory, etc., a primer is applied.

二次表面処理は、鋼材の加工ないし組み立て期間中に、一次表面処理で塗布したプライマーのピンホールや損傷部位から発生した鉄錆を除去し、再びプライマーを塗布する処理である。   The secondary surface treatment is a treatment in which iron rust generated from the pinholes and damaged parts of the primer applied in the primary surface treatment is removed during the processing or assembling of the steel material, and the primer is applied again.

スケールや鉄錆を除去する手段としては、一次表面処理では、ショットブラスト方式が一般的である。二次表面処理では、サンドブラスト処理,パワーツール(たとえばグラインダー等)が主に使用されている。なお、完全除去するため、地鉄表面の金属層のかなりの厚みが同時に除去される。プライマーとしては、一次表面処理および二次表面処理ともに、ウォッシュプライマーやジンクリッチプライマーが使用される。ただし、耐食性に優れたジンクリッチプライマーが広く採用されている。   As a means for removing scale and iron rust, shot blasting is common in primary surface treatment. In the secondary surface treatment, a sandblast treatment and a power tool (for example, a grinder) are mainly used. In order to completely remove the metal layer, a considerable thickness of the metal layer on the surface of the ground iron is removed at the same time. As a primer, a wash primer or a zinc rich primer is used for both the primary surface treatment and the secondary surface treatment. However, zinc-rich primers having excellent corrosion resistance are widely used.

このようにして表面処理(すなわち一次表面処理および二次表面処理)を行なった後、地鉄の表面に塗装を施す。塗装に使用する塗料としては、ブチラール樹脂,ポリエステル樹脂,エポキシ樹脂等の樹脂系塗料が使用される。
防錆・防食技術総覧編集委員会編:防錆・防食技術総覧,2000年
After performing the surface treatment (that is, the primary surface treatment and the secondary surface treatment) in this way, the surface of the ground iron is coated. As the paint used for painting, resin-based paints such as butyral resin, polyester resin, and epoxy resin are used.
Rust / Corrosion Technology Overview Editorial Board: Rust / Corrosion Technology Overview, 2000

上記で説明した通り、二次表面処理は、鋼材の加工ないし組み立て期間中に、一次表面処理で形成したプライマーの被膜のピンホールや損傷部位から発生した鉄錆を除去し、再びプライマーを塗布する処理である。したがって、一次表面処理で形成するプライマーの防錆効果を改善すれば、二次表面処理の負荷を軽減できる。   As explained above, the secondary surface treatment removes the iron rust generated from the pinholes and damaged parts of the primer film formed by the primary surface treatment during the processing or assembling of the steel material, and reapply the primer. It is processing. Therefore, if the antirust effect of the primer formed by the primary surface treatment is improved, the load of the secondary surface treatment can be reduced.

本発明は、鋼材の地鉄の表面とジンクリッチプライマーとの相互作用によって鉄錆の発生を防止する特性(以下、耐鉄錆発生性という)を改善し、防錆効果を一層向上させた高耐食鋼材を提供することを目的とする。   The present invention improves the property of preventing the occurrence of iron rust (hereinafter referred to as iron rust resistance) by the interaction between the surface of steel and the zinc rich primer, further improving the rust prevention effect. It aims at providing corrosion-resistant steel materials.

ジンクリッチプライマーを塗布した鋼材の防食機能は、
(1) ジンクリッチプライマーの被膜が、環境から地鉄へ水,酸素,塩化物等の腐食因子が侵入するのを抑制する、
(2) ジンクリッチプライマーの被膜に含まれるZnが、環境中の腐食因子と結合(いわゆる犠牲防食)して鉄錆の発生を抑制する、
(3) 地鉄に含まれるFeやジンクリッチプライマーの被膜に含まれるZnが腐食因子と結合した腐食生成物が、環境から地鉄へ腐食因子が侵入するのを抑制することによって発揮される。
The anti-corrosion function of steel coated with zinc rich primer is
(1) Zinc rich primer coating prevents water, oxygen, chloride, and other corrosive factors from entering the base iron from the environment.
(2) Zn contained in the zinc rich primer coating binds to environmental corrosion factors (so-called sacrificial protection) to suppress the occurrence of iron rust.
(3) Corrosion products in which Fe contained in the base iron and Zn contained in the zinc rich primer coating are combined with the corrosion factor are exerted by suppressing the invasion of the corrosion factor from the environment into the base iron.

上記の(1) の防食機能は、ジンクリッチプライマーのイオン透過抵抗が大きいほど、その効果が向上する。(2) の防食機能は、Znの犠牲防食能が高いほど、その効果が向上する。(3) の防食機能は、腐食生成物のイオン透過抵抗が大きいほど、その効果が向上する。   The effect of the anticorrosion function (1) is improved as the ion permeation resistance of the zinc rich primer increases. The higher the sacrificial anticorrosive ability of Zn, the better the anticorrosive function of (2). The effect of the anticorrosion function (3) increases as the corrosion resistance of the corrosion product increases.

これらのうちの (1)の防食機能は、ジンクリッチプライマーの特性に応じて効果が変動するが、 (2),(3) の防食機能は、ジンクリッチプライマーの特性と地鉄の成分に応じて効果が変動する。 (2),(3) の防食機能についての研究の経緯と結果を以下に説明する。   Of these, the anticorrosion function of (1) varies depending on the characteristics of the zinc rich primer, but the anticorrosion functions of (2) and (3) depend on the characteristics of the zinc rich primer and the components of the iron. The effect varies. The background and results of the research on anticorrosion function (2) and (3) are explained below.

Ni,Cu,Cr,Mo等の合金元素を添加した溶鋼を鋳込んで鋼スラブを製造し、その鋼スラブを熱間圧延して厚鋼板とした。次いで、厚鋼板のスケールをショットブラストにて除去し、さらにジンクリッチプライマーを塗布して、小型暴露試験片を作製した。この試験片を、塩分が飛来する環境(すなわち海岸地域)に6ケ月暴露して、暴露試験を行なった。   Steel slabs were manufactured by casting molten steel to which alloying elements such as Ni, Cu, Cr, and Mo were added, and the steel slabs were hot rolled to form thick steel plates. Next, the scale of the thick steel plate was removed by shot blasting, and a zinc rich primer was further applied to produce a small exposure test piece. The test piece was exposed for 6 months to an environment (that is, a coastal area) where salt content comes in, and an exposure test was conducted.

暴露試験が終了した後、試験片の表面を目視で観察し、点状に現われる鉄錆の個数を測定した。その結果、Niを添加した厚鋼板から採取した試験片は、他の元素を添加した試験片に比べて、点状の鉄錆の個数が顕著に減少することが判明した。つまり、ジンクリッチプライマーの被膜を有する鋼材の耐鉄錆発生性を向上するためには、地鉄にNiを添加する必要がある。   After the exposure test was completed, the surface of the test piece was visually observed, and the number of iron rusts that appeared in the form of dots was measured. As a result, it was found that the number of dotted iron rusts was significantly reduced in the test pieces collected from the thick steel plates to which Ni was added compared to the test pieces to which other elements were added. That is, in order to improve the iron rust resistance of a steel material having a zinc rich primer coating, it is necessary to add Ni to the base iron.

しかしNiは高価な元素であるから、Niを添加すると、鋼材の製造コストの上昇を招く。ただし地鉄の表面近傍に濃化させれば、耐鉄錆発生性を損なうことなく、Niの使用量を削減できる。そこで、本発明者は、鋼材の製造コストの上昇を抑制する観点から、Niを地鉄の表面近傍に濃化させる技術を検討した。   However, since Ni is an expensive element, adding Ni causes an increase in the manufacturing cost of the steel material. However, if concentrated near the surface of the ground iron, the amount of Ni used can be reduced without impairing the iron rust resistance. Then, this inventor examined the technique which concentrates Ni to the surface vicinity of a ground iron from a viewpoint of suppressing the raise of the manufacturing cost of steel materials.

Niを 2.9質量%含有する鋼スラブ(厚さ 210mm)を1120℃で2時間加熱した後、熱間圧延して厚鋼板(厚さ20mm)とした。厚鋼板から試料を採取してEPMA分析を行ない、地鉄の表面近傍のO,Fe,Niの濃度分布を調査した。その代表的な例を図1に示す。地鉄の表面近傍にはNiが濃化した領域(以下、Ni濃化層という)が認められる。このNi濃化層の厚さは5μm程度であり、Ni濃化層中の最大Ni濃度は地鉄の約5倍となっている。   A steel slab containing 2.9% by mass of Ni (thickness 210 mm) was heated at 1120 ° C. for 2 hours, and then hot rolled to obtain a thick steel plate (thickness 20 mm). A sample was taken from a thick steel plate and subjected to EPMA analysis to investigate the concentration distribution of O, Fe, and Ni near the surface of the ground iron. A typical example is shown in FIG. A region where Ni is concentrated (hereinafter referred to as a Ni-enriched layer) is observed near the surface of the base iron. The thickness of the Ni-enriched layer is about 5 μm, and the maximum Ni concentration in the Ni-enriched layer is about 5 times that of the ground iron.

つまり、Niを含有する鋼材を加熱すると、表面にスケールと呼ばれるFe酸化物が生成する一方で、地鉄の表面近傍にNiが濃化する。その際、Niはスケールに濃化するのではなく、表面近傍の地鉄内に残留してNi濃化層を形成する。したがって鋼材に添加されるNiを地鉄の表面近傍で濃化させてNi濃化層を形成し、鋼構造物として使用するときにもNi濃化層を残存させることによって、鋼材の耐食性を一層高めることができる。   That is, when a steel material containing Ni is heated, Fe oxide called scale is generated on the surface, while Ni is concentrated near the surface of the ground iron. At that time, Ni does not concentrate in the scale, but remains in the ground iron near the surface to form a Ni concentrated layer. Therefore, the Ni added to the steel is concentrated near the surface of the steel to form a Ni-enriched layer, and the Ni-enriched layer remains even when used as a steel structure, thereby further enhancing the corrosion resistance of the steel. Can be increased.

なお、地鉄の表面近傍とは、地鉄表面から1000μm以内をいうものとする。また、Ni濃化層とは、母材内部のNi含有量の 1.2倍以上となる層をいうものとする。   In addition, the vicinity of the surface of the ground iron means within 1000 μm from the surface of the ground iron. The Ni-enriched layer refers to a layer that is at least 1.2 times the Ni content inside the base material.

ところが従来の厚鋼板(たとえば船舶用厚鋼板)は、その製造工程でショットブラスト処理を施し、表面のスケールを機械的に除去し、さらにジンクリッチプライマーを塗布している。ショットブラスト処理では、通常、直径約1mmの鋼球を吹き付けるので、スケールを除去した後の地鉄表面の粗度はRmax で約60μmとなる。したがって厚さ5μm程度のNi濃化層は、ショットブラスト処理によって、スケールとともに除去されてしまう。   However, conventional thick steel plates (for example, marine steel plates) are subjected to shot blasting in the manufacturing process, mechanically removing the scale on the surface, and further coated with a zinc rich primer. In the shot blasting process, a steel ball having a diameter of about 1 mm is usually sprayed, so that the roughness of the surface of the steel after the scale is removed is about 60 μm in Rmax. Therefore, the Ni concentrated layer having a thickness of about 5 μm is removed together with the scale by the shot blasting process.

地鉄の表面近傍にNi濃化層を形成した本発明の高耐食鋼材を製造するには、スケールを除去する一方で、Ni濃化層を残存させる必要がある。ところが、ショットブラストや切削等の機械的な手段では、通常、スケールとともにNi濃化層も取り除かれるのは避けられない。そこで本発明では化学的な手段を用いてスケールのみを除去するのが望ましい。すなわち、酸洗を施すことによって化学的にスケールのみを除去すれば、地鉄の表面近傍にNi濃化層を残存させるには有利である。酸洗液は特定の成分濃度に限定する必要はないが、一般的に広く使用されている塩酸水溶液が好ましい。   In order to produce the highly corrosion resistant steel material of the present invention in which the Ni concentrated layer is formed in the vicinity of the surface of the base iron, it is necessary to remove the scale while leaving the Ni concentrated layer. However, mechanical means such as shot blasting and cutting usually inevitably remove the Ni-enriched layer together with the scale. Therefore, in the present invention, it is desirable to remove only the scale using chemical means. That is, if only the scale is chemically removed by pickling, it is advantageous to leave the Ni concentrated layer in the vicinity of the surface of the base iron. Although it is not necessary to limit a pickling liquid to a specific component density | concentration, the hydrochloric acid aqueous solution generally used widely is preferable.

また、酸洗液にインヒビターを添加することによって、酸洗による地鉄の溶出を防止してNi濃化層を残存させることができる。なお、ショットブラストや切削等の機械的な手段でも、条件を適切にして、スケールのみ除去するようにしても良い。   Further, by adding an inhibitor to the pickling solution, it is possible to prevent elution of the base iron by pickling and leave the Ni concentrated layer. It should be noted that only scales may be removed using mechanical means such as shot blasting or cutting, with appropriate conditions.

本発明は以上のような知見に基づいてなされたものである。   The present invention has been made based on the above findings.

すなわち本発明は、スケールが除去された地鉄の表面に、ジンクリッチプライマーを塗布してなる高耐食鋼材であって、地鉄がC:0.01〜0.2 質量%,Si:0.05〜1.0 質量%,Mn: 0.1〜3.0 質量%,Ni:0.02〜1.0 質量%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、地鉄の表面近傍に厚さ1μm以上のNi濃化層を有する高耐食鋼材である。   That is, the present invention is a highly corrosion-resistant steel material obtained by applying a zinc rich primer to the surface of the base iron from which scale has been removed, wherein the base iron is C: 0.01 to 0.2% by mass, Si: 0.05 to 1.0% by mass, Mn: 0.1 to 3.0% by mass, Ni: 0.02 to 1.0% by mass, with the balance being composed of Fe and inevitable impurities, and having a Ni concentrated layer with a thickness of 1 μm or more near the surface of the base iron High corrosion resistance steel.

本発明の高耐食鋼材では、地鉄が、前記した組成に加えてCu: 0.1〜1.0 質量%およびMo:0.01〜0.5 質量%のうちの1種または2種を含有することが好ましい。さらにNb: 0.005〜0.1 質量%,Ti: 0.005〜0.1 質量%およびV: 0.005〜0.1 質量%のうちの1種または2種以上を含有することが好ましい。   In the highly corrosion-resistant steel material of the present invention, it is preferable that the ground iron contains one or two of Cu: 0.1 to 1.0 mass% and Mo: 0.01 to 0.5 mass% in addition to the above-described composition. Furthermore, it is preferable to contain 1 type (s) or 2 or more types in Nb: 0.005-0.1 mass%, Ti: 0.005-0.1 mass%, and V: 0.005-0.1 mass%.

また本発明の高耐食鋼材では、Ni濃化層中のNi濃度の最大値が 0.1質量%以上であることが好ましい。   In the highly corrosion resistant steel material of the present invention, the maximum value of Ni concentration in the Ni concentrated layer is preferably 0.1% by mass or more.

本発明によれば、地鉄の表面近傍にNi濃化層を形成して耐鉄錆発生性を著しく向上させた安価な高耐食鋼材を得ることができる。   According to the present invention, it is possible to obtain an inexpensive high corrosion-resistant steel material in which a Ni concentrated layer is formed in the vicinity of the surface of the base iron and the iron rust resistance is remarkably improved.

まず本発明の高耐食鋼材の地鉄の成分を限定した理由について説明する。   First, the reason why the components of the ground iron of the high corrosion resistant steel material of the present invention are limited will be described.

C:0.01〜0.2 質量%
Cは、高耐食鋼材の強度を増加させる元素であり、所望の強度を得るためには0.01質量%以上含有させる必要がある。一方、 0.2質量%を超えると、高耐食鋼材の靭性が劣化する。したがって地鉄中のCは、0.01〜0.2 質量%の範囲内を満足する必要がある。
C: 0.01-0.2 mass%
C is an element that increases the strength of the high corrosion-resistant steel, and it is necessary to contain 0.01% by mass or more in order to obtain a desired strength. On the other hand, if it exceeds 0.2% by mass, the toughness of the high corrosion resistance steel will deteriorate. Therefore, C in the ground iron needs to satisfy the range of 0.01 to 0.2% by mass.

Si:0.05〜1.0 質量%
Siは、溶鋼の溶製段階で脱酸剤として作用し、かつ高耐食鋼材の強度を増加させる元素であり、所望の強度を得るためには0.05質量%以上含有させる必要がある。一方、 1.0質量%を超えると、高耐食鋼材の靭性および溶接性が劣化する。したがって地鉄中のSiは、0.05〜1.0 質量%の範囲内を満足する必要がある。
Si: 0.05-1.0 mass%
Si is an element that acts as a deoxidizing agent in the melting stage of molten steel and increases the strength of the high corrosion resistant steel material. In order to obtain a desired strength, it is necessary to contain 0.05% by mass or more. On the other hand, if it exceeds 1.0 mass%, the toughness and weldability of the high corrosion resistance steel will deteriorate. Therefore, Si in the ground iron needs to satisfy the range of 0.05 to 1.0 mass%.

Mn: 0.1〜3.0 質量%
Mnは、高耐食鋼材の強度を増加させる元素であり、所望の強度を得るためには 0.1質量%以上含有させる必要がある。一方、 3.0質量%を超えると、高耐食鋼材の靭性および溶接性が劣化する。したがって地鉄中のMnは、 0.1〜3.0 質量%の範囲内を満足する必要がある。
Mn: 0.1-3.0 mass%
Mn is an element that increases the strength of the high-corrosion-resistant steel, and it is necessary to contain 0.1% by mass or more in order to obtain a desired strength. On the other hand, if it exceeds 3.0% by mass, the toughness and weldability of the high corrosion resistance steel will deteriorate. Therefore, Mn in the ground iron needs to satisfy the range of 0.1 to 3.0 mass%.

Ni:0.02〜1.0 質量%
Niは、本発明の高耐食鋼材に添加される元素のうちで最も重要な元素である。Niは、ジンクリッチプライマー中のZnとの折衷電位を貴化することによって、Znの犠牲防食性を向上するとともに、Zn腐食生成物を微細にし、Zn腐食生成物による腐食因子の地鉄への透過抵抗を高め、地鉄の腐食を抑制する働きがある。また、Fe腐食生成物を微細にする働きや、Fe腐食生成物の電荷を負化する作用で塩化物イオンの地鉄表面への透過を抑制し、地鉄表面近傍のpHを高め、地鉄の腐食を抑制する。
Ni: 0.02 to 1.0 mass%
Ni is the most important element among the elements added to the highly corrosion-resistant steel material of the present invention. Ni improves the sacrificial anticorrosive property of Zn by making the eclectic potential with Zn in the zinc rich primer noble, refines the Zn corrosion product, and reduces the corrosion factor due to the Zn corrosion product to the iron It works to increase the permeation resistance and suppress the corrosion of the railway. In addition, the action of making the Fe corrosion product finer and the action of negativeizing the charge of the Fe corrosion product suppress the permeation of chloride ions to the surface of the steel, increasing the pH near the surface of the steel, Inhibits corrosion.

以上の作用は、Ni濃度が増加するほど顕著に発揮される。ただし地鉄の表面近傍のNi濃度が約5質量%になると、たとえば造船期間である6ケ月間では、ジンクリッチプライマーを塗布した鋼材の表面での鉄錆はなくなる。したがって、それ以上のNiが地鉄の表面近傍で濃化することは不必要であり、原料コストの上昇を招くだけである。   The above effects are more remarkable as the Ni concentration increases. However, when the Ni concentration in the vicinity of the surface of the ground iron is about 5% by mass, for example, the iron rust on the surface of the steel material coated with the zinc rich primer disappears for 6 months, which is the shipbuilding period. Therefore, it is unnecessary to concentrate more Ni in the vicinity of the surface of the base iron, which only increases the raw material cost.

既に説明した通り、Niを含有する鋼材を加熱すると、地鉄の表面近傍にNi濃化層が形成される。Niは、スケールに濃化するのではなく、表面近傍の地鉄内に濃化する。このときNi濃化層のNi濃度は、地鉄のNi濃度の約5倍である。   As already explained, when a steel material containing Ni is heated, a Ni concentrated layer is formed in the vicinity of the surface of the ground iron. Ni does not concentrate in the scale, but in the iron bar near the surface. At this time, the Ni concentration of the Ni-enriched layer is about 5 times the Ni concentration of the base iron.

本発明者らの研究によれば、Ni濃化層が、ジンクリッチプライマーを塗布した鋼材の鉄錆の発生を抑制するためには、Ni濃化層のNi濃度は最大値で 0.1質量%以上とするのが好ましい。したがって地鉄のNi濃度は0.02質量%以上とする必要がある。したがって地鉄中のNi濃度は、0.02〜1.0 質量%の範囲内を満足する必要がある。   According to the studies by the present inventors, the Ni concentration layer has a maximum Ni concentration of 0.1% by mass or more in order to suppress the occurrence of iron rust in the steel material coated with the zinc rich primer. Is preferable. Therefore, the Ni concentration of the ground iron needs to be 0.02 mass% or more. Therefore, the Ni concentration in the ground iron needs to satisfy the range of 0.02 to 1.0 mass%.

またNi濃化層の厚さは、1μm以上あれば良い。その理由は、ジンクリッチプライマーを塗布した鋼材では、6ケ月の腐食減肉量は極めて少ないからである。   The thickness of the Ni concentrated layer may be 1 μm or more. The reason is that the steel material to which the zinc rich primer is applied has a very small amount of corrosion reduction in 6 months.

本発明の高耐食鋼材では、C,Si,Mn,Niに加えて、必要に応じて下記の元素を添加しても良い。   In the high corrosion resistance steel material of the present invention, in addition to C, Si, Mn, and Ni, the following elements may be added as necessary.

Cu: 0.1〜1.0 質量%
Cuは、Fe腐食生成物を微細にすることによって、腐食因子の地鉄への透過抵抗を高め、地鉄の腐食を抑制する働きがある。地鉄中のCu含有量が 0.1質量%未満では、その効果は十分に得られない。一方、 1.0質量%を超えると、高耐食鋼材の製造工程における熱間加工性が損なわれる。したがって地鉄中にCuを添加する場合は、 0.1〜1.0 質量%の範囲内が好ましい。
Cu: 0.1 to 1.0 mass%
Cu refines the Fe corrosion product, thereby increasing the permeation resistance of corrosion factors to the ground iron and suppressing the corrosion of the ground iron. If the Cu content in the base iron is less than 0.1% by mass, the effect cannot be obtained sufficiently. On the other hand, if it exceeds 1.0 mass%, hot workability in the production process of the high corrosion resistance steel is impaired. Accordingly, when Cu is added to the ground iron, it is preferably in the range of 0.1 to 1.0 mass%.

Mo:0.01〜0.5 質量%
Moは、Zn腐食生成物,Fe腐食生成物中でモリブデン酸イオンを形成することによって、塩化物イオンが腐食生成物を透過して地鉄に到達するのを防止する。地鉄中のMo含有量が0.01質量%未満では、その効果は十分に得られない。一方、 0.5質量%を超えると、その効果が飽和する。したがって地鉄中にMoを添加する場合は、0.01〜0.5 質量%の範囲内が好ましい。
Mo: 0.01-0.5 mass%
Mo forms molybdate ions in Zn corrosion products and Fe corrosion products, thereby preventing chloride ions from passing through the corrosion products and reaching the base iron. If the Mo content in the ground iron is less than 0.01% by mass, the effect cannot be obtained sufficiently. On the other hand, when it exceeds 0.5 mass%, the effect is saturated. Therefore, when adding Mo to the ground iron, the range of 0.01 to 0.5 mass% is preferable.

Nb: 0.005〜0.1 質量%,Ti: 0.005〜0.1 質量%,V: 0.005〜0.1 質量%
Nb,Ti,Vは、高耐食鋼材の強度を増加させる元素であり、必要に応じ1種または2種以上を添加できる。Nb,Ti,Vは、いずれも 0.005質量%以上の含有で効果が認められるが、それぞれ 0.1質量%を超えて含有すると、高耐食鋼材の靭性,溶接性が劣化する。このためNb,Ti,Vのいずれも 0.005〜0.1 質量%とするのが好ましい。
Nb: 0.005 to 0.1 mass%, Ti: 0.005 to 0.1 mass%, V: 0.005 to 0.1 mass%
Nb, Ti, and V are elements that increase the strength of the high corrosion-resistant steel, and one or more of them can be added as necessary. Nb, Ti, and V are all effective when contained in amounts of 0.005% by mass or more. However, if each content exceeds 0.1% by mass, the toughness and weldability of the high corrosion-resistant steel materials deteriorate. For this reason, it is preferable that all of Nb, Ti, and V be 0.005 to 0.1% by mass.

次に、本発明の高耐食鋼材の製造方法を説明する。   Next, the manufacturing method of the high corrosion resistance steel material of this invention is demonstrated.

所定の組成を有する溶鋼を、転炉法,電気炉法等の従来から知られている技術で溶製した後、連続鋳造法あるいは造塊法で鋼スラブを製造する。なお溶鋼の溶製段階では、転炉法,電気炉法等の脱炭を主体とする精錬(いわゆる1次精錬)の後で、真空脱ガス法等の脱ガスを主体とする精錬技術(いわゆる2次精錬)を適宜組み合わせて使用しても良い。   A molten steel having a predetermined composition is melted by a conventionally known technique such as a converter method or an electric furnace method, and then a steel slab is manufactured by a continuous casting method or an ingot forming method. In addition, at the smelting stage of molten steel, refining technology (so-called primary refining) mainly using decarburization such as the converter method and electric furnace method, followed by refining technology mainly using degassing such as vacuum degassing method (so-called primary refining). Secondary refining) may be used in appropriate combination.

次いで、鋼スラブを 900〜1200℃に加熱し、さらに熱間圧延を施して所定の形状の鋼材(すなわち鋼板,形鋼等)とした後、空冷または加速冷却によって冷却する。   Next, the steel slab is heated to 900 to 1200 ° C. and further hot-rolled to obtain a steel material having a predetermined shape (ie, steel plate, section steel, etc.), and then cooled by air cooling or accelerated cooling.

このようにして製造した鋼材は表面にスケールが生成しているので、酸洗を施して化学的にスケールのみを除去するのが有利である。酸洗液は、希塩酸(すなわち塩酸の水溶液),希硫酸(すなわち硫酸の水溶液),希リン酸(すなわちリン酸の水溶液)等の従来から知られているものが使用できる。ただし、酸洗の効率やスケールの溶解特性を考慮すると、希塩酸を使用するのが好ましい。   Since the steel material produced in this way has a scale formed on the surface, it is advantageous to perform pickling to chemically remove only the scale. As the pickling solution, conventionally known ones such as dilute hydrochloric acid (ie, an aqueous solution of hydrochloric acid), dilute sulfuric acid (ie, an aqueous solution of sulfuric acid), dilute phosphoric acid (ie, an aqueous solution of phosphoric acid) can be used. However, it is preferable to use dilute hydrochloric acid in consideration of pickling efficiency and dissolution characteristics of the scale.

また、酸洗液にインヒビターを添加することによって、酸洗による地鉄の溶出を防止してNi濃化層を残存させることができる。インヒビターは、地鉄の成分や酸洗液の種類等に応じて適宜選択して使用する。   Further, by adding an inhibitor to the pickling solution, it is possible to prevent elution of the base iron by pickling and leave the Ni concentrated layer. Inhibitors are appropriately selected and used according to the components of the base iron, the type of pickling solution, and the like.

なお、ショットブラストや切削等の機械的手段も、スケール除去のみ行ない、地鉄表面の金属層までは除去しないか、Ni濃化層を必要量残存させることができれば、利用できる。   In addition, mechanical means such as shot blasting and cutting can be used if only the scale removal is performed and the metal layer on the surface of the ground iron is not removed or the Ni-enriched layer can be left in a necessary amount.

スケールを除去した後、地鉄の表面にZnを含有するジンクリッチプライマーを塗布して被膜を形成する。塗布の方法は、特定の手段に限定せず、スプレー,刷毛塗り,ロールコーター等の慣用の技術を使用できる。   After removing the scale, a zinc rich primer containing Zn is applied to the surface of the base iron to form a film. The application method is not limited to a specific means, and conventional techniques such as spraying, brushing, and roll coater can be used.

本発明の高耐食鋼材は、以上の手順で製造できる。本発明の高耐食鋼材は、地鉄の表面近傍にNi濃化層が形成されるので、ジンクリッチプライマーの被膜とNi濃化層との相互作用で耐鉄錆発生性が著しく向上する。しかもNiが地鉄の表面近傍に濃化するので、地鉄全体のNi濃度を高める必要はない。そのため、高価なNiの使用量を削減でき、高耐食鋼材の製造コストの上昇を抑えることができる。   The highly corrosion resistant steel material of the present invention can be manufactured by the above procedure. In the highly corrosion-resistant steel material of the present invention, a Ni concentrated layer is formed in the vicinity of the surface of the ground iron. Therefore, the iron rust resistance is remarkably improved by the interaction between the zinc rich primer coating and the Ni concentrated layer. In addition, since Ni is concentrated near the surface of the ground iron, it is not necessary to increase the Ni concentration of the entire ground steel. Therefore, the amount of expensive Ni used can be reduced, and an increase in manufacturing cost of the high corrosion resistant steel material can be suppressed.

転炉を用いて表1に示す成分の溶鋼を溶製し、さらに連続鋳造法によって厚さ 210mmの鋼スラブとした。表1の鋼番号1はNiを添加していない例(すなわち比較例)であり、鋼番号2〜11は、すべて本発明の高耐食鋼の成分を満足する例(すなわち発明例)である。これらの鋼スラブを1120℃に加熱した後、熱間圧延によって厚さ20mm,幅2500mmの厚鋼板とした。こうして得られた厚鋼板に酸洗処理を施し、表面のスケールを化学的に除去した。酸洗液は希塩酸を使用した。   Molten steel having the components shown in Table 1 was melted using a converter, and a steel slab having a thickness of 210 mm was obtained by continuous casting. Steel number 1 in Table 1 is an example in which Ni is not added (that is, comparative example), and steel numbers 2 to 11 are examples (that is, invention examples) that all satisfy the components of the high corrosion resistance steel of the present invention. These steel slabs were heated to 1120 ° C and then hot rolled to form thick steel plates with a thickness of 20 mm and a width of 2500 mm. The thick steel plate thus obtained was pickled and the surface scale was chemically removed. Dilute hydrochloric acid was used for the pickling solution.

また、上記と同様に製造した厚鋼板(鋼番号1〜11)に直径約1mmの鋼球吹き付けによるショットブラスト処理を施し、表面のスケールを機械的に除去した。   Further, the steel plate (steel numbers 1 to 11) produced in the same manner as above was subjected to shot blasting by spraying a steel ball having a diameter of about 1 mm to mechanically remove the surface scale.

表2に示すように、鋼番号1〜11の鋼スラブから得られた厚鋼板にショットブラスト処理を施して機械的にスケールを除去した鋼板記号1A〜11A は、鋼スラブの成分に関わらず比較例である。鋼番号1〜11の鋼スラブから得られた厚鋼板に酸洗処理を施した鋼板記号1B〜11B ,2C,3C,3Dのうち、鋼板記号1Bは鋼スラブの成分が本発明の範囲を外れるので比較例であり、鋼板記号2B〜11B ,3Dは鋼スラブの成分が本発明の範囲を満足しかつスケールを化学的に除去して、Ni濃化層の厚さが1μm以上あるので、発明例である。一方、2C,3Cは、鋼スラブの成分が本発明の範囲を満足し、かつスケールを化学的に除去したが、強酸洗条件のため、Ni濃化層の厚さが1μm未満であるので、比較例である。   As shown in Table 2, the steel plate symbols 1A to 11A, in which the steel plates obtained from the steel slabs with steel numbers 1 to 11 were subjected to shot blasting and mechanically scaled, are compared regardless of the components of the steel slab. It is an example. Among the steel plate symbols 1B to 11B, 2C, 3C, and 3D obtained by subjecting the thick steel plates obtained from the steel slabs having the steel numbers 1 to 11 to the pickling treatment, the steel plate symbol 1B is out of the scope of the present invention. Therefore, the steel plate symbols 2B to 11B and 3D are comparative examples, and the steel slab components satisfy the scope of the present invention, the scale is chemically removed, and the thickness of the Ni concentrated layer is 1 μm or more. It is an example. On the other hand, in 2C and 3C, the components of the steel slab satisfied the scope of the present invention and the scale was chemically removed, but because of the strong pickling conditions, the thickness of the Ni concentrated layer is less than 1 μm. It is a comparative example.

発明例と比較例について、Ni濃化層中のNi濃度の最大値(質量%),Ni濃化層の厚さ(μm),点状の鉄錆の発生状況を調査した。   For the inventive example and the comparative example, the maximum value (% by mass) of the Ni concentration in the Ni concentrated layer, the thickness of the Ni concentrated layer (μm), and the occurrence of dotted iron rust were investigated.

Ni濃化層中のNi濃度の最大値,Ni濃化層の厚さを調査する際には、スケールを除去した各厚鋼板の表層部から分析試験片(10mm×10mm)を採取し、EPMA分析を行なった。Ni濃化層中のNi濃度の最大値は表2に示す通りである。なおNi濃化層中のNi濃度の最大値は、母材内部のNi濃度(質量%)×Ni濃化層の最大Ni検出強度÷母材内部の平均Ni検出強度により算出した。また、Ni濃度が母材内部の 1.2倍以上の領域の厚さ(すなわちNi濃化層の厚さ)を表2に示す。   When investigating the maximum value of Ni concentration in the Ni-enriched layer and the thickness of the Ni-enriched layer, an analytical test piece (10 mm x 10 mm) is taken from the surface layer of each thick steel plate from which the scale has been removed, and EPMA Analysis was performed. The maximum value of Ni concentration in the Ni concentrated layer is as shown in Table 2. Note that the maximum value of the Ni concentration in the Ni-concentrated layer was calculated by Ni concentration (mass%) inside the base material × maximum Ni detection strength of the Ni-concentrated layer ÷ average Ni detection strength inside the base material. Table 2 shows the thickness of the region where the Ni concentration is 1.2 times or more of the inside of the base metal (that is, the thickness of the Ni concentrated layer).

次に、点状の鉄錆の発生状況を調査するために、各厚鋼板から鋼板表面を含む腐食試験片(厚さ5mm,幅50mm,長さ100mm )を採取し、その後、無機ジンクリッチプライマーを塗布して被膜を形成した。被膜の厚さは、いずれも15μmとした。これらの腐食試験片について、海浜環境(飛来塩分量:1.5mdd)で6ケ月間暴露試験を行なった。暴露試験が終了した後、腐食試験片の表面を目視で観察し、点状の鉄錆の個数を測定した。   Next, in order to investigate the occurrence of dotted iron rust, corrosion test pieces (thickness 5 mm, width 50 mm, length 100 mm) including the steel plate surface were collected from each thick steel plate, and then inorganic zinc rich primer Was applied to form a film. The thickness of each coating was 15 μm. These corrosion test pieces were subjected to an exposure test for 6 months in a beach environment (amount of incoming salt: 1.5 mdd). After the exposure test was completed, the surface of the corrosion test piece was visually observed, and the number of dotted iron rusts was measured.

表2から明らかなように、発明例(鋼記号2B〜11B ,3D)では、厚鋼板の表面近傍にNi濃化層が形成され、Ni濃化層の厚さを1μm以上有する。一方、比較例(鋼記号1A〜11A ,1B)では、厚鋼板の表面近傍にNi濃化層は存在しない。比較例(鋼記号2C,3C)では、表面近傍にNi濃化層が形成されているが、Ni濃化層の厚さは1μm未満である。   As is apparent from Table 2, in the invention examples (steel symbols 2B to 11B, 3D), a Ni concentrated layer is formed near the surface of the thick steel plate, and the thickness of the Ni concentrated layer is 1 μm or more. On the other hand, in the comparative examples (steel symbols 1A to 11A and 1B), there is no Ni concentrated layer near the surface of the thick steel plate. In the comparative examples (steel symbols 2C and 3C), a Ni concentrated layer is formed near the surface, but the thickness of the Ni concentrated layer is less than 1 μm.

比較例(鋼板記号2A〜11A ,2C,3C)と発明例(鋼板記号2B〜11B ,3D)について、鋼番号が同一の厚鋼板に発生した点状の鉄錆の個数を比べると、いずれも発明例の方が著しく減少している。   For the comparative example (steel symbols 2A to 11A, 2C, 3C) and the invention example (steel symbols 2B to 11B, 3D) The inventive example is significantly reduced.

このことから、Ni濃化層の存在が、ジンクリッチプライマーを塗布した高耐食鋼材の鉄錆の発生量を低減する上で、多大な効果を発揮することが分かる。   From this, it can be seen that the presence of the Ni concentrated layer exhibits a great effect in reducing the amount of iron rust generated in the high corrosion resistant steel material coated with the zinc rich primer.

Fe,Ni,Oの濃度分布を示すグラフである。It is a graph which shows concentration distribution of Fe, Ni, and O.

Claims (4)

スケールが除去された地鉄の表面に、ジンクリッチプライマーを塗布してなる高耐食鋼材であって、前記地鉄がC:0.01〜0.2 質量%、Si:0.05〜1.0 質量%、Mn: 0.1〜3.0 質量%、Ni:0.02〜1.0 質量%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、前記地鉄の表面近傍に厚さ1μm以上のNi濃化層を有することを特徴とする高耐食鋼材。   A highly corrosion-resistant steel material obtained by applying a zinc rich primer to the surface of the base iron from which scale has been removed, wherein the base iron is C: 0.01 to 0.2% by mass, Si: 0.05 to 1.0% by mass, Mn: 0.1 to 3.0% by mass, Ni: 0.02 to 1.0% by mass, with the balance being composed of Fe and inevitable impurities, and having a Ni concentrated layer having a thickness of 1 μm or more in the vicinity of the surface of the base iron High corrosion resistance steel. 前記地鉄が、前記組成に加えてCu: 0.1〜1.0 質量%およびMo:0.01〜0.5 質量%のうちの1種または2種を含有することを特徴とする請求項1に記載の高耐食鋼材。   The high corrosion resistance steel material according to claim 1, wherein the base iron contains one or two of Cu: 0.1 to 1.0 mass% and Mo: 0.01 to 0.5 mass% in addition to the composition. . 前記地鉄が、前記組成に加えてNb: 0.005〜0.1 質量%、Ti: 0.005〜0.1 質量%およびV: 0.005〜0.1 質量%のうちの1種または2種以上を含有することを特徴とする請求項1または2に記載の高耐食鋼材。   The base iron contains one or more of Nb: 0.005-0.1% by mass, Ti: 0.005-0.1% by mass, and V: 0.005-0.1% by mass in addition to the composition. The highly corrosion-resistant steel material according to claim 1 or 2. 前記Ni濃化層中のNi濃度の最大値が 0.1質量%以上であることを特徴とする請求項1、2または3に記載の高耐食鋼材。
The high corrosion resistant steel material according to claim 1, 2, or 3, wherein the maximum value of Ni concentration in the Ni concentrated layer is 0.1 mass% or more.
JP2004295706A 2004-10-08 2004-10-08 High corrosion resistant steel with zinc rich primer Active JP4407458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295706A JP4407458B2 (en) 2004-10-08 2004-10-08 High corrosion resistant steel with zinc rich primer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295706A JP4407458B2 (en) 2004-10-08 2004-10-08 High corrosion resistant steel with zinc rich primer

Publications (2)

Publication Number Publication Date
JP2006104547A true JP2006104547A (en) 2006-04-20
JP4407458B2 JP4407458B2 (en) 2010-02-03

Family

ID=36374619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295706A Active JP4407458B2 (en) 2004-10-08 2004-10-08 High corrosion resistant steel with zinc rich primer

Country Status (1)

Country Link
JP (1) JP4407458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285673A (en) * 2009-06-15 2010-12-24 Jfe Steel Corp Steel for ship excellent in coating film-blistering resistance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026938A (en) * 1998-07-13 2000-01-25 Aichi Steel Works Ltd Spring steel excellent in corrosion resistance and corrosion fatigue resistance
JP2002266052A (en) * 2001-03-09 2002-09-18 Kawasaki Steel Corp Marine steel having excellent coating film life property
JP2002309343A (en) * 2001-04-12 2002-10-23 Nkk Corp Steel sheet having excellent surface property and production method therefor
JP2002332537A (en) * 2001-05-11 2002-11-22 Kawasaki Steel Corp Coated steel material having excellent corrosion resistance
JP2002363688A (en) * 2001-06-11 2002-12-18 Kawasaki Steel Corp Coated steel having excellent corrosion preventability
JP2003171732A (en) * 2001-12-06 2003-06-20 Kobe Steel Ltd Corrosion resistant steel sheet having excellent coating corrosion resistance and pitting corrosion resistance
JP2004232057A (en) * 2003-01-31 2004-08-19 Jfe Steel Kk Zinc rich primer-coated steel having excellent iron rust resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026938A (en) * 1998-07-13 2000-01-25 Aichi Steel Works Ltd Spring steel excellent in corrosion resistance and corrosion fatigue resistance
JP2002266052A (en) * 2001-03-09 2002-09-18 Kawasaki Steel Corp Marine steel having excellent coating film life property
JP2002309343A (en) * 2001-04-12 2002-10-23 Nkk Corp Steel sheet having excellent surface property and production method therefor
JP2002332537A (en) * 2001-05-11 2002-11-22 Kawasaki Steel Corp Coated steel material having excellent corrosion resistance
JP2002363688A (en) * 2001-06-11 2002-12-18 Kawasaki Steel Corp Coated steel having excellent corrosion preventability
JP2003171732A (en) * 2001-12-06 2003-06-20 Kobe Steel Ltd Corrosion resistant steel sheet having excellent coating corrosion resistance and pitting corrosion resistance
JP2004232057A (en) * 2003-01-31 2004-08-19 Jfe Steel Kk Zinc rich primer-coated steel having excellent iron rust resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285673A (en) * 2009-06-15 2010-12-24 Jfe Steel Corp Steel for ship excellent in coating film-blistering resistance

Also Published As

Publication number Publication date
JP4407458B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP6515282B2 (en) Corrosion resistant steel for acidic environment and method for preventing corrosion
JP5453840B2 (en) Marine steel with excellent corrosion resistance
JP6390818B2 (en) Hot-rolled steel sheet, steel material, and container
JP2007191730A (en) Steel for welded structure with excellent seawater corrosion resistance, and corrosion protection method for ship ballast tank using the same
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP2006169626A (en) Highly corrosion resistant steel
JP2007254881A (en) Corrosion-resistant steel material for ship and vessel
JP2010285673A (en) Steel for ship excellent in coating film-blistering resistance
JP2012092404A (en) Steel for ship having excellent coating corrosion resistance
JP5862166B2 (en) Corrosion-resistant steel for ship outfitting
JP4407458B2 (en) High corrosion resistant steel with zinc rich primer
JP6874363B2 (en) Anti-corrosion coated steel materials and their manufacturing methods, anti-corrosion methods for coated steel materials
JP6500848B2 (en) Steel for bolts
JP4507668B2 (en) Manufacturing method of high corrosion resistant steel
JP4483378B2 (en) High corrosion resistant steel
JP6701792B2 (en) Painted corrosion resistant steel and anticorrosion method for corrosion resistant steel
JP4858436B2 (en) Zinc rich primer coated steel with excellent iron rust resistance
JP5790540B2 (en) Method for judging chemical conversion treatment of steel and method for producing steel excellent in chemical conversion treatment
JP6699633B2 (en) High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same
JP4041781B2 (en) Steel material with excellent corrosion resistance
JP3971853B2 (en) Steel material with excellent corrosion resistance
JP7200966B2 (en) Structural steel materials and structures with excellent surface properties and paint corrosion resistance
WO2015133077A1 (en) Cold-rolled steel sheet, manufacturing method therefor, and car part
JP7196539B2 (en) Corrosion resistant steel for hold of coal carrier or coal carrier
JP7196538B2 (en) Corrosion resistant steel for hold of coal carrier or coal carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Ref document number: 4407458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250