JP2006096914A - Polyolefinic resin extruded foam - Google Patents
Polyolefinic resin extruded foam Download PDFInfo
- Publication number
- JP2006096914A JP2006096914A JP2004286311A JP2004286311A JP2006096914A JP 2006096914 A JP2006096914 A JP 2006096914A JP 2004286311 A JP2004286311 A JP 2004286311A JP 2004286311 A JP2004286311 A JP 2004286311A JP 2006096914 A JP2006096914 A JP 2006096914A
- Authority
- JP
- Japan
- Prior art keywords
- foam
- mass
- resin
- extruded foam
- resin extruded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Molding Of Porous Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、帯電防止性能に優れた吸水性の低いポリオレフィン系樹脂押出発泡体に関する。 The present invention relates to a polyolefin resin extruded foam having excellent antistatic performance and low water absorption.
従来からポリオレフィン系樹脂発泡体は、低い吸水性を特徴として、水分を嫌う電子部品の包装材や、結露が発生しやすい個所であっても防水シートの施工が不要の断熱材として使用されている。中でもポリオレフィン系樹脂押出発泡体は、ポリオレフィン系樹脂ビーズ成形発泡体に比べてビーズ間の空隙がないため吸水しにくく高級な包装材、断熱材として使用されている。
又ポリオレフィン系樹脂は電気絶縁体であるので、ポリオレフィン系樹脂発泡体生産時に帯電した発泡体から、人体に対して放電ショックを与える場合や、可燃性ガスを用いている場合には、放電による発火の危険性があり、生産時の安全確保のために発泡体が帯電しないことが求められる。更には、電子部品の包装材として用いる場合には、静電気障害防止のため、発泡体が帯電しないことが求められる。
Conventionally, polyolefin resin foams are characterized by low water absorption, and are used as packaging materials for electronic components that dislike moisture, and as heat insulating materials that do not require the construction of waterproof sheets even in places where condensation is likely to occur. . Among them, the polyolefin resin extruded foam is used as a high-grade packaging material and heat insulating material which hardly absorbs water because there is no void between the beads compared to the polyolefin resin bead-molded foam.
In addition, since polyolefin resin is an electrical insulator, when a shock is applied to the human body from a foam charged during the production of polyolefin resin foam, or when a flammable gas is used, ignition is caused by discharge. In order to ensure safety during production, the foam is required not to be charged. Furthermore, when used as a packaging material for electronic parts, the foam is required not to be charged in order to prevent static electricity damage.
ポリオレフィン系樹脂発泡体に帯電防止性を付与する方法としては、分子内に親水基と親油基をもつ帯電防止剤を、発泡成形時に混練するあるいは、得られた発泡体表面に塗布する方法が広く一般に行われている。しかしながら前記の帯電防止剤は、親水基を含むため添加量が多くなるほど吸水性が高くなる傾向があるので、優れた帯電防止性能と低い吸水性を満足することは非常に困難である。帯電防止性能を発現するために必要な添加量は、発泡体の密度が小さくなるほど多く必要となるため、発泡体密度が0.1g/cm3以下で吸水率が増加する問題が顕著となる。更に発泡体密度が0.02g/cm3以下では、生産時の安全確保や、電子部品の静電気障害を防止する包装材として十分な帯電防止性能を持つポリオレフィン系樹脂押出発泡体はこれまで得られていない。この理由としては、0.02g/cm3以下の密度の発泡体に帯電防止性能を付与するのに、帯電防止剤の添加が多量に必要であることが考えられる。ポリオレフィン系樹脂押出発泡体の生産時に、帯電防止剤を多量に添加した場合には、押出機内で樹脂がスリップし生産が安定しない問題もある。発泡体密度が0.1〜0.03g/cm3程度のポリオレフィン系樹脂発泡体について帯電防止性を付与する方法が特許文献1に記載されている。特許文献1では、アルケニルスルホン酸金属塩を帯電防止剤として添加した、帯電防止性能に優れたポリオレフィン系樹脂発泡体が開示されている。しかし、帯電防止性能には優れるものの、吸水性が高い問題が依然として残されている。
本発明は、優れた帯電防止性能と低い吸水性の両方を満足するポリオレフィン系樹脂押出発泡体を提供することを目的とする。 It is an object of the present invention to provide a polyolefin resin extruded foam that satisfies both excellent antistatic performance and low water absorption.
本発明者等は、ポリオレフィン系樹脂押出発泡体の気泡膜表面に特定の帯電防止剤を表面濃度、0.1〜3.0μg/cm2で存在させることで上記課題が解決されることを見出し、本発明をなすに至った。
すなわち、本発明は、下記の通りである。
(1)脂肪酸と多価アルコールのエステル、脂肪酸アミド、アルキル脂肪酸アミド、アルキルスルホン酸金属塩から選ばれる少なくとも1種以上の帯電防止剤を含むポリオレフィン系樹脂押出発泡体であって前記帯電防止剤の表面濃度が、0.1〜3.0μg/cm2であることを特徴とするポリオレフィン系樹脂押出発泡体。
(2)帯電防止剤の表面濃度が0.1〜2.0μg/cm2であり、ポリオレフィン系樹脂発泡体の密度が0.007〜0.100g/cm3であることを特徴とする(1)に記載のポリオレフィン系樹脂押出発泡体。
(3)ポリオレフィン系樹脂発泡体の平均セルサイズが0.01cm〜0.30cmであることを特徴とする(1)又は(2)に記載のポリオレフィン系樹脂押出発泡体。
(4)帯電防止剤が脂肪酸と多価アルコールのエステルとアルキルスルホン酸金属塩の混合物であることを特徴とする(1)〜(3)のいずれかに記載のポリオレフィン系樹脂押出発泡体。
The present inventors have found that the above-mentioned problem can be solved by allowing a specific antistatic agent to be present at a surface concentration of 0.1 to 3.0 μg / cm 2 on the surface of the cellular membrane of the polyolefin resin extruded foam. The present invention has been made.
That is, the present invention is as follows.
(1) A polyolefin-based resin extruded foam containing at least one antistatic agent selected from esters of fatty acids and polyhydric alcohols, fatty acid amides, alkyl fatty acid amides, and alkylsulfonic acid metal salts. A polyolefin resin extruded foam having a surface concentration of 0.1 to 3.0 μg / cm 2 .
(2) The surface concentration of the antistatic agent is 0.1 to 2.0 μg / cm 2 , and the density of the polyolefin resin foam is 0.007 to 0.100 g / cm 3 (1 The polyolefin-based resin extruded foam as described in 1).
(3) The polyolefin resin extruded foam according to (1) or (2), wherein the average cell size of the polyolefin resin foam is 0.01 cm to 0.30 cm.
(4) The polyolefin resin extruded foam according to any one of (1) to (3), wherein the antistatic agent is a mixture of an ester of a fatty acid, a polyhydric alcohol, and an alkylsulfonic acid metal salt.
本発明により、優れた帯電防止性能と低い吸水性の両方を満足するポリオレフィン系樹脂押出発泡体を提供することができる。 According to the present invention, it is possible to provide a polyolefin resin extruded foam satisfying both excellent antistatic performance and low water absorption.
本発明について、特にその好ましい実施態様を中心に、以下具体的に説明する。
本発明のポリオレフィン系樹脂押出発泡体は、好ましくは押出機内で樹脂と発泡剤及び帯電防止剤、必要に応じて気泡核形成剤等の添加剤を加圧下で溶融混練した後、適正な発泡温度まで冷却して得られた発泡性溶融混合物を押出機先端に取り付けたダイスを通して大気圧下に押出して発泡させることにより得られる。
オレフィン系樹脂とは、一般公知のオレフィン系樹脂と呼ばれるものならいずれを用いてもよい。例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン等のポリエチレン、ポリプロピレン、ポリブテン、エチレン−プロピレンブロック共重合体、エチレン−プロピレンランダム共重合体、エチレン−ブテンランダム共重合体、エチレン−ブテン−プロピレンランダム共重合体等が挙げられ、少なくとも1種類を樹脂中に含むものである。発泡性に優れ、大きな断面の発泡体が得られるという点で低密度ポリエチレンが、もっとも好ましい。オレフィン系樹脂に、他種類樹脂を配合しても支障はないが、その場合オレフィン系樹脂は全樹脂量の50質量%以上が好ましい。オレフィン系樹脂と配合する他種類樹脂はオレフィン系樹脂と配合できるものならどんな樹脂でも支障はない。それらの配合量は樹脂全体の50質量%未満が好ましく、スチレン系樹脂などは40質量%以下がより好ましい。スチレン系樹脂には、ポリスチレン、ハイインパクトポリスチレン等が用いられるが、樹脂に制限はない。また更にスチレン系樹脂を混合する場合には相溶性を上げるために水素添化されたスチレン−ブタジエンブロック共重合体を樹脂全体の20質量%以下混合するのが好ましく、10質量%以下がより好ましい。
The present invention will be specifically described below, particularly focusing on preferred embodiments thereof.
The polyolefin-based resin extruded foam of the present invention preferably has an appropriate foaming temperature after melt-kneading a resin, a foaming agent and an antistatic agent, and if necessary an additive such as a cell nucleating agent, under pressure in an extruder. It is obtained by extruding and foaming a foamable molten mixture obtained by cooling to atmospheric pressure through a die attached to the tip of the extruder.
Any olefin resin may be used as long as it is called a generally known olefin resin. For example, polyethylene such as high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, polypropylene, polybutene, ethylene-propylene block copolymer, ethylene-propylene random copolymer Examples thereof include a polymer, an ethylene-butene random copolymer, an ethylene-butene-propylene random copolymer, and the like, wherein at least one kind is included in the resin. Low-density polyethylene is most preferable in that it has excellent foamability and a foam having a large cross section can be obtained. There is no problem even if other types of resins are added to the olefin resin, but in that case, the olefin resin is preferably 50% by mass or more of the total resin amount. Any other resin that can be blended with the olefin resin can be used as long as it can be blended with the olefin resin. The blending amount thereof is preferably less than 50% by mass of the whole resin, and the styrene resin or the like is more preferably 40% by mass or less. As the styrenic resin, polystyrene, high impact polystyrene or the like is used, but the resin is not limited. Further, when a styrene resin is further mixed, it is preferable to mix a hydrogenated styrene-butadiene block copolymer in an amount of 20% by mass or less, and more preferably 10% by mass or less, in order to increase compatibility. .
ポリオレフィン系樹脂押出発泡体の製造に用いられる発泡剤は、公知の発泡剤を用いることができ、例えばプロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ヘキサン等の脂肪族炭化水素、シクロブタン、シクロペンタン等の環式脂肪族炭化水素、クロロジフルオロエタン、ジフルオロエタン、メチルクロライド、エチルクロライド等のハロゲン化炭化水素、トリクロロフルオロメタン、ジクロロジフルオロメタン、テトラフルオロエタン、ジクロロテトラフルオロエタン、メチレンクロライド等のハロゲン化炭化水素、炭酸ガス、窒素、ヘリウム、アルゴン等の無機ガス等が挙げられる。これらの発泡剤は、単体で用いても良く、2種以上の発泡剤を混合して用いても良い。発泡剤としては、ブタンを使用するのが大断面の発泡体を得る事ができるので好ましい。ブタンを使用する場合、ブタンに占めるノルマルブタンの比率は65〜100質量%が好ましく、より好ましくは70〜100質量%である。ノルマルブタンの比率が65〜100質量%であると、発泡体からの発泡剤の逸散が速く、早期に燃焼範囲下限濃度(1.8vol%)未満にまでガス濃度が低下し、発泡体が着火・燃焼する可能性を低減できる。本発明の発泡剤の添加量は、得ようとするポリオレフィン系押出発泡体の密度に応じて適宜調節すればよいがポリオレフィン系樹脂100質量部に対して1〜30質量部が好ましい。 A known foaming agent can be used as the foaming agent used in the production of the polyolefin resin extruded foam. For example, aliphatic carbonization such as propane, n-butane, i-butane, n-pentane, i-pentane, and hexane. Cycloaliphatic hydrocarbons such as hydrogen, cyclobutane and cyclopentane, halogenated hydrocarbons such as chlorodifluoroethane, difluoroethane, methyl chloride and ethyl chloride, trichlorofluoromethane, dichlorodifluoromethane, tetrafluoroethane, dichlorotetrafluoroethane, methylene Examples thereof include halogenated hydrocarbons such as chloride, inorganic gases such as carbon dioxide, nitrogen, helium, and argon. These foaming agents may be used alone or as a mixture of two or more foaming agents. As the foaming agent, it is preferable to use butane because a foam with a large cross section can be obtained. When butane is used, the ratio of normal butane in butane is preferably 65 to 100% by mass, more preferably 70 to 100% by mass. When the ratio of normal butane is 65 to 100% by mass, the dissipation of the foaming agent from the foam is fast, the gas concentration is lowered to less than the lower limit of the combustion range (1.8 vol%) at an early stage, and the foam The possibility of ignition and combustion can be reduced. Although the addition amount of the foaming agent of the present invention may be appropriately adjusted according to the density of the polyolefin-based extruded foam to be obtained, it is preferably 1-30 parts by weight with respect to 100 parts by weight of the polyolefin-based resin.
帯電防止剤としては、脂肪酸と多価アルコールのエステル、脂肪酸アミド、アルキル脂肪酸アミド、アルキルスルホン酸金属塩から選ばれる少なくとも1種以上が用いられる。脂肪酸は、例えば、パルミチン酸、ラウリン酸、オレイン酸、ステアリン酸、ベヘン酸等が挙げられる。多価アルコールは、例えば、グリセリン、ジグリセリン、トリグリセリン、キシリット、マンニット、ソルビット、ソルビタン等が挙げられる。脂肪酸アミドは、例えばオレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、ラウリン酸アミド等が挙げられる。アルキル脂肪酸アミドは、R1−CONH−R2で表される化合物(ただしR1、R2は炭素数11から18のアルキル基)等が挙げられる。アルキルスルホン酸金属塩は、例えば炭素数10〜26のアルキルスルホン酸とナトリウム、カリウム、リチウム等の金属塩が挙げられる。中でも脂肪酸と多価アルコールのエステルとアルキルスルホン酸金属塩の混合物を用いると相乗効果により少量の添加量で優れた帯電防止性能と低い吸水性の効果が得られるので好ましい。帯電防止剤の添加量はポリオレフィン系樹脂100質量部に対して0.3〜2質量部用いるのが好ましい。更に好ましくは0.5〜1質量部である。0.3質量部以上であれば帯電防止性能は十分になり、2質量部以下であれば低吸水性の効果が十分になる。 As the antistatic agent, at least one selected from esters of fatty acids and polyhydric alcohols, fatty acid amides, alkyl fatty acid amides, and alkylsulfonic acid metal salts are used. Examples of the fatty acid include palmitic acid, lauric acid, oleic acid, stearic acid, behenic acid and the like. Examples of the polyhydric alcohol include glycerin, diglycerin, triglycerin, xylit, mannitol, sorbit, sorbitan and the like. Examples of the fatty acid amide include oleic acid amide, erucic acid amide, stearic acid amide, and lauric acid amide. Examples of the alkyl fatty acid amide include a compound represented by R1-CONH-R2 (wherein R1 and R2 are alkyl groups having 11 to 18 carbon atoms). Examples of the alkylsulfonic acid metal salt include alkylsulfonic acid having 10 to 26 carbon atoms and metal salts such as sodium, potassium, and lithium. Among them, it is preferable to use a mixture of an ester of a fatty acid and a polyhydric alcohol and a metal salt of an alkyl sulfonic acid because a synergistic effect can provide an excellent antistatic performance and a low water absorption effect with a small addition amount. The addition amount of the antistatic agent is preferably 0.3 to 2 parts by mass with respect to 100 parts by mass of the polyolefin resin. More preferably, it is 0.5-1 mass part. If it is 0.3 parts by mass or more, the antistatic performance is sufficient, and if it is 2 parts by mass or less, the effect of low water absorption is sufficient.
本発明においては、必要に応じて気泡核形成剤を用いてもよい。気泡核形成剤としては、例えば、タルクのような無機物質、ステアリン酸亜鉛のような脂肪酸の金属塩、ポリテトラフルオロエチレンの微粉末、あるいは押出機の温度で分解して分解ガスを発生するような化学発泡剤、またはその温度で反応して炭酸ガスを発生する酸とアルカリの混合物のようなもの等を使用できる。これらの気泡核形成剤を使用する場合は、添加量を0〜10質量部の範囲で調節するのが好ましい。使用する気泡核形成剤の種類により得られるセルサイズが異なるが、気泡核形成剤の添加量を増加するとセルサイズを小さくすることができる。 In the present invention, a bubble nucleating agent may be used as necessary. Examples of the bubble nucleating agent include an inorganic substance such as talc, a metal salt of a fatty acid such as zinc stearate, a fine powder of polytetrafluoroethylene, or a decomposition gas generated by decomposition at an extruder temperature. A chemical foaming agent or a mixture of acid and alkali that reacts at that temperature to generate carbon dioxide can be used. When using these bubble nucleating agents, it is preferable to adjust the addition amount in the range of 0 to 10 parts by mass. Although the cell size obtained differs depending on the type of bubble nucleating agent used, the cell size can be reduced by increasing the amount of the bubble nucleating agent added.
さらに、発泡剤の逸散速度を調節するガス透過調整剤(収縮防止剤とも呼ばれる)を添加しても良い。帯電防止剤の中には、脂肪酸と多価アルコールのエステルの様に、帯電防止機能と発泡剤の逸散速度を調節する機能を併せ持つ物もあるので、必要に応じてガス透過調整剤(収縮防止剤)の機能を付加することが出来る。一般に使用されているガス透過調整剤(収縮防止剤)も分子内に親水基と親油基を持つため、添加量が多いと吸水率が増加する傾向にあるので、ガス透過調整剤(収縮防止剤)を使用する場合は、帯電防止剤及びガス透過調整剤(収縮防止剤)を合わせた表面濃度が0.1〜3.0μg/cm2の範囲にあることが好ましい。ガス透過調整剤(収縮防止剤)の添加量は、0〜2.0質量部が好ましい。さらに、必要に応じて、オレフィン系樹脂に対し酸化防止剤、紫外線吸収剤、着色剤等を添加することもできる。 Further, a gas permeation modifier (also referred to as an anti-shrinkage agent) that adjusts the dissipation rate of the foaming agent may be added. Some antistatic agents, such as esters of fatty acids and polyhydric alcohols, have both an antistatic function and a function to adjust the dissipation rate of the foaming agent. The function of an inhibitor) can be added. Commonly used gas permeation modifiers (shrinkage prevention agents) also have hydrophilic groups and lipophilic groups in the molecule, so there is a tendency for water absorption to increase when the amount added is large. When the agent is used, the surface concentration of the antistatic agent and the gas permeation modifier (shrinkage preventing agent) is preferably in the range of 0.1 to 3.0 μg / cm 2 . The addition amount of the gas permeation modifier (shrinkage prevention agent) is preferably 0 to 2.0 parts by mass. Furthermore, an antioxidant, an ultraviolet absorber, a colorant, etc. can also be added with respect to an olefin resin as needed.
発泡体の厚みは、20mm以上80mm以下が好ましく、その厚み構成は単層または熱融着等による積層のいずれでも構わない。
発泡体の独立気泡率は、好ましくは80〜100%、より好ましくは90〜100%である。独立気泡率が80%以上であると、緩衝包装材として充分な緩衝性能を発揮することができるとともに、発泡体内へ水が浸入しにくいため吸水率を低くすることができる。
発泡体の密度は、0.007〜0.100g/m3であれば優れた帯電防止性能と低い吸水性を両立しやすいため好ましく、より好ましくは、0.007〜0.030g/cm3さらに好ましくは0.007〜0.020g/cm3である。密度が0.007〜0.100g/cm3であると、断熱材、浮き材、緩衝包装材用途として優れている。密度は小さいほど使用樹脂量が少ないため省資源の観点から好ましい。また、セルサイズは、好ましくは0.01〜0.30cm、より好ましくは0.01〜0.12cm、さらに好ましくは0.01〜0.05cmである。断熱材用途においては、セルサイズが小さいほど断熱性能がよいので好ましい。
The thickness of the foam is preferably 20 mm or more and 80 mm or less, and the thickness structure may be either a single layer or a laminate by heat fusion or the like.
The closed cell ratio of the foam is preferably 80 to 100%, more preferably 90 to 100%. When the closed cell ratio is 80% or more, sufficient buffer performance as a cushioning packaging material can be exhibited, and the water absorption rate can be lowered because water hardly enters the foamed body.
The density of the foam is preferably 0.007 to 0.100 g / m 3 because it is easy to achieve both excellent antistatic performance and low water absorption, and more preferably 0.007 to 0.030 g / cm 3. Preferably it is 0.007-0.020 g / cm < 3 >. When the density is 0.007 to 0.100 g / cm 3, it is excellent as a heat insulating material, a floating material, or a buffer packaging material. The smaller the density, the smaller the amount of resin used, which is preferable from the viewpoint of resource saving. The cell size is preferably 0.01 to 0.30 cm, more preferably 0.01 to 0.12 cm, and still more preferably 0.01 to 0.05 cm. In the heat insulating material application, the smaller the cell size, the better the heat insulating performance, which is preferable.
帯電防止剤の表面濃度は、0.1〜3.0μg/cm2に限定される。ポリオレフィン系樹脂押出発泡体の帯電防止剤は、ほぼ気泡膜表面にブリードアウトすることから、帯電防止剤の表面濃度は、帯電防止剤添加量、発泡体密度、発泡体のセルサイズより以下の近似式で計算される。したがって下記近似式より算出した帯電防止剤の表面濃度が0.1〜3.0μg/cm2を満たす範囲内で、帯電防止剤添加量、発泡体密度、発泡体のセルサイズがそれぞれの好ましい範囲から選択される。帯電防止剤の表面濃度が0.1〜2.0μg/cm2であると吸水率が低くなるので好ましい。帯電防止剤の表面濃度が0.1〜1.0μg/cm2であると吸水率が更に低くなるのでより好ましい。
帯電防止剤表面濃度(μg/cm2)
=((樹脂100質量部に対する帯電防止剤添加量(質量部)/100)/気泡膜表面積)×1000000
気泡膜表面積(cm2/g発泡体)
=3.29×(1−発泡体密度/樹脂密度)/(セルサイズ/2×樹脂密度)
ここで、各物性値の単位は、
発泡体密度:g/cm3 樹脂密度:g/cm3 セルサイズ:cm
The surface concentration of the antistatic agent is limited to 0.1 to 3.0 μg / cm 2 . Since the antistatic agent of polyolefin resin extruded foam almost bleeds out to the surface of the cell membrane, the surface concentration of the antistatic agent is less than the amount of antistatic agent added, the foam density, and the cell size of the foam. Calculated by the formula. Therefore, within the range where the surface concentration of the antistatic agent calculated from the following approximate expression satisfies 0.1 to 3.0 μg / cm 2 , the preferable amount of the antistatic agent added amount, the foam density, and the cell size of the foam are respectively preferable ranges. Selected from. When the surface concentration of the antistatic agent is 0.1 to 2.0 μg / cm 2 , the water absorption rate is lowered, which is preferable. When the surface concentration of the antistatic agent is 0.1 to 1.0 μg / cm 2 , the water absorption is further reduced, which is more preferable.
Antistatic agent surface concentration (μg / cm 2 )
= ((Antistatic agent added amount with respect to 100 parts by mass of resin (parts by mass) / 100) / Bubble membrane surface area) × 1000000
Bubble membrane surface area (cm 2 / g foam)
= 3.29 × (1-foam density / resin density) / (cell size / 2 × resin density)
Here, the unit of each physical property value is
Foam density: g / cm 3 Resin density: g / cm 3 Cell size: cm
以下、本発明を実施例に基づいて説明する。実施例に示された値は次の方法により測定したものである。
(1)発泡体密度(JIS K 6767準拠法)
発泡体の幅方向に5等分した各位置から全厚み方向に切り出した物(サンプルサイズ20mm×20mm×厚み25mm)について質量及び体積を測定し、次式により密度を測定して、5点の密度の平均値を発泡体密度とする。
発泡体密度(g/cm3)=発泡体質量(g)/発泡体体積(cm3)
(2)発泡体のセルサイズ
発泡体の中央部から試験片をカットし、カット面に発泡体の押出方向、幅方向、厚み方向に沿ってL(cm)の直線を引き、これらの直線に接触している気泡の数を数え、次式により押出方向、幅方向、厚み方向のセルサイズを算出し、更に3方向の平均値をセルサイズとした(グリッドライン法)。
各方向のセルサイズ(cm)=1.626×L/気泡数
Hereinafter, the present invention will be described based on examples. The values shown in the examples are measured by the following method.
(1) Foam density (according to JIS K 6767)
The mass and volume of a product (sample size 20 mm × 20 mm × thickness 25 mm) cut out in the entire thickness direction from each position divided into 5 equal parts in the width direction of the foam were measured, and the density was measured according to the following formula. The average density is defined as the foam density.
Foam density (g / cm 3 ) = foam mass (g) / foam volume (cm 3 )
(2) Cell size of foam The test piece is cut from the center of the foam, and a straight line of L (cm) is drawn on the cut surface along the extrusion direction, the width direction, and the thickness direction of the foam. The number of bubbles in contact was counted, the cell size in the extrusion direction, the width direction, and the thickness direction was calculated by the following formula, and the average value in the three directions was defined as the cell size (grid line method).
Cell size (cm) in each direction = 1.626 × L / number of bubbles
(3)帯電圧
発泡体を10枚重ねた状態で周囲に金属が存在しない床上に30分静置し、一番上の発泡体について、静電気測定器(シムコジャパン製FMX-002(商品名))を用いて発泡体表面の帯電電位を5点測定し、5点の平均を発泡体の帯電圧とした。測定時の雰囲気は、温度20℃±3℃、湿度55%±5%とした。帯電圧測定結果により、以下の基準で評価した。
◎:帯電圧 5kV未満
○:帯電圧 5kV以上〜10kV未満
×:帯電圧 10kV以上
(3) Charge voltage
Place 10 foams on a floor with no metal around them for 30 minutes and foam the top foam using a static meter (SIMX Japan FMX-002 (trade name)). The charging potential on the surface of the body was measured at five points, and the average of the five points was taken as the charged voltage of the foam. The atmosphere during the measurement was a temperature of 20 ° C. ± 3 ° C. and a humidity of 55% ± 5%. Based on the measurement result of the charged voltage, the following criteria were used for evaluation.
◎: Charge voltage less than 5 kV ○: Charge voltage 5 kV or more and less than 10 kV ×: Charge voltage 10 kV or more
(4)吸水率 (NDS Z 0503準拠法)
全表面が切断面からなる様に100mm×100mm、厚さ25mmの大きさに発泡体を切り出し、NDS Z 0503によって測定した結果によって、以下の基準で評価した。
◎:吸水率 0.1%未満
○:吸水率 0.1%以上〜1%未満
×:吸水率 1%以上
(5)発泡体の独立気泡率
ASTM−D2856に記載されているエアーピクノメーター法(東京サイエンス(株)製、空気比較式比重計1000型(商品名)使用)により測定し、n=5の平均で算出した。
(4) Water absorption rate (NDS Z 0503 compliant method)
The foam was cut into a size of 100 mm × 100 mm and a thickness of 25 mm so that the entire surface was a cut surface, and evaluated according to the following criteria based on the results measured by NDS Z 0503.
◎: Water absorption rate less than 0.1% ○: Water absorption rate 0.1% to less than 1% ×: Water absorption rate 1% or more (5) Closed cell ratio of foam The air pycnometer method described in ASTM-D2856 (Measured by Tokyo Science Co., Ltd., using air comparison type hydrometer 1000 type (trade name)) and calculated with an average of n = 5.
[実施例1]
150mmのバレル内径を有するスクリュー型押出機の供給領域に600kg/時間の速度で、高密度ポリエチレン(密度0.96g/cm3 MI=0.03g/10分)を、樹脂100質量部に対し、気泡核形成剤としてタルク1.8質量部及び帯電防止剤としてパルミチン酸モノグリセライド60質量%とアルキル基の炭素数が10から20(炭素数の平均値=15)であるアルキルスルホン酸ナトリウム40質量%の混合物1.0質量部とともに供給した。押出機のバレル温度を190℃〜210℃に調整し、押出機の先端に取り付けた発泡剤注入口から発泡剤としてノルマルブタンをこの樹脂100質量部に対し26質量部を圧入し、当該溶融樹脂組成物と混合して発泡性溶融混合物とした。この発泡性溶融混合物を押出機の出口に取り付けた冷却装置で135℃まで冷却した後、約2.2mmの平均厚みと約160mm幅の開口部形状を有するオリフィスプレートより、常温、大気圧下の雰囲気中に連続的に押出して発泡させ、樹脂発泡体の引き取り速度を調整しながら成形して、厚み30mm、幅600mm、長さ2000mm、セルサイズ0.05cm、密度0.012g/cm3、独立気泡率95%、帯電防止剤の表面濃度約0.9μg/cm2の板状樹脂発泡体を得た。得られた発泡体について発泡後30分に帯電圧の測定を行い、この発泡体を発泡1時間後から40℃で10日間その後室温で3日間保存した後、吸水率の評価を行なった。その結果を表1に示す。
[Example 1]
High-density polyethylene (density 0.96 g / cm 3 MI = 0.03 g / 10 min) at a rate of 600 kg / hour in a feed region of a screw-type extruder having a barrel inner diameter of 150 mm, with respect to 100 parts by mass of resin, As a bubble nucleating agent, 1.8 parts by mass of talc, and as an antistatic agent, 60% by mass of palmitic acid monoglyceride and an alkyl group having 10 to 20 carbon atoms (average value of carbon number = 15) are 40% by mass of sodium alkylsulfonate. And 1.0 parts by mass of the mixture. The barrel temperature of the extruder was adjusted to 190 ° C. to 210 ° C., and 26 parts by mass of normal butane as a foaming agent was injected into 100 parts by mass of the resin from a blowing agent injection port attached to the tip of the extruder, and the molten resin A foamable molten mixture was prepared by mixing with the composition. After cooling this foamable molten mixture to 135 ° C. with a cooling device attached to the outlet of the extruder, it is cooled at room temperature and atmospheric pressure from an orifice plate having an average thickness of about 2.2 mm and an opening shape of about 160 mm width. foamed Te continuously extruded into the atmosphere, and molded while adjusting the drawing speed of the resin foam, thickness 30 mm, width 600 mm, length 2000 mm, cell size 0.05 cm, density of 0.012 g / cm 3, independently A plate-like resin foam having an air bubble ratio of 95% and an antistatic agent surface concentration of about 0.9 μg / cm 2 was obtained. The obtained foam was measured for 30 minutes after foaming, and the foam was stored at 40 ° C. for 10 days and then at room temperature for 3 days after foaming for 1 hour and then evaluated for water absorption. The results are shown in Table 1.
[実施例2]
150mmのバレル内径を有するスクリュー型押出機の供給領域に900kg/時間の速度で、低密度ポリエチレン(密度0.921g/cm3、MI=2.9g/10分)を、樹脂100質量部に対し、気泡調整剤としてタルク1.5質量部と帯電防止剤としてパルミチン酸モノグリセライド60質量%とアルキル基が10から20(炭素数の平均値=15)であるアルキルスルホン酸ナトリウム40質量%の混合物0.5質量部ともに供給した。押出機のバレル温度を190℃〜210℃に調整し、押出機の先端に取り付けた発泡剤注入口から発泡剤としてノルマルブタン(燃焼範囲下限値:1.8vol%)をこの樹脂100質量部に対し13質量部を圧入し、当該溶融樹脂組成物と混合して発泡性溶融混合物とした。この発泡性溶融混合物を押出機の出口に取り付けた冷却装置で108℃まで冷却した後、約3.4mmの平均厚みと約215mm幅の開口部形状を有するオリフィスプレートより、常温、大気圧下の雰囲気中に連続的に押し出して発泡させ、樹脂発泡体の引き取り速度を調整しながら成形して、厚み62mm、幅600mm、長さ1000mm、セルサイズ0.08cm、密度0.022g/cm3、独立気泡率95%、帯電防止剤の表面濃度約1.6μg/cm2の板状樹脂発泡体を得た。得られた発泡体について発泡後30分に帯電圧の測定を行い、この発泡体を発泡1時間後から40℃で10日間その後室温で3日間保存した後、吸水率の評価を行なった。その結果を表1に示す。
[Example 2]
Low-density polyethylene (density 0.921 g / cm 3 , MI = 2.9 g / 10 min) is supplied to a feeding area of a screw-type extruder having a barrel inner diameter of 150 mm at a speed of 900 kg / hour with respect to 100 parts by mass of the resin. , A mixture of 1.5 parts by mass of talc as a foam control agent, 60% by mass of monoglyceride palmitate as an antistatic agent, and 40% by mass of sodium alkylsulfonate having an alkyl group of 10 to 20 (average carbon number = 15) Both 5 parts by mass were supplied. The barrel temperature of the extruder was adjusted to 190 ° C. to 210 ° C., and normal butane (combustion range lower limit: 1.8 vol%) was added to 100 parts by mass of the resin as a blowing agent from a blowing agent inlet attached to the tip of the extruder. On the other hand, 13 parts by mass was press-fitted and mixed with the molten resin composition to obtain a foamable molten mixture. After cooling this foamable molten mixture to 108 ° C. with a cooling device attached to the outlet of the extruder, it was cooled at room temperature and atmospheric pressure from an orifice plate having an average thickness of about 3.4 mm and an opening shape of about 215 mm width. foamed continuously extruded into the atmosphere, and molded while adjusting the drawing speed of the resin foam, thickness 62 mm, width 600 mm, length 1000 mm, cell size 0.08 cm, density of 0.022 g / cm 3, independently A plate-like resin foam having an air bubble ratio of 95% and an antistatic agent surface concentration of about 1.6 μg / cm 2 was obtained. The obtained foam was measured for 30 minutes after foaming, and the foam was stored at 40 ° C. for 10 days and then at room temperature for 3 days after foaming for 1 hour and then evaluated for water absorption. The results are shown in Table 1.
[比較例1]
150mmのバレル内径を有するスクリュー型押出機の供給領域に600kg/時間の速度で、高密度ポリエチレン(密度0.96g/cm3 MI=0.03g/10分)を、樹脂100質量部に対し、気泡調整剤としてタルク2.5質量部と帯電防止剤としてパルミチン酸モノグリセライド60質量%とアルキル基が10から20(炭素数の平均値=15)であるアルキルスルホン酸ナトリウム40質量%の混合物0.3質量部ともに供給した。押出機のバレル温度を190℃〜210℃に調整し、押出機の先端に取り付けた発泡剤注入口から発泡剤としてノルマルブタンをこの樹脂100質量部に対し28質量部を圧入し、当該溶融樹脂組成物と混合して発泡性溶融混合物とした。この発泡性溶融混合物を押出機の出口に取り付けた冷却装置で135℃まで冷却した後、約2.2mmの平均厚みと約160mm幅の開口部形状を有するオリフィスプレートより、常温、大気圧下の雰囲気中に連続的に押出して発泡させ、樹脂発泡体の引き取り速度を調整しながら成形して、厚み30mm、幅600mm、長さ2000mm、セルサイズ0.02cm、密度0.010g/cm3、独立気泡率95%、帯電防止剤の表面濃度約0.09μg/cm2の板状樹脂発泡体を得た。得られた発泡体について発泡後30分に帯電圧の測定を行い、この発泡体を発泡1時間後から40℃で10日間その後室温で3日間保存した後、吸水率の評価を行なった。その結果を表1に示す。
[Comparative Example 1]
High-density polyethylene (density 0.96 g / cm 3 MI = 0.03 g / 10 min) at a rate of 600 kg / hour in a feed region of a screw-type extruder having a barrel inner diameter of 150 mm, with respect to 100 parts by mass of resin, A mixture of 2.5 parts by mass of talc as a foam adjusting agent, 60% by mass of monoglyceride palmitate as an antistatic agent, and 40% by mass of sodium alkylsulfonate having an alkyl group of 10 to 20 (average carbon number = 15) All 3 parts by mass were supplied. The barrel temperature of the extruder was adjusted to 190 ° C. to 210 ° C., and 28 parts by mass of normal butane as a blowing agent was injected into 100 parts by mass of the resin from a blowing agent inlet attached to the tip of the extruder, and the molten resin A foamable molten mixture was prepared by mixing with the composition. After cooling this foamable molten mixture to 135 ° C. with a cooling device attached to the outlet of the extruder, it is cooled at room temperature and atmospheric pressure from an orifice plate having an average thickness of about 2.2 mm and an opening shape of about 160 mm width. foamed Te continuously extruded into the atmosphere, and molded while adjusting the drawing speed of the resin foam, thickness 30 mm, width 600 mm, length 2000 mm, cell size 0.02 cm, density of 0.010 g / cm 3, independently A plate-shaped resin foam having an air bubble ratio of 95% and an antistatic agent surface concentration of about 0.09 μg / cm 2 was obtained. The obtained foam was measured for 30 minutes after foaming, and the foam was stored at 40 ° C. for 10 days and then at room temperature for 3 days after foaming for 1 hour and then evaluated for water absorption. The results are shown in Table 1.
[比較例2]
150mmのバレル内径を有するスクリュー型押出機の供給領域に900kg/時間の速度で、低密度ポリエチレン(密度0.921g/cm3、MI=2.9g/10分)を、樹脂100質量部に対し、気泡調整剤としてタルク2.0質量部と帯電防止剤としてパルミチン酸モノグリセライド60質量%とアルキル基が10から20(炭素数の平均値=15)であるアルキルスルホン酸ナトリウム40質量%の混合物3.0質量部ともに供給した。押出機のバレル温度を190℃〜210℃に調整し、押出機の先端に取り付けた発泡剤注入口から発泡剤としてノルマルブタン(燃焼範囲下限値:1.8vol%)をこの樹脂100質量部に対し6.8質量部を圧入し、当該溶融樹脂組成物と混合して発泡性溶融混合物とした。この発泡性溶融混合物を押出機の出口に取り付けた冷却装置で108℃まで冷却した後、約3.4mmの平均厚みと約215mm幅の開口部形状を有するオリフィスプレートより、常温、大気圧下の雰囲気中に連続的に押し出して発泡させ、樹脂発泡体の引き取り速度を調整しながら成形して、厚み62mm、幅600mm、長さ1000mm、セルサイズ0.08cm、密度0.033g/cm3、独立気泡率95%、帯電防止剤の表面濃度約12.5μg/cm2の板状樹脂発泡体を得た。得られた発泡体について発泡後30分に帯電圧の測定を行い、この発泡体を発泡1時間後から40℃で10日間その後室温で3日間保存した後、吸水率の評価を行なった。その結果を表1に示す。
[Comparative Example 2]
Low-density polyethylene (density 0.921 g / cm 3 , MI = 2.9 g / 10 min) is supplied to a feeding area of a screw-type extruder having a barrel inner diameter of 150 mm at a speed of 900 kg / hour with respect to 100 parts by mass of the resin. , A mixture 3 of 2.0 parts by mass of talc as an air conditioner, 60% by mass of monoglyceride palmitate as an antistatic agent, and 40% by mass of sodium alkylsulfonate having an alkyl group of 10 to 20 (average carbon number = 15) Both 0.0 parts by mass were supplied. The barrel temperature of the extruder was adjusted to 190 ° C. to 210 ° C., and normal butane (combustion range lower limit: 1.8 vol%) was added to 100 parts by mass of the resin as a blowing agent from a blowing agent inlet attached to the tip of the extruder. On the other hand, 6.8 parts by mass were press-fitted and mixed with the molten resin composition to obtain a foamable molten mixture. After cooling this foamable molten mixture to 108 ° C. with a cooling device attached to the outlet of the extruder, it was cooled at room temperature and atmospheric pressure from an orifice plate having an average thickness of about 3.4 mm and an opening shape of about 215 mm width. foamed continuously extruded into the atmosphere, and molded while adjusting the drawing speed of the resin foam, thickness 62 mm, width 600 mm, length 1000 mm, cell size 0.08 cm, density of 0.033 g / cm 3, independently A plate-shaped resin foam having an air bubble ratio of 95% and an antistatic agent surface concentration of about 12.5 μg / cm 2 was obtained. The obtained foam was measured for 30 minutes after foaming, and the foam was stored at 40 ° C. for 10 days and then at room temperature for 3 days after foaming for 1 hour and then evaluated for water absorption. The results are shown in Table 1.
本発明は、製造時に帯電した発泡体からの放電により着火する危険性を低減することが出来、又吸水率が低いので、水分を嫌う電子部品の包装材や結露の発生しやすい個所に使用する断熱材等に好適に利用できる。 The present invention can reduce the risk of ignition due to discharge from a foam charged during production, and has a low water absorption rate. Therefore, it is used for packaging materials for electronic parts that dislike moisture and places where condensation is likely to occur. It can use suitably for a heat insulating material etc.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004286311A JP4791016B2 (en) | 2004-09-30 | 2004-09-30 | Polyolefin resin extruded foam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004286311A JP4791016B2 (en) | 2004-09-30 | 2004-09-30 | Polyolefin resin extruded foam |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006096914A true JP2006096914A (en) | 2006-04-13 |
JP2006096914A5 JP2006096914A5 (en) | 2009-06-18 |
JP4791016B2 JP4791016B2 (en) | 2011-10-12 |
Family
ID=36237044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004286311A Expired - Lifetime JP4791016B2 (en) | 2004-09-30 | 2004-09-30 | Polyolefin resin extruded foam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4791016B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010120174A (en) * | 2008-11-17 | 2010-06-03 | Yupo Corp | Reuse preventing film laminate |
JP2014077136A (en) * | 2013-11-19 | 2014-05-01 | Nitto Denko Corp | Foam waterproof material having fine cell structure |
KR20140109931A (en) * | 2012-01-04 | 2014-09-16 | 가부시키가이샤 구라레 | Packaging body for polyvinyl alcohol film roll |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05331311A (en) * | 1992-06-02 | 1993-12-14 | Sekisui Plastics Co Ltd | Production of molded thermoplastic resin foam having antistatic property |
JPH0649224A (en) * | 1992-08-04 | 1994-02-22 | Chisso Corp | Production of vinyl chloride based resin composition containing antistatic agent and sheet-like form using the same |
-
2004
- 2004-09-30 JP JP2004286311A patent/JP4791016B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05331311A (en) * | 1992-06-02 | 1993-12-14 | Sekisui Plastics Co Ltd | Production of molded thermoplastic resin foam having antistatic property |
JPH0649224A (en) * | 1992-08-04 | 1994-02-22 | Chisso Corp | Production of vinyl chloride based resin composition containing antistatic agent and sheet-like form using the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010120174A (en) * | 2008-11-17 | 2010-06-03 | Yupo Corp | Reuse preventing film laminate |
KR20140109931A (en) * | 2012-01-04 | 2014-09-16 | 가부시키가이샤 구라레 | Packaging body for polyvinyl alcohol film roll |
JPWO2013103074A1 (en) * | 2012-01-04 | 2015-05-11 | 株式会社クラレ | Package of polyvinyl alcohol film roll |
JP2016210509A (en) * | 2012-01-04 | 2016-12-15 | 株式会社クラレ | Package of polyvinyl alcohol film roll |
KR102038164B1 (en) * | 2012-01-04 | 2019-10-29 | 주식회사 쿠라레 | Packaging body for polyvinyl alcohol film roll |
JP2014077136A (en) * | 2013-11-19 | 2014-05-01 | Nitto Denko Corp | Foam waterproof material having fine cell structure |
Also Published As
Publication number | Publication date |
---|---|
JP4791016B2 (en) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2388687T3 (en) | Styrene and acrylonitrile copolymer foam with infrared attenuating agents | |
AU594976B2 (en) | Expandable polyolefin compositions and preparation process utilizing isobutane blowing agent | |
CA1161999A (en) | Foaming synthetic resin compositions | |
JPS6245254B2 (en) | ||
WO2013137411A1 (en) | Polypropylene resin foam particles, in-mold foam molded body comprising polypropylene resin foam particles, and method for producing same | |
EP0219548B1 (en) | Polyolefin foam compositions having improved dimensional stability utilizing certain unsaturated nitrogen-containing compounds andprocess for making same | |
US6528548B2 (en) | Synthetic thermoplastic resin extruded foams and methods for producing the same | |
JP4017538B2 (en) | Styrenic resin foamable particles, method for producing the same, and styrene resin foamed molded article | |
JP4791016B2 (en) | Polyolefin resin extruded foam | |
JP3986394B2 (en) | Conductive polypropylene resin foam and process for producing the same | |
JP4756957B2 (en) | Extruded foam | |
JP2008069200A (en) | Method for producing extruded, polystyrene-based resin foam plate and extruded, polystyrene-based resin foam plate | |
JP5171325B2 (en) | Styrene resin extrusion foam board | |
JP2007039601A (en) | Extruded foam | |
JP3888944B2 (en) | Method for producing styrene resin foam sheet | |
JP2005297341A (en) | Method for manufacturing polyolefin resin extruded foam | |
JP2006077218A (en) | Thermoplastic resin extruded foam and method for producing the same | |
JP4017535B2 (en) | Styrene-olefin mixed resin foamable particles, production method thereof, and styrene-olefin mixed resin foam molded article | |
JP7045802B2 (en) | Styrene-based resin extruded foam and its manufacturing method | |
JP2004352840A (en) | Manufacturing method of low-flammable olefin resin extruded foam | |
JP2005126568A (en) | Gas regulator and thermoplastic resin foamed body using it | |
JP2005297340A (en) | Method for manufacturing polyolefin resin extruded foam | |
KR830000060B1 (en) | Foamed thermoplastic resin and composition for same | |
JP2006096914A5 (en) | ||
JP3186821B2 (en) | Method for producing polyolefin resin foam and foam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070402 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071001 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110719 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110721 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4791016 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |