JP2006100547A - Superconducting device - Google Patents

Superconducting device Download PDF

Info

Publication number
JP2006100547A
JP2006100547A JP2004284507A JP2004284507A JP2006100547A JP 2006100547 A JP2006100547 A JP 2006100547A JP 2004284507 A JP2004284507 A JP 2004284507A JP 2004284507 A JP2004284507 A JP 2004284507A JP 2006100547 A JP2006100547 A JP 2006100547A
Authority
JP
Japan
Prior art keywords
bonding
superconducting
package
superconducting filter
superconducting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004284507A
Other languages
Japanese (ja)
Inventor
Teru Nakanishi
輝 中西
Akihiko Akasegawa
章彦 赤瀬川
Kazunori Yamanaka
一典 山中
Manabu Kai
学 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004284507A priority Critical patent/JP2006100547A/en
Publication of JP2006100547A publication Critical patent/JP2006100547A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/858Bonding techniques
    • H01L2224/85801Soldering or alloying
    • H01L2224/85815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting device in which the center conductor of a coaxial connector is connected to the electrode of a signal input/output line by bonding, and bonding parts does not separate under a temperature change from an ordinary temperature to an extremely low temperature, so that the device maintains high reliability. <P>SOLUTION: The superconducting device comprises a bonding wire 14 which connects the electrode 13D formed on the signal input/output line 13C to the center conductor 12A of the coaxial connector 12 fixed to a package 11, and In system solder 15 which is fusion welded to the bonding parts to reinforce them. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、常温から液体窒素温度のような低温まで苛酷な温度変化を経ても導電接続箇所に事故が発生することがないようにした超伝導デバイスに関する。   The present invention relates to a superconducting device in which an accident does not occur at a conductive connection point even after a severe temperature change from room temperature to a low temperature such as liquid nitrogen temperature.

現在、移動通信機器、例えば携帯電話などが急速に発展しつつあり、そして、通話機能に止まらず、画像や動画などのデータを送受信することが必要とされ、大容量の情報を伝送する技術が不可欠となっている。   Currently, mobile communication devices such as mobile phones are rapidly developing, and it is necessary to transmit and receive data such as images and videos, not just a call function. It has become indispensable.

また、これまでに、超伝導体については様々な応用分野が開かれつつあるが、高周波領域に於いても通常の電気的良導体に比較して表面抵抗が極めて小さいことから、前記移動通信の基地局に於ける信号のフィルタなどとしても有望視されている。   In addition, various fields of application have been opened for superconductors so far, but the surface resistance of the mobile communication base is extremely small even in the high frequency region as compared with normal electrical good conductors. It is also considered promising as a signal filter in a station.

超伝導体は、酸化物高温超伝導体の発見に依って、実用する場合に冷却を必要とするハンディキャップが大幅に改善され、また、液体窒素温度まで冷却するための小型高性能冷凍機の開発も進められているところから、前記超伝導フィルタは伝送損失が少なく、急峻な周波数遮断特性や広帯域伝送の面で期待されている。   Superconductors have greatly improved the handicap that requires cooling in practical use due to the discovery of oxide high-temperature superconductors, and the use of small high-performance refrigerators for cooling to liquid nitrogen temperatures. From the point of development, the superconducting filter has low transmission loss and is expected in terms of steep frequency cut-off characteristics and broadband transmission.

前記のような技術進展を背景として、現在、超伝導デバイスは、例えば、移動通信の分野に於いて、システムに組み込んで、評価が行われている状態にある(例えば、非特許文献1を参照。)。   Against the background of the above technical progress, superconducting devices are currently being evaluated by being incorporated into systems in the field of mobile communications, for example (see Non-Patent Document 1, for example). .)

図8は超伝導フィルタを構成する超伝導フィルタデバイスを表す要部平面図であり、図に於いて、1は誘電体基板、2はヘアピン型共振器、3は信号入出力線をそれぞれ示している。   FIG. 8 is a plan view of a principal part showing a superconducting filter device constituting the superconducting filter, wherein 1 is a dielectric substrate, 2 is a hairpin resonator, and 3 is a signal input / output line. Yes.

図示された超伝導フィルタデバイスは、平面回路型超伝導ヘアピンフィルタパターンをもち、そのフィルタパターンに於けるヘアピンの一つ一つが所要の共振周波数をもって共振器を構成している。   The illustrated superconducting filter device has a planar circuit type superconducting hairpin filter pattern, and each hairpin in the filter pattern constitutes a resonator with a required resonance frequency.

複数のヘアピン型共振器2を並設した場合、その数と同じ数分の共振周波数が現れるので、それぞれの共振周波数を調節してフィルタ特性を実現させたり、或いは、ヘアピン型共振器2間の結合係数と外部Q値を電磁界シミュレーション上で調整してフィルタ特性を実現させることが行われ、そして、ヘアピン型共振器2の数が多いほど、フィルタとしての周波数遮断特性は急峻になる。   When a plurality of hairpin resonators 2 are arranged in parallel, the same number of resonance frequencies appear, so that the filter characteristics can be realized by adjusting each resonance frequency, or between the hairpin resonators 2. A filter characteristic is realized by adjusting the coupling coefficient and the external Q value on the electromagnetic field simulation, and the frequency cutoff characteristic as a filter becomes steeper as the number of hairpin resonators 2 increases.

この超伝導フィルタデバイスは、高周波を遮蔽する為の金属パッケージに収め、その信号入出力線3を金属パッケージに固着された同軸コネクタに接続し、同軸コネクタを介して高周波信号を入出力できるようにしなければならず、従って、同軸コネクタの中心導体と信号入出力線3の電極部分とをボンディングワイヤやボンディングテープを用いて電気的に接続する(例えば、特許文献1を参照。)。   This superconducting filter device is housed in a metal package for shielding high frequencies, and its signal input / output line 3 is connected to a coaxial connector fixed to the metal package so that high frequency signals can be input / output via the coaxial connector. Therefore, the central conductor of the coaxial connector and the electrode portion of the signal input / output line 3 are electrically connected using a bonding wire or a bonding tape (see, for example, Patent Document 1).

この際の接続手段としては、機械的押し付け、はんだ付け、ワイヤボンディングなど、種々の手段が存在しているのであるが、超伝導フィルタを用いる温度環境である−200℃程度まで冷却され、各構成部材に熱収縮差を生じても、良好な電気的接続が確保できるようにしなければならない。   There are various means such as mechanical pressing, soldering, wire bonding, etc. as connection means in this case, but it is cooled to about -200 ° C. which is a temperature environment using a superconducting filter, and each configuration Even if a difference in heat shrinkage occurs in the member, it is necessary to ensure good electrical connection.

図9は中心導体と信号入出力線の電極との接続例を説明する為の超伝導フィルタの要部切断側面図であり、図に於いて、11はNiCoFe合金(例えば商品名コバール)からなるパッケージ、12は同軸コネクタ、12Aは中心導体、13は超伝導フィルタデバイス、13Aは誘電体基板、13Bはフィルタパターン、13Cは信号入出力線、13Dは電極、13EはYBCOからなるグランド層、13FはAgからなるグランド電極、14はAuからなるボンディングワイヤをそれぞれ示している。   FIG. 9 is a cutaway side view of the main part of the superconducting filter for explaining an example of connection between the center conductor and the signal input / output line electrode. In FIG. Package, 12 is a coaxial connector, 12A is a central conductor, 13 is a superconducting filter device, 13A is a dielectric substrate, 13B is a filter pattern, 13C is a signal input / output line, 13D is an electrode, 13E is a ground layer made of YBCO, 13F Denotes a ground electrode made of Ag, and 14 denotes a bonding wire made of Au.

図から明らかなように、中心導体12Aと電極13Dとはワイヤ14に依って接続されている。そして、この構造にする理由は、ワイヤ14の弾性変形領域内に於いて室温から極低温の冷却状態で発生する各部材の熱収縮差に起因する応力を吸収することができるとされている。   As is apparent from the figure, the central conductor 12A and the electrode 13D are connected by a wire 14. The reason for this structure is that the stress due to the thermal contraction difference of each member generated in the cooled state from room temperature to cryogenic temperature in the elastic deformation region of the wire 14 can be absorbed.

ところで、超伝導技術分野を除く一般的なワイヤボンディングに依る接合を行った場合には、超音波熱圧着した接合箇所を保護及び固定する目的で当該箇所を樹脂で覆うことが行われているが、超伝導フィルタの場合、約−200℃程度の低温環境で使用する為、低温に冷却された樹脂は自身の熱収縮でクラックが入ったり、或いは、接合部分を引き剥がしてしまう旨の問題があり、前記樹脂に依る保護などは実施できない。   By the way, when joining by general wire bonding except for the superconducting technology field, the part is covered with resin for the purpose of protecting and fixing the joined part subjected to ultrasonic thermocompression bonding. In the case of a superconducting filter, since it is used in a low temperature environment of about -200 ° C., there is a problem that the resin cooled to a low temperature cracks due to its own thermal contraction or peels off the joint part. Yes, protection by the resin cannot be performed.

また、超伝導フィルタに於いて、ワイヤボンディングの超音波熱圧着箇所を保護することなく使用した場合、種々な材料からなる部品で構成されている超伝導フィルタパッケージが室温と低温の間を往来するから、部品間の熱収縮差やワイヤの接合箇所と超伝導フィルタデバイスに於ける誘電体基板との熱収縮差に依って、ワイヤの接合箇所に応力が発生し、本来ならばワイヤの作用で応力が吸収されるべきところ、超音波熱圧着した接合箇所が剥がれてしまう。
特許第2954562号明細書 内田 貴 他「第三世代移動通信の無線中継増幅装置用超電導フロントエンド」J.Cryo.Soc.Jpn.Vol.39 No.6(2004)264頁〜270頁
In addition, when a superconducting filter is used without protecting the ultrasonic thermocompression bonding part of wire bonding, a superconducting filter package composed of parts made of various materials can be passed between room temperature and low temperature. Therefore, stress is generated at the wire joint due to the heat shrinkage difference between the components and the heat shrinkage difference between the wire joint and the dielectric substrate in the superconducting filter device. Where the stress is to be absorbed, the ultrasonic thermocompression bonded part is peeled off.
Japanese Patent No. 2954562 Takashi Uchida et al. “Superconducting Front End for Wireless Relay Amplifier for Third Generation Mobile Communications” Cryo. Soc. Jpn. Vol. 39 no. 6 (2004) pages 264-270

本発明では、同軸コネクタに於ける中心導体と信号入出力線の電極とを接合し、その接合箇所が常温と極低温との間を往来しても剥離を生ずることがなく高い信頼性を維持できる超伝導デバイスを実現させようとする。   In the present invention, the central conductor and the signal input / output line electrode in the coaxial connector are joined, and even if the joined part goes back and forth between room temperature and extremely low temperature, no peeling occurs and high reliability is maintained. We try to realize a superconducting device that can be used.

本発明に依る超伝導デバイスに於いては、超伝導デバイスに於ける信号入出力線に形成した電極とパッケージに固着された同軸コネクタに於ける中心導体とを結ぶボンディングワイヤと、ボンディング箇所に融着されて当該箇所を補強するIn系はんだとを備えてなることを基本としている。   In the superconducting device according to the present invention, the bonding wire connecting the electrode formed on the signal input / output line in the superconducting device and the central conductor in the coaxial connector fixed to the package, and the bonding point are fused. It is basically provided with an In-based solder that is attached to reinforce the part.

前記手段を採ることに依り、超音波熱圧着した接合箇所は超伝導デバイスが動作する極低温に於いても柔軟な特性を維持できるIn系はんだで補強されているので、ボンディングワイヤの弾性変形領域内に於いて各種部材の熱収縮と熱膨張の差に起因する応力を良好に吸収して、長期に亙って高い信頼性を維持することが可能であり、特に、超伝導デバイスの一種である超伝導フィルタに実施して有効である。   By adopting the above means, the ultrasonic thermocompression-bonded joints are reinforced with In-based solder that can maintain flexible characteristics even at extremely low temperatures at which superconducting devices operate. It is possible to absorb the stress caused by the difference between thermal contraction and thermal expansion of various members and maintain high reliability for a long time. Especially, it is a kind of superconducting device. It is effective when applied to a certain superconducting filter.

図1は本発明の一実施の形態である超伝導フィルタを表す要部切断側面図であり、図9に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   FIG. 1 is a cutaway side view showing a main part of a superconducting filter according to an embodiment of the present invention. The same symbols as those used in FIG. 9 represent the same parts or have the same meaning. .

図示のように、同軸コネクタ12に於ける中心導体12Aと信号入出力線13Cの電極13Dとをボンディングワイヤ14で接続した超音波熱圧着箇所に低温環境に於いても柔軟な性質を維持するIn系はんだ15を施して接合を強化してある。尚、本発明で用いるIn系はんだは、純In、In−Ag系、In−Pb系、In−Sn系から適宜選択して良い。   As shown in the drawing, an ultrasonic thermocompression bonding point where the central conductor 12A of the coaxial connector 12 and the electrode 13D of the signal input / output line 13C are connected by the bonding wire 14 maintains a flexible property even in a low temperature environment. Bonding is strengthened by applying a system solder 15. The In solder used in the present invention may be appropriately selected from pure In, In—Ag, In—Pb, and In—Sn.

超音波熱圧着箇所は接合強度が最も低い部分であることから、In系はんだ15を施すことで、当該箇所の接合強度は大きく向上し、超伝導フィルタが室温と低温との間を往来したり、或いは、同軸コネクタ12が僅かに捩れたりすることで発生する応力はボンディングワイヤ14の部分で充分に吸収することが可能となり、長期に亙って接続の安定性を維持することができる。   Since the ultrasonic thermocompression bonding portion is the portion with the lowest bonding strength, application of In-based solder 15 greatly improves the bonding strength of the portion, and the superconducting filter travels between room temperature and low temperature. Alternatively, the stress generated when the coaxial connector 12 is slightly twisted can be sufficiently absorbed by the bonding wire 14, and the stability of the connection can be maintained for a long time.

図2は本発明一実施例に用いる超伝導フィルタデバイスの要部平面図であり、図1に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。尚、以下の説明では図1も併せて参照する。   FIG. 2 is a plan view of an essential part of a superconducting filter device used in an embodiment of the present invention. The same symbols as those used in FIG. 1 represent the same parts or have the same meaning. In the following description, FIG. 1 is also referred to.

図示の超伝導フィルタデバイスは、レーザ蒸着法を適用することに依り、MgOからなる誘電体基板13Aの表裏両面にYBCO薄膜を成膜し、フォトリソグラフィ技術を適用することに依り、何れか一方の面に於けるYBCO薄膜をエッチングして9個のヘアピン型共振器2からなる9段バンドパスフィルタパターン13Bに加工する。   The superconducting filter device shown in the figure depends on the application of a laser deposition method, YBCO thin films are formed on both front and back surfaces of a dielectric substrate 13A made of MgO, and either one of them depends on the application of a photolithography technique. The YBCO thin film on the surface is etched and processed into a nine-stage bandpass filter pattern 13B composed of nine hairpin resonators 2.

この超伝導フィルタデバイスに於ける誘電体基板1の大きさは37×18×0.5mmであって、4GHz近傍に中心周波数をもち、帯域幅は約100MHzである。   The size of the dielectric substrate 1 in this superconducting filter device is 37 × 18 × 0.5 mm, has a center frequency in the vicinity of 4 GHz, and a bandwidth of about 100 MHz.

真空蒸着法及びリソグラフィ技術を適用することに依り、信号入出力線13Cの端部に電極13D(図1又は図5を参照。)を形成する。   By applying a vacuum vapor deposition method and a lithography technique, an electrode 13D (see FIG. 1 or FIG. 5) is formed at the end of the signal input / output line 13C.

誘電体基板13Aの他方の面は全面がYBCOからなるグランド層13Eで覆われているのであるが、この上に更にAgからなるグランド電極13Fを形成する。このグランド電極13Fは、平面回路をもつ超伝導フィルタデバイス13をパッケージ11に収めた場合の電気的接続性を向上させる役割を果たすものである。   The other surface of the dielectric substrate 13A is entirely covered with a ground layer 13E made of YBCO, and a ground electrode 13F made of Ag is further formed thereon. The ground electrode 13F plays a role of improving electrical connectivity when the superconducting filter device 13 having a planar circuit is housed in the package 11.

図3乃至図5は平面回路型超伝導フィルタデバイスをパッケージに収容して超伝導フィルタを完成させる工程を説明する為の工程要所に於ける超伝導フィルタを表す要部切断斜面図であり、図1及び図2に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   FIG. 3 to FIG. 5 are main part cut slope views showing the superconducting filter in the process key points for explaining the process of housing the planar circuit type superconducting filter device in the package and completing the superconducting filter. The same symbols as those used in FIGS. 1 and 2 represent the same parts or have the same meaning.

図3参照
超伝導フィルタデバイス13は、Auめっきされたコバールからなるパッケージ11に収容され、板ばね(図示せず)で固定する。尚、パッケージ11の材料としては、コバールのみでなく、例えばインバー、42アロイ、Cu、Cu合金、Al、Al合金など、適宜に選択して良い。
See FIG. 3. The superconducting filter device 13 is accommodated in a package 11 made of Kovar plated with Au, and fixed with a leaf spring (not shown). The material of the package 11 is not limited to Kovar, but may be appropriately selected from Invar, 42 alloy, Cu, Cu alloy, Al, Al alloy, and the like.

図4参照
パッケージ11にねじ留めされた同軸コネクタ12の中心導体12Aと超伝導フィルタデバイス13の電極13Dとをボンディングワイヤ14で接続する。ボンディングワイヤ14の材質はAu、直径は25μmであり、接続時にはパッケージ11を100℃に予熱し、超音波を印加しながら圧着する方法を採った。
See FIG. 4 A central conductor 12A of the coaxial connector 12 screwed to the package 11 and an electrode 13D of the superconducting filter device 13 are connected by a bonding wire. The bonding wire 14 is made of Au and has a diameter of 25 μm. At the time of connection, the package 11 is preheated to 100 ° C., and is bonded by applying ultrasonic waves.

次いで、パッケージ11の予熱温度を120℃とし、超音波熱圧着した箇所にロジン系フラックスを塗布し、直径が0.1mmのInはんだボール(融点157℃)を載置し、はんだ鏝を近付けてInを融解し、Auのボンディングワイヤ14の接合箇所に溶かし付け、超音波熱圧着箇所の補強を行った。この後、全体を洗浄液に浸漬してフラックス残渣などを除去した。尚、Inを融解するには、はんだ鏝の他、リフローはんだ付け、VPS(vapor phase soldering)、レーザーはんだ付けなどから選択した何れかの手段を採ることができる。   Next, the preheating temperature of the package 11 is set to 120 ° C., rosin flux is applied to the ultrasonic thermocompression-bonded portion, an In solder ball (melting point 157 ° C.) having a diameter of 0.1 mm is placed, and a soldering iron is brought close to the package 11. In was melted and melted at the bonding portion of the Au bonding wire 14 to reinforce the ultrasonic thermocompression bonding portion. Thereafter, the whole was immersed in a cleaning solution to remove flux residues and the like. In addition, in order to melt In, any means selected from reflow soldering, VPS (vapor phase soldering), laser soldering, and the like can be used in addition to soldering iron.

図5参照
パッケージ11に高周波シールド用のフィルタパッケージカバー16を被嵌固定して超伝導フィルタを完成する。尚、本発明の超伝導デバイスに用いる超伝導体材料は、RBCO(RはY,Nd,Gd,Sm,Hoの何れかであり、R−Ba−Cu−O系。)、BSCCO(Bi−Sr−Ca−Cu−O系)、PBSCCO(Pb−Bi−Sr−Ca−Cu−O系)、CBCCO(CuBapCaqCurOx,1.5<p<2.5、2.5<q<3.5、3.5<r<4.5)など多くの材料を選択することができる。
See FIG. 5. A filter package cover 16 for high-frequency shielding is fitted and fixed to the package 11 to complete a superconducting filter. The superconductor material used in the superconducting device of the present invention is RBCO (R is any of Y, Nd, Gd, Sm, and Ho, R-Ba-Cu-O system), BSCCO (Bi- Sr-Ca-Cu-O system), PBSCCO (Pb-Bi-Sr-Ca-Cu-O system), CBCCO (CuBapCaqCurOx, 1.5 <p <2.5, 2.5 <q <3.5, Many materials can be selected such as 3.5 <r <4.5).

この超伝導フィルタを冷凍機にセットし、70Kまで冷却しても接合箇所の破断は発生しなかった。これはInはんだが柔軟な性質をもつ為、超伝導フィルタが常温と低温との間を往来しても、接合箇所に応力が加わらない為である。   Even when this superconducting filter was set in a refrigerator and cooled to 70K, the joint was not broken. This is because, since In solder has a flexible property, no stress is applied to the joint even when the superconducting filter moves between room temperature and low temperature.

図6はInはんだを用いた場合の接合状態を説明する為の超伝導フィルタを表す要部切断側面図であり、図1乃至図5に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   FIG. 6 is a cut-away side view of the main part showing a superconducting filter for explaining the joining state when In solder is used. Does the same symbol as that used in FIGS. 1 to 5 represent the same part? Or it shall have the same meaning.

図から判るように、In系はんだ15と誘電体基板13Aとの間で発生する熱収縮と熱膨張との差で生じる応力(矢印を参照)はInはんだ15自体で吸収(破線を参照)されるから、接合箇所は良好な状態に保つことができる。   As can be seen from the figure, the stress (see arrows) generated by the difference between thermal shrinkage and thermal expansion generated between the In-based solder 15 and the dielectric substrate 13A is absorbed by the In solder 15 itself (see the broken line). Therefore, the joint location can be kept in a good state.

また、故意に同軸コネクタ12の固着ねじを緩め、若干の捩じりを加えても、Auのボンディングワイヤ14が捩れを吸収するので、接合箇所の破壊は生じない。   Even if the fixing screw of the coaxial connector 12 is intentionally loosened and a slight twist is applied, the bonding wire 14 of Au absorbs the twist, so that the joint portion is not broken.

前記したところから、パッケージ11の材料としては、安価ではあるが熱収縮及び熱膨張の差が大きいAlなども使用することができ、超伝導フィルタのコストダウンを実現することができる。   As described above, as the material of the package 11, Al, which is inexpensive but has a large difference in thermal shrinkage and thermal expansion, can be used, and the cost of the superconducting filter can be reduced.

前記説明した実施例1に於けるAuのボンディングワイヤ14を幅0.15mm、厚さ0.02mmのAuからなるテープに代替しても同じ効果を得ることができる。また、ボンディングワイヤ14やボンディングテープなどの接合材料は、Auに限られることなく他の材料であっても、超音波熱圧着が可能、且つ、In系はんだで接合可能な材料であれば良く、そして、ボンディングワイヤ14の接続本数は1本のみでなく、複数本を用いることができ、この点はボンディングテープであっても同様である。   The same effect can be obtained even if the Au bonding wire 14 in Example 1 described above is replaced with a tape made of Au having a width of 0.15 mm and a thickness of 0.02 mm. Further, the bonding material such as the bonding wire 14 and the bonding tape is not limited to Au, but may be any material that can be ultrasonically thermocompression-bonded and can be bonded with In-based solder. And the number of connection of the bonding wire 14 is not limited to one, and a plurality of bonding wires 14 can be used, and this is the same for the bonding tape.

ボンディングワイヤ14(或いはボンディングテープ)を接合するはんだ材料は、実施例1及び2で用いたInの他、In−3wt%Pb、In−48wt%Snなどを用いることができ、その場合も超伝導フィルタを室温と70Kの低温との間を往来させ、また、同軸コネクタ12を若干捩じっても接合箇所が破断することがない接合を実現することができる。然しながら、Sn−37wt%Pb共晶はんだを用いて接合を行った場合、室温と70Kの低温との間を往来することで超伝導フィルタデバイス13の電極13D近傍で剥離を生ずる。   As the solder material for bonding the bonding wire 14 (or bonding tape), In-3 wt% Pb, In-48 wt% Sn, etc. can be used in addition to In used in the first and second embodiments. It is possible to realize a joint where the filter is moved between room temperature and a low temperature of 70K, and the joint portion is not broken even if the coaxial connector 12 is slightly twisted. However, when bonding is performed using Sn-37 wt% Pb eutectic solder, peeling occurs in the vicinity of the electrode 13D of the superconducting filter device 13 by moving between room temperature and a low temperature of 70K.

図7はSn−37wt%Pb共晶はんだを用いて接合を行った場合を説明する超伝導フィルタデバイスを表す要部切断側面図であり、図1乃至図6に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   FIG. 7 is a cutaway side view of a principal part showing a superconducting filter device for explaining the case of joining using Sn-37 wt% Pb eutectic solder, and is the same as the symbols used in FIGS. Represent the same part or have the same meaning.

図示例の場合、Sn−37wt%Pb共晶はんだ15AとMgOからなる誘電体基板13Aとの熱収縮差に起因する応力(矢印を参照)をSn−37wt%Pbに依って吸収することができず、応力は信号入出力線13C近傍の領域17に集中して剥離を生じたものと考えられる。   In the case of the illustrated example, the stress (see arrow) due to the thermal contraction difference between the Sn-37 wt% Pb eutectic solder 15A and the MgO dielectric substrate 13A can be absorbed by Sn-37 wt% Pb. It is considered that the stress concentrated on the region 17 near the signal input / output line 13C and caused peeling.

このような現象が生起するのは、Sn−37wt%Pbが低温で硬くなることに主因があり、従って、ボンディングワイヤ14(或いはボンディングテープ)を接合するはんだ材料は、低温に於いて柔軟性を維持できることが絶対的に必要である。   Such a phenomenon occurs mainly because Sn-37 wt% Pb becomes hard at low temperatures, and therefore the solder material for bonding the bonding wire 14 (or bonding tape) has flexibility at low temperatures. It is absolutely necessary that it can be maintained.

本発明に於いては、前記説明した実施例を含め、多くの形態で実施することができ、以下、それを付記として例示する。   In the present invention, the present invention can be implemented in many forms including the above-described embodiment, which will be exemplified below as supplementary notes.

(付記1)
超伝導デバイスに於ける信号入出力線に形成した電極とパッケージに固着された同軸コネクタに於ける中心導体とを結ぶボンディングワイヤと、
ボンディング箇所に融着されて当該箇所を補強するIn系はんだと
を備えてなることを特徴とする超伝導デバイス。
(Appendix 1)
A bonding wire that connects an electrode formed on a signal input / output line in a superconducting device and a central conductor in a coaxial connector fixed to the package;
A superconducting device comprising an In-based solder that is fused to a bonding location to reinforce the location.

(付記2)
ボンディングワイヤをボンディングテープに代替して成ること
を特徴とする(付記1)記載の超伝導デバイス。
(Appendix 2)
The superconducting device according to (Appendix 1), wherein the bonding wire is replaced with a bonding tape.

(付記3)
ボンディングワイヤ或いはボンディングテープが超音波熱圧着することが可能であると共にIn系はんだと接合可能である材料から成ること
を特徴とする(付記1)或いは(付記2)記載の超伝導デバイス。
(Appendix 3)
The superconducting device according to (Appendix 1) or (Appendix 2), wherein the bonding wire or the bonding tape is made of a material that can be ultrasonically thermocompression bonded and can be bonded to an In-based solder.

(付記4)
In系はんだは純In、In−Ag系、In−Pb系、In−Sn系から選択されたものであること
を特徴とする(付記1)乃至(付記3)の何れか1記載の超伝導デバイス。
(Appendix 4)
The superconductor according to any one of (Appendix 1) to (Appendix 3), wherein the In solder is selected from pure In, In—Ag, In—Pb, and In—Sn. device.

(付記5)
In系はんだははんだ鏝、リフローはんだ付け、VPS(vapor phase soldering)、レーザーはんだ付けの何れかの手段で融着されたものであること
を特徴とする(付記1)乃至(付記4)の何れか1記載の超伝導デバイス。
(Appendix 5)
In type solder is any one of (Appendix 1) to (Appendix 4) characterized by being fused by any means of soldering iron, reflow soldering, VPS (vapor phase soldering), and laser soldering. A superconducting device according to claim 1.

(付記6)
パッケージがインバー、コバール、42アロイ、Cu、Cu合金、Al、Al合金から選択された材料から成ること
を特徴とする(付記1)乃至(付記5)の何れか1記載の超伝導デバイス。
(Appendix 6)
The superconducting device according to any one of (Appendix 1) to (Appendix 5), wherein the package is made of a material selected from Invar, Kovar, 42 alloy, Cu, Cu alloy, Al, and Al alloy.

(付記7)
超伝導デバイスに於ける超伝導体がRBCO(RはY,Nd,Gd,Sm,Hoの何れかであり、R−Ba−Cu−O系。)、BSCCO(Bi−Sr−Ca−Cu−O系)、PBSCCO(Pb−Bi−Sr−Ca−Cu−O系)、CBCCO(CuBapCaqCurOx,1.5<p<2.5、2.5<q<3.5、3.5<r<4.5)であること
を特徴とする(付記1)乃至(付記6)の何れか1記載の超伝導デバイス。
(Appendix 7)
Superconductors in superconducting devices are RBCO (R is any of Y, Nd, Gd, Sm, and Ho, R-Ba-Cu-O system), BSCCO (Bi-Sr-Ca-Cu-). O system), PBSCCO (Pb-Bi-Sr-Ca-Cu-O system), CBCCO (CuBapCaqCurOx, 1.5 <p <2.5, 2.5 <q <3.5, 3.5 <r < 4.5), the superconducting device according to any one of (Appendix 1) to (Appendix 6).

本発明の一実施の形態である超伝導フィルタを表す要部切断側面図である。It is a principal part cutting side view showing the superconducting filter which is one embodiment of this invention. 本発明一実施例に用いる超伝導フィルタデバイスの要部平面図である。It is a principal part top view of the superconducting filter device used for one Example of this invention. 平面回路型超伝導フィルタデバイスをパッケージに収容して超伝導フィルタを完成させる工程を説明する為の工程要所に於ける超伝導フィルタを表す要部切断斜面図である。It is a principal part cutting slope figure showing the superconducting filter in the process important point for demonstrating the process of accommodating a planar circuit type superconducting filter device in a package, and completing a superconducting filter. 平面回路型超伝導フィルタデバイスをパッケージに収容して超伝導フィルタを完成させる工程を説明する為の工程要所に於ける超伝導フィルタを表す要部切断斜面図である。It is a principal part cutting slope figure showing the superconducting filter in the process important point for demonstrating the process of accommodating a planar circuit type superconducting filter device in a package, and completing a superconducting filter. 平面回路型超伝導フィルタデバイスをパッケージに収容して超伝導フィルタを完成させる工程を説明する為の工程要所に於ける超伝導フィルタを表す要部切断斜面図である。It is a principal part cutting slope figure showing the superconducting filter in the process important point for demonstrating the process of accommodating a planar circuit type superconducting filter device in a package, and completing a superconducting filter. Inはんだを用いた場合の接合状態を説明する為の超伝導フィルタを表す要部切断側面図である。It is a principal part cutting side view showing the superconducting filter for demonstrating the joining state at the time of using In solder. Sn−37wt%Pb共晶はんだを用いて接合を行った場合を説明する超伝導フィルタデバイスを表す要部切断側面図である。It is a principal part cutting side view showing the superconducting filter device explaining the case where it joins using Sn-37 wt% Pb eutectic solder. 超伝導フィルタを構成する超伝導フィルタデバイスを表す要部平面図である。It is a principal part top view showing the superconducting filter device which comprises a superconducting filter. 中心導体と信号入出力線の電極との接続例を説明する為の超伝導フィルタの要部切断側面図である。It is a principal part cutting side view of the superconducting filter for demonstrating the example of a connection of a center conductor and the electrode of a signal input / output line.

符号の説明Explanation of symbols

11 パッケージ
12 同軸コネクタ
12A 中心導体
13 超伝導フィルタデバイス
13A 誘電体基板
13B フィルタパターン
13C 信号入出力線
13D 電極
13E グランド層
13F グランド電極
14 ボンディングワイヤ
15 In系はんだ
15A Sn−37wt%Pb共晶はんだ
16 フィルタパッケージカバー
17 応力集中領域
DESCRIPTION OF SYMBOLS 11 Package 12 Coaxial connector 12A Center conductor 13 Superconducting filter device 13A Dielectric substrate 13B Filter pattern 13C Signal input / output line 13D Electrode 13E Ground layer 13F Ground electrode 14 Bonding wire 15 In system solder 15A Sn-37 wt% Pb eutectic solder 16 Filter package cover 17 Stress concentration area

Claims (5)

超伝導デバイスに於ける信号入出力線に形成した電極とパッケージに固着された同軸コネクタに於ける中心導体とを結ぶボンディングワイヤと、
ボンディング箇所に融着されて当該箇所を補強するIn系はんだと
を備えてなることを特徴とする超伝導デバイス。
A bonding wire that connects an electrode formed on a signal input / output line in a superconducting device and a central conductor in a coaxial connector fixed to the package;
A superconducting device comprising an In-based solder that is fused to a bonding location to reinforce the location.
ボンディングワイヤをボンディングテープに代替して成ること
を特徴とする請求項1記載の超伝導デバイス。
2. The superconducting device according to claim 1, wherein the bonding wire is replaced with a bonding tape.
ボンディングワイヤ或いはボンディングテープが超音波熱圧着することが可能であると共にIn系はんだと接合可能である材料から成ること
を特徴とする請求項1或いは請求項2記載の超伝導デバイス。
3. The superconducting device according to claim 1, wherein the bonding wire or the bonding tape is made of a material which can be ultrasonically thermocompression bonded and can be bonded to an In-based solder.
In系はんだは純In、In−Ag系、In−Pb系、In−Sn系から選択されたものであること
を特徴とする請求項1乃至請求項3の何れか1記載の超伝導デバイス。
4. The superconducting device according to claim 1, wherein the In solder is selected from pure In, In—Ag, In—Pb, and In—Sn.
パッケージがインバー、コバール、42アロイ、Cu、Cu合金、Al、Al合金から選択された材料から成ること
を特徴とする請求項1乃至請求項4の何れか1記載の超伝導デバイス。
5. The superconducting device according to claim 1, wherein the package is made of a material selected from Invar, Kovar, 42 alloy, Cu, Cu alloy, Al, and Al alloy.
JP2004284507A 2004-09-29 2004-09-29 Superconducting device Pending JP2006100547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284507A JP2006100547A (en) 2004-09-29 2004-09-29 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284507A JP2006100547A (en) 2004-09-29 2004-09-29 Superconducting device

Publications (1)

Publication Number Publication Date
JP2006100547A true JP2006100547A (en) 2006-04-13

Family

ID=36240065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284507A Pending JP2006100547A (en) 2004-09-29 2004-09-29 Superconducting device

Country Status (1)

Country Link
JP (1) JP2006100547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097026A (en) * 2007-10-12 2009-05-07 Hitachi Global Storage Technologies Netherlands Bv Data storage device
JP2009182091A (en) * 2008-01-30 2009-08-13 C I Kasei Co Ltd Light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284831A (en) * 1987-05-18 1988-11-22 Nippon Inter Electronics Corp Manufacture of hybrid integrated circuit
JP2954562B2 (en) * 1998-01-27 1999-09-27 株式会社移動体通信先端技術研究所 Superconducting planar circuit and manufacturing method thereof
JP2003110305A (en) * 2001-09-27 2003-04-11 Fujitsu Ltd Superconducting filter package and superconducting filter unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284831A (en) * 1987-05-18 1988-11-22 Nippon Inter Electronics Corp Manufacture of hybrid integrated circuit
JP2954562B2 (en) * 1998-01-27 1999-09-27 株式会社移動体通信先端技術研究所 Superconducting planar circuit and manufacturing method thereof
JP2003110305A (en) * 2001-09-27 2003-04-11 Fujitsu Ltd Superconducting filter package and superconducting filter unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097026A (en) * 2007-10-12 2009-05-07 Hitachi Global Storage Technologies Netherlands Bv Data storage device
JP2009182091A (en) * 2008-01-30 2009-08-13 C I Kasei Co Ltd Light emitting device

Similar Documents

Publication Publication Date Title
CN110494998B (en) Thermal management for superconducting interconnects
WO2000052782A1 (en) Superconducting filter module, superconducting filter, and heat-insulated coaxial cable
WO2013164918A1 (en) Superconducting wire connection structure, superconducting wire connection method, and superconducting wire for connecting
JPH1032356A (en) Highly efficient and low thermal loss double temperature superconducting device
JP4236408B2 (en) Thermal shutdown signal transmission unit and superconducting signal transmission device
CN113412541A (en) Cold-welded flip chip interconnection structure
WO2019063115A1 (en) Bump bonded cryogenic chip carrier
JP2006100547A (en) Superconducting device
JP2004508732A (en) Cryogenic equipment
KR100714935B1 (en) Superconducting device
JP2009038567A (en) Superconducting filter device, superconducting filter package, and superconducting filter apparatus
JP5040290B2 (en) Superconducting filter device
JPH11204844A (en) Packaging structure for superconductive circuit
JP2004259752A (en) Electronic device and method of manufacturing same
US20230237362A1 (en) Quantum device and quantum computer
JP4899735B2 (en) Coaxial connector and manufacturing method thereof, superconducting device and manufacturing method thereof
JP4587768B2 (en) Superconducting device and method of manufacturing superconducting device
JP2006101187A (en) Superconducting device
JP4486551B2 (en) Superconducting filter device and manufacturing method thereof
JPH01500945A (en) Low temperature integrated chip
JP4519397B2 (en) Superconducting circuit and manufacturing method thereof
JP2003110305A (en) Superconducting filter package and superconducting filter unit
JPH0983210A (en) Superconducting circuit and superconducting microwave circuit
JP5160585B2 (en) Superconducting circuit and method of manufacturing superconducting circuit
JP2005108891A (en) Input/output terminal, semiconductor element housing package, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511