JP5755934B2 - Method for producing polyolefin resin laminate foam and method for producing polyolefin resin foam - Google Patents

Method for producing polyolefin resin laminate foam and method for producing polyolefin resin foam Download PDF

Info

Publication number
JP5755934B2
JP5755934B2 JP2011107768A JP2011107768A JP5755934B2 JP 5755934 B2 JP5755934 B2 JP 5755934B2 JP 2011107768 A JP2011107768 A JP 2011107768A JP 2011107768 A JP2011107768 A JP 2011107768A JP 5755934 B2 JP5755934 B2 JP 5755934B2
Authority
JP
Japan
Prior art keywords
foam
resin
surface layer
forming
core layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011107768A
Other languages
Japanese (ja)
Other versions
JP2012236372A (en
Inventor
森田 和彦
和彦 森田
角田 博俊
博俊 角田
秋山 照幸
照幸 秋山
昌平 土田
昌平 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2011107768A priority Critical patent/JP5755934B2/en
Publication of JP2012236372A publication Critical patent/JP2012236372A/en
Application granted granted Critical
Publication of JP5755934B2 publication Critical patent/JP5755934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ポリオレフィン系樹脂積層発泡体の製造方法、及びポリオレフィン系樹脂発泡体に関する。   The present invention relates to a method for producing a polyolefin resin laminated foam and a polyolefin resin foam.

無架橋ポリエチレン発泡体等のポリオレフィン系樹脂発泡体は良好な緩衝性能を有し、各種工業用品などの梱包剤として好適である。特に押出発泡法により製造された厚みの厚い発泡体は抜き・切断・溶着などを行うことで任意の形状を提供でき、かつ高価な金型を使用しないことから、任意形状の発泡体を安価に提供することが可能である。   Polyolefin resin foams such as non-crosslinked polyethylene foams have good buffer performance and are suitable as packing materials for various industrial products. In particular, a thick foam manufactured by extrusion foaming can be provided in any shape by punching, cutting, welding, etc., and since an expensive mold is not used, a foam with any shape can be made inexpensively. It is possible to provide.

近年のオゾン層破壊や地球温暖化などの環境問題の顕在化により、ポリオレフィン系樹脂発泡体を製造する際に、フロン系の発泡剤の使用は困難になっている。そこで、押出発泡法により無架橋発泡体を製造する際に発泡剤としてブタンのような脂肪族炭化水素が用いられるようになっている。しかし、発泡剤としてブタンを使用するとフロンよりガス透過速度が速いために押出発泡後、発泡体からの急速な発泡剤の放散により、気泡内の圧力が減少し発泡体が著しく収縮してしまうという問題が生じた。押出直後に発泡体が収縮してしまうと、発泡体の気泡内に空気が流入してきても所望の発泡倍率まで回復しなくなってしまう。
この収縮の問題を解決するために、ポリオレフィン系樹脂発泡体を製造する際に、各種の化合物を収縮防止剤として添加することが提案されている(特許文献1〜5)。グリセリンモノステアレート、グリセリンモノパルミテートなどの脂肪酸エステルや、脂肪族アミンなどを収縮防止剤としてポリオレフィン系樹脂に多量に添加して押出発泡することにより、押出発泡後に急速な発泡剤(ブタン)が放散することを防ぐことが可能となり、発泡剤放散による発泡体の収縮を抑制することが可能となった。
Due to the recent emergence of environmental problems such as ozone layer destruction and global warming, it is difficult to use a fluorocarbon foaming agent when producing a polyolefin resin foam. Therefore, aliphatic hydrocarbons such as butane are used as a foaming agent when producing an uncrosslinked foam by an extrusion foaming method. However, when butane is used as the foaming agent, the gas permeation rate is faster than that of chlorofluorocarbon, and after extrusion foaming, the rapid foaming agent release from the foam reduces the pressure in the bubbles and causes the foam to shrink significantly. There was a problem. If the foam shrinks immediately after extrusion, even if air flows into the bubbles of the foam, it does not recover to the desired foaming ratio.
In order to solve this shrinkage problem, it has been proposed to add various compounds as shrinkage inhibitors in the production of polyolefin resin foams (Patent Documents 1 to 5). By adding a large amount of fatty acid esters such as glycerin monostearate and glycerin monopalmitate to the polyolefin resin as an anti-shrinkage agent and extrusion foaming, a rapid foaming agent (butane) is obtained after extrusion foaming. It is possible to prevent the foam from being diffused, and it is possible to suppress the shrinkage of the foam due to the foaming agent dispersion.

収縮防止剤の添加は、比較的厚みの薄いシート状のポリオレフィン系樹脂発泡体を得る場合に効果的である。しかしながら、厚みのある板状のポリオレフィン系樹脂発泡体を得る場合には、発泡直後に発泡体の収縮を防止できる程度に多量の収縮防止剤を添加すると、発泡剤の放散が遅くなり発泡剤が発泡体中に長期に亘って多量に残存することとなる。発泡剤が多量に残存していると発泡剤残量の変化、および大気中の空気が気泡内に流入してくることに伴う気泡内の内圧変化により加工後に寸法変化を生じてしまうため、発泡体から発泡剤を十分に放散させ、気泡内の圧力を安定させるためには長時間の養生をとる必要が生じていた。更には、発泡体を包装体に使用する場合、前記収縮防止剤自体が被包装体へ移行することがあり、収縮防止剤を多量に添加した場合には、用途によっては収縮防止剤の移行が問題となる場合があった。   The addition of the shrinkage inhibitor is effective in obtaining a sheet-like polyolefin resin foam having a relatively thin thickness. However, in the case of obtaining a thick plate-like polyolefin resin foam, if a large amount of an anti-shrinkage agent is added to the extent that the foam can be prevented from shrinking immediately after foaming, the foaming agent is delayed and the foaming agent is A large amount will remain in the foam for a long period of time. If a large amount of foaming agent remains, dimensional changes will occur after processing due to changes in the remaining amount of foaming agent and changes in the internal pressure of air bubbles caused by air flowing into the bubbles. In order to sufficiently dissipate the foaming agent from the body and stabilize the pressure in the bubbles, it has been necessary to take a long period of curing. Furthermore, when a foam is used for a package, the anti-shrink agent itself may migrate to the package, and when a large amount of the anti-shrink agent is added, the shrinkage inhibitor may migrate depending on the application. There was a problem.

発泡剤を放散させる為に、例えば特許文献6、特許文献7等のように、収縮防止剤を添加して発泡体を製造した後、発泡体に針穴加工を施したり、発泡体を圧縮して収縮防止剤の膜に割れを生じさせたりして、発泡剤と空気との置換を速める技術がある。   In order to disperse the foaming agent, for example, as disclosed in Patent Document 6, Patent Document 7 and the like, after producing a foam by adding an anti-shrink agent, the foam is subjected to needle hole processing or the foam is compressed. There is a technique for accelerating the replacement of the foaming agent with air by causing the film of the shrinkage-preventing agent to crack.

特開昭54−81370号公報JP 54-81370 A 特開昭54−111573号公報Japanese Patent Laid-Open No. 54-111573 特開昭54−127473号公報JP 54-127473 A 特開平3−215534号公報JP-A-3-215534 特開平8−090626号公報JP-A-8-090626 特開2003−53764号公報JP 2003-53764 A 特開2005−297341号公報JP 2005-297341 A

しかし、特許文献6、特許文献7の方法を用いると、気泡膜に穴が形成されたり、発泡体を無理に圧縮するため、発泡体の圧縮強度等の物性低下を生じるという問題があった。また、収縮防止剤自体が被包装体へ移行するこという問題を解決することもできなかった。
すなわち、ブタンのような脂肪族炭化水素を発泡剤として使用して厚物のポリオレフィン系樹脂発泡体を製造する場合には、発泡体の発泡直後の収縮を抑制しつつも、長期間の養生を必要とせず、かつ機械的強度に優れた発泡体を得る技術は確立されていなかったのが現状である。
However, when the methods of Patent Document 6 and Patent Document 7 are used, there are problems that holes are formed in the bubble film or the foam is forcibly compressed, resulting in a decrease in physical properties such as compression strength of the foam. Moreover, the problem that the shrinkage preventing agent itself moves to the packaged body could not be solved.
That is, when producing a thick polyolefin resin foam using an aliphatic hydrocarbon such as butane as a foaming agent, long-term curing can be achieved while suppressing shrinkage immediately after foaming. The present condition is that the technique of obtaining the foam which is not required and was excellent in mechanical strength was not established.

本発明は、上記問題点を解決して、押出発泡後の発泡体の収縮性が小さく寸法安定性に優れ、長時間の養生や高温養生が不要であると共に、圧縮強度等の機械的強度が大きく、更に繰り返し圧縮に対する耐性の大きい厚手のポリオレフィン系樹脂積層発泡体の製造方法、及び収縮防止剤の被包装体への移行性の問題を解決可能なポリオレフィン系樹脂発泡体を提供することを目的とする。   The present invention solves the above-mentioned problems, has low shrinkage of the foam after extrusion foaming and excellent dimensional stability, does not require long-term curing or high-temperature curing, and has mechanical strength such as compression strength. An object of the present invention is to provide a large polyolefin resin laminate foam having a large resistance to repeated compression and a polyolefin resin foam capable of solving the problem of migration of a shrinkage inhibitor to a package. And

本発明者らは、上記問題点に鑑み鋭意検討した結果、ポリオレフィン系樹脂と発泡剤としてブタンとを含む発泡芯層形成用溶融樹脂の外周面に、ポリオレフィン系樹脂を基材樹脂とする表面層形成用溶融樹脂に特定の収縮防止剤を特定量配合して積層、共押出しすることにより、上記課題を解決して厚みのある積層発泡体を製造できることを見出し本発明を完成させるに至った。
すなわち、本発明は、以下の(1)から(6)に記載する発明を要旨とする。
(1)ポリオレフィン系樹脂とブタンとを混練してなる発泡芯層形成用溶融樹脂の外周面に、ポリオレフィン系樹脂を基材樹脂とする表面層形成用溶融樹脂を積層して共押出することにより、積層発泡体全体の厚みが30mm以上で、発泡芯層の見掛け密度が18〜90kg/mである、発泡芯層と表面層とからなる積層発泡体を製造する方法であって、表面層形成用溶融樹脂には、脂肪酸エステル、脂肪族アミンまたは脂肪酸アミドからなる収縮防止剤が、表面層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対して0.5質量部以上の配合割合(A1)で配合されており、
発泡芯層形成用溶融樹脂には、脂肪酸エステル、脂肪族アミンまたは脂肪酸アミドからなる収縮防止剤が、発泡芯層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対して、表面層形成用溶融樹脂への収縮防止剤の配合割合(A1)よりも少ない配合割合で配合されているか、または脂肪酸エステル、脂肪族アミンまたは脂肪酸アミドからなる収縮防止剤が配合されていないことを特徴とするポリオレフィン系樹脂積層発泡体の製造方法。
(2)前記発泡芯層形成用溶融樹脂への脂肪酸エステル、脂肪族アミンまたは脂肪族アミドからなる収縮防止剤の配合割合(A2)が発泡芯層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対して0.3質量部以下(ただし、0質量部を含む。)であることを特徴とする前記(1)に記載のポリオレフィン系樹脂積層発泡体の製造方法。
(3)表面層の見掛け密度を18〜180kg/mとすることを特徴とする前記(1)または(2)に記載のポリオレフィン系樹脂積層発泡体の製造方法。
(4)前記表面層形成用溶融樹脂に有機物理発泡剤が配合されていることを特徴とする前記(1)から(3)のいずれかに記載のポリオレフィン系樹脂積層発泡体の製造方法。
(5)前記表面層の坪量m[g/m]と積層発泡体の厚みt[mm]との比(m/t)を、0.5以上とすることを特徴とする前記(1)から(4)のいずれかに記載のポリオレフィン系樹脂積層発泡体の製造方法。
(6)前記発泡芯層を構成しているポリオレフィン系樹脂が低密度ポリエチレンであることを特徴とする前記(1)から(5)のいずれかに記載のポリオレフィン系樹脂積層発泡体の製造方法。
(7)前記(2)に記載の製造方法により得られた積層発泡体から表面層を取り除く、ポリオレフィン系樹脂発泡体の製造方法
As a result of intensive studies in view of the above problems, the present inventors have found that a surface layer having a polyolefin resin as a base resin is formed on the outer peripheral surface of a molten resin for forming a foam core layer containing a polyolefin resin and butane as a foaming agent. It has been found that a laminated foam having a thickness can be produced by solving a specific problem by blending and coextruding a specific amount of a specific shrinkage-preventing agent with a specific amount of an anti-shrink agent in the forming molten resin.
That is, the gist of the present invention is the invention described in the following (1) to (6).
(1) By laminating and coextruding a surface layer forming molten resin having a polyolefin resin as a base resin on the outer peripheral surface of a foamed core layer forming molten resin obtained by kneading a polyolefin resin and butane A method for producing a laminated foam comprising a foam core layer and a surface layer, wherein the thickness of the entire laminate foam is 30 mm or more and the apparent density of the foam core layer is 18 to 90 kg / m 3 , comprising: In the forming molten resin, a shrinkage inhibitor composed of a fatty acid ester, an aliphatic amine or a fatty acid amide is blended in an amount of 0.5 parts by mass or more based on 100 parts by mass of the polyolefin resin of the surface layer forming molten resin (A1). )
In the molten resin for forming the foam core layer, a shrinkage-preventing agent comprising a fatty acid ester, an aliphatic amine or a fatty acid amide is added to 100 parts by mass of the polyolefin resin of the molten resin for forming the foam core layer. A polyolefin-based resin characterized in that it is blended at a blending ratio less than the blending ratio (A1) of an anti-shrinkage agent or a shrinkage-preventing agent comprising a fatty acid ester, aliphatic amine or fatty acid amide is not blended. A method for producing a laminated foam.
(2) The blending ratio (A2) of the shrinkage inhibitor composed of a fatty acid ester, an aliphatic amine or an aliphatic amide to the molten resin for forming the foam core layer is 100 parts by mass of the polyolefin resin of the melt resin for forming the foam core layer. On the other hand, it is 0.3 mass part or less (however, 0 mass part is included), The manufacturing method of the polyolefin resin laminated foam as described in said (1) characterized by the above-mentioned.
(3) The method for producing a polyolefin resin laminated foam according to (1) or (2), wherein the apparent density of the surface layer is 18 to 180 kg / m 3 .
(4) The method for producing a polyolefin resin laminated foam according to any one of (1) to (3), wherein an organic physical foaming agent is blended in the molten resin for forming the surface layer.
(5) The ratio (m / t) between the basis weight m [g / m 2 ] of the surface layer and the thickness t [mm] of the laminated foam is 0.5 or more, (1 ) To (4). A method for producing a polyolefin resin laminated foam according to any one of (4) to (4).
(6) The method for producing a polyolefin resin laminated foam according to any one of (1) to (5), wherein the polyolefin resin constituting the foam core layer is low density polyethylene.
(7) the (2) in excluding take surface layer from the resulting laminate foams by the method according method for producing a polyolefin resin foam.

本発明の製造方法は、特に発泡直後に収縮が起こりやすい、低見掛け密度であって、厚みの厚いポリオレフィン系樹脂発泡体の製造時において、ポリオレフィン系樹脂に一定量(0.5質量部以上)の収縮防止剤を含む表面層形成用溶融樹脂にて、ポリオレフィン系樹脂に上記表面層よりも少ない量の収縮防止剤を含む、または収縮防止剤を含まない発泡芯層形成用溶融樹脂の外周面を積層して共押出発泡することで、表層部の収縮防止剤の配合割合が高く、内部の収縮防止剤の配合割合が低い積層発泡体が得られる。このような積層発泡体は、従来のように発泡体全体に収縮防止剤を必要量添加した発泡体と同様に、押出発泡直後の発泡体の収縮を抑制または防止できると共に、従来のように発泡体全体に収縮防止剤を必要量添加したものよりも養生中の発泡剤放散速度が速く、養生期間を短縮できる効果がある。
また、上記(2)に記載の製造方法により得られた積層発泡体の表面層が取り除かれた、発泡芯層のみからなるポリオレフィン系樹脂発泡体は、被包装体への収縮防止剤の移行性が極めて少ないか、又は移行が無い発泡体である。このような発泡体は、医療・電子部品用緩衝材として特に有用である。
In the production method of the present invention, a certain amount (0.5 parts by mass or more) is added to the polyolefin resin in the production of a polyolefin resin foam having a low apparent density that is likely to shrink immediately after foaming and having a large thickness. The outer peripheral surface of the foamed core layer-forming molten resin that contains a less amount of the shrinkage-preventing agent in the polyolefin-based resin than the surface layer, or contains no shrinkage-preventing agent. By laminating and coextrusion foaming, a laminated foam having a high blending ratio of the shrinkage inhibitor in the surface layer portion and a low blending ratio of the internal shrinkage inhibitor is obtained. Such a laminated foam can suppress or prevent the shrinkage of the foam immediately after extrusion foaming as well as the foam in which the necessary amount of the shrinkage inhibitor is added to the entire foam as in the prior art, and the foam as in the conventional case. The foaming agent release rate during curing is faster than that obtained by adding a necessary amount of an anti-shrink agent to the whole body, and the curing period can be shortened.
In addition, the polyolefin resin foam consisting only of the foam core layer from which the surface layer of the laminated foam obtained by the production method described in (2) above is removed is a transfer property of the shrinkage inhibitor to the packaged body. Is a foam with very little or no migration. Such a foam is particularly useful as a cushioning material for medical / electronic parts.

本発明のポリオレフィン系樹脂積層発泡体の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the polyolefin resin laminated foam of this invention.

以下に、ポリオレフィン系樹脂積層発泡体の製造方法について説明する。〔1〕ポリオレフィン系樹脂積層発泡体の製造方法
本発明の第1の態様であるポリオレフィン系樹脂積層発泡体(以下、積層発泡体と記載することがある)の製造方法は、ポリオレフィン系樹脂と発泡剤としてブタンとを含む発泡芯層形成用溶融樹脂の外周面に、ポリオレフィン系樹脂を基材樹脂とする表面層形成用溶融樹脂を積層して共押出することにより、積層発泡体全体の厚みが30mm以上で、発泡芯層の見掛け密度が18〜90kg/mである、発泡芯層と表面層からなる積層発泡体を製造する方法であって、
表面層形成用溶融樹脂には、脂肪酸エステル、脂肪族アミンまたは脂肪酸アミドからなる収縮防止剤が、表面層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対して0.5部以上の配合割合(A1)で配合されており、
発泡芯層形成用溶融樹脂には、脂肪酸エステル、脂肪族アミンまたは脂肪酸アミドからなる収縮防止剤が、発泡芯層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対して、表面層形成用溶融樹脂への収縮防止剤の配合割合(A1)よりも少ない配合割合で配合されている、または脂肪酸エステル、脂肪族アミンまたは脂肪酸アミドからなる収縮防止剤が配合されていないことを特徴とする。
Below, the manufacturing method of polyolefin resin laminated foam is demonstrated. [1] Method for Producing Polyolefin-Based Resin Laminated Foam A method for producing a polyolefin-based resin laminated foam (hereinafter sometimes referred to as “laminated foam”) according to the first aspect of the present invention comprises a polyolefin resin and foam. By laminating and coextruding a melt resin for forming a surface layer using a polyolefin resin as a base resin on the outer peripheral surface of a melt resin for forming a foam core layer containing butane as an agent, the thickness of the entire laminated foam can be reduced. A method for producing a laminated foam comprising a foam core layer and a surface layer, wherein the apparent density of the foam core layer is 30 mm or more and 18 to 90 kg / m 3 ,
In the molten resin for forming the surface layer, a shrinkage inhibitor composed of a fatty acid ester, an aliphatic amine, or a fatty acid amide is blended in an amount of 0.5 part or more with respect to 100 parts by mass of the polyolefin resin of the molten resin for forming the surface layer ( A1)
In the molten resin for forming the foam core layer, a shrinkage-preventing agent comprising a fatty acid ester, an aliphatic amine or a fatty acid amide is added to 100 parts by mass of the polyolefin resin of the molten resin for forming the foam core layer. It is characterized in that it is blended at a blending ratio less than the blending ratio (A1) of the anti-shrinkage agent or a shrinkage-preventing agent composed of a fatty acid ester, aliphatic amine or fatty acid amide is not blended.

本発明のポリオレフィン系樹脂積層発泡体の製造方法の一例を図1に示す。
積層発泡体1は、発泡芯層形成用溶融樹脂9の外周面に、表面層形成用溶融樹脂5を積層して共押出し、発泡芯層形成用溶融樹脂を発泡させることにより製造される。
第1の押出機11の投入口に、表面層を形成するためのポリオレフィン系樹脂2と、必要量の収縮防止剤3を供給し、それらを溶融混練した後、必要に応じて有機物理発泡剤4を押出機途中から添加し、さらに溶融混練して表面層形成用溶融樹脂5を調整する。第2の押出機12の投入口に、発泡芯層を形成するためのポリオレフィン系樹脂6、必要に応じて収縮防止剤7を供給し、それらを溶融混練した後に発泡剤8を押出機途中から添加し、さらに溶融混練して発泡芯層形成用溶融樹脂9を調整する。押出機の下流に備えられた合流ダイ13内で、発泡温度に調整された発泡芯層形成用溶融樹脂9の外周面に表面層形成用溶融樹脂5を積層し、合流ダイ13から該ダイ内よりも低圧下(通常は大気圧下)に共押出して発泡芯層形成用溶融樹脂9を発泡させることにより、ポリオレフィン系樹脂積層発泡体1が製造される。
An example of the manufacturing method of the polyolefin resin laminated foam of this invention is shown in FIG.
The laminated foam 1 is manufactured by laminating the surface layer forming molten resin 5 on the outer peripheral surface of the foam core layer forming molten resin 9 and coextruding the foamed core layer forming molten resin.
A polyolefin-based resin 2 for forming a surface layer and a necessary amount of a shrinkage-preventing agent 3 are supplied to the inlet of the first extruder 11, melted and kneaded, and then an organic physical foaming agent as necessary. 4 is added in the middle of the extruder, and melted and kneaded to prepare a molten resin 5 for forming the surface layer. A polyolefin-based resin 6 for forming a foam core layer and, if necessary, an anti-shrink agent 7 are supplied to the inlet of the second extruder 12, and after melting and kneading them, the foaming agent 8 is introduced from the middle of the extruder. Addition and further melt-kneading to prepare a foamed core layer forming molten resin 9. In the merging die 13 provided downstream of the extruder, the surface layer forming molten resin 5 is laminated on the outer peripheral surface of the foamed core layer forming molten resin 9 adjusted to the foaming temperature. The polyolefin resin laminated foam 1 is produced by coextrusion under a lower pressure (usually under atmospheric pressure) to foam the molten resin 9 for forming the foam core layer.

(1)収縮防止剤
本発明における、表面層形成用溶融樹脂、又は表面層形成用溶融樹脂と発泡芯層形成用溶融樹脂の双方に配合される収縮防止剤は、脂肪酸エステル、脂肪族アミンまたは脂肪酸アミドである。
脂肪酸エステルとしては、炭素数8〜30の脂肪酸と水酸基を3〜7個有する多価アルコールとのエステルが好ましい。炭素数8以上の脂肪酸としては、ラウリン酸、オレイン酸、ステアリン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコ酸、モンタン酸、メリシン酸、ラクセル酸などが挙げられる。水酸基を3〜7個有する多価アルコールとしては、グリセリン、ジグリセリン、トリグリセリン、エリトリットアラビット、キシリマアット、マンニット、ソルビット、ソルビタンなどが挙げられる。
これらのエステル化合物の中でも、これらの完全エステル化物よりは部分エステル化物、特にモノエステル化物がより顕著な収縮防止効果が得られるため好ましく、ステアリン酸モノグリセライド、ベヘン酸モノグリセライド、又はステアリン酸モノグリセライドとベヘン酸モノグリセライドの混合物が更に好ましい。
また、脂肪族アミンとしては、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、エイコシルアミン、ドコシルアミン、N−メチルオクタデシルアミン、N−エチルオクタデシルアミン、ヘキサデシルプロピレンジアミン、オクタデシルプロピレンジアミンなどが挙げられる。
また、脂肪酸アミドとしては、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、N−メチルステアリン酸アミド、N−エチルステアリン酸アミド、N,N−ジメチルステアリン酸アミド、N,N−ジエチルステアリン酸アミド、ジラウリン酸アミド、ジステアリン酸アミド、トリラウリン酸アミド、トリステアリン酸アミドなどが挙げられる。
(1) Shrinkage inhibitor In the present invention, the shrinkage inhibitor blended in the surface layer forming molten resin or both the surface layer forming molten resin and the foamed core layer forming molten resin is a fatty acid ester, an aliphatic amine or It is a fatty acid amide.
The fatty acid ester is preferably an ester of a fatty acid having 8 to 30 carbon atoms and a polyhydric alcohol having 3 to 7 hydroxyl groups. Examples of the fatty acid having 8 or more carbon atoms include lauric acid, oleic acid, stearic acid, behenic acid, lignoceric acid, serotic acid, heptacoic acid, montanic acid, mellicic acid, and laccelic acid. Examples of the polyhydric alcohol having 3 to 7 hydroxyl groups include glycerin, diglycerin, triglycerin, erythritol arabit, xylimaat, mannitol, sorbit, sorbitan and the like.
Among these ester compounds, partially esterified products, particularly monoesterified products, are more preferable than stearic acid monoglyceride, behenic acid monoglyceride, or stearic acid monoglyceride and behenic acid because they can provide a more remarkable shrinkage prevention effect. More preferred are mixtures of monoglycerides.
Examples of aliphatic amines include dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, eicosylamine, docosylamine, N-methyloctadecylamine, N-ethyloctadecylamine, hexadecylpropylenediamine, octadecylpropylenediamine, and the like. Can be mentioned.
Examples of the fatty acid amide include lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, N-methyl stearic acid amide, N-ethyl stearic acid amide, N, N-dimethyl stearic acid amide, N, N- Examples include diethylstearic acid amide, dilauric acid amide, distearic acid amide, trilauric acid amide, and tristearic acid amide.

本発明の製造方法によれば、発泡芯層と表面層との多層構成とし、表面層形成用溶融樹脂への収縮防止剤の配合割合(A1)が表面層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対して0.5質量部以上であり、かつ該発泡芯層形成用溶融樹脂への収縮防止剤の配合割合(A2)が、該表面層形成用溶融樹脂への収縮防止剤の配合割合(A1)より少ないか、または収縮防止剤を配合しないことにより、押出発泡直後の発泡体の急激な収縮を抑制、または防止することが可能となり、さらに、発泡直後の収縮を抑制するのに十分な収縮防止剤が配合された従来の発泡芯層のみからなる単層の発泡体に比べて、養生中の発泡剤放散速度が速く、養生期間を短縮できる効果が得られる。
発泡直後の収縮を防止するためには、表面部分にのみ高濃度で収縮防止剤を存在させて、発泡体全体からの急激な発泡剤の放散を防げばよい。発泡体が冷却した後は、表面部分にのみ高濃度で収縮防止剤が存在し、発泡体内部の収縮防止剤の濃度が低いので、発泡体全体に収縮防止剤が高濃度で存在する場合と比べると、発泡体から発泡剤が速く放散していくこととなる。これにより上記効果が得られるものと推察される。
According to the production method of the present invention, the polyolefin resin 100 has a multilayer structure of a foam core layer and a surface layer, and the blending ratio (A1) of the shrinkage inhibitor to the molten resin for forming the surface layer is the molten resin for forming the surface layer. The blending ratio (A2) of the shrinkage-preventing agent to the molten resin for forming the foam core layer is 0.5 parts by weight or more with respect to the weight part, and the blending of the shrinkage-preventing agent to the molten resin for forming the surface layer It is possible to suppress or prevent rapid shrinkage of the foam immediately after extrusion foaming by reducing the ratio (A1) or not containing an anti-shrink agent, and to further suppress shrinkage immediately after foaming. Compared with a single-layer foam composed only of a conventional foam core layer containing a sufficient shrinkage-preventing agent, the foaming agent emission rate during curing is faster, and the curing period can be shortened.
In order to prevent shrinkage immediately after foaming, a shrinkage inhibitor should be present at a high concentration only on the surface portion to prevent sudden diffusion of the foaming agent from the entire foam. After the foam has cooled, the anti-shrink agent is present at a high concentration only on the surface portion, and since the concentration of the anti-shrink agent inside the foam is low, the anti-shrink agent is present at a high concentration throughout the foam. In comparison, the foaming agent is quickly released from the foam. It is assumed that the above effect can be obtained.

表面層形成用溶融樹脂への収縮防止剤の配合割合(A1)は該溶融樹脂のポリオレフィン系樹脂100質量部に対して0.5質量部以上である。配合割合が過少では発泡直後に発泡体の収縮を防止する効果が不充分となる。一方、配合割合が過多の場合には、収縮防止の観点からは特に制限されるものではないが、収縮防止効果が頭打ちとなるためコスト的なメリットが得られなくなる。その上限は概ね3質量部程度である。
一方、発泡芯層形成用溶融樹脂への収縮防止剤の配合割合(A2)は、共押出後の養生時間を短縮するために、表面層形成用溶融樹脂への収縮防止剤の配合割合(A1)よりも低い濃度であり、表面層を取り除いた後の発泡体から、被包装物への収縮防止剤の移行を防止するためには、発泡芯層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対して0.3質量部以下(ただし、0質量部を含む。)がより好ましく、0質量部すなわち無添加であることが更に好ましい。
The blending ratio (A1) of the shrinkage inhibitor to the molten resin for forming the surface layer is 0.5 parts by mass or more with respect to 100 parts by mass of the polyolefin resin of the molten resin. If the blending ratio is too small, the effect of preventing the shrinkage of the foam immediately after foaming becomes insufficient. On the other hand, when the blending ratio is excessive, it is not particularly limited from the viewpoint of preventing shrinkage, but the cost-preventing advantage cannot be obtained because the shrinkage preventing effect reaches its peak. The upper limit is about 3 parts by mass.
On the other hand, the blending ratio (A2) of the shrinkage inhibitor to the molten resin for forming the foam core layer is the blending ratio (A1) of the shrinkage inhibitor to the molten resin for forming the surface layer in order to shorten the curing time after coextrusion. In order to prevent the shrinkage-preventing agent from being transferred from the foam after removing the surface layer to the packaged product, 100 parts by mass of a polyolefin-based resin as a foamed core layer-forming molten resin. 0.3 parts by mass or less (including 0 parts by mass) is more preferable, and 0 parts by mass, that is, no addition is further preferable.

(2)ポリオレフィン系樹脂
本発明において、発泡芯層と表面層に用いられるポリオレフィン系樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、更にそれら2種以上の混合物等が挙げられる。上記ポリエチレン系樹脂としては、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン−酢酸ビニル共重合体のようなエチレンとコモノマーとの共重合体でエチレン成分が50モル%を超えるもの、更にそれら2種以上の混合物が挙げられる。また、ポリプロピレン系樹脂としては、プロピレン単独重合体、プロピレン−エチレン共重合体,プロピレン−ブテン共重合体、プロピレン−エチレン−ブテン共重合体等のプロピレン系共重合体、更にそれら2種以上の混合物が挙げられる。前記ポリオレフィン系樹脂の中でも表面硬度が低く被包装体の表面保護性能に優れる等の柔軟性の観点からポリエチレン系樹脂が好ましく用いられる。特に弾性率の低い低密度ポリエチレンを基材樹脂とする発泡体は押出発泡直後に収縮しやすく、本発明の製造方法は低密度ポリエチレンを発泡させる際に特に有効である。
(2) Polyolefin resin In the present invention, examples of the polyolefin resin used for the foam core layer and the surface layer include a polyethylene resin, a polypropylene resin, and a mixture of two or more thereof. As the polyethylene-based resin, a copolymer of ethylene and a comonomer such as high-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ethylene-vinyl acetate copolymer having an ethylene component exceeding 50 mol%. Furthermore, the mixture of 2 or more types of these is mentioned. Examples of polypropylene resins include propylene homopolymers, propylene-ethylene copolymers, propylene-butene copolymers, propylene copolymers such as propylene-ethylene-butene copolymers, and mixtures of two or more of these. Is mentioned. Among the polyolefin resins, a polyethylene resin is preferably used from the viewpoint of flexibility such as low surface hardness and excellent surface protection performance of the package. In particular, a foam using low density polyethylene having a low elastic modulus as a base resin tends to shrink immediately after extrusion foaming, and the production method of the present invention is particularly effective when foaming low density polyethylene.

本発明において、上記発泡芯層および表面層に用いられるポリオレフィン系樹脂には、本発明の目的及び効果を阻害しない範囲で、ポリスチレン等のスチレン系樹脂、エチレンプロピレンゴム等のゴム、スチレン−ブタジエン−スチレンブロック共重合体等のエラストマー等のポリオレフィン系樹脂以外の重合体を添加することができる。その場合、前記ポリオレフィン系樹脂が60質量%以上、更に80質量%以上、特に90質量%以上含まれるようにすることが好ましい。
発泡芯層と表面層にそれぞれ用いられる好ましいポリオレフィン系樹脂については後述する。
In the present invention, the polyolefin resin used for the foamed core layer and the surface layer may be a styrene resin such as polystyrene, a rubber such as ethylene propylene rubber, styrene-butadiene- or the like, as long as the object and effect of the present invention are not impaired. Polymers other than polyolefin-based resins such as elastomers such as styrene block copolymers can be added. In that case, it is preferable that the polyolefin resin is contained in an amount of 60% by mass or more, more preferably 80% by mass or more, and particularly 90% by mass or more.
A preferred polyolefin resin used for each of the foam core layer and the surface layer will be described later.

(3)発泡剤(発泡芯層)
本発明において、ポリオレフィン系樹脂積層発泡体を、発泡剤としてブタンを含む発泡芯層形成用溶融樹脂と、表面層形成用溶融樹脂を積層して共押出することにより形成する。
前述の通り、オゾン層破壊や地球温暖化などの環境問題の顕在化によりこれらフロン系の発泡剤は利用が難しくなっている実情から脂肪族炭化水素を用いるようになっているが、本発明においては、ポリオレフィン系樹脂を押出発泡させやすいことから、発泡剤として脂肪族炭化水素の中でもブタンが使用される。ブタンとしては、ノルマルブタン、イソブタン、又はノルマルブタンとイソブタンの混合物が挙げられる。これらの中でも、発泡直後に発泡体から放散しにくいことから、イソブタン、又はイソブタン比率が30モル%以上のノルマルブタンとイソブタンとの混合物が好ましく、特にイソブタンが好ましい。
(3) Foaming agent (foam core layer)
In the present invention, the polyolefin-based resin laminate foam is formed by laminating and coextruding a foam core layer forming molten resin containing butane as a foaming agent and a surface layer forming molten resin.
As mentioned above, these fluorocarbon foaming agents have come to use aliphatic hydrocarbons from the fact that the use of these fluorocarbon foaming agents has become difficult due to the manifestation of environmental problems such as ozone layer destruction and global warming. Since it is easy to extrude and foam a polyolefin resin, butane is used as a foaming agent among aliphatic hydrocarbons. Examples of butane include normal butane, isobutane, or a mixture of normal butane and isobutane. Among these, isobutane or a mixture of normal butane and isobutane having an isobutane ratio of 30 mol% or more is preferable, and isobutane is particularly preferable because it is difficult to dissipate from the foam immediately after foaming.

(4)有機物理発泡剤(表面層)
本発明において、ポリオレフィン系樹脂積層発泡体を、発泡芯層形成用溶融樹脂と表面層形成用溶融樹脂を積層して共押出して形成する際に、表面層形成用溶融樹脂に可塑化効果を付与するために有機物理発泡剤が添加されていることが望ましい。
表面層形成用溶融樹脂に有機物理発泡剤が配合され、該溶融樹脂が可塑化されることにより、該溶融樹脂の樹脂温度を発泡芯層の発泡を阻害しない温度まで低下させる冷却調整が可能となると共に発泡芯層に追従する伸長性を付与することができる。このような手段は、特に発泡芯層を高発泡倍率とする場合に効果的であり、表面層に亀裂や裂け等を発生させることなく、表面層を発泡芯層上に積層することが可能となり、さらに発泡芯層の連続気泡率の低い積層発泡体を製造することが可能になる。
好ましい有機物理発泡剤を例示すると、炭化水素系化合物としては炭素数2〜7の脂肪族炭化水素、炭素数1〜4の脂肪族アルコール、又は炭素数2〜8の脂肪族エーテルから選択される1種又は2種以上を使用することができ、特に炭素数3〜6の脂肪族炭化水素が好ましく用いられる。上記炭化水素系化合物の使用は、表面層形成用溶融樹脂を効率よく可塑化させるという点から好ましい。上記炭素数2〜7の脂肪族炭化水素としては、例えば、エタン、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、イソヘキサン、シクロヘキサン、ヘプタンなどが挙げられこれらの中でも、ブタンを使用することが好ましく、イソブタン、又はイソブタン比率が30モル%以上のノルマルブタンとイソブタンとの混合物がより好ましく、特にイソブタンが好ましい。
(4) Organic physical foaming agent (surface layer)
In the present invention, when a polyolefin-based resin laminated foam is formed by laminating a molten resin for forming a foam core layer and a molten resin for forming a surface layer and coextruding it, a plasticizing effect is imparted to the molten resin for forming a surface layer Therefore, it is desirable to add an organic physical foaming agent.
When an organic physical foaming agent is blended in the molten resin for forming the surface layer and the molten resin is plasticized, it is possible to adjust the cooling to lower the resin temperature of the molten resin to a temperature that does not hinder foaming of the foam core layer. In addition, it is possible to impart extensibility following the foam core layer. Such means is particularly effective when the foam core layer has a high expansion ratio, and the surface layer can be laminated on the foam core layer without causing cracks or tears in the surface layer. Furthermore, it becomes possible to produce a laminated foam having a low open cell ratio of the foam core layer.
When a preferable organic physical blowing agent is exemplified, the hydrocarbon compound is selected from an aliphatic hydrocarbon having 2 to 7 carbon atoms, an aliphatic alcohol having 1 to 4 carbon atoms, or an aliphatic ether having 2 to 8 carbon atoms. 1 type (s) or 2 or more types can be used, and especially a C3-C6 aliphatic hydrocarbon is used preferably. The use of the hydrocarbon compound is preferable from the viewpoint of efficiently plasticizing the molten resin for forming the surface layer. Examples of the aliphatic hydrocarbon having 2 to 7 carbon atoms include ethane, propane, normal butane, isobutane, normal pentane, isopentane, isohexane, cyclohexane, heptane, etc. Among these, it is preferable to use butane. , Isobutane, or a mixture of normal butane and isobutane having an isobutane ratio of 30 mol% or more is more preferable, and isobutane is particularly preferable.

(5)ポリオレフィン系樹脂積層発泡体の製造方法
図1に示すように、ポリオレフィン系樹脂2、収縮防止剤3、及び必要により有機物理発泡剤4を第1の押出機11にて混練してなる表面層形成用溶融樹脂5と、ポリオレフィン系樹脂6と発泡剤のブタン8と必要により気泡調整剤及び/又は収縮防止剤7を第2の押出機12にて混練してなる発泡芯層形成用溶融樹脂9とを合流ダイ13中にて発泡芯層形成用溶融樹脂9の外周面に表面層形成用溶融樹脂5を積層し、該合流ダイから共押出することにより、積層発泡体が得られる。
(5) Manufacturing method of polyolefin resin laminate foam As shown in FIG. 1, a polyolefin resin 2, an antishrink agent 3, and if necessary, an organic physical foaming agent 4 are kneaded in a first extruder 11. For forming a foam core layer obtained by kneading a molten resin 5 for forming a surface layer, a polyolefin-based resin 6, a butane 8 as a foaming agent and, if necessary, a cell regulator and / or a shrinkage-preventing agent 7 in a second extruder 12. A laminated foam is obtained by laminating the molten resin 9 and the molten resin 9 for surface layer formation on the outer peripheral surface of the molten resin 9 for forming the foam core layer in the merging die 13 and co-extrusion from the merging die. .

(5−1)発泡芯層形成用溶融樹脂
発泡芯層形成用溶融樹脂には、前記ポリオレフィン系樹脂と、発泡剤としてブタンとが含まれ、更に必要により気泡調整剤と収縮防止剤が配合される。
(イ)基材樹脂
発泡芯層形成用溶融樹脂の基材樹脂であるポリオレフィン系樹脂としては、190℃におけるメルトフローレイト(MFR)が0.05〜10g/10分、更に0.1〜8.0g/10分、190℃における溶融張力(MT)が3〜30cN、更に3.5〜25cNのポリエチレン系樹脂であることが、目的とする見掛け密度のポリオレフィン系樹脂発泡層を得る上で好ましい。更に該基材樹脂が、密度0.900〜0.935g/cmのポリエチレン系樹脂を主成分とするものであることが好ましい。
尚、メルトフローレート(MFR)は、JIS K7210(1999)A法に準拠して、ポリエチレン系樹脂の場合には試験温度190℃、荷重21.18Nで、ポリプロピレン系樹脂の場合には試験温度230℃、荷重21.18Nで測定される値である。
(5-1) Molten resin for forming foam core layer The melt resin for forming foam core layer contains the polyolefin-based resin and butane as a foaming agent, and further contains a cell regulator and a shrinkage inhibitor as necessary. The
(I) Base resin The base resin of the molten resin for forming the foam core layer is a polyolefin resin having a melt flow rate (MFR) at 190 ° C. of 0.05 to 10 g / 10 min, and further 0.1 to 8 A polyethylene resin having a melt tension (MT) at 190 ° C. of 3 g to 30 cN and further 3.5 to 25 cN is preferable for obtaining a polyolefin resin foam layer having a desired apparent density. . Furthermore, it is preferable that the base resin is mainly composed of a polyethylene resin having a density of 0.900 to 0.935 g / cm 3 .
The melt flow rate (MFR) is a test temperature of 190 ° C. and a load of 21.18 N in the case of a polyethylene resin and a test temperature of 230 in the case of a polypropylene resin in accordance with JIS K7210 (1999) A method. It is a value measured at ° C. and a load of 21.18 N.

上記溶融張力(MT)は、ASTM D1238に準じて測定された値であり、例えば、(株)東洋精機製作所製のキャピログラフ1Dによって測定することができる。具体的には、シリンダー径9.55mm、長さ350mmのシリンダーと、ノズル径2.095mm、長さ8.0mmのオリフィスを用い、シリンダー及びオリフィスの設定温度を、ポリエチレン系樹脂の場合には190℃、ポリプロピレン系樹脂の場合には230℃とし、試料の必要量を該シリンダー内に入れ、4分間放置してから、ピストン速度を10mm/分として溶融樹脂をオリフィスから紐状に押出して、この紐状物を直径45mmの張力検出用プーリーに掛け、4分で引き取り速度が0m/分から200m/分に達するように一定の増速で引取り速度を増加させながら引取りローラーで紐状物を引取って紐状物が破断した際の直前の張力の極大値を得る。ここで、引取り速度が0m/分から200m/分に達するまでの時間を4分とした理由は、樹脂の熱劣化を抑えるとともに得られる値の再現性を高めるためである。上記操作を異なる試料を使用し、計10回の測定を行い、10回で得られた極大値の最も大きな値から順に3つの値と、極大値の最も小さな値から順に3つの値を除き、残った中間の4つの極大値を相加平均して得られた値を溶融張力(cN)とする。   The melt tension (MT) is a value measured according to ASTM D1238, and can be measured by, for example, Capillograph 1D manufactured by Toyo Seiki Seisakusho. Specifically, a cylinder having a cylinder diameter of 9.55 mm and a length of 350 mm and an orifice having a nozzle diameter of 2.095 mm and a length of 8.0 mm are used. The set temperature of the cylinder and the orifice is 190 in the case of polyethylene resin. ℃, in the case of polypropylene resin, set to 230 ℃, put the required amount of sample in the cylinder, let stand for 4 minutes, then extrude the molten resin from the orifice into a string with the piston speed of 10 mm / min. Hang the string-like object on a 45 mm diameter tension detection pulley and increase the take-up speed at a constant speed so that the take-up speed reaches from 0 m / min to 200 m / min in 4 minutes. Take the maximum value of the tension just before the string-like material is broken. Here, the reason why the time until the take-up speed reaches 0 m / min to 200 m / min is set to 4 minutes is to suppress the thermal deterioration of the resin and increase the reproducibility of the obtained value. Using a different sample for the above operation, measuring a total of 10 times, removing the three values in order from the largest value of the maximum value obtained in 10 times, and the three values in order from the smallest value of the maximum value, The value obtained by arithmetically averaging the remaining four local maximum values is the melt tension (cN).

但し、上記した方法で溶融張力の測定を行い、引取り速度が200m/分に達しても紐状物が切れない場合には、引取り速度を200m/分の一定速度にして得られる溶融張力(cN)の値を採用する。詳しくは、上記測定と同様にして、溶融樹脂をオリフィスから紐状に押出して、この紐状物を張力検出用プーリーに掛け、4分間で0m/分から200m/分に達するように一定の増速で引取り速度を増加させながら引取りローラーを回転させ、回転速度が200m/分になるまで待つ。回転速度が200m/分に到達してから溶融張力のデータの取り込みを開始し、30秒後にデータの取り込みを終了する。この30秒の間に得られた縦軸に溶融張力を、横軸に時間を取ったテンション荷重曲線から得られたテンション最大値(Tmax)とテンション最小値(Tmin)の平均値(Tave)を本明細書における溶融張力とする。
ここで、上記Tmaxとは、上記テンション荷重曲線において、検出されたピーク(山)値の合計値を検出された個数で除した値であり、上記Tminとは、上記テンション荷重曲線において、検出されたディップ(谷)値の合計値を検出された個数で除した値である。尚、当然のことながら上記測定において溶融樹脂をオリフィスから紐状に押出す際には該紐状物に、できるだけ気泡が入らないようにする。
However, when the melt tension is measured by the method described above and the string-like material is not cut even when the take-up speed reaches 200 m / min, the melt tension obtained by setting the take-up speed to a constant speed of 200 m / min. The value of (cN) is adopted. Specifically, in the same manner as in the above measurement, the molten resin is extruded into a string from the orifice, and this string is put on a tension detection pulley, and a constant speed increase is made so that the speed reaches 0 m / min to 200 m / min in 4 minutes. Rotate the take-up roller while increasing the take-up speed, and wait until the rotation speed reaches 200 m / min. When the rotational speed reaches 200 m / min, the data acquisition of the melt tension is started, and the data acquisition is finished after 30 seconds. The average value (Tave) of the maximum tension value (Tmax) and the minimum tension value (Tmin) obtained from the tension load curve with the vertical axis obtained during the 30 seconds and the melt tension on the vertical axis and time on the horizontal axis. It is set as the melt tension in this specification.
Here, the Tmax is a value obtained by dividing the total value of detected peak (peak) values in the tension load curve by the detected number, and the Tmin is detected in the tension load curve. It is a value obtained by dividing the total value of the dip (valley) values by the detected number. Of course, when the molten resin is extruded from the orifice into a string shape in the above measurement, bubbles are prevented from entering the string as much as possible.

(ロ)発泡剤の配合
発泡芯層形成用溶融樹脂には前述の通り発泡剤としてブタンが使用される。
発泡芯層形成用溶融樹脂における発泡剤の添加量は、目的とする見掛け密度に応じて調整する。即ち、見掛け密度18〜90kg/mの発泡芯層を得るためには、ブタンの添加量はポリオレフィン系樹脂100質量部当たり3〜35質量部が好ましい。
(ハ)収縮防止剤の配合
発泡体からの収縮防止剤の被包装体等への移行性を考慮すると、発泡芯層形成用溶融樹脂にには実質的に収縮防止剤が含まれていないことが好ましい。一方、押出発泡により積層発泡体を形成した後に、発泡剤の放散速度と気泡内への空気の流入速度とのバランスを取り発泡体の収縮等の変形を極めて小さくするためには、発泡芯層形成用溶融樹脂にも少量の収縮防止剤を配合することが好ましい。
発泡芯層形成用溶融樹脂への収縮防止剤の配合割合(A2)は、発泡後の養生期間が長時間にならないように、表面層形成用溶融樹脂への収縮防止剤の配合割合(A1)よりも少ない濃度であり、上記移行性の観点からは、該溶融樹脂のポリオレフィン系樹脂100質量部に対して0.3質量部以下(ただし、配合割合(A2)が0質量部を含む)であることが好ましく、0質量部であることが更に好ましい。発泡芯層形成用溶融樹脂への収縮防止剤の配合割合(A2)が0.3質量部以下であれば被包装体への移行性の実用上の問題は殆ど解消される。一方、養生中の発泡体の変形を極めて小さく抑えるためには、該溶融樹脂のポリオレフィン系樹脂100質量部に対して0.3質量部を超え0.7質量部以下とすることが好ましく、より好ましくは0.3質量部を超え0.5質量部以下である。
(B) Blending of foaming agent Butane is used as the foaming agent in the molten resin for forming the foam core layer as described above.
The addition amount of the foaming agent in the molten resin for forming the foam core layer is adjusted according to the target apparent density. That is, in order to obtain a foamed core layer having an apparent density of 18 to 90 kg / m 3 , the amount of butane added is preferably 3 to 35 parts by mass per 100 parts by mass of the polyolefin resin.
(C) Formulation of anti-shrink agent Considering the transferability of the anti-shrink agent from the foam to the body to be packaged, etc., the melt resin for forming the foam core layer should contain substantially no anti-shrink agent. Is preferred. On the other hand, after forming a laminated foam by extrusion foaming, in order to balance the dissipation rate of the foaming agent and the inflow rate of air into the bubbles, and to minimize deformation such as shrinkage of the foam, the foam core layer It is preferable to add a small amount of shrinkage inhibitor to the forming molten resin.
The blending ratio (A2) of the shrinkage-preventing agent to the foamed core layer-forming molten resin is such that the shrinkage-preventing agent is blended into the surface layer-forming molten resin (A1) so that the curing period after foaming does not become long. The concentration is less than the above, and from the viewpoint of the above-mentioned transferability, it is 0.3 parts by mass or less (however, the blending ratio (A2) includes 0 part by mass) with respect to 100 parts by mass of the polyolefin resin of the molten resin. It is preferable that the amount is 0 parts by mass. If the blending ratio (A2) of the shrinkage inhibitor to the molten resin for forming the foam core layer is 0.3 parts by mass or less, the practical problem of transferability to the package is almost eliminated. On the other hand, in order to keep the deformation of the foam during curing very small, it is preferable to be more than 0.3 parts by mass and 0.7 parts by mass or less with respect to 100 parts by mass of the polyolefin resin of the molten resin. Preferably it is more than 0.3 parts by mass and 0.5 parts by mass or less.

(ニ)気泡調整剤等の配合
発泡芯層形成用溶融樹脂には、必要に応じて、タルク、炭酸カルシウムなどの無機物や、炭酸水素ナトリウム、炭酸水素ナトリウムとクエン酸との混合物などの化学発泡剤等を気泡調整剤として配合することができる。これらの気泡調整剤は2種以上を混合して用いることができる。気泡調整剤は、発泡芯層の基材樹脂と同種のポリオレフィン系樹脂と、気泡調整剤とからなるマスターバッチの形態で配合してもよい。また気泡調整剤の添加量は、目的とする気泡径に応じて調節することができるがポリオレフィン系樹脂100質量部に対し、好ましくは0.01〜10質量部、より好ましくは0.03〜8質量部である。
(D) Chemical foaming of blended foam core layer forming resins such as air conditioners, such as inorganic substances such as talc and calcium carbonate, sodium bicarbonate, and a mixture of sodium bicarbonate and citric acid as necessary An agent or the like can be blended as a bubble regulator. These bubble regulators can be used in combination of two or more. You may mix | blend a bubble regulator in the form of the masterbatch which consists of the same type polyolefin resin as the base resin of a foam core layer, and a bubble regulator. The amount of the cell regulator added can be adjusted according to the target cell diameter, but is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 8 parts by mass with respect to 100 parts by mass of the polyolefin resin. Part by mass.

(5−2)表面層形成用溶融樹脂
(イ)基材樹脂
本発明において、表面層を形成する基材樹脂のポリオレフィン系樹脂としては、発泡芯層の基材樹脂と同様のものを使用することができる。発泡芯層との接着性の観点からは、発泡芯層のポリオレフィン系樹脂と同種のものを使用することが好ましい。
(ロ)収縮防止剤の配合
表面層形成用溶融樹脂への前記収縮防止剤の配合量は、前述の通り、該溶融樹脂のポリオレフィン系樹脂100質量部に対して0.5質量部以上であり、該収縮防止剤の配合量が前記範囲未満では収縮防止効果が不充分となり、一方、前記範囲超の場合では収縮防止効果が頭打ちとなる。かかる観点から収縮防止剤の配合量は、該溶融樹脂のポリオレフィン系樹脂100質量部に対して0.5〜2.5質量部が好ましく、0.6〜1.5質量部がより好ましい。
(5-2) Molten resin for surface layer formation (a) Base resin In the present invention, as the polyolefin resin of the base resin forming the surface layer, the same resin as the base resin of the foam core layer is used. be able to. From the viewpoint of adhesiveness with the foam core layer, it is preferable to use the same type of polyolefin resin as the foam core layer.
(B) Compounding of shrinkage inhibitor The blending amount of the shrinkage inhibitor into the molten resin for forming the surface layer is 0.5 parts by mass or more with respect to 100 parts by mass of the polyolefin resin of the molten resin as described above. When the blending amount of the anti-shrink agent is less than the above range, the anti-shrinkage effect is insufficient. On the other hand, when it exceeds the above range, the anti-shrinkage effect reaches a peak. From this viewpoint, the amount of the shrinkage inhibitor is preferably 0.5 to 2.5 parts by mass, and more preferably 0.6 to 1.5 parts by mass with respect to 100 parts by mass of the polyolefin resin of the molten resin.

(ハ)有機物理発泡剤等の配合
本発明の製造方法において、表面層形成用溶融樹脂には、前記有機物理発泡剤が配合されていることが好ましい。有機物理発泡剤により表面層形成用溶融樹脂が可塑化されることにより、該溶融樹脂の樹脂温度を発泡層の発泡を阻害しない温度まで低下させる冷却調整することが可能になると共に発泡層に追従する伸長性を付与することが可能になる。
有機物理発泡剤としては、前述の通り、炭素数3〜6の脂肪族炭化水素の使用が好ましく、表面層形成用溶融樹脂が効率よく可塑化されるため、ブタンの使用が特に好ましい。
(C) Formulation of organic physical foaming agent etc. In the production method of the present invention, the organic physical foaming agent is preferably blended with the molten resin for forming the surface layer. By plasticizing the molten resin for forming the surface layer with the organic physical foaming agent, it is possible to adjust the cooling to lower the resin temperature of the molten resin to a temperature that does not hinder foaming of the foamed layer, and follow the foamed layer. It becomes possible to give the extensibility to do.
As described above, the organic physical foaming agent is preferably an aliphatic hydrocarbon having 3 to 6 carbon atoms, and the use of butane is particularly preferable because the molten resin for forming the surface layer is efficiently plasticized.

有機物理発泡剤の配合量は、ポリオレフィン系樹脂100質量部に対して2〜50質量部であることが好ましい。有機物理発泡剤の配合量を前記2質量部以上とすることにより、ポリオレフィン系樹脂層を形成するための表面層形成用溶融樹脂が押出時に過剰に発熱するのを抑制できる結果、該発熱により押出発泡時に発泡芯層の気泡が破泡するのを防止できるので、見掛け密度が小さい場合であっても、独立気泡構造を有する発泡芯層を得ることが容易になる。また、表面層の溶融伸びが増加して製膜性が向上するので所望の収縮防止効果が得られ易くなる。
一方、有機物理発泡剤の配合量を前記50質量部以下とすることにより、有機物理発泡剤と表面層の樹脂との混練性が十分となるためダイリップから有機物理発泡剤の噴き出しを防止でき、積層発泡体の表面層に穴が開くことなく、所望の収縮防止効果が得られ易くなる。
すなわち、有機物理発泡剤の配合量を上記範囲とすることで、共押出時の表面層形成用溶融樹脂の溶融粘度低下効果と伸張性向上効果を確保できる。かかる観点から、有機物理発泡剤の配合量は、ポリオレフィン系樹脂100質量部に対して2.5〜40質量部であることがより好ましく、さらに好ましくは3〜35質量部である。
It is preferable that the compounding quantity of an organic physical foaming agent is 2-50 mass parts with respect to 100 mass parts of polyolefin resin. By setting the blending amount of the organic physical foaming agent to 2 parts by mass or more, the surface layer forming molten resin for forming the polyolefin resin layer can be prevented from excessively generating heat during extrusion. Since foaming of the foam core layer can be prevented from being broken during foaming, it is easy to obtain a foam core layer having a closed cell structure even when the apparent density is small. Further, since the melt elongation of the surface layer is increased and the film forming property is improved, a desired shrinkage prevention effect is easily obtained.
On the other hand, by setting the blending amount of the organic physical foaming agent to 50 parts by mass or less, the kneadability between the organic physical foaming agent and the resin of the surface layer becomes sufficient, so that the ejection of the organic physical foaming agent from the die lip can be prevented, A desired shrinkage-preventing effect can be easily obtained without making a hole in the surface layer of the laminated foam.
That is, by setting the blending amount of the organic physical foaming agent in the above range, it is possible to ensure the effect of lowering the melt viscosity and improving the extensibility of the surface layer forming molten resin at the time of coextrusion. From this viewpoint, the blending amount of the organic physical foaming agent is more preferably 2.5 to 40 parts by mass, still more preferably 3 to 35 parts by mass with respect to 100 parts by mass of the polyolefin resin.

また、本発明の製造方法において、表面層を見掛け密度18〜180kg/mに発泡させることが好ましい。表面層の見掛け密度が上記範囲内であると、表面層と発泡芯層との界面での発泡剤透過速度の変化が緩和され膨れ等が生じにくくなるため好ましい。かかる観点から、表面層の見掛け密度は、20〜70kg/mであることがより好ましく、さらに好ましくは23〜60kg/mである。
また、表面層の見掛け密度と発泡芯層の見掛け密度との比(表面層密度/発泡芯層密度)は、0.4〜2.5であることが好ましい。当該比率が上記範囲内であると、押出発泡時に表面層と発泡芯層との気泡成長速度の差を小さくなるため、表面層にクラックや凹凸が生じにくくなり、収縮防止効果が安定して発現しやすくなる。かかる観点から、当該比率は、0.5〜2.0がより好ましく、さらに好ましくは0.6〜1.7である。
In the production method of the present invention, it is preferable to foam the surface layer to an apparent density of 18 to 180 kg / m 3 . When the apparent density of the surface layer is within the above range, the change in the foaming agent permeation rate at the interface between the surface layer and the foamed core layer is alleviated, and swelling and the like are less likely to occur. From this point of view, the apparent density of the surface layer is more preferably 20~70kg / m 3, more preferably from 23~60kg / m 3.
The ratio of the apparent density of the surface layer to the apparent density of the foam core layer (surface layer density / foam core density) is preferably 0.4 to 2.5. When the ratio is within the above range, the difference in bubble growth rate between the surface layer and the foam core layer during extrusion foaming is reduced, so that cracks and irregularities are less likely to occur in the surface layer, and the shrinkage prevention effect is stably expressed. It becomes easy to do. From this viewpoint, the ratio is more preferably 0.5 to 2.0, and still more preferably 0.6 to 1.7.

表面層の坪量が特定量以上、例えば50g/m以上となるように共押出することにより、表面層の見掛け密度が18〜180kg/mである積層発泡体を得ることが容易になる。また、表面層が発泡した積層発泡体を得るためには、表面層形成用溶融樹脂には気泡調整剤が配合されることが好ましい。表面層の坪量が小さすぎる場合や、気泡調整剤が配合されていない場合には、表面層が発泡しないことがあり、その場合には、有機物理発泡剤は、上記可塑剤として作用する。
気泡調整剤としては、上記発泡芯層に使用されるものと同種のものを使用でき、見掛け密度を上記範囲に調整するためには、表面層のポリオレフィン系樹脂100質量部に対し、好ましくは0.01〜10質量部、より好ましくは0.03〜8質量部である。
(ニ)その他の添加剤の配合
表面層形成用溶融樹脂には、必要に応じて各種の添加剤を配合してもよい。各種の添加剤としては、例えば、結晶核剤、酸化防止剤、熱安定剤、耐候剤、紫外線吸収剤、難燃剤、無機充填剤、抗菌剤等が挙げられる。その場合の配合量は表面層形成用溶融樹脂中で10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましい。下限は概ね0.01質量%である。
By co-extrusion so that the basis weight of the surface layer is a specific amount or more, for example, 50 g / m 2 or more, it becomes easy to obtain a laminated foam having an apparent density of 18 to 180 kg / m 3 of the surface layer. . Moreover, in order to obtain the laminated foam in which the surface layer was foamed, it is preferable that a foam regulator is blended in the molten resin for forming the surface layer. When the basis weight of the surface layer is too small, or when no cell regulator is blended, the surface layer may not foam, and in this case, the organic physical foaming agent acts as the plasticizer.
As the bubble adjusting agent, the same type as that used for the foam core layer can be used, and in order to adjust the apparent density to the above range, it is preferably 0 with respect to 100 parts by mass of the polyolefin resin of the surface layer. 0.01 to 10 parts by mass, more preferably 0.03 to 8 parts by mass.
(D) Blending of other additives Various additives may be blended in the molten resin for forming the surface layer as required. Examples of the various additives include crystal nucleating agents, antioxidants, heat stabilizers, weathering agents, ultraviolet absorbers, flame retardants, inorganic fillers, antibacterial agents, and the like. In that case, the blending amount is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less in the molten resin for forming the surface layer. The lower limit is approximately 0.01% by mass.

(5−3)ポリオレフィン系樹脂積層発泡体の製造方法
表面層形成用溶融樹脂5と発泡芯層形成用溶融樹脂9とは、各押出機11、12内において適正温度に調整してから、合流ダイ13内にて積層して該ダイ13から共押出すことにより、発泡芯層の外周面に表面層が積層された積層発泡体が形成される。ダイ先端のリップ開口形状としては、所望の発泡体の形状に応じて、円形や楕円形、正方形や長方形、星型や三角形などのものを用いることができる。
上記溶融樹脂9の押出機12内における適正温度とは、上記溶融樹脂9が発泡芯層を形成するのに最適な粘弾性を示す温度のことである。また上記溶融樹脂5の押出機11内における適正温度とは、上記溶融樹脂5が表面層を形成するのに良好な伸長性を示し且つ発泡芯層の形成を阻害しない温度のことである。具体的には、上記溶融樹脂9、5の該適正温度は各層のオレフィン系樹脂の[結晶化温度+5℃]以上で[結晶化温度+30℃]以下であり、かつ上記溶融樹脂9、5の該適正温度の関係は、表面層形成用溶融樹脂5の温度が[発泡芯層形成用溶融樹脂の温度−30℃]以上で[発泡層形成用溶融樹脂の温度+30℃]以下であることが、発泡芯層の連続気泡率の低下や得られる積層発泡体の収縮を抑える観点から好ましく、さらに好ましくは表面層形成用溶融樹脂5の温度が[発泡芯層形成用溶融樹脂の温度−15℃]以上で[発泡芯層形成用溶融樹脂の温度+15℃]以下である。
(5-3) Method for Producing Polyolefin-Based Resin Laminated Foam The melt resin 5 for forming the surface layer and the melt resin 9 for forming the foam core layer are adjusted to an appropriate temperature in each of the extruders 11 and 12, and then merged. By laminating in the die 13 and co-extrusion from the die 13, a laminated foam in which the surface layer is laminated on the outer peripheral surface of the foam core layer is formed. As the shape of the lip opening at the tip of the die, a circular shape, an elliptical shape, a square shape, a rectangular shape, a star shape, a triangular shape, or the like can be used according to the desired foam shape.
The appropriate temperature in the extruder 12 of the molten resin 9 is a temperature at which the molten resin 9 exhibits optimum viscoelasticity for forming a foam core layer. The appropriate temperature of the molten resin 5 in the extruder 11 is a temperature at which the molten resin 5 exhibits good extensibility for forming the surface layer and does not hinder the formation of the foam core layer. Specifically, the appropriate temperature of the molten resins 9 and 5 is not less than [crystallization temperature + 5 ° C.] and not more than [crystallization temperature + 30 ° C.] of the olefin resin of each layer, and The appropriate temperature relationship is that the temperature of the molten resin 5 for forming the surface layer is not less than [temperature of the molten resin for forming the foam core layer −30 ° C.] or more and [temperature of the molten resin for forming the foam layer + 30 ° C.] or less. From the viewpoint of suppressing a decrease in the open cell ratio of the foam core layer and shrinkage of the resulting laminated foam, more preferably, the temperature of the molten resin 5 for forming the surface layer is [the temperature of the melt resin for forming the foam core layer -15 ° C. The above is [the temperature of the molten resin for forming the foam core layer + 15 ° C.] or less.

なお、本明細書において結晶化温度は、JIS K7122(1987)に準拠して、加熱速度10℃/minにて常温から200℃まで加熱して溶融させたサンプルを冷却速度10℃/minにて40℃まで温度を降下させる際に得られるDSC曲線の結晶化熱量ピークの頂点温度を結晶化温度(℃)とする。   In this specification, the crystallization temperature is JIS K7122 (1987) in accordance with JIS K7122 (1987) at a heating rate of 10 ° C./min. The vertex temperature of the crystallization heat amount peak of the DSC curve obtained when the temperature is lowered to 40 ° C. is defined as the crystallization temperature (° C.).

本発明の製造方法は、特に発泡直後に収縮が起こりやすい、見掛け密度18〜90kg/m、厚み30mmm以上のポリオレフィン系樹脂発泡体に対して有効であり、好ましくは見掛け密度20〜70kg/m、より好ましくは見掛け密度23〜60kg/mのポリオレフィン系樹脂発泡体に対して特に有効である。 The production method of the present invention is particularly effective for polyolefin resin foams having an apparent density of 18 to 90 kg / m 3 and a thickness of 30 mm or more, which are likely to shrink immediately after foaming, and preferably an apparent density of 20 to 70 kg / m. 3 , more preferably effective for polyolefin resin foams having an apparent density of 23 to 60 kg / m 3 .

(発泡芯層の見掛け密度)
本発明において、発泡芯層の見掛け密度は、積層発泡体から表面層を取り除き、残った発泡芯層の質量を発泡芯層の体積で割り算し、[kg/m]に単位換算することにより求めることができる。なお、発泡芯層の体積は、水没法や、外形寸法から求めればよい。
(Apparent density of foam core layer)
In the present invention, the apparent density of the foam core layer is obtained by removing the surface layer from the laminated foam, dividing the mass of the remaining foam core layer by the volume of the foam core layer, and converting the unit to [kg / m 3 ]. Can be sought. In addition, what is necessary is just to obtain | require the volume of a foam core layer from the submergence method or an external dimension.

(積層発泡体全体の厚み)
積層発泡体の形状が板状の場合には、積層発泡体の全体の厚みは下記方法により、求めることができる。積層発泡体の幅方向垂直断面において、積層発泡体の厚み[mm]を等間隔に幅方向に10点測定し、測定した各点における積層発泡体の厚み[mm]の算術平均値を積層発泡体の厚み[mm]とする。
また、積層発泡体の形状が円柱状や楕円柱状など異型形状の場合には、積層発泡体の押出方向に対して垂直な断面において、一表面から積層発泡体の中心部を通り反対側の表面まで直線引いた場合に、最も距離が短くなる直線の距離を積層発泡体の全体の厚みとする。
(Total thickness of laminated foam)
When the shape of the laminated foam is plate-like, the total thickness of the laminated foam can be obtained by the following method. In the vertical cross section of the laminated foam in the width direction, the thickness [mm] of the laminated foam was measured at 10 points in the width direction at equal intervals, and the arithmetic average value of the thickness [mm] of the laminated foam at each measured point was laminated and foamed. The thickness of the body [mm].
In addition, when the shape of the laminated foam is an irregular shape such as a cylindrical shape or an elliptical column shape, the surface on the opposite side passes through the center of the laminated foam from one surface in a cross section perpendicular to the extrusion direction of the laminated foam. When the straight line is drawn, the distance of the straight line with the shortest distance is defined as the total thickness of the laminated foam.

(表面層の見掛け密度)
表面層の見掛け密度は、積層発泡体から表面層を切り分け、表面層の質量を表面層の体積で割り算し、[kg/m]に単位換算することにより求めることができる。なお、表面層の体積は、水没法などにより求めればよい。
(Apparent density of surface layer)
The apparent density of the surface layer can be determined by dividing the surface layer from the laminated foam, dividing the mass of the surface layer by the volume of the surface layer, and converting the unit to [kg / m 3 ]. Note that the volume of the surface layer may be obtained by a submerging method or the like.

(積層発泡体の表面層の坪量m[g/m]と積層発泡体の厚みt[mm]との比(m/t))
本発明の製造方法において、表面層の坪量m[g/m]と積層発泡体の厚みt[mm]との比(m/t)を、0.5以上とすることが望ましい。
積層発泡体全体の厚みに対して、表面層の積層量としての坪量(g/m)を一定量以上とすることが望ましい。これは積層発泡体全体の厚みにより発泡体中心部の空気分圧上昇に要する時間が左右される為であり、発泡剤の放散速度を調整する表面層の積層量は積層発泡体の全体厚みが増加するのに対応して増加させる必要がある。積層発泡体の発泡後の収縮防止に必要な、積層発泡体全体の厚み(t[mm])に対する表面層の坪量(m[g/m])の比(m/t)を0.5g/(m・mm)以上とすることが望ましい。
また、発泡芯層の収縮防止剤添加割合が0.3質量%以下である場合には、発泡後の収縮防止に必要な積層発泡体全体厚みに対する表面層の坪量の比(m/t)が1.0g/(m・mm)以上がより好ましく、1.2以上が更に好ましく、1.4以上が特に好ましい。
(Ratio (m / t) between the basis weight m [g / m 2 ] of the surface layer of the laminated foam and the thickness t [mm] of the laminated foam)
In the production method of the present invention, the ratio (m / t) between the basis weight m [g / m 2 ] of the surface layer and the thickness t [mm] of the laminated foam is preferably 0.5 or more.
It is desirable that the basis weight (g / m 2 ) as the amount of lamination of the surface layer is a certain amount or more with respect to the thickness of the entire laminated foam. This is because the time required to increase the air partial pressure at the center of the foam depends on the thickness of the entire laminated foam. The amount of the surface layer that adjusts the diffusion rate of the foaming agent depends on the overall thickness of the laminated foam. It is necessary to increase corresponding to the increase. The ratio (m / t) of the basis weight (m [g / m 2 ]) of the surface layer to the thickness (t [mm]) of the entire laminated foam necessary to prevent shrinkage after foaming of the laminated foam is 0.00. 5 g / (m 2 · mm) or more is desirable.
In addition, when the shrinkage inhibitor addition ratio of the foam core layer is 0.3% by mass or less, the ratio of the basis weight of the surface layer to the total thickness of the laminated foam necessary for preventing shrinkage after foaming (m / t) Is more preferably 1.0 g / (m 2 · mm) or more, more preferably 1.2 or more, and particularly preferably 1.4 or more.

(表面層の坪量)
表面層の坪量は、表面層形成用溶融樹脂の吐出量、積層発泡体周面の周長、及び積層発泡体製造時の引取速度から下記式により求めることができる。
表面層の坪量[g/m]=吐出量[g/hr]/(周長[m]×引取速度[m/hr])
(Basis weight of surface layer)
The basis weight of the surface layer can be determined by the following formula from the discharge amount of the molten resin for forming the surface layer, the circumferential length of the laminated foam peripheral surface, and the take-up speed when producing the laminated foam.
Surface layer basis weight [g / m 2 ] = discharge amount [g / hr] / (peripheral length [m] × take-off speed [m / hr])

(表面層と発泡芯層の平均気泡径比)
表面層が発泡している場合、表面層と発泡層の平均気泡径に大きな差があると、発泡速度の差によりその界面にボイドを生じ、発泡剤がボイドに流入する為、積層発泡体の養生時に膨れを生じやすい。このような膨れが生ずるのを防止するためには、表面層の気泡径aと発泡芯層の気泡径bとの比(a/b)を0.3〜3とするのが好ましく、0.5〜2がより好ましく、0.75〜1.5とするのが更に好ましい。
なお、平均気泡径は次のようにして測定される値である。発泡体を押出方向に垂直な断面で切断し、その切断面の発泡芯層の部分を顕微鏡等にて50倍程度に拡大し拡大画像を得る。画像上に存在する発泡芯層の全ての気泡を対象にして、気泡ごとにその気泡の最も長い部分の長さd[mm]を計測する。この測定を同一断面内の任意の5箇所に対して行い、各気泡ごとに測定したd[mm]を算術平均することにより発泡芯層の平均気泡径を求める。この測定を表面層に対しても行い、同様にして表面層の平均気泡径を求める。
(Average cell diameter ratio between surface layer and foam core layer)
When the surface layer is foamed, if there is a large difference in the average cell diameter between the surface layer and the foamed layer, voids are generated at the interface due to the difference in foaming speed, and the foaming agent flows into the voids. Prone to swelling during curing. In order to prevent the occurrence of such blistering, the ratio (a / b) of the bubble diameter a of the surface layer to the bubble diameter b of the foam core layer is preferably 0.3-3. 5 to 2 is more preferable, and 0.75 to 1.5 is even more preferable.
The average bubble diameter is a value measured as follows. The foam is cut in a cross section perpendicular to the extrusion direction, and the portion of the foam core layer on the cut surface is enlarged about 50 times with a microscope or the like to obtain an enlarged image. For all the bubbles in the foam core layer existing on the image, the length d [mm] of the longest part of each bubble is measured. This measurement is performed on arbitrary five points in the same cross section, and the average bubble diameter of the foam core layer is obtained by arithmetically averaging d [mm] measured for each bubble. This measurement is also performed on the surface layer, and the average bubble diameter of the surface layer is obtained in the same manner.

発泡芯層への収縮防止剤の配合量が極めて少ない積層発泡体からその表面層を取り除くことにより、被包装体への収縮防止剤の移行性が極めて少ないか、又は移行が無いポリオレフィン樹脂発泡体を得ることができる。
特に収縮防止剤の配合量が0質量%の場合は収縮防止剤の被包装体への移行性が無いことから理想的な発泡体となる。このような発泡体は、医療・電子部品用緩衝材として特に有用である。
なお、発泡剤残量を1質量%以下、且つ気泡内の空気分圧を0.95atm以上にした後に、積層発泡体から表面層を切除することにより、寸法変化が生じない発泡体を得ることが出来る。
By the amount of the anti-shrinking agent to the foamed core layer is removed and the surface layer from a very small laminated foam, or migration of the anti-shrinking agent to the package is extremely small, or the migration is not a polyolefin resin foam You can get a body.
In particular, when the amount of the anti-shrinkage agent is 0% by mass, an ideal foam is obtained because the anti-shrinkage agent does not migrate to the package. Such a foam is particularly useful as a cushioning material for medical / electronic parts.
In addition, after making a foaming agent residual amount 1 mass% or less and making the air partial pressure in a bubble 0.95 atm or more, the foam which does not produce a dimensional change is obtained by excising a surface layer from a laminated foam. I can do it.

以下、実施例、比較例により、本発明を具体的に説明する。
実施例で使用した原材料であるポリオレフィン系樹脂、収縮防止剤、及び気泡調整剤、並びに評価方法を以下に記載する。
(1)原材料
(イ)ポリオレフィン系樹脂
低密度ポリエチレン(以下、LD1と記載することがある)
日本ユニカー(株)製、商品名:NUC8321(密度922g/L、MFR=2.4g/10分)
(ロ)ポリオレフィン系樹脂
低密度ポリエチレン(以下、LD2と記載することがある)
日本ユニカー(株)製、商品名:NUC8008(密度918g/L、MFR=4.7g/10分)
(ハ)収縮防止剤
ステアリン酸モノグリセライド
(ニ)気泡調整剤
タルク(松村産業(株)製、ハイフィラー#12)
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
The following are the raw materials used in the examples, polyolefin resins, shrinkage inhibitors, bubble regulators, and evaluation methods.
(1) Raw material (a) Polyolefin resin low density polyethylene (hereinafter sometimes referred to as LD1)
Product name: NUC8321 (density 922 g / L, MFR = 2.4 g / 10 min), manufactured by Nippon Unicar Co., Ltd.
(B) Polyolefin-based resin low density polyethylene (hereinafter sometimes referred to as LD2)
Product name: NUC8008 (density 918 g / L, MFR = 4.7 g / 10 min), manufactured by Nippon Unicar Co., Ltd.
(C) Shrinkage inhibitor stearic acid monoglyceride (d) Bubble regulator talc (manufactured by Matsumura Sangyo Co., Ltd., high filler # 12)

(2)評価方法
(イ)積層発泡体の厚みおよび共押出直後の見掛け密度
(積層発泡体全体の厚み)
積層発泡体の厚みについては、積層発泡体を製造した後直ちに泡体を押出方向に対して垂直に切断し、その断面を対象として上記方法により積層発泡体の厚みを測定した。
(発泡芯層の見掛け密度)
積層発泡体を製造した後直ちに、発泡芯層の中央部付近から約20mm×20mm×20mmの大きさの測定サンプルを切り出し、その外形寸法から測定サンプルの体積を求め、該サンプルの質量を求めた体積で除することにより発泡芯層の見掛け密度を算出した。
(表面層の見掛け密度)
積層発泡体を製造した後直ちに、発泡芯層が含まれないように積層発泡体から表面層の部分を切り分け、切り分けた表面層部分の質量を測定した後、この体積を水没法により求め、該質量を該体積で除することにより表面層の見掛け密度を算出した。
(2) Evaluation method (b) Thickness of laminated foam and apparent density immediately after coextrusion (total thickness of laminated foam)
The thickness of the laminated foam was cut vertically immediately calling foam after producing the laminated foam to the extrusion direction was measured thickness of the laminated foam by the method described above the cross-section as a target.
(Apparent density of foam core layer)
Immediately after producing the laminated foam, a measurement sample having a size of about 20 mm × 20 mm × 20 mm was cut out from the vicinity of the center of the foam core layer, and the volume of the measurement sample was determined from the outer dimensions, and the mass of the sample was determined. The apparent density of the foam core layer was calculated by dividing by volume.
(Apparent density of surface layer)
Immediately after producing the laminated foam, after cutting the surface layer portion from the laminated foam so as not to include the foam core layer, and measuring the mass of the cut surface layer portion, the volume is determined by a submerging method, The apparent density of the surface layer was calculated by dividing the mass by the volume.

(ロ)気泡径比
上記方法に従い、発泡芯層と表面層の平均気泡径を測定し、気泡径比を求めた。
(ハ)表面層の坪量
表面層の坪量は、表面層の吐出量、発泡体周長、および引き取り速度の関係から求めた。
(ニ)比容保持率
比容保持率は、発泡直後の積層発泡体の比容Vaに対する、50℃、相対湿度50%の雰囲気下で任意の期間養生した後の積層発泡体の比容Vbの比である。なお、積層発泡体の比容とは、積層発泡体の見掛け密度の逆数である。
比容保持率[%]=(任意の期間養生後の比容Vb[cm/kg]÷発泡直後の比容Va[cm/kg])×100
(ホ)収縮性
上記比容保持率が、製造から3日間経過後、1週間経過後のいずれにおいても90%以上であるときを◎、いずれも60%以上90%未満であるときを○、いずれかが一方が60%未満であるときを△、何れも60%未満であるときを×と評価した。
(B) Bubble diameter ratio According to the above method, the average bubble diameter of the foam core layer and the surface layer was measured to obtain the bubble diameter ratio.
(C) Basis weight of the surface layer The basis weight of the surface layer was determined from the relationship between the discharge amount of the surface layer, the foam circumference, and the take-up speed.
(D) Specific volume retention The specific volume retention is the specific volume Vb of the laminated foam after curing for an arbitrary period in an atmosphere of 50 ° C. and 50% relative humidity with respect to the specific volume Va of the laminated foam immediately after foaming. Ratio. The specific volume of the laminated foam is the reciprocal of the apparent density of the laminated foam.
Specific volume retention [%] = (specific volume Vb [cm 3 / kg] after curing for an arbitrary period ÷ specific volume Va [cm 3 / kg] immediately after foaming) × 100
(E) Shrinkage ◎ when the specific volume retention is 90% or more after 3 days from production and after 1 week, ◎, when both are 60% or more and less than 90%, When either one was less than 60%, Δ was evaluated, and when either was less than 60%, the evaluation was ×.

(へ)発泡剤放散完了日数
発泡剤放散完了日数は、積層発泡体を50℃、相対湿度50%の雰囲気下で養生した際に、発泡芯層中の発泡剤残量(ブタン)が1質量%以下になるのに要した日数である。
(ト)発泡剤残量
積層発泡体の中心部から、約1g程度の試験片切り出した。この試験片を密閉容器内で既知量のシクロペンタンをトルエンに加えた45ccの溶媒中に常温で24時間浸漬して、試験片中に残存する発泡剤(ブタン)を溶媒中に抽出した。溶媒中に抽出されたブタン量をガスクロマトグラフ(内部標準法)により定量し、予め測定しておいた試験片の質量から、発泡芯層中に残存する発泡剤量を求めた。
(チ)養生完了日数
養生完了日数は、積層発泡体を50℃、相対湿度50%の雰囲気下で養生した際に、発泡剤残量が1質量%以下、且つ発泡体の比容保持率が90%以上となるのに要した日数である。
(リ)養生完了後の見掛け密度および厚み
養生完了後、上記と同様な方法にて、発泡芯層の見掛け密度、表面層の見掛け密度、および積層発泡体全体の厚みを求めた。
(F) Days of foaming agent release completion The number of days of foaming agent release completed is 1 mass of the foaming agent remaining amount (butane) in the foam core layer when the laminated foam is cured under an atmosphere of 50 ° C. and 50% relative humidity. It is the number of days required to become less than%.
(G) About 1 g of a test piece was cut out from the center of the foaming agent remaining laminate foam. This test piece was immersed in a 45 cc solvent in which a known amount of cyclopentane was added to toluene in a closed container at room temperature for 24 hours, and the blowing agent (butane) remaining in the test piece was extracted into the solvent. The amount of butane extracted in the solvent was quantified by gas chromatography (internal standard method), and the amount of foaming agent remaining in the foam core layer was determined from the mass of the test piece measured in advance.
(H) Curing completion days Curing completion days are such that when the laminated foam is cured under an atmosphere of 50 ° C. and a relative humidity of 50%, the remaining amount of the foaming agent is 1% by mass or less and the specific volume retention of the foam is The number of days required to reach 90% or more.
(L) Apparent density and thickness after completion of curing After completion of curing, the apparent density of the foam core layer, the apparent density of the surface layer, and the thickness of the entire laminated foam were determined in the same manner as described above.

[実施例1、2、3]
発泡芯層形成用押出機として内径90mmの単軸の第一押出機と、内径120mmの単軸の第二押出機を直列に連結した押出機を用いた。表面層形成用押出機として内径115mmの単軸の第三押出機を用いた。該第二押出機の出口に共押出用ダイが取付けられ、該共押出用ダイに第三押出機連結させた共押出装置を用いた。ポリオレフィン系樹脂として低密度ポリエチレン(LD1)、及び収縮防止剤、気泡調整剤を表1に示す配合にて第一押出機に投入し、溶融混練後、同押出機内に発泡剤のブタンとして表1に示す量のイソブタンを注入し再び混練した後第二押出機にて冷却し、目標の樹脂温度を有する発泡芯層形成用溶融樹脂とした。なお、収縮防止剤、気泡調整剤、ブタンの配合量は、発泡芯層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対する値である。
同様に、ポリオレフィン系樹脂として低密度ポリエチレン(LD2)、及び収縮防止剤、気泡調整剤を表1に示す配合にて第三押出機に供給し、溶融混練後、有機物理発泡剤として表1に示す量のイソブタンを注入し再び混練した後冷却し、目標の樹脂温度を有する表面層形成用溶融樹脂とした。なお、収縮防止剤、気泡調整剤、有機物理発泡剤の配合量は、表面層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対する値である。
発泡芯層形成用溶融樹脂と表面層形成用溶融樹脂をそれぞれ表1に示す吐出量で共押出ダイ内に押出して表面層形成用溶融樹脂を発泡芯層形成用溶融樹脂の周面に積層し、共押出ダイの先端に取り付けられた孔径8.7mmのダイリップから押出して円柱状に発泡させた。得られた積層発泡体をコンベアで挟んで引取ることで円柱状の積層発泡体を得た。評価結果を表2、3に示す。
[Examples 1, 2, and 3]
As the foam core layer forming extruder, a single-screw first extruder having an inner diameter of 90 mm and a single-screw second extruder having an inner diameter of 120 mm were connected in series. A single-screw third extruder having an inner diameter of 115 mm was used as the surface layer forming extruder. A co-extrusion apparatus was used in which a co-extrusion die was attached to the outlet of the second extruder, and a third extruder was connected to the co-extrusion die. Low density polyethylene (LD1) as a polyolefin-based resin, a shrinkage inhibitor, and a cell regulator are added to the first extruder in the formulation shown in Table 1, and after melt-kneading, as a butane as a foaming agent in the extruder, Table 1 The amount of isobutane shown in FIG. 5 was injected and kneaded again, and then cooled in a second extruder to obtain a molten resin for forming a foam core layer having a target resin temperature. In addition, the compounding quantity of a shrinkage prevention agent, a bubble regulator, and butane is a value with respect to 100 mass parts of polyolefin resin of the molten resin for foaming core layer formation.
Similarly, low density polyethylene (LD2) as a polyolefin-based resin, an anti-shrinkage agent, and a cell regulator are supplied to the third extruder with the formulation shown in Table 1, and after melt-kneading, the organic physical foaming agent is shown in Table 1. The indicated amount of isobutane was injected, kneaded again, and then cooled to obtain a molten resin for forming a surface layer having a target resin temperature. In addition, the compounding quantity of a shrinkage inhibitor, a bubble regulator, and an organic physical foaming agent is a value with respect to 100 mass parts of polyolefin resin of the molten resin for surface layer formation.
The molten resin for forming the foam core layer and the molten resin for forming the surface layer are each extruded into the coextrusion die at the discharge amounts shown in Table 1, and the molten resin for forming the surface layer is laminated on the peripheral surface of the molten resin for forming the foam core layer. Then, it was extruded from a die lip having a hole diameter of 8.7 mm attached to the tip of the coextrusion die and foamed into a cylindrical shape. The obtained laminated foam was sandwiched by a conveyor and taken up to obtain a cylindrical laminated foam. The evaluation results are shown in Tables 2 and 3.

[比較例1、2]
比較例1として、表1に示す量の収縮防止剤を発泡芯層形成用溶融樹脂と表面層形成用溶融樹脂にそれぞれ添加した以外は実施例2に記載したと同様にして積層発泡体を得た。
比較例2として、表1に示すように収縮防止剤を発泡芯層形成用溶融樹脂と表面層形成用溶融樹脂に添加しなかった以外は実施例2に記載したと同様にして積層発泡体を得た。
評価結果を表2、3に示す。
[Comparative Examples 1 and 2]
As Comparative Example 1, a laminated foam was obtained in the same manner as described in Example 2, except that the amount of the shrinkage-preventing agent shown in Table 1 was added to the molten resin for forming the foam core layer and the molten resin for forming the surface layer. It was.
As Comparative Example 2, a laminated foam was prepared in the same manner as described in Example 2, except that the shrinkage inhibitor was not added to the foamed core layer forming molten resin and the surface layer forming molten resin as shown in Table 1. Obtained.
The evaluation results are shown in Tables 2 and 3.

[実施例4、5、6]
発泡芯層形成用押出機として、押出機の出口に内径90mmのアキュームレータAが取り付けられた内径50mmの単軸の第一押出機を用い、表面層形成用押出機として、押出機の出口に内径30mmのアキュームレータBが取付けられた内径45mmの単軸の第二押出機を用いた。アキュームレータAの押出方向中央部付近にアキュームレータBの出口が接続され、アキュームレータA内で発泡芯層形成用溶融樹脂の周面に表面層形成用溶融樹脂を積層な可能な構造の共押出装置を用いた。
ポリオレフィン系樹脂として低密度ポリエチレン(LD1)、及び収縮防止剤、気泡調整剤を表1に示す配合にて第一押出機に投入し、溶融混練後、同押出機内に発泡剤のブタンとして表1に示す量のイソブタンを注入し再び混練した後冷却し、目標の樹脂温度を有する発泡芯層形成用溶融樹脂とした。なお、収縮防止剤、気泡調整剤、ブタンの配合量は、発泡芯層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対する値である。
同様に、低密度ポリエチレン(LD2)、及び収縮防止剤、気泡調整剤を表1に示す配合にて第三押出機に投入し、溶融混練後、同押出機内に有機物理発泡剤として表1に示す量のイソブタンを注入し再び混練した後冷却し、目標の樹脂温度を有する表面層形成用溶融樹脂とした。なお、収縮防止剤、気泡調整剤、有機物理発泡剤の配合量は、表面層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対する値である。
発泡芯層形成用溶融樹脂をアキュームレータAに、表面層形成用溶融樹脂をアキュームレータBにそれぞれ導入し充填し、目標とする発泡体の質量分充填した後、それぞれのゲートを開放すると同時に、ピストンを目標の瞬間吐出量となるような速度で押し、アキュームレータ中間部にて表面層形成用溶融樹脂を発泡芯層形成用溶融樹脂の周面に積層し、アキュームレータAの先端に取り付けられた孔径15.6mmのダイリップから押出して円柱状に発泡させ、得られた積層発泡体をコンベアで挟んで引取り、冷却することで円柱状の積層発泡体を得た。評価結果を表2、3に示す。
[Examples 4, 5, and 6]
As an extruder for forming a foam core layer, a single-screw first extruder having an inner diameter of 50 mm in which an accumulator A having an inner diameter of 90 mm is attached to the outlet of the extruder is used. As an extruder for forming a surface layer, an inner diameter is provided at the outlet of the extruder. A single-screw second extruder having an inner diameter of 45 mm, to which a 30 mm accumulator B was attached, was used. An accumulator B outlet is connected near the center of the accumulator A in the direction of extrusion, and a co-extrusion apparatus is used in the accumulator A that can laminate the surface layer forming molten resin on the peripheral surface of the foam core layer forming molten resin. It was.
Low density polyethylene (LD1) as a polyolefin-based resin, a shrinkage inhibitor, and a cell regulator are added to the first extruder in the formulation shown in Table 1, and after melt-kneading, as a butane as a foaming agent in the extruder, Table 1 The amount of isobutane shown in the above was injected, kneaded again, and cooled to obtain a foamed core layer forming molten resin having a target resin temperature. In addition, the compounding quantity of a shrinkage prevention agent, a bubble regulator, and butane is a value with respect to 100 mass parts of polyolefin resin of the molten resin for foaming core layer formation.
Similarly, low density polyethylene (LD2), an anti-shrinkage agent, and a cell regulator are charged into the third extruder with the formulation shown in Table 1, and after melt-kneading, the organic physical foaming agent is added to the extruder as shown in Table 1. The indicated amount of isobutane was injected, kneaded again, and then cooled to obtain a molten resin for forming a surface layer having a target resin temperature. In addition, the compounding quantity of a shrinkage inhibitor, a bubble regulator, and an organic physical foaming agent is a value with respect to 100 mass parts of polyolefin resin of the molten resin for surface layer formation.
The molten resin for forming the foam core layer is introduced into the accumulator A and the molten resin for forming the surface layer is introduced into the accumulator B and filled, and after filling the mass of the target foam, each gate is opened, A hole diameter of 15.15 is attached to the tip of the accumulator A by pressing at a speed that achieves the target instantaneous discharge amount, laminating the molten resin for forming the surface layer on the peripheral surface of the molten resin for forming the foam core layer at the intermediate portion of the accumulator. A cylindrical laminated foam was obtained by extruding from a 6 mm die lip and foaming in a cylindrical shape, and taking and cooling the resulting laminated foam sandwiched by a conveyor. The evaluation results are shown in Tables 2 and 3.

[比較例3、4]
比較例3として、表1に示す収縮防止剤を発泡芯層形成用溶融樹脂と表面層形成用溶融樹脂に添加した以外は実施例4に記載したと同様に積層発泡体を成形した。
比較例4として、表1に示すように収縮防止剤を発泡芯層形成用溶融樹脂と表面層形成用溶融樹脂に添加しなかった以外は実施例4に記載したと同様に積層発泡体を得た。
評価結果を表2、3に示す。
[Comparative Examples 3 and 4]
As Comparative Example 3, a laminated foam was molded in the same manner as described in Example 4 except that the shrinkage-preventing agent shown in Table 1 was added to the foamed core layer-forming molten resin and the surface layer-forming molten resin.
As Comparative Example 4, a laminated foam was obtained in the same manner as described in Example 4 except that the shrinkage inhibitor was not added to the foamed core layer-forming molten resin and the surface layer-forming molten resin as shown in Table 1. It was.
The evaluation results are shown in Tables 2 and 3.

[実施例7、8、9]
孔径15.6mmのダイリップの代わりに、幅70mm、クリア2.6mmのスリット形状のダイリップを使用した以外は実施例3と同様にして、表1に示す条件下にて板状(幅300mm、長さ1000mm)の積層発泡体を得た。評価結果を表4、5に示す。
また、実施例8で得られた積層発泡体から表面層を取り除いた発泡体について、表面汚染性の評価を行った。評価結果を表4、5に示す。
[Examples 7, 8, and 9]
In the same manner as in Example 3 except that a slit-shaped die lip having a width of 70 mm and a clear 2.6 mm was used instead of the die lip having a hole diameter of 15.6 mm, a plate-like shape (width 300 mm, long Thickness of 1000 mm) was obtained. The evaluation results are shown in Tables 4 and 5.
Further, the surface contamination of the foam obtained by removing the surface layer from the laminated foam obtained in Example 8 was evaluated. The evaluation results are shown in Tables 4 and 5.

[比較例5、6、7]
表1に示す条件下に、実施例8に記載したと同様に板状(幅300mm、長さ1000mm)の積層発泡体を得た。評価結果を表4、5に示す。
また、比較例5で得られた積層発泡体から表面層を取り除いた発泡体について、表面汚染性の評価を行った。
まず、厚み1mmの板ガラスを10枚重ねて、JIS K7136(2000年)に準拠してガラス板積層体のヘーズを測定した。この板ガラスを1枚ずつにわけ、それぞれの板ガラスに対して、板ガラスを上記表面層を取り除いた発泡体で挟み込み、さらに一方の発泡体側から均等に10gf/cmの荷重をかけて、60℃、湿度50%の雰囲気下に静置した。72時間経過後、発泡体を取り除き、10枚の板ガラスを重ねて上記と同様にしてガラス板積層体のヘーズを測定した。発泡体で挟み込んだ後のガラス板積層体のヘーズから、発泡体で挟み込む前のガラス板積層体のヘーズを引き算し、差が1%未満である場合を○、1%以上5%未満である場合を△、5%以上を×として評価した。この差が小さいほど、被包装物に対する表面汚染性が低いことを意味する。
評価結果を表6に示す。
[Comparative Examples 5, 6, 7]
A laminated foam having a plate shape (width 300 mm, length 1000 mm) was obtained in the same manner as described in Example 8 under the conditions shown in Table 1. The evaluation results are shown in Tables 4 and 5.
Further, the surface contamination property of the foam obtained by removing the surface layer from the laminated foam obtained in Comparative Example 5 was evaluated.
First, 10 plate glasses having a thickness of 1 mm were stacked, and the haze of the glass plate laminate was measured in accordance with JIS K7136 (2000). This plate glass is divided into one piece, and for each plate glass, the plate glass is sandwiched between foams from which the surface layer is removed, and a load of 10 gf / cm 2 is applied evenly from one foam side to 60 ° C., It left still in the atmosphere of humidity 50%. After 72 hours, the foam was removed, 10 plate glasses were stacked, and the haze of the glass plate laminate was measured in the same manner as described above. Subtract the haze of the glass plate laminate before sandwiching with the foam from the haze of the glass plate laminate after sandwiching with the foam, and if the difference is less than 1%, 1% or more and less than 5% The case was evaluated as Δ and 5% or more as x. It means that the smaller this difference is, the lower the surface contamination with respect to the package.
The evaluation results are shown in Table 6.

[実施例10、11]
ダイリップのクリアを5.2mmに変更した以外は実施例8に記載したと同様にして、表1に示す条件下にて板状(幅300mm、長さ1000mm)の積層発泡体を得た。
評価結果を表4、5に示す。
[Examples 10 and 11]
A laminated foam having a plate shape (width 300 mm, length 1000 mm) was obtained in the same manner as described in Example 8 except that the die lip clear was changed to 5.2 mm.
The evaluation results are shown in Tables 4 and 5.

[比較例8、9]
表1に示す条件下にて、実施例10に記載したと同様に板状(幅300mm、長さ1000mm)の積層発泡体を得た。評価結果を表4、5に示す。
[Comparative Examples 8 and 9]
Under the conditions shown in Table 1, a plate-like (width 300 mm, length 1000 mm) laminated foam was obtained in the same manner as described in Example 10. The evaluation results are shown in Tables 4 and 5.

Figure 0005755934
Figure 0005755934

Figure 0005755934
Figure 0005755934

Figure 0005755934
Figure 0005755934

Figure 0005755934
Figure 0005755934

Figure 0005755934
Figure 0005755934

Figure 0005755934
Figure 0005755934

1 ポリオレフィン系樹脂積層発泡体
2 ポリオレフィン系樹脂
3 収縮防止剤
4 有機物理発泡剤
5 表面層形成用溶融樹脂
6 ポリオレフィン系樹脂
7 収縮防止剤
8 発泡剤
9 発泡芯層形成用溶融樹脂
11 表面層形成用押出機
12 発泡芯層形成用押出機
13 共押出ダイ
DESCRIPTION OF SYMBOLS 1 Polyolefin resin laminated foam 2 Polyolefin resin 3 Shrinkage prevention agent 4 Organic physical foaming agent 5 Molten resin for surface layer formation 6 Polyolefin resin 7 Shrinkage prevention agent 8 Foaming agent 9 Molten resin 11 for foam core layer formation Surface layer formation Extruder 12 Foam core layer forming extruder 13 Coextrusion die

Claims (7)

ポリオレフィン系樹脂とブタンとを混練してなる発泡芯層形成用溶融樹脂の外周面に、ポリオレフィン系樹脂を基材樹脂とする表面層形成用溶融樹脂を積層して共押出することにより、積層発泡体全体の厚みが30mm以上で、発泡芯層の見掛け密度が18〜90kg/mである、発泡芯層と表面層とからなる積層発泡体を製造する方法であって、
表面層形成用溶融樹脂には、脂肪酸エステル、脂肪族アミンまたは脂肪酸アミドからなる収縮防止剤が、表面層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対して0.5質量部以上の配合割合(A1)で配合されており、
発泡芯層形成用溶融樹脂には、脂肪酸エステル、脂肪族アミンまたは脂肪酸アミドからなる収縮防止剤が、発泡芯層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対して、表面層形成用溶融樹脂への収縮防止剤の配合割合(A1)よりも少ない配合割合で配合されているか、または脂肪酸エステル、脂肪族アミンまたは脂肪酸アミドからなる収縮防止剤が配合されていないことを特徴とするポリオレフィン系樹脂積層発泡体の製造方法。
Laminated foaming is performed by laminating and coextruding a melt resin for forming a surface layer using a polyolefin resin as a base resin on the outer peripheral surface of a melt resin for forming a foam core layer obtained by kneading a polyolefin resin and butane. A method for producing a laminated foam comprising a foam core layer and a surface layer, wherein the thickness of the whole body is 30 mm or more and the apparent density of the foam core layer is 18 to 90 kg / m 3 ,
In the molten resin for forming the surface layer, a shrinkage inhibitor composed of a fatty acid ester, an aliphatic amine or a fatty acid amide is blended in an amount of 0.5 parts by mass or more with respect to 100 parts by mass of the polyolefin resin of the molten resin for forming the surface layer. (A1) is blended,
In the molten resin for forming the foam core layer, a shrinkage-preventing agent comprising a fatty acid ester, an aliphatic amine or a fatty acid amide is added to 100 parts by mass of the polyolefin resin of the molten resin for forming the foam core layer. A polyolefin-based resin characterized in that it is blended at a blending ratio less than the blending ratio (A1) of an anti-shrinkage agent or a shrinkage-preventing agent comprising a fatty acid ester, aliphatic amine or fatty acid amide is not blended. A method for producing a laminated foam.
前記発泡芯層形成用溶融樹脂への脂肪酸エステル、脂肪族アミンまたは脂肪族アミドからなる収縮防止剤の配合割合(A2)が発泡芯層形成用溶融樹脂のポリオレフィン系樹脂100質量部に対して0.3質量部以下(ただし、0質量部を含む。)であることを特徴とする請求項1に記載のポリオレフィン系樹脂積層発泡体の製造方法。 The blending ratio (A2) of the shrinkage inhibitor composed of fatty acid ester, aliphatic amine or aliphatic amide to the molten resin for forming the foam core layer is 0 with respect to 100 parts by mass of the polyolefin resin of the melt resin for forming the foam core layer. The method for producing a polyolefin-based resin laminate foam according to claim 1, wherein the content is 3 parts by mass or less (including 0 part by mass). 前記表面層の見掛け密度を18〜180kg/mとすることを特徴とする請求項1または2に記載のポリオレフィン系樹脂積層発泡体の製造方法。 The method for producing a polyolefin-based resin laminate foam according to claim 1 or 2, wherein the apparent density of the surface layer is 18 to 180 kg / m 3 . 前記表面層形成用溶融樹脂に有機物理発泡剤が配合されていることを特徴とする請求項1から3のいずれかに記載のポリオレフィン系樹脂積層発泡体の製造方法。   The method for producing a polyolefin-based resin laminate foam according to any one of claims 1 to 3, wherein an organic physical foaming agent is blended in the molten resin for forming the surface layer. 前記表面層の坪量m[g/m]と積層発泡体の厚みt[mm]との比(m/t)を、0.5以上とすることを特徴とする請求項1から4のいずれかに記載のポリオレフィン系樹脂積層発泡体の製造方法。 5. The ratio (m / t) between the basis weight m [g / m 2 ] of the surface layer and the thickness t [mm] of the laminated foam is 0.5 or more. The manufacturing method of the polyolefin resin laminated foam in any one. 前記発泡芯層のポリオレフィン系樹脂が低密度ポリエチレンであることを特徴とする請求項1から5のいずれかに記載のポリオレフィン系樹脂積層発泡体の製造方法。   The method for producing a polyolefin resin laminated foam according to any one of claims 1 to 5, wherein the polyolefin resin of the foam core layer is low density polyethylene. 請求項2に記載の製造方法により得られた積層発泡体から表面層を取り除く、ポリオレフィン系樹脂発泡体の製造方法Claim 2 production excluding take surface layer from the resulting laminate foams by the method described in method for producing a polyolefin resin foam.
JP2011107768A 2011-05-13 2011-05-13 Method for producing polyolefin resin laminate foam and method for producing polyolefin resin foam Active JP5755934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107768A JP5755934B2 (en) 2011-05-13 2011-05-13 Method for producing polyolefin resin laminate foam and method for producing polyolefin resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107768A JP5755934B2 (en) 2011-05-13 2011-05-13 Method for producing polyolefin resin laminate foam and method for producing polyolefin resin foam

Publications (2)

Publication Number Publication Date
JP2012236372A JP2012236372A (en) 2012-12-06
JP5755934B2 true JP5755934B2 (en) 2015-07-29

Family

ID=47459726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107768A Active JP5755934B2 (en) 2011-05-13 2011-05-13 Method for producing polyolefin resin laminate foam and method for producing polyolefin resin foam

Country Status (1)

Country Link
JP (1) JP5755934B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221304B2 (en) * 2013-03-29 2017-11-01 大日本印刷株式会社 FOAM SHEET, FOAM LAMINATED SHEET AND METHOD FOR PRODUCING THEM
JP2018130869A (en) * 2017-02-14 2018-08-23 住化プラステック株式会社 Foamed laminated sheet and packing material
WO2020053826A1 (en) * 2018-09-13 2020-03-19 3M Innovative Properties Company Foam compositions and methods of making same
JP7160615B2 (en) * 2018-09-28 2022-10-25 積水化学工業株式会社 Crosslinked polyolefin resin foam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890626A (en) * 1994-09-20 1996-04-09 Jsp Corp Planar polyethylene resin foam and its production
JP4221122B2 (en) * 1999-07-13 2009-02-12 株式会社ジェイエスピー Laminated body
JP4195591B2 (en) * 2002-08-21 2008-12-10 株式会社ジェイエスピー Polyethylene resin laminated foam board
JP4605697B2 (en) * 2003-11-04 2011-01-05 株式会社ジェイエスピー Non-crosslinked polyethylene resin extruded foam for molding and molded body thereof

Also Published As

Publication number Publication date
JP2012236372A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5918665B2 (en) Method for producing polyethylene resin foam sheet
JP5572364B2 (en) Resin foam sheet
TWI494218B (en) Multi-layered polyethylene resin foamed sheet
TWI589445B (en) Polyethylene resin foam sheet
KR20170130471A (en) A method for producing a polyethylene-based resin laminated foam sheet, a laminated foam sheet for a polyethylene-based resin, and a separator for a glass plate using the foamed sheet
JP5755934B2 (en) Method for producing polyolefin resin laminate foam and method for producing polyolefin resin foam
TWI576383B (en) Extruded polyethylene resin foam sheet and interleaving paper for glass plates
JP2010270228A (en) Method for producing polypropylene-based resin foam and polypropylene-based resin foam
JP2009235329A (en) Manufacturing method of polypropylene-based resin foam, and polypropylene-based resin foam
US9957367B2 (en) Foamed caps and closure seal comprising polyethylene foam
TWI552875B (en) Foamed resin sheet and method of manufacturing foamed resin sheet
JP5642957B2 (en) Resin foam sheet
JP6313989B2 (en) Foamable resin composition, foam, multilayer sheet and foamed molded article
JP6276055B2 (en) Polyethylene foam sheet excellent in easy tearability and package using the same
JP2017222784A (en) Spool of resin foamed sheet
JP2004307662A (en) Method for producing crystalline polylactic acid-based resin foam
JP6302731B2 (en) Polyethylene resin foam sheet
JP5512331B2 (en) Foamed sheet and foamed resin container
JP5698607B2 (en) Method for producing polyethylene resin laminated foam sheet
JP2014079946A (en) Polystyrene resin based laminate foamed sheet
JP5757622B2 (en) Polyethylene resin multilayer foam sheet for thermoforming
JP5694832B2 (en) Foam sheet for packaging
JP2007246776A (en) Uncrosslinked polyethylene-based resin foamed sheet for molding
JP4577883B2 (en) Polyethylene resin open cell foam
JP7020979B2 (en) Manufacturing method of polyethylene resin foam sheet and polyethylene resin foam sheet and its roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150528

R150 Certificate of patent or registration of utility model

Ref document number: 5755934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250