JP2005126568A - Gas regulator and thermoplastic resin foamed body using it - Google Patents

Gas regulator and thermoplastic resin foamed body using it Download PDF

Info

Publication number
JP2005126568A
JP2005126568A JP2003363696A JP2003363696A JP2005126568A JP 2005126568 A JP2005126568 A JP 2005126568A JP 2003363696 A JP2003363696 A JP 2003363696A JP 2003363696 A JP2003363696 A JP 2003363696A JP 2005126568 A JP2005126568 A JP 2005126568A
Authority
JP
Japan
Prior art keywords
fatty acid
component
foam
thermoplastic resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363696A
Other languages
Japanese (ja)
Inventor
Noboru Okuda
暢 奥田
Seiichiro Harada
聖一朗 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Life and Living Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Life and Living Corp filed Critical Asahi Kasei Life and Living Corp
Priority to JP2003363696A priority Critical patent/JP2005126568A/en
Publication of JP2005126568A publication Critical patent/JP2005126568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin foamed body which is good in volume restorability and can in a short time displace the combustible foaming gas by an inorganic gas such as air. <P>SOLUTION: The gas regulator consists of the following components (a) and (b). The component (a) is at least one selected from glycerine fatty acid esters, fatty acid amides and alkyl fatty acid amides. The component (b) is at least one selected from polyglycerine fatty acid esters having two or more of the glycerine condensation degree, polyglycerine fatty acid diesters having two or more of the glycerine condensation degree, polyglycerine fatty acid triesters having two or more of the glycerine condensation degree, alkylamine, and hydroxyalkyl amine fatty acid esters. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、残留発泡剤ガスの無機ガスへの置換を容易にしたオレフィン系樹脂発泡体及びガス調整剤に関するもので、本発明の発泡体は工業製品等の緩衝包装材、住宅等の断熱材、ビート板やボディボート等のスポーツ用具芯材、フロート等の浮き材などに使用される。   The present invention relates to an olefin resin foam and a gas regulator that facilitates replacement of residual foaming agent gas with an inorganic gas. The foam of the present invention is a buffer packaging material for industrial products, etc., and a heat insulating material for houses, etc. Used for core materials for sports equipment such as beat boards and body boats, and float materials such as floats.

プラスチック発泡体を製造するにあたり、発泡剤が使用されるが、近年オゾン層破壊や地球温暖化の見地から、その発泡剤がフロン系発泡剤から炭化水素(C〜C)系発泡剤に転換されつつある。炭化水素系の発泡剤を使用した熱可塑性樹脂押出発泡体の製造方法としては、特許文献1(特許第2137721号公報)が挙げられる。 In producing the plastic foam, but the blowing agent is used, in view of the recent ozone depletion and global warming, in the hydrocarbon blowing agent is from chlorofluorocarbon-based blowing agent (C 3 ~C 5) foaming agent It is being converted. Patent document 1 (patent 2137721) is mentioned as a manufacturing method of the thermoplastic resin extrusion foam using a hydrocarbon-type foaming agent.

特許文献1の方法では、ガスの樹脂に対する透過速度を調整する添加剤(以降、ガス調整剤と記載)として、熱可塑性樹脂へ長鎖脂肪酸とポリオールの部分エステルや脂肪酸アミドを配合する事により、炭化水素系発泡剤の樹脂に対する透過性を低下させ、熟成期間中の発泡体収縮を防いでいる。しかしながら、発泡剤の透過性が低下する事の問題点として、発泡体内部に炭化水素系発泡剤が長期に渡り残留する事がある。炭化水素系発泡剤は可燃性のガスである事から、火源が近くにある場合、発泡体が着火・燃焼する可能性が高まる。   In the method of Patent Document 1, by adding a long-chain fatty acid and a partial ester of a polyol or a fatty acid amide to a thermoplastic resin as an additive for adjusting the permeation rate of the gas to the resin (hereinafter referred to as a gas regulator), The permeability of the hydrocarbon-based foaming agent to the resin is reduced, and foam shrinkage during the aging period is prevented. However, as a problem that the permeability of the foaming agent is lowered, the hydrocarbon foaming agent may remain in the foam for a long time. Since the hydrocarbon-based foaming agent is a flammable gas, the possibility of the foam igniting and burning increases when the fire source is nearby.

この問題を解決する方法として、高温下で発泡体を長期間保存し、プラスチック発泡体内部の発泡剤濃度を安全な濃度まで低下させる方法が一般的にとられているが、それでも数ヶ月あるいはそれ以上の保存期間を必要とするのであまり効率的ではない。
発泡体中に残存する可燃性発泡剤を空気等の不燃性の無機ガスと置換する時間を短縮する方法として、発泡体を製造後にその表面から穿孔を施す方法(特許第3431141号)がある。
As a method for solving this problem, a method of storing the foam for a long period of time at a high temperature and reducing the concentration of the foaming agent in the plastic foam to a safe concentration is generally taken. Since the above storage period is required, it is not very efficient.
As a method for shortening the time for replacing the combustible foaming agent remaining in the foam with a nonflammable inorganic gas such as air, there is a method (Japanese Patent No. 3341141) in which perforations are made from the surface of the foam after the foam is produced.

しかしながら、特許文献2(特許第3431141号公報)の方法では発泡剤の逸散性を高めるために孔の幅を大きく、あるいは孔の間隔を小さくした場合、発泡剤の急激な逸散により発泡体気泡内部の圧力が低下し、その結果体積収縮が大きくなり、充分な体積回復が得られなくなるという問題があった。
特許第2137721号公報 特許第3431141号公報
However, in the method of Patent Document 2 (Japanese Patent No. 3431141), when the width of the holes is increased or the interval between the holes is decreased in order to enhance the dissipation of the foaming agent, the foam is caused by the rapid dissipation of the foaming agent. There was a problem that the pressure inside the bubbles was lowered, resulting in an increase in volume shrinkage, and sufficient volume recovery could not be obtained.
Japanese Patent No. 2137721 Japanese Patent No. 3431141

本発明は、発泡剤として可燃性ガスを使用した押出発泡による発泡体の製造方法において、長鎖脂肪酸とポリオールの部分エステルや脂肪酸アミドを単独でガス調整剤として使用する製造方法や、前述のガス調整剤を配合した発泡体へ穿孔を施す製造方法に比べ、短期間で可燃性発泡ガスを空気等の無機ガスに置換することができ、かつ、充分に体積回復が可能な熱可塑性樹脂発泡体およびガス調整剤を提供することを目的とする。   The present invention relates to a method for producing a foam by extrusion foaming using a combustible gas as a foaming agent, a production method using a long-chain fatty acid and a partial ester of a polyol or a fatty acid amide alone as a gas regulator, or the aforementioned gas Thermoplastic resin foam that can replace combustible foam gas with inorganic gas such as air in a short period of time and can sufficiently recover the volume, compared to a manufacturing method in which perforations are made in a foam blended with a modifier. And it aims at providing a gas regulator.

本発明者等は、グリセリン脂肪酸エステル、脂肪酸アミド、アルキル脂肪酸アミドから少なくとも1種以上選ばれた(a)成分、及びグリセリン縮合度が2以上のポリグリセリン脂肪酸エステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸ジエステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸トリエステル、アルキルアミン、ヒドロキシアルキルアミン脂肪酸エステルから少なくとも1種以上選ばれた(b)成分から成るガス調整剤を用いる事により、上記課題が解決されることを見出し、本発明をなすに至った。
すなわち、本発明は、下記の通りである。
The present inventors include at least one component (a) selected from glycerin fatty acid ester, fatty acid amide, and alkyl fatty acid amide, a polyglycerin fatty acid ester having a glycerin condensation degree of 2 or more, and a polyglycerin condensation degree of 2 or more. By using a gas regulator composed of at least one component selected from glycerin fatty acid diesters, polyglycerin fatty acid triesters having a degree of glycerin condensation of 2 or more, alkylamines, and hydroxyalkylamine fatty acid esters, the above-mentioned problems are achieved. The inventors have found that the problem is solved, and have come to make the present invention.
That is, the present invention is as follows.

1.グリセリン脂肪酸エステル、脂肪酸アミド、アルキル脂肪酸アミドから少なくとも1種以上選ばれた(a)成分、及びグリセリン縮合度が2以上のポリグリセリン脂肪酸エステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸ジエステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸トリエステル、アルキルアミン、ヒドロキシアルキルアミン脂肪酸エステルから少なくとも1種以上選ばれた(b)成分から成ることを特徴とするガス調整剤。   1. At least one component (a) selected from glycerin fatty acid ester, fatty acid amide, alkyl fatty acid amide, polyglycerin fatty acid ester having a glycerin condensation degree of 2 or more, polyglycerin fatty acid diester having a glycerin condensation degree of 2 or more, glycerin condensation A gas regulator comprising a component (b) selected from at least one polyglycerin fatty acid triester, alkylamine, and hydroxyalkylamine fatty acid ester having a degree of 2 or more.

2.(a)成分の含有量が20〜80wt%、(b)成分の含有量が80〜20wt%であることを特徴とする、1.記載のガス調整剤。
3.熱可塑性樹脂とグリセリン脂肪酸エステル、脂肪酸アミド、アルキル脂肪酸アミドから少なくとも1種以上選ばれた(a)成分、及びグリセリン縮合度が2以上のポリグリセリン脂肪酸エステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸ジエステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸トリエステル、アルキルアミン、ヒドロキシアルキルアミン脂肪酸エステルから少なくとも1種以上選ばれた(b)成分を含有することを特徴とする熱可塑性樹脂発泡体。
2. (A) The content of the component is 20 to 80 wt%, and the content of the (b) component is 80 to 20 wt%. The gas regulator described.
3. At least one component (a) selected from a thermoplastic resin, a glycerin fatty acid ester, a fatty acid amide, and an alkyl fatty acid amide, a polyglycerin fatty acid ester having a glycerin condensation degree of 2 or more, and a polyglycerin fatty acid having a degree of glycerin condensation of 2 or more. A thermoplastic resin foam comprising at least one component (b) selected from diesters, polyglycerol fatty acid triesters having a degree of glycerol condensation of 2 or more, alkylamines, and hydroxyalkylamine fatty acid esters.

4.(a)成分と(b)成分の含有率(重量比)が20/80〜80/20、(a)成分と(b)成分を併せた添加量が熱可塑性樹脂100重量部に対して0.3〜2重量部であることを特徴とする、3.記載の熱可塑性樹脂発泡体。
5.熱可塑性樹脂とガス調整剤からなる樹脂組成物を押出発泡することにより得られる発泡体であって、当該発泡体の樹脂組成物部分の(i)空気透過係数が4.5×1012〜3.0×1013fm・fm/fm・sec・Pa、かつ(ii)空気と使用する発泡剤の透過係数比が1〜10であることを特徴とする、熱可塑性樹脂発泡体。
6.樹脂組成物部分の水の接触角が10〜90°であることを特徴とする、5.記載の熱可塑性樹脂発泡体。
4). The content (weight ratio) of the component (a) and the component (b) is 20/80 to 80/20, and the combined amount of the component (a) and the component (b) is 0 with respect to 100 parts by weight of the thermoplastic resin. 3. 3 to 2 parts by weight, The thermoplastic resin foam described.
5). A foam obtained by extruding and foaming a resin composition comprising a thermoplastic resin and a gas regulator, wherein (i) the air permeability coefficient of the resin composition portion of the foam is 4.5 × 10 12 to 3 A thermoplastic resin foam characterized by 0.0 × 10 13 fm 3 · fm / fm 2 · sec · Pa, and (ii) a permeability coefficient ratio of air to the foaming agent used is 1 to 10.
6). 4. The water contact angle of the resin composition portion is 10 to 90 °. The thermoplastic resin foam described.

7.ガス調整剤が、グリセリン脂肪酸エステル、脂肪酸アミド、アルキル脂肪酸アミドから少なくとも1種以上選ばれた(a)成分、及びグリセリン縮合度が2以上のポリグリセリン脂肪酸エステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸ジエステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸トリエステル、アルキルアミン、ヒドロキシアルキルアミン脂肪酸エステルから少なくとも1種以上選ばれた(b)成分から成ることを特徴とする、5.記載の熱可塑性樹脂発泡体。
8.(a)成分の含有量20〜80wt%、(b)成分の含有量80〜20wt%であるガス調整剤が、熱可塑性樹脂100重量部に対して0.3〜2重量部配合されたことを特徴とする、7.記載の熱可塑性樹脂発泡体。
7). The gas regulator is at least one component (a) selected from glycerin fatty acid ester, fatty acid amide and alkyl fatty acid amide, polyglycerin fatty acid ester having a glycerin condensation degree of 2 or more, and polyglycerin having a glycerin condensation degree of 2 or more. 4. It comprises at least one component (b) selected from fatty acid diesters, polyglycerol fatty acid triesters having a degree of glycerol condensation of 2 or more, alkylamines, and hydroxyalkylamine fatty acid esters. The thermoplastic resin foam described.
8). The gas regulator having a component content of 20 to 80 wt% and a component content of 80 to 20 wt% was blended in an amount of 0.3 to 2 parts by weight per 100 parts by weight of the thermoplastic resin. 6. characterized by The thermoplastic resin foam described.

本発明の熱可塑性樹脂発泡体は、短期間で発泡体中の可燃性発泡ガスを空気等の無機ガスに置換することができ、かつ、充分な体積回復を可能とする効果を有する。   The thermoplastic resin foam of the present invention can replace the combustible foam gas in the foam with an inorganic gas such as air in a short period of time, and has the effect of enabling sufficient volume recovery.

本発明について、特にその好ましい実施態様を中心に、以下具体的に説明する。
本発明における熱可塑性樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン等のポリエチレン単独重合体、ポリプロピレン単独重合体、ポリブテン単独重合体、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレン−ブテン−プロピレン共重合体、エチレン−アクリル酸共重合体等のオレフィン系樹脂や、スチレン系単独重合体、α―メチルスチレン、アクリルニトリル、ブタジエン、メチルメタアクリレート等のスチレンと共重合し得る単量体とスチレンの共重合体、更には一般的に耐衝撃ポリスチレンと呼ばれるポリスチレンを主体とするゴム系ポリマーとの共重合体等のポリスチレン系樹脂等が挙げられる。これらの樹脂は単独で用いるほか、適宜混合して用いることもできる。
The present invention will be specifically described below, particularly focusing on preferred embodiments thereof.
Examples of the thermoplastic resin in the present invention include polyethylene homopolymers such as high density polyethylene, medium density polyethylene, low density polyethylene, and linear low density polyethylene, polypropylene homopolymer, polybutene homopolymer, ethylene-vinyl acetate copolymer. Olefin resins such as polymers, ethylene-propylene copolymers, ethylene-butene copolymers, ethylene-butene-propylene copolymers, ethylene-acrylic acid copolymers, styrene homopolymers, α-methylstyrene, Copolymers of styrene, such as acrylonitrile, butadiene, methyl methacrylate, and the like, and copolymers of styrene, as well as copolymers of rubber-based polymers mainly composed of polystyrene called impact-resistant polystyrene And polystyrene resins. These resins can be used alone or in combination as appropriate.

本発明における可燃性発泡ガスとしては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の脂肪族炭化水素、シクロブタン、シクロペンタン等の環式脂肪族炭化水素、1−クロロ−1,1−ジフルオロエタン、クロロエタン等のハロゲン化炭化水素が挙げられる。発泡剤としてブタンを使用する場合、ブタンに占めるノルマルブタンの比率は65〜100重量%が好ましく、より好ましくは70〜100重量%である。ノルマルブタンの比率が65〜100重量%であると、発泡体からの発泡剤の逸散が速く、早期に燃焼範囲下限濃度(1.8vol%)未満にまでガス濃度が低下し、発泡体が着火・燃焼する可能性を低減できる。   Examples of the combustible foaming gas in the present invention include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, and hexane, cyclic aliphatic hydrocarbons such as cyclobutane and cyclopentane, and 1-chloro-1,1. -Halogenated hydrocarbons such as difluoroethane and chloroethane. When butane is used as the blowing agent, the ratio of normal butane in butane is preferably 65 to 100% by weight, more preferably 70 to 100% by weight. When the ratio of normal butane is 65 to 100% by weight, the foaming agent is rapidly dissipated from the foam, and the gas concentration is quickly reduced to less than the lower limit of the combustion range (1.8 vol%). The possibility of ignition and combustion can be reduced.

さらに、これら可燃性発泡ガスに炭酸ガス、窒素、1,1,1,2−テトラフルオロエタン等の不燃性の発泡ガスを混合することも出来る。
また、これらの発泡剤の添加量を調節することで得られる発泡体の密度を任意に制御することができる。
Further, nonflammable foaming gas such as carbon dioxide, nitrogen, 1,1,1,2-tetrafluoroethane can be mixed with the combustible foaming gas.
Moreover, the density of the foam obtained by adjusting the addition amount of these foaming agents can be arbitrarily controlled.

本発明に好適なガス調整剤としては、グリセリン脂肪酸エステル、脂肪酸アミド、アルキル脂肪酸アミドから少なくとも1種以上選ばれた(a)成分、及びグリセリン縮合度が2以上のポリグリセリン脂肪酸エステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸ジエステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸トリエステル、アルキルアミン、ヒドロキシアルキルアミン脂肪酸エステルから少なくとも1種以上選ばれた(b)成分から成るものが挙げられる。さらには(a)成分20〜80wt%、(b)成分を80〜20wt%含有するガス調整剤を、熱可塑性樹脂100重量部に対して0.3〜2重量部配合して使用する事が好ましい。上記ガス調整剤を用いる事により、発泡剤置換時に、発泡体からの発泡剤放出を速くすると共に、空気の発泡体への流入を促進する事が出来、発泡体の体積回復性を損なわずに、ガス置換性を高くする事が可能となる。   As the gas regulator suitable for the present invention, at least one component (a) selected from glycerin fatty acid ester, fatty acid amide, and alkyl fatty acid amide, and polyglycerin fatty acid ester having a glycerin condensation degree of 2 or more, glycerin condensation degree Are those composed of at least one component (b) selected from polyglycerin fatty acid diester having 2 or more, polyglycerin fatty acid triester having a degree of glycerin condensation of 2 or more, alkylamine, and hydroxyalkylamine fatty acid ester. Furthermore, a gas regulator containing 20 to 80 wt% of component (a) and 80 to 20 wt% of component (b) may be used by blending 0.3 to 2 parts by weight with respect to 100 parts by weight of the thermoplastic resin. preferable. By using the above gas regulator, when replacing the foaming agent, it is possible to accelerate the release of the foaming agent from the foam and to promote the inflow of air into the foam, without impairing the volume recovery of the foam. In addition, it becomes possible to increase the gas replacement property.

また、本発明に好適なガス調整剤として、発泡体を構成する熱可塑性樹脂に当該ガス調整剤を配合してなる樹脂組成物の(a)空気透過係数が好ましくは4.5×1012〜3.0×1013fm・fm/fm・sec・Pa、より好ましくは6.8×1012〜2.3×1013fm・fm/fm・sec・Pa、かつ(b)空気と発泡剤の透過係数比が好ましくは1〜10、より好ましくは2〜7であるものが挙げられる。さらには熱可塑性樹脂に当該ガス調整剤を配合してなる樹脂組成物の水の接触角が好ましくは10〜90°、より好ましくは20〜70°であるものを使用する事が好適である。 Moreover, as a gas regulator suitable for this invention, (a) the air permeability coefficient of the resin composition formed by mix | blending the said gas regulator with the thermoplastic resin which comprises a foam, Preferably it is 4.5 * 10 < 12 >-. 3.0 × 10 13 fm 3 · fm / fm 2 · sec · Pa, more preferably 6.8 × 10 12 to 2.3 × 10 13 fm 3 · fm / fm 2 · sec · Pa, and (b) Preferably, the permeability coefficient ratio between air and the foaming agent is 1 to 10, more preferably 2 to 7. Furthermore, it is preferable to use a resin composition having a water contact angle of 10 to 90 °, more preferably 20 to 70 °, obtained by blending the gas regulator with a thermoplastic resin.

空気透過係数が4.5×1012fm・fm/fm・sec・Pa未満であると、発泡剤の空気置換時に、空気の発泡体への流入が遅くなり発泡体内部が減圧状態となり大きく収縮して十分な体積回復が得にくくなり、また、3.0×1013fm・fm/fm・sec・Paを超えると発泡体の空気の保持性能が低下し、緩衝材として使用した場合の圧縮強度等の物性が低下する傾向がある。したがって、空気透過係数を4.5×1012〜3.0×1013fm・fm/fm・sec・Paとする事により、発泡体の性能を悪化させずに、空気の発泡体への流入速度を大きくし、良好な体積回復性が得られる。 When the air permeability coefficient is less than 4.5 × 10 12 fm 3 · fm / fm 2 · sec · Pa, when the blowing agent is replaced with air, the flow of air into the foam becomes slow and the inside of the foam is in a reduced pressure state. It is difficult to obtain sufficient volume recovery due to large shrinkage, and when it exceeds 3.0 × 10 13 fm 3 · fm / fm 2 · sec · Pa, the air retention performance of the foam deteriorates and it is used as a cushioning material. In such a case, physical properties such as compressive strength tend to decrease. Therefore, by setting the air permeability coefficient to 4.5 × 10 12 to 3.0 × 10 13 fm 3 · fm / fm 2 · sec · Pa, it is possible to obtain an air foam without deteriorating the performance of the foam. The flow rate of the liquid is increased, and a good volume recovery property is obtained.

空気と発泡剤の透過係数比が1未満であると、発泡剤の空気置換時の逸散速度が大きくなり、空気の発泡体への流入を上回り、内部が減圧状態となるため大きく収縮して十分な体積回復が得にくくなる。また、空気と発泡剤の透過係数比が10を超えると、発泡剤の空気置換時の逸散速度が小さくなり、発泡剤濃度を安全な濃度まで低下させるのに必要な時間が長期化する。したがって、空気と発泡剤の透過係数比を1〜10とする事により、発泡体の体積回復性を損なわずに、ガス置換性を高くする事が可能である。   If the permeability coefficient ratio between air and the foaming agent is less than 1, the dissipation rate of the foaming agent at the time of air replacement increases, which exceeds the inflow of air into the foam, and the inside is in a reduced pressure state, so that it contracts greatly. It becomes difficult to obtain sufficient volume recovery. Moreover, if the ratio of the permeability coefficient between air and the foaming agent exceeds 10, the dissipation rate at the time of air replacement of the foaming agent becomes small, and the time required to reduce the foaming agent concentration to a safe concentration is prolonged. Therefore, by setting the permeability coefficient ratio of air and the foaming agent to 1 to 10, it is possible to increase the gas replacement property without impairing the volume recoverability of the foam.

さらに熱可塑性樹脂に当該ガス透過調整剤を配合してなる樹脂組成物の水の接触角は、ガス調整剤が樹脂表面に析出して形成する被膜層の極性及び緻密さを表しており、ガス調整剤のガスバリア性能と相関している。接触角が10°未満ではガスバリア性能が高くなりやすく、発泡剤の空気置換時の逸散速度が小さくなり、発泡剤濃度を安全な濃度まで低下させるのに必要な時間が長期化する傾向がある。接触角が90°を超えるとガスバリア性能が低くなりやすく、発泡剤の空気置換時の逸散速度が大きくなり、空気の発泡体への流入を上回りやすく、内部が減圧状態となるため収縮して十分な体積回復が得にくい場合がある。したがって、熱可塑性樹脂に当該ガス調整剤を配合してなる樹脂組成物の水の接触角を10〜90°とする事により、発泡体の体積回復性を損なわずに、ガス置換性を高くする事が可能である。   Furthermore, the water contact angle of the resin composition obtained by blending the gas permeation modifier with a thermoplastic resin represents the polarity and density of the coating layer formed by the gas regulator being deposited on the resin surface. It correlates with the gas barrier performance of the modifier. If the contact angle is less than 10 °, the gas barrier performance tends to be high, the dissipation rate at the time of air replacement of the foaming agent is reduced, and the time required to reduce the foaming agent concentration to a safe concentration tends to be prolonged. . If the contact angle exceeds 90 °, the gas barrier performance tends to be low, the dissipation rate of the foaming agent during air replacement increases, the air tends to exceed the inflow of the foam, and the inside is in a reduced pressure state and shrinks. It may be difficult to obtain sufficient volume recovery. Therefore, by setting the water contact angle of the resin composition obtained by blending the gas regulator to the thermoplastic resin to 10 to 90 °, the gas replacement property is increased without impairing the volume recoverability of the foam. Things are possible.

以上の通り、熱可塑性樹脂に当該ガス調整剤を配合してなる樹脂組成物の(a)空気透過係数を4.5×1012〜3.0×1013fm・fm/fm・sec・Pa、かつ(b)空気と発泡剤の透過係数比を1〜10、さらに熱可塑性樹脂に当該ガス調整剤を配合してなる樹脂組成物の水の接触角を10〜90°する事により短期間で可燃性発泡ガスを空気等の無機ガスに置換することができ、かつ、充分な体積回復が可能となる。
本発明においては、必要に応じて一般に使用されている気泡核形成剤を用いてもよい。この気泡核形成剤としては、例えば、タルクのような無機物質、ステアリン酸亜鉛のような脂肪酸の金属塩、あるいは押出機の温度で分解して分解ガスを発生するような化学発泡剤、またはその温度で反応して炭酸ガスを発生する酸とアルカリの混合物のようなものである。これらの気泡核形成剤を使用することで得られる発泡体のセルサイズの大きさを任意に制御することができる。
As described above, (a) the air permeability coefficient of a resin composition obtained by blending the gas regulator with a thermoplastic resin is 4.5 × 10 12 to 3.0 × 10 13 fm 3 · fm / fm 2 · sec.・ By Pa and (b) the ratio of the permeability coefficient of air to the foaming agent is 1 to 10, and the contact angle of water of the resin composition obtained by blending the gas regulator with a thermoplastic resin is 10 to 90 °. The combustible foaming gas can be replaced with an inorganic gas such as air in a short period of time, and sufficient volume recovery is possible.
In the present invention, a bubble nucleating agent generally used may be used as necessary. Examples of the bubble nucleating agent include an inorganic substance such as talc, a metal salt of a fatty acid such as zinc stearate, a chemical foaming agent that decomposes at the temperature of the extruder and generates a decomposition gas, or the like. It is like a mixture of acid and alkali that reacts at temperature to generate carbon dioxide. By using these cell nucleating agents, the cell size of the foam obtained can be arbitrarily controlled.

さらに、本発明においては必要に応じて、混合樹脂に対し帯電防止剤、酸化防止剤、紫外線吸収剤、着色剤等の添加剤も添加することもできる。
本発明の発泡体は、例えば、押出機内で樹脂と発泡剤及びガス調整剤、必要に応じて気泡核形成剤等の添加剤を加圧下で溶融混練した後、適正な発泡温度まで冷却して得られた発泡性溶融混合物を押出機先端に取り付けたダイスを通して大気圧下に押し出して発泡させることにより得られる。
本発明で得られる発泡体厚みは20mm以上80mm以下が好ましく、その厚み構成は単層または熱融着等による積層のいずれでも構わない。
Furthermore, in the present invention, additives such as an antistatic agent, an antioxidant, an ultraviolet absorber, and a colorant can be added to the mixed resin as necessary.
The foam of the present invention is, for example, melted and kneaded under pressure with an additive such as a resin, a foaming agent and a gas regulator, and, if necessary, a cell nucleating agent in an extruder, and then cooled to an appropriate foaming temperature. The obtained foamable molten mixture is obtained by extruding and foaming under atmospheric pressure through a die attached to the tip of the extruder.
The thickness of the foam obtained in the present invention is preferably 20 mm or more and 80 mm or less, and the thickness configuration may be either a single layer or a laminate by heat fusion or the like.

本発明の発泡体の密度は、好ましくは10〜100kg/m、さらに好ましくは20〜70kg/mである。密度が10〜100kg/mであると、断熱材、浮き材、緩衝包装材用途として使用できる。
さらに、本発明で得られる発泡体の独立気泡率は、穿孔による孔の部分を除いて、好ましくは80〜100%、より好ましくは90〜100%である。独立気泡率が80%以上であると、緩衝包装材として充分な緩衝性能を発揮することができるとともに、発泡体内へ水が浸入しにくいため吸水率を低くすることができる。
また、本発明の発泡体のセルサイズは、好ましくは0.3mm〜3.0mm、より好ましくは0.5mm〜2.5mmである。断熱材用途においては、セルサイズは小さいほど断熱性能はよく、また、セルサイズが大きいと水と接触した場合にセル開口面への水の浸入が発生し、吸水率の増加につながる。
The density of the foam of the present invention is preferably 10 to 100 kg / m 3 , more preferably 20 to 70 kg / m 3 . When the density is 10 to 100 kg / m 3, it can be used as a heat insulating material, a floating material, or a buffer packaging material.
Furthermore, the closed cell ratio of the foam obtained by the present invention is preferably 80 to 100%, more preferably 90 to 100%, excluding the hole portion due to perforation. When the closed cell ratio is 80% or more, sufficient buffer performance as a cushioning packaging material can be exhibited, and the water absorption rate can be lowered because water hardly enters the foamed body.
The cell size of the foam of the present invention is preferably 0.3 mm to 3.0 mm, more preferably 0.5 mm to 2.5 mm. In the heat insulating material application, the smaller the cell size, the better the heat insulation performance. When the cell size is large, water intrusion into the cell opening occurs when it comes into contact with water, leading to an increase in water absorption.

以下、本発明を実施例に基づいて説明するが、本発明の内容をこれらの実施例に限定するものではない。実施例に示された値は次の方法により測定したものである。なお、実施例中、部及び%は特に断りのない限り、重量基準である。また、各種の評価、測定は下記の方法に拠った。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, the content of this invention is not limited to these Examples. The values shown in the examples are measured by the following method. In the examples, parts and% are based on weight unless otherwise specified. Various evaluations and measurements were performed according to the following methods.

(1)体積回復性
押出発泡1分後に樹脂発泡体の長さを1000mmに切断し、当該発泡体の幅、厚み、長さを正確に測定し、それぞれの寸法を乗じて算出した発泡体の体積をVoとする。同樹脂発泡体を発泡1時間後から一定の温度で保存した後、発泡1週間後に再び各寸法を測定、それぞれの寸法を乗じて算出した体積をVとする。体積維持率(R)を次式によって算出し、その値を基に体積回復性を以下の基準で評価した。
R(%)=V/Vo×100
◎:R≧95(体積回復性が非常に優れ、製造時の寸法維持が非常に容易)
○:90≦R<95(体積回復性が優れ、製造時の寸法維持が容易)
×:R<90(体積回復性に乏しく、製造時の寸法維持が困難)
(1) Volume recoverability After 1 minute of extrusion foaming, the length of the resin foam is cut to 1000 mm, the width, thickness, and length of the foam are accurately measured, and the foam is calculated by multiplying the respective dimensions. Let the volume be Vo. After storing the resin foam at a constant temperature after 1 hour of foaming, each dimension is measured again after 1 week of foaming, and the volume calculated by multiplying each dimension is defined as V. The volume retention ratio (R) was calculated by the following formula, and volume recoverability was evaluated based on the value according to the following criteria.
R (%) = V / Vo × 100
A: R ≧ 95 (volume recovery is very excellent and dimensional maintenance during production is very easy)
○: 90 ≦ R <95 (excellent volume recovery and easy maintenance of dimensions during production)
X: R <90 (Volume recoverability is poor and it is difficult to maintain dimensions during production)

(2)ガス置換促進効果
発泡1時間後から一定の温度で保存した樹脂発泡体を内径16mmのコルクボーラーを使用して厚み方向に円柱状に抜き出して試験片とする。この試験片の体積と重量をすばやく測定後、直ちに、内容積を測定したヘッドスペースボトル(ジーエルサイエンス製)に入れ密封し、170℃で1.5時間加熱溶融させる。その後、ボトルを室温まで自然冷却後、該ボトル内のガスを分取、ガスクロマトグラフ(島津製作所製:GC−14B)にて分析した。予め既知のガス濃度測定より作成しておいた検量線と、試験片の体積、試験片の樹脂部分容積、ボトル内容積を用いて発泡体中の残存発泡剤濃度をn=3の平均で算出した。発泡体内残存発泡剤濃度と無機ガスとの置換促進効果は以下の基準で評価した。
◎:残存ブタン濃度が発泡後1週間の時点で燃焼範囲下限未満に到達
○:残存ブタン濃度が発泡後2週間の時点で燃焼範囲下限未満に到達
×:残存ブタン濃度が発泡後2週間の時点で燃焼範囲下限以上
(2) Gas replacement acceleration effect A resin foam stored at a constant temperature after 1 hour of foaming is extracted into a columnar shape in the thickness direction using a cork borer having an inner diameter of 16 mm to obtain a test piece. Immediately after measuring the volume and weight of the test piece, it is immediately sealed in a head space bottle (manufactured by GL Science) whose internal volume has been measured, and heated and melted at 170 ° C. for 1.5 hours. Then, after naturally cooling the bottle to room temperature, the gas in the bottle was collected and analyzed by a gas chromatograph (manufactured by Shimadzu Corporation: GC-14B). Calculate the residual blowing agent concentration in the foam with an average of n = 3 using the calibration curve prepared from the known gas concentration measurement, the volume of the test piece, the resin partial volume of the test piece, and the volume in the bottle. did. The effect of promoting the substitution between the foaming agent residual foaming agent concentration and the inorganic gas was evaluated according to the following criteria.
◎: Residual butane concentration reached less than the lower combustion range at 1 week after foaming ○: Residual butane concentration reached less than the lower combustion range at 2 weeks after foaming ×: Residual butane concentration at 2 weeks after foaming In the combustion range lower limit or more

(3)発泡体の独立気泡率
ASTM−D2856に記載されているエアーピクノメーター法(東京サイエンス製:空気比較式比重計1000型使用)により測定し、n=5の平均で算出した。
(3) Closed cell ratio of foam Measured by an air pycnometer method (manufactured by Tokyo Science Co., Ltd .: air comparison type hydrometer 1000 type) described in ASTM-D2856, and calculated by an average of n = 5.

(4)発泡体のセルサイズ
発泡体の中央部から試験片をカットし、カット面に発泡体の押出方向、幅方向、厚み方向に沿ってL(mm)の直線を引き、これらの直線に接触している気泡の数を数え、自式により押出方向、幅方向、厚み方向のセルサイズを算出し、更に3方向の平均値をセルサイズとした(グリッドライン法)。
セルサイズ(mm)=1.626×L/気泡数
(4) Cell size of foam The test piece is cut from the center of the foam, and a straight line of L (mm) is drawn on the cut surface along the extrusion direction, the width direction, and the thickness direction of the foam. The number of bubbles in contact was counted, the cell size in the extrusion direction, the width direction, and the thickness direction was calculated by a self formula, and the average value in the three directions was defined as the cell size (grid line method).
Cell size (mm) = 1.626 × L / number of bubbles

(5)透過係数及び透過係数比
フィルムのエージング(70℃×1hr)完了後、100mm×100mmのサンプルを切り出し、ガス透過試験機(東洋精機:MT−C3)を用い、JIS K7126記載のA法(差圧法)により、空気及び対応する発泡体で使用した発泡剤の透過係数を測定した。測定は3点行い、それらの平均値を透過係数の値とした。試験温度は30℃にて測定した。空気/発泡剤透過係数比は得られた空気及び発泡剤の透過係数から下記の式を用い算出した。
空気/発泡剤透過係数比=P(空気)/P(発泡剤)
P(空気):空気の透過係数
P(発泡剤):発泡剤の透過係数
(5) Permeability coefficient and permeation coefficient ratio After completion of aging (70 ° C. × 1 hr) of the film, a 100 mm × 100 mm sample was cut out, and a gas permeation tester (Toyo Seiki: MT-C3) was used, and method A described in JIS K7126 The permeability coefficient of the blowing agent used in the air and the corresponding foam was measured by (differential pressure method). The measurement was performed at three points, and the average value thereof was taken as the value of the transmission coefficient. The test temperature was measured at 30 ° C. The air / foaming agent permeability coefficient ratio was calculated from the obtained air and blowing agent permeability coefficient using the following equation.
Air / foaming agent permeability coefficient ratio = P (air) / P (foaming agent)
P (air): Permeability coefficient of air P (foaming agent): Permeability coefficient of foaming agent

(6)接触角
フィルムのエージング(70℃×1hr)完了後、20mm×70mmのサンプルを切り出し、23℃、65%RHの雰囲気下で、接触角計(協和界面科学:CWA200)を用いて、純水の接触角を測定した。測定は5点行い、それらの平均値を接触角の値とした。
(6) Contact angle After aging of the film (70 ° C. × 1 hr) was completed, a 20 mm × 70 mm sample was cut out, using a contact angle meter (Kyowa Interface Science: CWA200) in an atmosphere of 23 ° C. and 65% RH, The contact angle of pure water was measured. The measurement was performed at five points, and the average value thereof was taken as the contact angle value.

[実施例1]
(a)フィルムでの評価
50mmのバレル内径を有するスクリュー型押出機の供給領域に8kg/時間の速度で、低密度ポリエチレン(密度0.921g/cm、MI=2.9g/10分)100重量部に対し、ガス調整剤としてグリセリン脂肪酸エステル(ステアリン酸モノグリセリド:SMG)0.3重量部及びジグリセリン脂肪酸エステル(ステアリン酸ジグリセリド:SDG)0.6重量部の混合物を供給した。押出機のバレル温度を180℃〜200℃に調整し、200℃に温調したサーキュラーダイ(ダイリップ外径:110mm,ダイリップ間隙:1mm)からチューブ状パリソンを押出した。このパリソンをインフレーション法(ブローアップ比:1.5〜2)により70〜100μmの厚みとし、チューブ状のまま紙管に巻き取り(巻き取り速度:2〜3m/分)評価用フィルムを得た。このフィルムから110mm×110mmのサンプルを切り出し、100mm×100mmの開口部をもつ樹脂板に弛みが生じ無い様に貼り付けた後、70℃に加熱したオーブンにて1時間熱処理を実施した後に空気透過係数、空気/発泡剤透過係数、接触角の評価を行った。その結果を表1に示す。
[Example 1]
(A) Evaluation with film Low density polyethylene (density 0.921 g / cm 3 , MI = 2.9 g / 10 min) 100 at a feed rate of a screw type extruder having a barrel inner diameter of 50 mm at a rate of 8 kg / hour. A mixture of 0.3 part by weight of glycerin fatty acid ester (stearic acid monoglyceride: SMG) and 0.6 part by weight of diglycerin fatty acid ester (stearic acid diglyceride: SDG) was supplied as a gas regulator with respect to parts by weight. A tubular parison was extruded from a circular die (die lip outer diameter: 110 mm, die lip gap: 1 mm) adjusted to a barrel temperature of 180 ° C. to 200 ° C. and adjusted to 200 ° C. The parison was adjusted to a thickness of 70 to 100 μm by an inflation method (blow-up ratio: 1.5 to 2), and a film for evaluation was obtained by winding it around a paper tube (winding speed: 2 to 3 m / min) in a tube shape. . A 110 mm × 110 mm sample was cut out from this film, and was attached to a resin plate having an opening of 100 mm × 100 mm so that no slack occurred. Then, heat treatment was performed in an oven heated to 70 ° C. for 1 hour, and then air permeation was performed. The coefficient, air / foaming agent permeability coefficient, and contact angle were evaluated. The results are shown in Table 1.

(b)発泡体での評価
150mmのバレル内径を有するスクリュー型押出機の供給領域に900kg/時間の速度で、低密度ポリエチレン(密度0.921g/cm、MI=2.9g/10分)、及び樹脂100重量部に対し、気泡調整剤としてタルク1.5重量部とガス調整剤としてグリセリン脂肪酸エステル(ステアリン酸モノグリセリド:SMG)0.3重量部及びジグリセリン脂肪酸エステル(ステアリン酸ジグリセリド:SDG)0.6重量部の混合物をともに供給した。押出機のバレル温度を190℃〜210℃に調整し、押出機の先端に取り付けた発泡剤注入口から発泡剤としてノルマルブタン(燃焼範囲下限値:1.8vol%)をこの樹脂100重量部に対し6.8重量部を圧入し、当該溶融樹脂組成物と混合して発泡性溶融混合物とした。この発泡性溶融混合物を押出機の出口に取り付けた冷却装置で108℃まで冷却した後、約3.4mmの平均厚みと約215mm幅の開口部形状を有するオリフィスプレートより、常温、大気圧下の雰囲気中に連続的に押し出して発泡させ、樹脂発泡体の引き取り速度を調整しながら成形して、厚み62mm、幅600mm、長さ1000mm、セルサイズ1.1mm、密度38kg/m、独立気泡率95%の板状樹脂発泡体を得た。この発泡体の中心部温度が50℃まで降下した直後に該樹脂発泡体の上面から、一辺10.0mmの正三角形から構成される千鳥格子状に針を配列した剣山状の針集合具(穿孔の間隔:11.0mm)を用い、貫通穿孔処理を実施して穿孔樹脂発泡体を得た。この穿孔樹脂発泡体を発泡1時間後から40℃の環境下で保存し、体積回復性及びガス置換促進効果の評価を行なった。その結果を表1に示す。
(B) Evaluation with foam Low density polyethylene (density 0.921 g / cm 3 , MI = 2.9 g / 10 min) at a feed rate of a screw type extruder having a barrel inner diameter of 150 mm at a speed of 900 kg / hr. , And 100 parts by weight of the resin, 1.5 parts by weight of talc as the air conditioner, 0.3 parts by weight of glycerin fatty acid ester (stearic monoglyceride: SMG) and diglycerin fatty acid ester (stearic acid diglyceride: SDG) ) 0.6 parts by weight of the mixture were fed together. The barrel temperature of the extruder was adjusted to 190 ° C. to 210 ° C., and normal butane (combustion range lower limit: 1.8 vol%) was added to 100 parts by weight of this resin as a blowing agent from the blowing agent inlet attached to the tip of the extruder. On the other hand, 6.8 parts by weight were press-fitted and mixed with the molten resin composition to obtain a foamable molten mixture. After cooling this foamable molten mixture to 108 ° C. with a cooling device attached to the outlet of the extruder, it was cooled at room temperature and atmospheric pressure from an orifice plate having an average thickness of about 3.4 mm and an opening shape of about 215 mm width. Continuous extrusion into the atmosphere and foaming, molding while adjusting the take-up speed of the resin foam, thickness 62mm, width 600mm, length 1000mm, cell size 1.1mm, density 38kg / m 3 , closed cell rate A 95% plate-like resin foam was obtained. Immediately after the center temperature of the foam has dropped to 50 ° C., a sword mountain-shaped needle assembly in which needles are arranged in a staggered pattern composed of equilateral triangles with a side of 10.0 mm from the top surface of the resin foam ( A perforated resin foam was obtained by performing a perforation treatment using a perforation interval of 11.0 mm. This perforated resin foam was stored in an environment of 40 ° C. after 1 hour of foaming, and the volume recoverability and gas replacement acceleration effect were evaluated. The results are shown in Table 1.

[実施例2]
(a)フィルムでの評価
ガス調整剤として、低密度ポリエチレン100重量部に対しグリセリン脂肪酸エステル0.5重量部及びジグリセリン脂肪酸エステル0.3重量部の混合物を使用した他は、実施例1と同様の方法で評価用フィルムを得た。その後、実施例1と同様の方法で熱処理を実施した後に空気透過係数、空気/発泡剤透過係数、接触角の評価を行った。その結果を表1に示す。
[Example 2]
(A) Evaluation with film Example 1 was used except that a mixture of 0.5 parts by weight of glycerin fatty acid ester and 0.3 part by weight of diglycerin fatty acid ester was used as a gas regulator with respect to 100 parts by weight of low-density polyethylene. A film for evaluation was obtained in the same manner. Then, after performing heat processing by the method similar to Example 1, evaluation of the air permeability coefficient, the air / foaming agent permeability coefficient, and the contact angle was performed. The results are shown in Table 1.

(b)発泡体での評価
ガス調整剤として、低密度ポリエチレン100重量部に対しグリセリン脂肪酸エステル0.5重量部及びジグリセリン脂肪酸エステル0.3重量部の混合物を使用した他は、実施例1と同様の方法で厚み62mm、幅600mm、長さ1000mm、セルサイズ1.1mm、密度38kg/m、独立気泡率95%の板状樹脂発泡体を得た。その後、実施例1と同様の方法で穿孔を実施し、穿孔樹脂発泡体を得た。この穿孔樹脂発泡体を発泡1時間後から40℃の環境下で保存し、体積回復性及びガス置換促進効果の評価を行なった。その結果を表1に示す。
(B) Evaluation in Foam Example 1 except that a mixture of 0.5 part by weight of glycerin fatty acid ester and 0.3 part by weight of diglycerin fatty acid ester with respect to 100 parts by weight of low density polyethylene was used as a gas regulator. In the same manner, a plate-like resin foam having a thickness of 62 mm, a width of 600 mm, a length of 1000 mm, a cell size of 1.1 mm, a density of 38 kg / m 3 , and a closed cell ratio of 95% was obtained. Thereafter, perforation was performed in the same manner as in Example 1 to obtain a perforated resin foam. This perforated resin foam was stored in an environment of 40 ° C. after 1 hour of foaming, and the volume recoverability and gas replacement acceleration effect were evaluated. The results are shown in Table 1.

[実施例3]
(a)フィルムでの評価
ガス調整剤として低密度ポリエチレン100重量部に対しグリセリン脂肪酸エステル0.2重量部及びジグリセリン脂肪酸エステル0.7重量部の混合物を使用した他は、実施例1と同様の方法で評価用フィルムを得た。その後、実施例1と同様の方法で熱処理を実施した後に空気透過係数、空気/発泡剤透過係数、接触角の評価を行った。その結果を表1に示す。
[Example 3]
(A) Evaluation with film As in Example 1, except that a mixture of 0.2 parts by weight of glycerin fatty acid ester and 0.7 parts by weight of diglycerin fatty acid ester was used as a gas regulator with respect to 100 parts by weight of low-density polyethylene. The film for evaluation was obtained by this method. Then, after performing heat processing by the method similar to Example 1, evaluation of the air permeability coefficient, the air / foaming agent permeability coefficient, and the contact angle was performed. The results are shown in Table 1.

(b)発泡体での評価
ガス調整剤として低密度ポリエチレン100重量部に対しグリセリン脂肪酸エステル0.2重量部及びジグリセリン脂肪酸エステル0.7重量部の混合物を使用、及び発泡剤としてノルマルブタン80重量%、イソブタン20重量%からなるブタンを使用し、このブタンを樹脂100重量部に対し6.5重量部圧入した他は、実施例1と同様の方法で厚み62mm、幅600mm、長さ1000mm、セルサイズ1.1mm、密度38kg/m、独立気泡率95%の板状樹脂発泡体を得た。その後、実施例1と同様の方法で穿孔を実施し、穿孔樹脂発泡体を得た。この穿孔樹脂発泡体を発泡1時間後から40℃の環境下で保存し、体積回復性及びガス置換促進効果の評価を行なった。その結果を表1に示す。
(B) Evaluation in Foam Using a mixture of 0.2 parts by weight of glycerin fatty acid ester and 0.7 parts by weight of diglycerin fatty acid ester with respect to 100 parts by weight of low density polyethylene as a gas regulator, and normal butane 80 as a foaming agent In addition to using butane consisting of 20% by weight of isobutane and 6.5 parts by weight of butane injected into 100 parts by weight of the resin, the thickness was 62 mm, the width was 600 mm, and the length was 1000 mm, in the same manner as in Example 1. A plate-like resin foam having a cell size of 1.1 mm, a density of 38 kg / m 3 , and a closed cell ratio of 95% was obtained. Thereafter, perforation was performed in the same manner as in Example 1 to obtain a perforated resin foam. This perforated resin foam was stored in an environment of 40 ° C. after 1 hour of foaming, and the volume recoverability and gas replacement acceleration effect were evaluated. The results are shown in Table 1.

[比較例1]
(a)フィルムでの評価
ガス調整剤として、低密度ポリエチレン100重量部に対しグリセリン脂肪酸エステル1.0重量部を使用した他は、実施例1と同様の方法で評価用フィルムを得た。その後、実施例1と同様の方法で熱処理を実施した後に空気透過係数、空気/発泡剤透過係数、接触角の評価を行った。その結果を表1に示す。
[Comparative Example 1]
(A) Evaluation with Film A film for evaluation was obtained in the same manner as in Example 1, except that 1.0 part by weight of glycerin fatty acid ester was used as a gas modifier with respect to 100 parts by weight of low density polyethylene. Then, after performing heat processing by the method similar to Example 1, evaluation of the air permeability coefficient, the air / foaming agent permeability coefficient, and the contact angle was performed. The results are shown in Table 1.

(b)発泡体での評価
ガス調整剤として、低密度ポリエチレン100重量部に対しグリセリン脂肪酸エステル1.0重量部を使用した他は、実施例1と同様の方法で厚み62mm、幅600mm、長さ1000mm、セルサイズ1.1mm、密度38kg/m、独立気泡率95%の板状樹脂発泡体を得た。その後、実施例1と同様の方法で穿孔を実施し、穿孔樹脂発泡体を得た。この穿孔樹脂発泡体を発泡1時間後から40℃の環境下で保存し、体積回復性及びガス置換促進効果の評価を行なった。その結果を表1に示す。
(B) Evaluation in Foam A gas regulator having a thickness of 62 mm, a width of 600 mm and a length of 100 mm by weight of low-density polyethylene was used in the same manner as in Example 1 except that 1.0 part by weight of glycerin fatty acid ester was used. A plate-shaped resin foam having a thickness of 1000 mm, a cell size of 1.1 mm, a density of 38 kg / m 3 , and a closed cell ratio of 95% was obtained. Thereafter, perforation was performed in the same manner as in Example 1 to obtain a perforated resin foam. This perforated resin foam was stored in an environment of 40 ° C. after 1 hour of foaming, and the volume recoverability and gas replacement acceleration effect were evaluated. The results are shown in Table 1.

[比較例2]
(a)フィルムでの評価
ガス調整剤として低密度ポリエチレン100重量部に対しグリセリン脂肪酸エステル0.7重量部を使用、及び発泡剤としてノルマルブタン50重量%、イソブタン50重量%からなるブタンを使用し、このブタンを樹脂100重量部に対し6.4重量部圧入した他は実施例1と同様の方法で評価用フィルムを得た。その後、実施例1と同様の方法で熱処理を実施した後に空気透過係数、空気/発泡剤透過係数、接触角の評価を行った。その結果を表1に示す。
[Comparative Example 2]
(A) Evaluation on film 0.7 parts by weight of glycerin fatty acid ester is used as a gas regulator for 100 parts by weight of low density polyethylene, and butane consisting of 50% by weight of normal butane and 50% by weight of isobutane is used as a foaming agent. A film for evaluation was obtained in the same manner as in Example 1 except that 6.4 parts by weight of this butane was injected into 100 parts by weight of the resin. Then, after performing heat processing by the method similar to Example 1, evaluation of the air permeability coefficient, the air / foaming agent permeability coefficient, and the contact angle was performed. The results are shown in Table 1.

(b)発泡体での評価
ガス調整剤として低密度ポリエチレン100重量部に対しグリセリン脂肪酸エステル0.7重量部を使用、及び発泡剤としてノルマルブタン50重量%、イソブタン50重量%からなるブタンを使用し、このブタンを樹脂100重量部に対し6.4重量部圧入した他は、実施例1と同様の方法で厚み62mm、幅600mm、長さ1000mm、セルサイズ1.1mm、密度38kg/m、独立気泡率95%の板状樹脂発泡体を得た。その後、実施例1と同様の方法で穿孔を実施し、穿孔樹脂発泡体を得た。この穿孔樹脂発泡体を発泡1時間後から40℃の環境下で保存し、体積回復性及びガス置換促進効果の評価を行なった。その結果を表1に示す。
(B) Evaluation in foamed material As a gas regulator, 0.7 part by weight of glycerin fatty acid ester is used with respect to 100 parts by weight of low density polyethylene, and butane consisting of 50% by weight of normal butane and 50% by weight of isobutane is used as a foaming agent. However, the thickness was 62 mm, the width was 600 mm, the length was 1000 mm, the cell size was 1.1 mm, and the density was 38 kg / m 3 in the same manner as in Example 1 except that 6.4 parts by weight of this butane was pressed into 100 parts by weight of the resin. A plate-like resin foam having a closed cell ratio of 95% was obtained. Thereafter, perforation was performed in the same manner as in Example 1 to obtain a perforated resin foam. This perforated resin foam was stored in an environment of 40 ° C. after 1 hour of foaming, and the volume recoverability and gas replacement acceleration effect were evaluated. The results are shown in Table 1.

[比較例3]
(a)フィルムでの評価
ガス調整剤として、低密度ポリエチレン100重量部に対しグリセリン脂肪酸エステル0.4重量部を使用した他は、実施例1と同様の方法で評価用フィルムを得た。その後、実施例1と同様の方法で熱処理を実施した後に空気透過係数、空気/発泡剤透過係数、接触角の評価を行った。その結果を表1に示す。
[Comparative Example 3]
(A) Evaluation with Film A film for evaluation was obtained in the same manner as in Example 1 except that 0.4 part by weight of glycerin fatty acid ester was used as a gas modifier with respect to 100 parts by weight of low density polyethylene. Then, after performing heat processing by the method similar to Example 1, evaluation of the air permeability coefficient, the air / foaming agent permeability coefficient, and the contact angle was performed. The results are shown in Table 1.

(b)発泡体での評価
ガス調整剤として、低密度ポリエチレン100重量部に対しグリセリン脂肪酸エステル0.4重量部を使用した他は、実施例1と同様の方法で厚み62mm、幅600mm、長さ1000mm、セルサイズ1.1mm、密度38kg/m、独立気泡率95%の板状樹脂発泡体を得た。その後、実施例1と同様の方法で穿孔を実施し、穿孔樹脂発泡体を得た。この穿孔樹脂発泡体を発泡1時間後から40℃の環境下で保存し、体積回復性及びガス置換促進効果の評価を行なった。その結果を表1に示す。
(B) Evaluation in Foam A gas regulator having a thickness of 62 mm, a width of 600 mm, and a length of the same method as in Example 1 except that 0.4 part by weight of glycerin fatty acid ester is used with respect to 100 parts by weight of low density polyethylene. A plate-shaped resin foam having a thickness of 1000 mm, a cell size of 1.1 mm, a density of 38 kg / m 3 , and a closed cell ratio of 95% was obtained. Thereafter, perforation was performed in the same manner as in Example 1 to obtain a perforated resin foam. This perforated resin foam was stored in an environment of 40 ° C. after 1 hour of foaming, and the volume recoverability and gas replacement acceleration effect were evaluated. The results are shown in Table 1.

[比較例4]
(a)フィルムでの評価
ガス調整剤として、低密度ポリエチレン100重量部に対しジグリセリン脂肪酸エステル0.9重量部を使用した他は、実施例1と同様の方法で評価用フィルムを得た。その後、実施例1と同様の方法で熱処理を実施した後に空気透過係数、空気/発泡剤透過係数、接触角の評価を行った。その結果を表1に示す。
[Comparative Example 4]
(A) Evaluation with Film A film for evaluation was obtained in the same manner as in Example 1 except that 0.9 part by weight of diglycerin fatty acid ester was used as a gas modifier with respect to 100 parts by weight of low density polyethylene. Then, after performing heat processing by the method similar to Example 1, evaluation of the air permeability coefficient, the air / foaming agent permeability coefficient, and the contact angle was performed. The results are shown in Table 1.

(b)発泡体での評価
ガス調整剤として、低密度ポリエチレン100重量部に対しジグリセリン脂肪酸エステル0.9重量部を使用した他は、実施例1と同様の方法で厚み62mm、幅600mm、長さ1000mm、セルサイズ1.1mm、密度38kg/m、独立気泡率95%の板状樹脂発泡体を得た。その後、実施例1と同様の方法で穿孔を実施し、穿孔樹脂発泡体を得た。この穿孔樹脂発泡体を発泡1時間後から40℃の環境下で保存し、体積回復性及びガス置換促進効果の評価を行なった。その結果を表1に示す。
(B) Evaluation in foam As a gas regulator, a thickness of 62 mm and a width of 600 mm were obtained in the same manner as in Example 1 except that 0.9 part by weight of diglycerin fatty acid ester was used with respect to 100 parts by weight of low density polyethylene. A plate-shaped resin foam having a length of 1000 mm, a cell size of 1.1 mm, a density of 38 kg / m 3 , and a closed cell ratio of 95% was obtained. Thereafter, perforation was performed in the same manner as in Example 1 to obtain a perforated resin foam. This perforated resin foam was stored in an environment of 40 ° C. after 1 hour of foaming, and the volume recoverability and gas replacement acceleration effect were evaluated. The results are shown in Table 1.

本発明は、発泡剤として可燃性ガスを使用した押出発泡による発泡体の製造方法において、短期間で可燃性発泡ガスを空気等の無機ガスに置換することができ、かつ、充分に体積回復が可能な熱可塑性樹脂発泡体の製造の分野で好適に利用出来る。   The present invention relates to a method for producing a foam by extrusion foaming using a combustible gas as a foaming agent, and the combustible foaming gas can be replaced with an inorganic gas such as air in a short period of time, and sufficient volume recovery can be achieved. It can be suitably used in the field of production of possible thermoplastic resin foams.

Claims (8)

グリセリン脂肪酸エステル、脂肪酸アミド、アルキル脂肪酸アミドから少なくとも1種以上選ばれた(a)成分、及びグリセリン縮合度が2以上のポリグリセリン脂肪酸エステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸ジエステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸トリエステル、アルキルアミン、ヒドロキシアルキルアミン脂肪酸エステルから少なくとも1種以上選ばれた(b)成分から成ることを特徴とするガス調整剤。   At least one component (a) selected from glycerin fatty acid ester, fatty acid amide, alkyl fatty acid amide, polyglycerin fatty acid ester having a glycerin condensation degree of 2 or more, polyglycerin fatty acid diester having a glycerin condensation degree of 2 or more, glycerin condensation A gas regulator comprising a component (b) selected from at least one polyglycerin fatty acid triester, alkylamine, and hydroxyalkylamine fatty acid ester having a degree of 2 or more. (a)成分の含有量が20〜80wt%、(b)成分の含有量が80〜20wt%であることを特徴とする、請求項1記載のガス調整剤。   The gas regulator according to claim 1, wherein the content of the component (a) is 20 to 80 wt%, and the content of the component (b) is 80 to 20 wt%. 熱可塑性樹脂とグリセリン脂肪酸エステル、脂肪酸アミド、アルキル脂肪酸アミドから少なくとも1種以上選ばれた(a)成分、及びグリセリン縮合度が2以上のポリグリセリン脂肪酸エステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸ジエステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸トリエステル、アルキルアミン、ヒドロキシアルキルアミン脂肪酸エステルから少なくとも1種以上選ばれた(b)成分を含有することを特徴とする熱可塑性樹脂発泡体。   At least one component (a) selected from a thermoplastic resin, a glycerin fatty acid ester, a fatty acid amide, and an alkyl fatty acid amide, a polyglycerin fatty acid ester having a glycerin condensation degree of 2 or more, and a polyglycerin fatty acid having a degree of glycerin condensation of 2 or more. A thermoplastic resin foam comprising at least one component (b) selected from diesters, polyglycerol fatty acid triesters having a degree of glycerol condensation of 2 or more, alkylamines, and hydroxyalkylamine fatty acid esters. (a)成分と(b)成分の含有率(重量比)が20/80〜80/20、(a)成分と(b)成分を併せた添加量が熱可塑性樹脂100重量部に対して0.3〜2重量部であることを特徴とする、請求項3記載の熱可塑性樹脂発泡体。   The content (weight ratio) of the component (a) and the component (b) is 20/80 to 80/20, and the combined amount of the component (a) and the component (b) is 0 with respect to 100 parts by weight of the thermoplastic resin. The thermoplastic resin foam according to claim 3, characterized in that it is 3 to 2 parts by weight. 熱可塑性樹脂とガス調整剤からなる樹脂組成物を押出発泡することにより得られる発泡体であって、当該樹脂組成物の(i)空気透過係数が4.5×1012〜3.0×1013fm・fm/fm・sec・Pa、かつ(ii)空気と使用する発泡剤の透過係数比が1〜10であることを特徴とする、熱可塑性樹脂発泡体。 A foam obtained by extruding and foaming a resin composition comprising a thermoplastic resin and a gas regulator, wherein (i) the air permeability coefficient of the resin composition is 4.5 × 10 12 to 3.0 × 10 13 fm 3 · fm / fm 2 · sec · Pa, and (ii) a permeability coefficient ratio of air to a foaming agent used is 1 to 10, and is a thermoplastic resin foam. 樹脂組成物部分の水の接触角が10〜90°であることを特徴とする、請求項5記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to claim 5, wherein the water contact angle of the resin composition portion is 10 to 90 °. ガス調整剤が、グリセリン脂肪酸エステル、脂肪酸アミド、アルキル脂肪酸アミドから少なくとも1種以上選ばれた(a)成分、及びグリセリン縮合度が2以上のポリグリセリン脂肪酸エステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸ジエステル、グリセリン縮合度が2以上のポリグリセリン脂肪酸トリエステル、アルキルアミン、ヒドロキシアルキルアミン脂肪酸エステルから少なくとも1種以上選ばれた(b)成分から成ることを特徴とする、請求項5記載の熱可塑性樹脂発泡体。   The gas regulator is at least one component (a) selected from glycerin fatty acid ester, fatty acid amide, and alkyl fatty acid amide, polyglycerin fatty acid ester having a glycerin condensation degree of 2 or more, and polyglycerin having a glycerin condensation degree of 2 or more. The heat according to claim 5, comprising at least one component (b) selected from a fatty acid diester, a polyglycerol fatty acid triester having a degree of glycerol condensation of 2 or more, an alkylamine, and a hydroxyalkylamine fatty acid ester. Plastic resin foam. (a)成分の含有量20〜80wt%、(b)成分の含有量80〜20wt%であるガス調整剤が、熱可塑性樹脂100重量部に対して0.3〜2重量部配合されたことを特徴とする、請求項7記載の熱可塑性樹脂発泡体。   The gas regulator having a component content of 20 to 80 wt% and a component content of 80 to 20 wt% was blended in an amount of 0.3 to 2 parts by weight per 100 parts by weight of the thermoplastic resin. The thermoplastic resin foam according to claim 7, wherein:
JP2003363696A 2003-10-23 2003-10-23 Gas regulator and thermoplastic resin foamed body using it Pending JP2005126568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363696A JP2005126568A (en) 2003-10-23 2003-10-23 Gas regulator and thermoplastic resin foamed body using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363696A JP2005126568A (en) 2003-10-23 2003-10-23 Gas regulator and thermoplastic resin foamed body using it

Publications (1)

Publication Number Publication Date
JP2005126568A true JP2005126568A (en) 2005-05-19

Family

ID=34642941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363696A Pending JP2005126568A (en) 2003-10-23 2003-10-23 Gas regulator and thermoplastic resin foamed body using it

Country Status (1)

Country Link
JP (1) JP2005126568A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174194A (en) * 2009-01-30 2010-08-12 Sekisui Plastics Co Ltd Resin expanded sheet of non-crosslinked polyethylene and method for producing the same, and floating buoyant material and life vest

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174194A (en) * 2009-01-30 2010-08-12 Sekisui Plastics Co Ltd Resin expanded sheet of non-crosslinked polyethylene and method for producing the same, and floating buoyant material and life vest

Similar Documents

Publication Publication Date Title
CN109485977B (en) EPE pearl cotton material and preparation method thereof
EP1449868A1 (en) Composition for polyolefin resin foam and foam thereof, and method for producing foam
JP3441165B2 (en) Flame retardant polyolefin resin foam particles
JP5044589B2 (en) Polyvinylidene fluoride-based resin foamed particles, and polyvinylidene fluoride-based resin foamed particles
JP5755934B2 (en) Method for producing polyolefin resin laminate foam and method for producing polyolefin resin foam
JP2005126568A (en) Gas regulator and thermoplastic resin foamed body using it
JP2004307662A (en) Method for producing crystalline polylactic acid-based resin foam
JP4756957B2 (en) Extruded foam
JP2005297341A (en) Method for manufacturing polyolefin resin extruded foam
JP2007039601A (en) Extruded foam
JP4791016B2 (en) Polyolefin resin extruded foam
JP2006077218A (en) Thermoplastic resin extruded foam and method for producing the same
JPH07278365A (en) Low-density polyolefin foam, foamable polyolefin compositionand their production
JP3888944B2 (en) Method for producing styrene resin foam sheet
JP2006016609A (en) Extruded foam of polystyrene-based resin
JP2005297340A (en) Method for manufacturing polyolefin resin extruded foam
JP4101684B2 (en) Styrenic resin foam plate and manufacturing method thereof
JP2004075704A (en) Thermoplastic resin foam and method for producing the same
JP2006188654A (en) Manufacturing method of extruded and foamed body of polystyrenic resin
JP2915250B2 (en) Non-crosslinked polyethylene resin foam and method for producing the same
JP2004352840A (en) Manufacturing method of low-flammable olefin resin extruded foam
JP4188664B2 (en) Polystyrene resin foam sheet and polystyrene resin laminated foam sheet
JP7229754B2 (en) Non-crosslinked polyethylene resin extruded foam board and method for producing the same
JPWO2005039863A1 (en) Method for producing olefin resin foam
JP2006089637A (en) Production process of polyproylene resin foamed sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

A977 Report on retrieval

Effective date: 20090511

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A02