JP4858436B2 - Zinc rich primer coated steel with excellent iron rust resistance - Google Patents

Zinc rich primer coated steel with excellent iron rust resistance Download PDF

Info

Publication number
JP4858436B2
JP4858436B2 JP2007339399A JP2007339399A JP4858436B2 JP 4858436 B2 JP4858436 B2 JP 4858436B2 JP 2007339399 A JP2007339399 A JP 2007339399A JP 2007339399 A JP2007339399 A JP 2007339399A JP 4858436 B2 JP4858436 B2 JP 4858436B2
Authority
JP
Japan
Prior art keywords
steel
rich primer
zinc
steel material
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007339399A
Other languages
Japanese (ja)
Other versions
JP2008106371A (en
Inventor
和彦 塩谷
康義 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007339399A priority Critical patent/JP4858436B2/en
Publication of JP2008106371A publication Critical patent/JP2008106371A/en
Application granted granted Critical
Publication of JP4858436B2 publication Critical patent/JP4858436B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、耐鉄錆発生性に優れたジンクリッチプライマー塗布鋼材に関し、詳しくは、厚鋼板等の鋼材の表面にジンクリッチプライマーを塗布してなるジンクリッチプライマー塗布鋼材のうち特に優れた耐鉄錆発生性を有する、耐鉄錆発生性に優れたジンクリッチプライマー塗布鋼材に関する。 The present invention relates to a zinc-rich primer coating steel which is excellent in resistance to rust generation resistance, particularly, were superior especially of zinc-rich primer coating steel formed by coating a zinc-rich primer on the surface of the steel material such as steel plate having耐鉄rust resistance, excellent relates zinc-rich primer coating steel resistant to rust generation resistance.

鋼材、例えば厚鋼板は、強度が高く、かつ加工性に優れているばかりでなく、安価で入手しやすいという利点を有していることから、橋梁、鉄塔、タンクなどの鋼構造物、建物などの鋼建築物、船舶などの輸送産業物に広く使用されている。
これらの用途に供される鋼材は、一般に塗装を施して防食され、塗装前には鋼材に表面処理が施される。表面処理は一次表面処理と二次表面処理に分けられる。一次表面処理は、鋼材の加工ないし組立て工程の期間中に鉄錆発生を防止することを目的とし、製鉄所や造船所などにおいて鋼材の黒皮や鉄錆の除去を行い、その後プライマーが塗布される。二次表面処理とは、鋼材の加工ないし組立て期間にプライマーピンホールや損傷部分から発生した鉄錆などを除去し、再びプライマーを塗布する処理である。錆を除去する手段としては、サンドブラスト処理、パワーツール(グラインダ等)処理が主に行われている。プライマーとしては、ウォッシュプライマー、ジンクリッチプライマーがあるが、耐食性の観点から、ジンクリッチプライマーがよく使用されている。二次表面処理後に施される塗装には、ブチラール樹脂、ポリエステル樹脂、エポキシ樹脂などの樹脂系塗料が使用される。
Steel materials such as thick steel plates not only have high strength and excellent workability, but also have the advantage of being inexpensive and easy to obtain, so steel structures such as bridges, steel towers and tanks, buildings, etc. Widely used in transportation industry such as steel buildings and ships.
Steel materials used for these applications are generally coated to prevent corrosion, and the steel materials are subjected to surface treatment before coating. Surface treatment is divided into primary surface treatment and secondary surface treatment. The primary surface treatment is aimed at preventing the occurrence of iron rust during the processing or assembling process of steel materials, and the steel skin and iron rust are removed at steelworks and shipyards, after which a primer is applied. The The secondary surface treatment is a treatment of removing primer pinholes or iron rust generated from damaged parts during the processing or assembling of the steel material and applying the primer again. As means for removing rust, sandblasting and power tool (grinder etc.) processing are mainly performed. As a primer, there are a wash primer and a zinc rich primer, but a zinc rich primer is often used from the viewpoint of corrosion resistance. For the coating applied after the secondary surface treatment, a resin-based paint such as butyral resin, polyester resin, or epoxy resin is used.

塗装後の塗膜欠陥部における耐食性を向上した鋼材については、特許文献1、特許文献2に開示されている。
特開平10−330881号公報 特開2000−169939号公報
The steel materials with improved corrosion resistance in the coating film defects after painting are disclosed in Patent Document 1 and Patent Document 2.
JP-A-10-330881 JP 2000-169939 A

二次表面処理は、前述のとおり鋼材の加工ないし組立て期間中にプライマーピンホールや損傷部分から発生した鉄錆を除去するために行うもので、多大な負荷となっていた。この鉄錆の発生は、特許文献1〜2に開示されたところの塗装後の塗膜欠陥部における耐食性を向上した鋼材では抑制できなかった。つまり、二次表面処理の負荷を軽減するためにプライマーピンホールや損傷部分からの鉄錆の発生を軽減する鋼材が要望されていた。   As described above, the secondary surface treatment is performed in order to remove iron rust generated from primer pinholes and damaged parts during the processing or assembling of the steel material, which has been a heavy load. Generation | occurrence | production of this iron rust was not able to be suppressed with the steel materials which improved the corrosion resistance in the coating-film defect part after the painting disclosed by patent documents 1-2. That is, there has been a demand for a steel material that reduces the occurrence of iron rust from primer pinholes and damaged parts in order to reduce the load of secondary surface treatment.

本発明は、かかる要望に応えるために、ジンクリッチプライマーと鋼材の相互作用によって耐鉄錆発生性を向上した、耐鉄錆発生性に優れたジンクリッチプライマー塗布鋼材を提供することを目的とする。 The present invention, in order to meet such demands, and to provide a zinc-rich primer coating steel with improved耐鉄rust resistance, excellent resistance to rust generation resistance by the interaction of the zinc-rich primer and steel .

ジンクリッチプライマー塗布鋼材の防食機能は、1)ジンクリッチプライマー膜による鋼への環境からの水、酸素、塩化物などの腐食因子の透過抑制、2)鋼が腐食する環境下に置かれたときに、ジンクリッチプライマー中に含まれるZnが鋼を犠牲防食する効果、3)鋼およびZnの腐食生成物による鋼への環境からの水、酸素、塩化物などの腐食因子の透過抑制、によって発揮されると考えられる。そして、1)についてはジンクリッチプライマー膜のイオン透過抵抗が高いほど、2)についてはZnの犠牲防食能が高いほど、3)については腐食生成物層のイオン透過抵抗が高いほど、防食効果は高くなる。   The corrosion protection function of zinc-rich primer-coated steel is as follows: 1) Suppression of water, oxygen, chloride and other corrosive factors from the environment to the steel by the zinc-rich primer film 2) When placed in an environment where the steel corrodes 3) Effect of Zn contained in zinc rich primer on sacrificial corrosion protection of steel, 3) Permeation of corrosion factors such as water, oxygen and chloride from environment to steel by corrosion products of steel and Zn It is thought that it is done. For 1), the higher the ion permeation resistance of the zinc rich primer film, the higher the sacrificial anticorrosive ability of Zn for 2), and the higher the ion permeation resistance of the corrosion product layer for 3), the higher the anticorrosion effect. Get higher.

本発明では、2)および3)を高めることによってジンクリッチプライマー塗布鋼材の防食効果すなわち耐鉄錆発生性を向上させる。ここでいう耐鉄錆発生性とは、鋼の腐食生成物である赤錆を防止する能力を指す。
まず、3)に関して、FeおよびZnの腐食生成物層のイオン透過抵抗を高めることを検討した。一般的に、腐食生成物層のイオン透過抵抗は、腐食生成物粒子の大きさと関係があり、腐食生成物粒子が微細であるほど、イオン透過抵抗は高くなる。したがって、FeおよびZnの腐食生成物粒子を微細にできる元素の検討を行った。ここでいうFeの腐食生成物は酸化鉄、オキシ水酸化鉄などであり、Znの腐食生成物は塩基性炭酸亜鉛、酸化亜鉛、水酸化亜鉛、塩基性塩化亜鉛などである。Ni、Cu、Cr、Moなどの合金元素を添加した鋼を溶製し凝固させた鋼片を熱間圧延して鋼板となし、スケール除去後ジンクリッチプライマーを塗布して小型暴露試験片を作製した。この試験片を海岸環境に6ヶ月間暴露した。その後、形成されたFeおよびZnの腐食生成物粒子の大きさを、X線回折による半価幅および電子顕微鏡観察により評価した。その結果、いずれの合金元素についても、腐食生成物粒子を微細にする効果が認められたが、Niの効果が最も大きかった。
In the present invention, the anticorrosion effect of the zinc-rich primer-coated steel material, that is, the iron rust resistance is improved by increasing 2) and 3). The iron rust resistance here refers to the ability to prevent red rust, which is a corrosion product of steel.
First, with regard to 3), it was examined to increase the ion permeation resistance of the corrosion product layer of Fe and Zn. In general, the ion permeation resistance of the corrosion product layer is related to the size of the corrosion product particles, and the finer the corrosion product particles, the higher the ion permeation resistance. Therefore, the element which can make the corrosion product particle | grains of Fe and Zn fine was examined. The corrosion products of Fe here are iron oxide, iron oxyhydroxide and the like, and the corrosion products of Zn are basic zinc carbonate, zinc oxide, zinc hydroxide, basic zinc chloride and the like. A steel piece to which alloying elements such as Ni, Cu, Cr, and Mo are melted and solidified is hot-rolled to form a steel plate, and after removing the scale, a zinc rich primer is applied to produce a small exposure test piece. did. The specimen was exposed to the coastal environment for 6 months. Then, the size of the formed corrosion product particles of Fe and Zn was evaluated by half width by X-ray diffraction and observation with an electron microscope. As a result, for any alloy element, the effect of making the corrosion product particles fine was recognized, but the effect of Ni was the greatest.

次に、2)に関して、Znの犠牲防食能を高くできるメカニズムを考える。犠牲防食では、Feが防食される代わりに、Znが腐食する。そのためZnは次第に消耗していき、Feを防食できなくなる。したがって、Znの消耗速度を低減する必要がある。Znの消耗速度を低減するには、犠牲防食電流を小さくする必要がある。そのためには、ZnとFe間の腐食生成物のイオン透過抵抗を高める必要がある。したがって、上記検討に帰着し、Niが最も効果的であると考えられる。そこで、このことを検証すべく実験を行った。この実験では、Ni、Cu、Cr、Moなどの合金元素を添加した鋼を溶製し凝固させた鋼片を熱間圧延して鋼板となし、スケール除去して、ジンクリッチプライマーを塗布しない裸試験片とし、これを海岸環境に6ヶ月間暴露し、Fe錆層で覆われたサンプルを作製した。このサンプルとZn板を人工海水中でカップリングし、サンプル‐Zn板間の電流値を測定した。その結果、Niを添加した鋼での電流値は顕著に低減していた。これによって、確かにNi添加腐食生成物層が、犠牲防食電流低減に効果的であることが確認できた。   Next, regarding 2), a mechanism that can enhance the sacrificial anticorrosive ability of Zn is considered. In sacrificial protection, Zn is corroded instead of being protected from Fe. For this reason, Zn is gradually consumed, and Fe cannot be prevented from being corroded. Therefore, it is necessary to reduce the consumption rate of Zn. In order to reduce the consumption rate of Zn, it is necessary to reduce the sacrificial anticorrosive current. For that purpose, it is necessary to increase the ion permeation resistance of the corrosion product between Zn and Fe. Therefore, it is considered that Ni is the most effective as a result of the above examination. Therefore, an experiment was conducted to verify this. In this experiment, a steel piece to which a steel added with alloy elements such as Ni, Cu, Cr, and Mo was melted and solidified was hot-rolled to form a steel plate, scale was removed, and no zinc rich primer was applied. A test piece was prepared, which was exposed to the coastal environment for 6 months to prepare a sample covered with a Fe rust layer. This sample and a Zn plate were coupled in artificial seawater, and the current value between the sample and the Zn plate was measured. As a result, the current value in the steel to which Ni was added was significantly reduced. This confirms that the Ni-added corrosion product layer is indeed effective in reducing sacrificial anticorrosive current.

以上の検討により、鋼へのNi添加が、腐食生成物層のイオン透過抵抗を上昇し、同時に、この腐食生成物がZnの消耗速度を低減することがわかった。このことにより、ジンクリッチプライマー寿命を延長し、耐鉄錆発生性を向上しうることが確認できた。
本発明は、かかる知見に基いてなされたものである。すなわち、本発明は、以下のとおりである。
(1)スケールを除去した鋼材の表面にジンクリッチプライマーを塗布してなるジンクリッチプライマー塗布鋼材において、前記鋼材の組成が、質量%で、C:0.001〜0.20%、Si:0.60%以下、Mn:0.1〜2.0%、P:0.030%以下、S:0.01%以下、Al:0.004〜0.08%、Ni:0.1〜0.35%を含有し、さらに、質量%で、Cu:0.2〜0.5 %、Cr:0.2〜0.5 %、Mo:0.1〜0.5 %のうちの1種または2種以上を含有し、残部Feおよび不可避的不純物からなることを特徴とする耐鉄錆発生性に優れたジンクリッチプライマー塗布鋼材。
From the above examination, it was found that the addition of Ni to the steel increases the ion permeation resistance of the corrosion product layer, and at the same time, this corrosion product reduces the consumption rate of Zn. Thus, it was confirmed that the zinc rich primer life could be extended and the iron rust resistance could be improved.
The present invention has been made based on such knowledge. That is, the present invention is as follows.
(1) In a zinc rich primer-coated steel material obtained by applying a zinc rich primer to the surface of a steel material from which scale has been removed, the composition of the steel material is C: 0.001 to 0.20%, Si: 0 in mass%. .60% or less, Mn: 0.1 to 2.0%, P: 0.030% or less, S: 0.01% or less, Al: 0.004 to 0.08%, Ni: 0.1 to 0 .35%, and in addition, by mass%, Cu: 0.2 to 0.5%, Cr: 0.2 to 0.5%, Mo: 0.1 to 0.5% Alternatively, a zinc-rich primer-coated steel material excellent in iron rust resistance, comprising two or more types, and comprising the balance Fe and inevitable impurities .

本発明によれば、鋼材の加工ないし組立て期間中におけるプライマー塗布鋼材の耐鉄錆発生性が向上するので、二次表面処理の負荷を軽減できるという効果を奏する。   According to the present invention, since the iron rust resistance of the primer-coated steel material during the processing or assembling of the steel material is improved, there is an effect that the load of the secondary surface treatment can be reduced.

まず、本発明で用いる鋼材の組成の限定理由を説明する。
C:0.001〜0.20%
Cは鋼材の強度を確保するために必要な元素である。C含有量が0.001%未満では、鋼建築物、鋼構造物、あるいは産業機械等として使用するのに十分な強度が得られない。一方、0.20%を超えると、鋼材の靭性及び溶接性が劣化する。したがって、Cは0.001〜0.20%の範囲内とする必要がある。なお、好ましくは0.001〜0.16%である。
First, the reasons for limiting the composition of the steel material used in the present invention will be described.
C: 0.001 to 0.20%
C is an element necessary for ensuring the strength of the steel material. If the C content is less than 0.001%, sufficient strength for use as a steel building, steel structure, industrial machine or the like cannot be obtained. On the other hand, if it exceeds 0.20%, the toughness and weldability of the steel material deteriorate. Therefore, C needs to be in the range of 0.001 to 0.20%. In addition, Preferably it is 0.001 to 0.16%.

Si:0.60%以下
Siは脱酸作用を有するとともに、固溶強化によって鋼材の強度を向上させる元素である。Si量が0.60%を超えると、鋼材の靭性および溶接性が劣化する。したがって、Siは0.60%以下に限定した。なお、好ましくは0.10〜0.50%である。
Mn:0.1〜2.0%
Mnは、鋼材の強度を確保するために必要である。Mn量が0.1 %未満では、鋼建築物、鋼構造物、あるいは産業機械等として使用するのに十分な強度が得られない。一方、2.0%を超えると、鋼材の靭性及び溶接性が劣化する。したがって、Mnは0.1〜2.0%の範囲内とする必要がある。
Si: 0.60% or less Si is an element that has a deoxidizing action and improves the strength of the steel material by solid solution strengthening. When the amount of Si exceeds 0.60%, the toughness and weldability of the steel material deteriorate. Therefore, Si is limited to 0.60% or less. In addition, Preferably it is 0.10 to 0.50%.
Mn: 0.1 to 2.0%
Mn is necessary to ensure the strength of the steel material. If the amount of Mn is less than 0.1%, sufficient strength for use as a steel building, steel structure, industrial machine or the like cannot be obtained. On the other hand, if it exceeds 2.0%, the toughness and weldability of the steel material deteriorate. Therefore, Mn needs to be in the range of 0.1 to 2.0%.

P:0.030%以下
Pは、不純物として鋼中に含有される元素であり、鋼の靭性を劣化させるためできるだけ低減することが好ましい。とくに、0.030%を超える含有では、HAZの靭性劣化が著しくなる。このため、Pは0.030%以下に限定した。なお、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.005%以上とすることが好ましい。
P: 0.030% or less P is an element contained in steel as an impurity, and is preferably reduced as much as possible in order to deteriorate the toughness of the steel. In particular, when the content exceeds 0.030%, the toughness of HAZ is significantly deteriorated. For this reason, P was limited to 0.030% or less. In addition, since excessive P reduction raises refining cost and becomes economically disadvantageous, it is preferable to set it as 0.005% or more.

S:0.01%以下
Sは、靭性および溶接性を劣化する有害な元素であるから、可能な限り低減する必要がある。したがって、0.01%以下に限定した。
Al:0.004〜0.08%
Alは鋼の脱酸上0.004 %以上は必要であり、0.08%を超えて添加すると母材の靭性を低下させると同時に溶接金属部への希釈によって溶接金属部の靭性を劣化させる。そのため、0.004〜0.08%の範囲に限定した。
S: 0.01% or less Since S is a harmful element that deteriorates toughness and weldability, it must be reduced as much as possible. Therefore, it was limited to 0.01% or less.
Al: 0.004 to 0.08%
Al needs to be 0.004% or more in terms of deoxidation of steel, and if added over 0.08%, the toughness of the base metal is lowered and at the same time the toughness of the weld metal part is deteriorated by dilution into the weld metal part. . Therefore, it limited to 0.004 to 0.08% of range.

Ni:0.1〜0.35%
Niは、前述のようにFe腐食生成物、Zn腐食生成物を緻密にし、腐食因子の鋼への透過抵抗を高めるとともに、ジンクリッチプライマー中のZnと鋼の犠牲防食電流を低下させ、Znの消耗速度を低減する働きがある。この効果は、0.1 %以上で発現する。1.0 %を超えてもこの効果は認められるが、経済的に不利となるため、0.1〜1.0%の範囲に限定した。ただし、本発明では、Niの上限を0.35%とした。
Ni: 0.1 to 0.35%
As described above, Ni makes the Fe corrosion product and Zn corrosion product dense, increases the permeation resistance of the corrosion factor to steel, reduces the sacrificial anticorrosion current of Zn and steel in the zinc rich primer, It works to reduce the consumption rate. This effect is manifested at 0.1% or more. Although this effect is recognized even if it exceeds 1.0%, since it becomes economically disadvantageous, it limited to 0.1 to 1.0% of range. However, in the present invention, the upper limit of Ni is set to 0.35% .

Cu:0.2〜0.5%、Cr:0.2〜0.5%
CuおよびCrは、Niと同様な作用を有するが、その効果はNiほど大きくない。ただし、Niのように高価な金属でないことに鑑みて、補助的に添加することができる。また、鋼材の強度を上昇させるためにも使用できる。0.2%未満では、耐食性および強度上も、効果は小さい。また、0.5%以上では耐食性の効果が飽和する。したがって、0.2〜0.5%の範囲とした。
Cu: 0.2-0.5%, Cr: 0.2-0.5%
Cu and Cr have the same action as Ni, but the effect is not as great as Ni. However, in view of the fact that it is not an expensive metal like Ni, it can be supplementarily added. It can also be used to increase the strength of steel. If it is less than 0.2%, the effect is small in terms of corrosion resistance and strength. On the other hand, if it is 0.5% or more, the corrosion resistance effect is saturated. Therefore, it was made into the range of 0.2 to 0.5%.

Mo:0.1〜0.5%
Moは、Niと同様な作用を有し、さらに鋼への塩化物イオンの透過抑制作用があり、鋼の防食に効果がある。その効果は、0.1%で発現し、0.5%以上で飽和する。また、強度上昇元素であり、その目的で使用することもできる。0.5%を超えると靭性および溶接性に悪影響を与える。これらのことから、0.1〜0.5%の範囲とした。
Mo: 0.1 to 0.5%
Mo has an action similar to that of Ni, and further has an action of suppressing permeation of chloride ions to the steel, and is effective for preventing corrosion of the steel. The effect appears at 0.1% and saturates at 0.5% or more. It is also an element that increases strength and can be used for that purpose. If it exceeds 0.5%, the toughness and weldability will be adversely affected. From these things, it was set as 0.1 to 0.5% of range.

上に説明した成分以外は、Feおよび不可避的不純物である。不可避的不純物としては、N:0.010%以下、O:0.010%以下が許容できる。
次に、本発明のジンクリッチプライマー塗布鋼材を製造する方法について説明する。
上記の組成を有する鋼を溶製し、得られた溶鋼を連続鋳造法や造塊法などの慣用技術により凝固させ、鋼片を製造する。鋼を溶製する方法は特に限定されない。転炉、電気炉や真空脱ガス、取鍋精錬等の慣用技術を単独で、あるいは種々組み合わせて用いて、上記の組成を有する鋼を溶製すればよい。
Other than the components described above, Fe and unavoidable impurities. As unavoidable impurities, N: 0.010% or less and O: 0.010% or less are acceptable.
Next, a method for producing the zinc-rich primer-coated steel material of the present invention will be described.
Steel having the above composition is melted, and the obtained molten steel is solidified by a conventional technique such as a continuous casting method or an ingot-making method to produce a steel piece. The method for melting steel is not particularly limited. A conventional technique such as a converter, electric furnace, vacuum degassing, ladle refining or the like may be used alone or in various combinations to melt the steel having the above composition.

このように製造した鋼片に熱間圧延を施して、厚鋼板、薄鋼板、形鋼などの鋼材を製造する。熱間圧延に先立って、鋼片を加熱炉に装入して熱間圧延が可能な温度に加熱する。本発明では、加熱炉による鋼片の加熱温度は特に限定されない。ただし、鋼片の加熱温度が1000℃未満では、鋼片の変形抵抗が大きいので、熱間圧延の負荷が増大する。一方、1250℃を超えると、鋼材の結晶粒が粗大化して、機械的性質が劣化する。したがって、鋼片の加熱温度は1000〜1250℃の範囲とするのが好ましい。なお、連続鋳造法や造塊法などにより溶鋼を凝固させた鋼片が熱間圧延設備に送給されたときに熱間圧延可能な温度を有している場合は、加熱炉に装入せずそのまま熱間圧延を施してもよい。   The steel slab thus manufactured is hot-rolled to manufacture steel materials such as thick steel plates, thin steel plates, and shaped steels. Prior to hot rolling, the steel slab is charged into a heating furnace and heated to a temperature at which hot rolling is possible. In the present invention, the heating temperature of the steel slab by the heating furnace is not particularly limited. However, if the heating temperature of the steel slab is less than 1000 ° C., the deformation resistance of the steel slab is large, so the hot rolling load increases. On the other hand, when it exceeds 1250 ° C., the crystal grains of the steel material become coarse and the mechanical properties deteriorate. Accordingly, the heating temperature of the steel slab is preferably in the range of 1000 to 1250 ° C. In addition, if the steel slab that has solidified molten steel by continuous casting method or ingot-making method has a temperature that can be hot-rolled when fed to the hot-rolling equipment, it is charged in the heating furnace. Alternatively, hot rolling may be performed as it is.

このように製造した鋼材の表面にジンクリッチプライマー膜を形成するにあたっては、該膜の形成に先立って、鋼材の製造工程で発生した鋼材表面のスケールを除去する。これによりジンクリッチプライマー膜と鋼材との密着性が向上する。スケールを除去する手段は特に限定されず、ショットブラスト、サンドブラスト、ブラシケレンなどの慣用技術のいずれも用いうる。スケール除去後の鋼材表面に、Znを含有するジンクリッチプライマーを塗布して塗膜を形成する。形成されたジンクリッチプライマー膜中にはZnが70%以上含有される必要がある。その限りにおいて、塗布の方法は、特に限定されず、スプレー、刷毛塗り、ロールコーター等の慣用技術のいずれを用いてもよい。
In forming the zinc rich primer film on the surface of the steel material thus manufactured, the scale of the steel material surface generated in the steel material manufacturing process is removed prior to the formation of the film. Thereby, the adhesiveness of a zinc rich primer film | membrane and steel materials improves. The means for removing the scale is not particularly limited, and any conventional technique such as shot blasting, sand blasting or brush keren can be used. A zinc rich primer containing Zn is applied to the surface of the steel material after scale removal to form a coating film. The formed zinc rich primer film needs to contain 70% or more of Zn . As long as that is the case, the application method is not particularly limited, and any conventional technique such as spraying, brushing, or roll coater may be used.

転炉を用いて表1に示す組成になる鋼を溶製し、連続鋳造によりスラブとなし、このスラブを加熱炉に装入して1150℃に加熱した後、熱間圧延し、厚鋼板(厚さ10mm、幅3000mm)からなる鋼材を得た。かくして得られた鋼材から試験片(厚さ10mm、幅100mm 、長さ300mm )を切り出し、その表面にショットブラスト処理を施してスケールを除去し、該スケール除去後の表面に、有機ジンクリッチプライマーを塗布した。塗膜厚は15μm である。次いで、塗膜形成後の試験片の表面に長さ50mmのスクラッチを入れることで塗膜に部分的損傷を与え、暴露試験に供した。スクラッチは地鉄に達するものとし、暴露地は東京湾岸の海岸から20mの地点(飛来塩分量:0.35mg/dm/day)とした。なお、飛来塩分量は、JIS Z2381のガーゼ法で測定した値である。6ヶ月後に試験片を回収して、スクラッチから発生した赤錆の面積を測定した。各測定値をベース(比較例H)に対する比で表し、これを赤錆発生面積率(ベース比)として表1に示す。 Using a converter, the steel having the composition shown in Table 1 is melted and made into a slab by continuous casting. The slab is charged into a heating furnace and heated to 1150 ° C., and then hot-rolled to a thick steel plate ( A steel material having a thickness of 10 mm and a width of 3000 mm was obtained . Or comb specimen from the obtained steel material (thickness 10 mm, width 100 mm, length 300 mm) cut out to remove the scale by a shot blasting treatment to the surface thereof, the surface after the descaling, organic zinc-rich Primer was applied. The coating thickness is 15 μm. Next, a scratch having a length of 50 mm was put on the surface of the test piece after the coating film was formed, so that the coating film was partially damaged and subjected to an exposure test. The scratches reached the railway, and the exposed area was a point 20 m from the coast of Tokyo Bay (incoming salt content: 0.35 mg / dm 2 / day). In addition, the amount of flying salt is a value measured by the gauze method of JIS Z2381. After 6 months, the test piece was collected and the area of red rust generated from the scratch was measured. Each measured value is expressed as a ratio to the base (Comparative Example H), and this is shown in Table 1 as the red rust occurrence area ratio (base ratio).

Figure 0004858436
Figure 0004858436

参考例A,B、参考例C,Dは、Ni添加の鋼材を用いたもので、いずれも、赤錆発生面積率(ベース比)は50%以下と良好な値を示した。また、Ni量が増加するに従い、その効果(赤錆防止効果)は顕著となることがわかる。また、比較的少量のNiを添加した0.35%Ni鋼(参考例Bで用いたもの)にさらにCr、Mo、Cuをそれぞれ添加した鋼材を用いた発明例E、F、Gも、効果が向上することがわかる。一方、Niを添加せず、Cr、Mo、Cuのみをそれぞれ添加した鋼材を用いた比較例I、J、Kでは、赤錆発生面積率(ベース比)は低下するものの約80%にとどまり、効果は小さい。Ni、Cr、Cu、Moを添加しない比較例Hでは赤錆発生面積率(ベース比)は100 %と最も悪い。
Reference Examples A and B and Reference Examples C and D were made using Ni-added steel materials, and the red rust generation area ratio (base ratio) was as good as 50% or less. Moreover, it turns out that the effect (red rust prevention effect) becomes remarkable as Ni amount increases. Inventive examples E, F, and G using steel materials in which Cr, Mo, and Cu are further added to 0.35% Ni steel added with a relatively small amount of Ni (used in Reference Example B) are also effective. Can be seen to improve. On the other hand, in Comparative Examples I, J, and K using steel materials to which only Cr, Mo, and Cu were added without adding Ni, the area ratio of red rust generation (base ratio) was reduced, but only about 80%. Is small. In Comparative Example H in which Ni, Cr, Cu, and Mo are not added, the red rust generation area ratio (base ratio) is the worst at 100%.

Claims (1)

スケールを除去した鋼材の表面にジンクリッチプライマーを塗布してなるジンクリッチプライマー塗布鋼材において、前記鋼材の組成が、質量%で、C:0.001〜0.20%、Si:0.60%以下、Mn:0.1〜2.0%、P:0.030%以下、S:0.01%以下、Al:0.004〜0.08%、Ni:0.1〜0.35%を含有し、さらに、質量%で、Cu:0.2〜0.5 %、Cr:0.2〜0.5 %、Mo:0.1〜0.5 %のうちの1種または2種以上を含有し、残部Feおよび不可避的不純物からなることを特徴とする耐鉄錆発生性に優れたジンクリッチプライマー塗布鋼材。 In a zinc rich primer-coated steel material obtained by applying a zinc rich primer to the surface of a steel material from which scale has been removed, the composition of the steel material is C: 0.001 to 0.20%, Si: 0.60% in mass%. Mn: 0.1 to 2.0%, P: 0.030% or less, S: 0.01% or less, Al: 0.004 to 0.08%, Ni: 0.1 to 0.35% In addition, one or two of Cu: 0.2 to 0.5%, Cr: 0.2 to 0.5%, and Mo: 0.1 to 0.5% in mass%. A zinc-rich primer-coated steel material excellent in iron rust resistance, characterized by comprising the above, and remaining iron and inevitable impurities .
JP2007339399A 2007-12-28 2007-12-28 Zinc rich primer coated steel with excellent iron rust resistance Expired - Lifetime JP4858436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007339399A JP4858436B2 (en) 2007-12-28 2007-12-28 Zinc rich primer coated steel with excellent iron rust resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007339399A JP4858436B2 (en) 2007-12-28 2007-12-28 Zinc rich primer coated steel with excellent iron rust resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003023812A Division JP2004232057A (en) 2003-01-31 2003-01-31 Zinc rich primer-coated steel having excellent iron rust resistance

Publications (2)

Publication Number Publication Date
JP2008106371A JP2008106371A (en) 2008-05-08
JP4858436B2 true JP4858436B2 (en) 2012-01-18

Family

ID=39439973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339399A Expired - Lifetime JP4858436B2 (en) 2007-12-28 2007-12-28 Zinc rich primer coated steel with excellent iron rust resistance

Country Status (1)

Country Link
JP (1) JP4858436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108948964A (en) * 2018-07-27 2018-12-07 史丹龙涂料(常州)有限公司 Single-walled carbon nanotube reinforced epoxy zinc rich primer and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363688A (en) * 2001-06-11 2002-12-18 Kawasaki Steel Corp Coated steel having excellent corrosion preventability
JP2004232057A (en) * 2003-01-31 2004-08-19 Jfe Steel Kk Zinc rich primer-coated steel having excellent iron rust resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108948964A (en) * 2018-07-27 2018-12-07 史丹龙涂料(常州)有限公司 Single-walled carbon nanotube reinforced epoxy zinc rich primer and preparation method thereof

Also Published As

Publication number Publication date
JP2008106371A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5453840B2 (en) Marine steel with excellent corrosion resistance
JP4790423B2 (en) Welded structural steel excellent in seawater corrosion resistance and ship ballast tank anticorrosion method using the same
JP5119595B2 (en) Corrosion resistant steel for shipbuilding
JP5617191B2 (en) Marine steel with excellent film swell resistance
TWI683911B (en) Structural steel and structures
JP5481980B2 (en) Marine steel with excellent film swell resistance
CN108291282B (en) Hot-rolled steel sheet, steel material, and container
JP2016199778A (en) Steel material and method for producing the steel material
JP2011021248A (en) Steel for ship having excellent coating corrosion resistance
JP5839151B1 (en) Steel, a ballast tank and a hold of a ship using this steel, and a ship provided with this ballast tank or a hold
JP2012057236A (en) Steel material for ballast tank
JP5958103B2 (en) Steel material for marine ballast tanks with excellent paint swell resistance
JP5526667B2 (en) Hot rolled section steel for ship ballast tank with excellent corrosion resistance and method for producing the same
JP6772942B2 (en) Corrosion resistant steel for ballast tanks
JP4858436B2 (en) Zinc rich primer coated steel with excellent iron rust resistance
KR101597481B1 (en) Welding joint and steel having exceptional galvanic corrosion resistance
JP5862166B2 (en) Corrosion-resistant steel for ship outfitting
JP5413392B2 (en) Corrosion resistant steel for shipbuilding
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JP4207765B2 (en) Steel material for marine ballast tanks with excellent corrosion resistance
JP2004232057A (en) Zinc rich primer-coated steel having excellent iron rust resistance
JP4507668B2 (en) Manufacturing method of high corrosion resistant steel
JP4407458B2 (en) High corrosion resistant steel with zinc rich primer
TWI601832B (en) Hot rolled steel sheet, steel, and container
JP6409962B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4858436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term