JP2006094711A - Ditching wheel-driving apparatus of no-tilling direct sowing machine - Google Patents

Ditching wheel-driving apparatus of no-tilling direct sowing machine Download PDF

Info

Publication number
JP2006094711A
JP2006094711A JP2004281168A JP2004281168A JP2006094711A JP 2006094711 A JP2006094711 A JP 2006094711A JP 2004281168 A JP2004281168 A JP 2004281168A JP 2004281168 A JP2004281168 A JP 2004281168A JP 2006094711 A JP2006094711 A JP 2006094711A
Authority
JP
Japan
Prior art keywords
drive shaft
main body
grooved
shaft main
driving shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004281168A
Other languages
Japanese (ja)
Other versions
JP4583858B2 (en
Inventor
Kunisuke Sukigara
国佐 鋤柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukigara Noki KK
Original Assignee
Sukigara Noki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukigara Noki KK filed Critical Sukigara Noki KK
Priority to JP2004281168A priority Critical patent/JP4583858B2/en
Publication of JP2006094711A publication Critical patent/JP2006094711A/en
Application granted granted Critical
Publication of JP4583858B2 publication Critical patent/JP4583858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate exchange of each ditching wheel in a ditching wheel-driving apparatus of a no-tilling direct sowing machine. <P>SOLUTION: The ditching wheel-driving shaft B constituting the ditching wheel-driving shaft apparatus A is divided into three bodies of a driving shaft body 16 in which many ditching wheels W are externally fitted at prescribed intervals in axial direction, a driving shaft-connecting body 19 inserted into the driving shaft body 16 and a pair of divided bodies 17a and 17b of driving shaft connected to a driving means installed in a machine body K, and large-sized connecting flange parts 18 and 25 larger than the driving body 16 are installed in the end of the driving shaft body 16 and the end of the driving shaft-connecting body 19 and each connecting flange part 32 is installed in the inner ends of a pair of divided bodies 17a and 17b of the driving shaft, and the connecting flange part 18 of the end of the driving shaft body 16 is connected to the connecting flange part 32 of the divided body 17a of the driving shaft on the driving side corresponding to the connecting flange part 18 by each connecting bolt 23, and the connecting flange part 25 of the end of the driving shaft-connecting body 19 is connected to the connecting flange part 32 of the divided body 17b of the driving shaft on the side to be driven corresponding to the connecting flange part 25. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、機体の幅方向に支持された作溝輪駆動軸に多数の作溝輪が所定間隔をおいて取付けられ、牽引車により牽引されて、圃場に作溝された多条の播種溝に作溝直後に直接に播種する構成の不耕起直播機における作溝輪駆動軸装置に関するものである。   The present invention is a multi-row sowing groove in which a large number of grooved wheels are attached to a grooved wheel drive shaft supported in the width direction of the machine body at a predetermined interval, pulled by a towing vehicle, and grooved in a field. The present invention relates to a grooved wheel drive shaft device in a non-tillage direct sowing machine configured to sow immediately after grooving.

最初に、不耕起直播機の全体構成について、本発明の実施例の図面を援用して説明する。図1に示されるように、不耕起直播機は、トラクタ等の牽引車(図示せず)の後部に三点リンクヒッチ方式により連結されていて、運搬や旋回時における不耕起直播機の全重量は牽引車の側で支持される。不耕起直播機は、機体Kと、該機体Kの下方に配設され、作溝輪駆動軸51に多数の作溝輪Wを外嵌させた作溝輪駆動軸装置A’と、該作溝輪駆動軸装置A’の上方に配設されるホッパHとから構成されている。   First, the overall configuration of the no-tillage direct sowing machine will be described with reference to the drawings of the embodiments of the present invention. As shown in FIG. 1, the no-tillage direct sowing machine is connected to the rear part of a tractor (not shown) such as a tractor by a three-point link hitch method. The full weight is supported by the towing vehicle. The no-tillage direct sowing machine includes a machine body K, a grooving wheel drive shaft device A ′ disposed below the machine body K and having a plurality of grooving wheels W fitted on the grooving wheel drive shaft 51, and A hopper H disposed above the grooved wheel drive shaft device A ′.

図13の(イ)に示されるように、不耕起直播機を構成する各作溝輪Wを構成する一対のわん曲円板52,53の外周縁部は、圃場に略V字形の播種溝Vを形成させるために、常に鋭利となっていることが必要である。しかし、そのような作溝輪Wであっても、図13の(ロ)に示されるように、長期間に亘って土と接触することにより、作溝輪Wの外周縁部が磨耗して、徐々に丸みを帯びる。これにより、鍔リング54から作溝輪Wの外周縁までの長さが短くなると共に、土に対する作溝輪Wの喰込み抵抗が大きくなって、前記鍔リング54が浮き上がり、形成される播種溝Vの深さ(D')は、設定深さ(D)よりも浅くなってしまう。すると、図14の(イ),(ロ)に示されるように、次に示す不具合が発生する。(1)播種溝Vの深さ(D')が設定深さ(D)であれば、鳥のくちばし55が溝底に届くことはないが、前記設定深さ(D)よりも浅くなると、鳥のくちばし55が溝底に届くようになり、播種された直後の種子Sが捕食され易くなる。(2)生育した稲等の作物が、台風等によって倒伏され易くなる。   As shown in FIG. 13 (a), the outer peripheral edges of the pair of curved disks 52 and 53 constituting each grooved wheel W constituting the no-tillage direct sowing machine are substantially V-shaped sowing in the field. In order to form the groove V, it is always necessary to be sharp. However, even in such a grooved ring W, as shown in FIG. 13B, the outer peripheral edge of the grooved ring W is worn by contact with soil for a long period of time. , Gradually rounded. As a result, the length from the heel ring 54 to the outer peripheral edge of the grooved ring W is shortened, and the biting resistance of the grooved ring W with respect to the soil is increased, so that the heel ring 54 is lifted and formed. The depth (D ′) of V becomes shallower than the set depth (D). Then, as shown in FIGS. 14A and 14B, the following problems occur. (1) If the depth (D ′) of the sowing groove V is the set depth (D), the bird's beak 55 will not reach the groove bottom, but if the depth is smaller than the set depth (D), The bird's beak 55 reaches the groove bottom, and the seed S immediately after being sown becomes easy to be preyed. (2) Grown crops such as rice are easily laid down by typhoons.

また、播種溝Vの底部の形状も、丸みを帯びた作溝輪Wの外周縁部の形状に対応して幅広となってしまう。すると、播種溝Vの底部に落下された種子Sの発芽条件が悪くなる。即ち、不耕起直播方法においては、図14の(イ)に示されるように、播種溝Vの底部に落下した種子Sは、該溝Vの底部の両内壁面Va(土壁)に密着することが最も良い発芽条件とされており、図14の(ロ)に示されるように、播種溝Vの底部が丸くなって幅広となると、上記のことが実現不能となって、発芽条件も悪くなる。即ち、図14の(イ)に示されるように、播種溝Vの溝底部が鋭利なV字形を維持していて、落下された種子Sが両内壁面Vaに接触していると、種子Sの周辺の湿度が高くて、該種子Sに対して水分が適正に供給されて、良好な局所気候が維持されるために、良好な発芽条件が維持される。これに対して、図14の(ロ)に示されるように、幅広の溝底に種子Sが落下された場合には、該種子Sが乾燥され易くなって発芽条件が悪くなり、種子Sの発芽率が低下すると共に発芽状態も不揃いとなり、ひいては稲等の作物の収穫率が下がる。   Moreover, the shape of the bottom part of the seeding groove | channel V will also become wide corresponding to the shape of the outer-periphery edge part of the round grooved ring W. FIG. Then, germination conditions of the seed S dropped on the bottom of the sowing groove V are deteriorated. That is, in the no-tillage direct sowing method, as shown in FIG. 14 (a), the seed S dropped on the bottom of the sowing groove V is in close contact with both inner wall surfaces Va (earth wall) of the bottom of the groove V. As shown in FIG. 14B, when the bottom of the sowing groove V is rounded and widened, the above cannot be realized and the germination conditions are also set. Deteriorate. That is, as shown in FIG. 14 (a), when the bottom of the sowing groove V maintains a sharp V-shape and the dropped seed S is in contact with both inner wall surfaces Va, the seed S Since the humidity in the surrounding area is high, moisture is properly supplied to the seed S, and a good local climate is maintained, so that good germination conditions are maintained. On the other hand, as shown in FIG. 14B, when the seed S is dropped on the wide groove bottom, the seed S is easily dried and germination conditions are deteriorated. As the germination rate decreases, the germination state becomes uneven, and as a result, the harvest rate of crops such as rice is lowered.

上記した不具合を避けるため、作溝輪Wの外周縁部の磨耗が少なくなるようにすることが必要である。本出願人も、作溝輪Wの改良に係る発明を出願している(特許文献1参照)。   In order to avoid the above-described problems, it is necessary to reduce the wear of the outer peripheral edge of the grooved ring W. The present applicant has also applied for an invention relating to the improvement of the grooved ring W (see Patent Document 1).

それでも、作溝輪Wの外周縁部が磨耗することを避けることは困難であり、磨耗した作溝輪Wを新規なものと交換する必要がある。従来のサイドドライブ式の作溝輪駆動軸装置A’の場合、図15に示されるように、各作溝輪Wは、機体Kに取付けられた1本の作溝輪駆動軸51に外嵌されている。そして、前記作溝輪駆動軸51は、機体Kを構成する一対のサイドフレーム56に内装された軸受57に支持されている。各作溝輪Wを交換する場合、一方側のサイドフレーム56に内装された軸受57を取り外し、この状態で作溝輪駆動軸51の一端部を軸方向にずらして、該作溝輪駆動軸51の他端部58(スプライン軸が設けられている部分)を他方側のサイドフレーム56から取り外す。次に、各作溝輪Wを作溝輪駆動軸51から抜き取る。この結果、作溝輪Wの交換作業に大きな手間がかかっている。
特開2002−65008号公報
Even so, it is difficult to avoid wear of the outer peripheral edge of the grooved ring W, and it is necessary to replace the worn grooved ring W with a new one. In the case of the conventional side drive type grooved wheel drive shaft device A ′, each grooved wheel W is fitted on one grooved wheel drive shaft 51 attached to the machine body K as shown in FIG. Has been. The grooved wheel drive shaft 51 is supported by bearings 57 housed in a pair of side frames 56 constituting the machine body K. When exchanging each grooved wheel W, the bearing 57 built in the side frame 56 on one side is removed, and in this state, one end of the grooved wheel drive shaft 51 is shifted in the axial direction, so that the grooved wheel drive shaft is 51 is removed from the side frame 56 on the other side. Next, each groove ring W is extracted from the groove ring drive shaft 51. As a result, it takes a lot of time to replace the groove ring W.
JP 2002-65008 A

本発明は、不耕起直播機において、作溝輪の交換が容易にできるようにすることを課題としている。   An object of the present invention is to enable easy replacement of a grooved ring in a no-tillage direct sowing machine.

上記課題を解決するための請求項1の発明は、機体の幅方向に支持された作溝輪駆動軸に多数の作溝輪が所定間隔をおいて取付けられ、牽引車により牽引されて、圃場に作溝された多条の播種溝に作溝直後に直接に播種する構成の不耕起直播機において、前記作溝輪駆動軸は、多数の作溝輪が所定間隔をおいて外嵌状態で一体に取付けられて、軸方向の一端部のみに連結鍔部が一体に取付けられた駆動軸本体と、短軸体の内端部のみに連結鍔部が一体に取付けられて、前記機体の幅方向の両端部に相対向して設けられた一対のサイドフレームの下端部内側に相対向して支持される一対の駆動軸分割体とから成り、短軸体の外端部のみに連結鍔部が一体に取付けられて、前記駆動軸本体の連結鍔部と反対側の端部に前記短軸体を挿入して、前記駆動軸本体に取付けられる駆動軸連結体を備え、前記駆動軸本体の一端部は、連結鍔部を介して一方の駆動軸分割体に連結され、前記駆動軸本体の他端部は前記駆動軸連結体を介して他方の駆動軸分割体に連結されていることを特徴としている。   A first aspect of the invention for solving the above-described problem is that a plurality of grooved wheels are attached to a grooved wheel drive shaft supported in the width direction of the machine body at a predetermined interval and pulled by a towing vehicle. In the no-tillage direct sowing machine configured to sow directly into the multi-row sowing groove that has been grooved immediately after grooving, the grooving wheel drive shaft is in a state where a large number of grooving rings are fitted at predetermined intervals. The drive shaft main body is integrally attached to only one end portion in the axial direction, and the connection collar portion is integrally attached only to the inner end portion of the short shaft body. It consists of a pair of drive shaft divided bodies that are supported opposite to each other on the inner sides of the lower ends of a pair of side frames provided opposite to both ends in the width direction, and connected to only the outer end of the short shaft. The part is attached integrally, and the short shaft body is inserted into the end of the drive shaft main body opposite to the connecting collar, A drive shaft coupling body attached to the dynamic shaft main body, wherein one end portion of the drive shaft main body is coupled to one drive shaft divided body via a coupling flange, and the other end portion of the drive shaft main body is coupled to the drive shaft. It is characterized in that it is connected to the other drive shaft split body via a connecting body.

本発明に係る作溝輪駆動軸装置において、作溝輪駆動軸に取付けられている各作溝輪を交換するときの作用について説明する。(1)駆動軸本体の両端部の連結鍔部において、駆動軸本体と駆動軸分割体とを連結している連結手段(ボルト)を解除して、駆動軸本体の各連結鍔部と駆動軸分割体とを分離させる。これにより、不耕起直播機の機体から駆動軸本体を取り外すことができる。(2)機体から取り外された駆動軸本体の一端部から、駆動軸連結体を取り外す。(3)駆動軸本体において、連結鍔部が形成されていない側に各作溝輪を移動させて、該駆動軸本体から磨耗した作溝輪を、順次取り外す。(4)次に、駆動軸本体において、連結鍔部が形成されていない側から、新規の作溝輪を順次外嵌させた後に軸方向に移動させて、所定位置に固定する。(5)駆動軸本体の一端部に、駆動軸連結体を挿入する。(6)前記駆動軸本体及び前記駆動軸連結体の各連結鍔部と、一対の駆動軸分割体の各連結鍔部とを連結する。上記した結果、新規の作溝輪が外嵌された作溝輪駆動軸が機体に取付けられる。   In the grooved wheel drive shaft device according to the present invention, an operation when each grooved wheel attached to the grooved wheel drive shaft is replaced will be described. (1) The connecting means (bolt) that connects the drive shaft main body and the drive shaft split body is released at the connecting hooks at both ends of the drive shaft main body, and the connecting hooks and the drive shaft of the drive shaft main body are released. Separate the divided body. Thereby, a drive shaft main body can be removed from the body of a no-till direct seeding machine. (2) The drive shaft coupling body is removed from one end of the drive shaft main body removed from the machine body. (3) In the drive shaft main body, each grooved wheel is moved to the side where the connecting collar portion is not formed, and the grooved wheels worn from the drive shaft main body are sequentially removed. (4) Next, in the drive shaft main body, new grooved rings are sequentially fitted from the side where the connecting collar portion is not formed, and then moved in the axial direction to be fixed at a predetermined position. (5) A drive shaft coupling body is inserted into one end of the drive shaft main body. (6) The connecting shafts of the drive shaft main body and the drive shaft connecting body are connected to the connecting hooks of the pair of drive shaft split bodies. As a result, the grooving wheel drive shaft on which the new grooving wheel is fitted is attached to the airframe.

上記したように、請求項1の発明では、作溝輪駆動軸が、駆動軸本体と一対の駆動軸分割体とに分割されている。このため、不耕起直播機の機体から、作溝輪駆動軸のうちの駆動軸本体のみを取り外すことができる。そして、該駆動軸本体から駆動軸連結体を取り外すことにより、新旧の作溝輪を交換することができるため、作溝輪の交換作業が容易である。   As described above, in the first aspect of the invention, the grooved wheel drive shaft is divided into the drive shaft main body and the pair of drive shaft divided bodies. For this reason, only the drive shaft main body among the grooved wheel drive shafts can be removed from the body of the no-till direct sowing machine. And since the old and new grooved ring can be replaced | exchanged by removing a drive shaft coupling body from this drive shaft main body, the replacement | exchange operation | work of a grooved ring is easy.

請求項2の発明は、請求項1の発明を前提として、前記駆動軸本体の端部に挿入された駆動軸連結体は、当該端部に外嵌された作溝輪と一体となって前記駆動軸本体に連結されることを特徴としている。請求項2の発明により、駆動軸本体の端部にまで作溝輪を外嵌できて、一度の播種作業における播種条数が増して、作業能率が増す。   According to a second aspect of the present invention, on the premise of the first aspect of the invention, the drive shaft coupling body inserted into the end portion of the drive shaft main body is integrated with the grooved ring that is externally fitted to the end portion. It is connected to the drive shaft body. According to the second aspect of the present invention, the grooved ring can be externally fitted to the end of the drive shaft main body, so that the number of seeding lines in one seeding operation is increased, and the work efficiency is increased.

請求項3の発明は、請求項1又は2の発明を前提として、前記駆動軸本体に一体に取付けられた連結鍔部は駆動側に配置されて、当該駆動側の駆動軸分割体の連結鍔部と一体に連結されることを特徴としている。請求項3の発明により、駆動軸連結体を介して駆動軸分割体に連結される側は、動力の非伝達側となるので、動力の伝達効率を低下させるおそれがないと共に、駆動軸伝達部の連結強度を確保できる。   According to a third aspect of the present invention, on the premise of the first or second aspect of the invention, the connecting rod portion integrally attached to the drive shaft main body is arranged on the drive side, and the connection rod of the drive shaft divided body on the drive side is arranged. It is characterized in that it is integrally connected with the part. According to the invention of claim 3, since the side connected to the drive shaft divided body via the drive shaft connecting body is the non-transmission side of the power, there is no possibility of reducing the power transmission efficiency, and the drive shaft transmission section Can be secured.

請求項4の発明は、請求項1ないし3のいずれかの発明を前提として、前記作溝輪は、駆動軸本体に外嵌される取付体の長手方向の中央に対して軸方向にずれた位置に作溝輪本体が一体に取付けられた構成であって、前記駆動軸本体に外嵌される多数の作溝輪は、該駆動軸本体の軸方向の中央部に対して左右両側の各部分に、互いに左右反転された状態で外嵌されていることを特徴としている。請求項4の発明により、機体の幅と作溝輪どうしの取付間隔を一定にしたまま、前記機体の幅内に配置可能な作溝輪の数を増やすことができると共に、駆動軸本体に外嵌される作溝輪を、全て同一形状のものとすることができる。   According to a fourth aspect of the present invention, on the premise of any one of the first to third aspects, the grooved wheel is displaced in the axial direction with respect to the longitudinal center of the mounting body fitted on the drive shaft body. A grooved ring main body is integrally mounted at a position, and a large number of grooved rings that are externally fitted to the drive shaft main body are arranged on both the left and right sides with respect to the central portion in the axial direction of the drive shaft main body. It is characterized in that it is externally fitted to the part in a state where the left and right are reversed. According to the invention of claim 4, it is possible to increase the number of grooved wheels that can be arranged within the width of the airframe while keeping the width of the airframe and the mounting interval between the grooved wheels constant. The grooved rings to be fitted can all be of the same shape.

本発明の不耕機直播機の作溝輪駆動軸装置を構成する作溝輪駆動軸は、多数の作溝輪が所定間隔をおいて外嵌状態で一体に取付けられて、軸方向の一端部のみに連結鍔部が一体に取付けられた駆動軸本体と、短軸体の内端部のみに連結鍔部が一体に取付けられて、前記機体の幅方向の両端部に相対向して設けられた一対のサイドフレームの下端部内側に相対向して支持される一対の駆動軸分割体とから成り、短軸体の外端部のみに連結鍔部が一体に取付けられて、前記駆動軸本体の連結鍔部と反対側の端部に前記短軸体を挿入して、前記駆動軸本体に取付けられる駆動軸連結体を備え、前記駆動軸本体の一端部は、連結鍔部を介して一方の駆動軸分割体に連結され、前記駆動軸本体の他端部は前記駆動軸連結体を介して他方の駆動軸分割体に連結されていることを特徴としている。このため、不耕機直播機の機体から駆動軸本体のみを取り外し、該駆動軸本体から駆動軸連結体を取り外すことにより、新旧の作溝輪を交換することができ、作溝輪の交換作業が容易である。   The grooved wheel drive shaft constituting the grooved wheel drive shaft device of the non-tillage direct sowing machine of the present invention has a large number of grooved wheels integrally attached with a predetermined interval in an externally fitted state, and one end in the axial direction. The drive shaft main body with the connecting rod part integrally attached only to the part and the connecting collar part integrally attached only to the inner end part of the short shaft body are provided opposite to both ends in the width direction of the machine body. A pair of drive shaft divided bodies that are supported opposite to each other on the inner side of the lower ends of the pair of side frames, and the connecting shaft is integrally attached only to the outer end portion of the short shaft body. The short shaft body is inserted into an end portion on the opposite side of the connecting collar portion of the main body, and a driving shaft connecting body is attached to the driving shaft main body, and one end portion of the driving shaft main body is interposed via the connecting collar portion. It is connected to one drive shaft divided body, and the other end of the drive shaft main body is connected to the other drive shaft divided body via the drive shaft connected body. It is characterized by being sintered. Therefore, by removing only the drive shaft main body from the body of the direct tiller and removing the drive shaft coupling body from the drive shaft main body, the old and new grooved wheels can be replaced, and the grooved wheel replacement work Is easy.

以下、実施例を挙げて、本発明を更に詳細に説明する。図1は本発明の作溝輪駆動軸装置Aが取付けられた不耕起直播機の側面図、図2は同じく概略平面図、図3は作溝輪駆動軸装置Aを進行方向前方から見た図、図4は機体Kから、作溝輪駆動軸Bの駆動軸本体ユニットUを分離させた状態の斜視図、図5は作溝輪駆動軸Bの分解図、図6は駆動側の駆動軸分割体17aの部分の断面図、図7は図6のX−X線断面図、図8は作溝輪駆動軸Bの他端部の一部を破断した斜視図、図9は従動側の駆動軸分割体17bの部分の断面図、図10は駆動軸本体16と駆動軸連結体19とを分離した状態の斜視図、図11は駆動軸本体16と駆動軸連結体19との連結部分の断面図である。   Hereinafter, the present invention will be described in more detail with reference to examples. FIG. 1 is a side view of a no-tilt direct sowing machine to which a grooved wheel drive shaft device A of the present invention is attached, FIG. 2 is a schematic plan view, and FIG. 3 is a view of the grooved wheel drive shaft device A viewed from the front in the traveling direction. FIG. 4 is a perspective view of a state in which the drive shaft body unit U of the grooved wheel drive shaft B is separated from the machine body K, FIG. 5 is an exploded view of the grooved wheel drive shaft B, and FIG. FIG. 7 is a sectional view taken along line XX in FIG. 6, FIG. 8 is a perspective view in which a part of the other end of the grooved wheel driving shaft B is broken, and FIG. 9 is driven. FIG. 10 is a perspective view of a state in which the drive shaft main body 16 and the drive shaft coupling body 19 are separated, and FIG. 11 is a perspective view of the drive shaft main body 16 and the drive shaft coupling body 19. It is sectional drawing of a connection part.

図1及び図2に示されるように、牽引車(図示せず)の後方に不耕起直播機が連結されている。不耕起直播機の機体Kには、作溝輪駆動軸装置Aが配設されていて、該作溝輪駆動軸装置Aに外嵌された多数の作溝輪Wの直上にそれぞれホッパHが支持されている。前記ホッパHは、種子S(図14参照)と肥料とを分離して収容可能である。各ホッパHは、内部に設けられた分離板1によって種子収容室1aと肥料収容室1bとに分離されていて、各ホッパHの下方には、前記各収容室1a,1b から別々に繰り出された種子Sと肥料とを混合状態で収容可能な受け器2が取付けられている。各受け器2には、圃場に形成された各播種溝Vに、種子Sと肥料との混合物を案内するための播種ホース3が、それぞれ連結されている。そして、機体Kの前部における左右両端のいずれか一方には、駆動輪4が取付けられている。駆動輪4は、圧縮ばね(図示せず)により常に下方に付勢されていて、前記圧縮ばねの接地圧によってスリップすることなく回転可能である。なお、図1において、5は、機体Kにおける作溝輪駆動軸装置Aの後方で、各作溝輪Wと同一位置に設けられた覆土チェーンである。   As shown in FIGS. 1 and 2, a no-tillage direct sowing machine is connected to the rear of a towing vehicle (not shown). The machine body K of the no-tillage direct sowing machine is provided with a grooving wheel drive shaft device A, and a hopper H is directly above each of the many grooving wheels W fitted on the grooving wheel drive shaft device A. Is supported. The hopper H can accommodate seed S (see FIG. 14) and fertilizer separately. Each hopper H is separated into a seed storage chamber 1a and a fertilizer storage chamber 1b by a separating plate 1 provided in the interior, and the hopper H is separately fed from the storage chambers 1a and 1b below the hopper H. A receiver 2 capable of accommodating the seed S and the fertilizer in a mixed state is attached. A seeding hose 3 for guiding a mixture of seed S and fertilizer is connected to each seeder 2 in each seeding groove V formed in the field. And the driving wheel 4 is attached to either one of the left and right both ends in the front part of the body K. The drive wheel 4 is always urged downward by a compression spring (not shown), and can rotate without slipping due to the ground pressure of the compression spring. In FIG. 1, reference numeral 5 denotes a cover soil chain provided at the same position as each grooved wheel W behind the grooved wheel drive shaft device A in the machine body K.

図3に示されるように、本実施例の不耕起直播機を構成する機体Kは正面視において門型である。即ち、不耕起直播機における幅方向(左右方向)のほぼ中央部に配置され、ケーシングを兼ねたセンタフレーム6から両側方に向かって、一対の円筒状の中間フレーム7が延設されていて、更に、前記一対の中間フレーム7の先端部から下方に向かってほぼ直角に一対のサイドフレーム8が取付けられている。前記センタフレーム6は、キャップ体9によって閉塞されている。前記キャップ体9の前部には、機体Kの走行方向Rに沿って軸受9aが装着されていて、該軸受9aに、トラクターのPTO軸(動力取出軸)に連結される入力軸11が回転自在に支承されている。前記入力軸11の端部には、傘歯車11aが装着されている。また、センタフレーム6のキャップ体9には、後方に向かって軸受支持部12が延設されていて、前記軸受支持部12に取付けられた軸受12aと、一方側のサイドフレーム8の上部に取付けられた軸受ブラケット13の軸受13aに、伝動軸14が回転可能に支承されている。前記伝動軸14における一端部(センタフレーム6の側の端部)には、前述した入力軸11の傘歯車11aと噛合される傘歯車14aが装着されていて、同じく他端部(サイドフレーム8の側の端部)には、上側チェーン歯車15が装着されている。なお、図3及び図4では、図示を可能にするために入力軸11を垂直に配置させているが、現実の不耕起直播機では、ほぼ水平に配置されている。   As FIG. 3 shows, the body K which comprises the no-till direct sowing machine of a present Example is a portal type in front view. In other words, a pair of cylindrical intermediate frames 7 are extended from the center frame 6 also serving as a casing toward both sides from the center frame 6 which is disposed in the center of the width direction (left and right direction) in the no-tillage direct sowing machine. Further, a pair of side frames 8 are attached at substantially right angles from the front ends of the pair of intermediate frames 7 downward. The center frame 6 is closed by a cap body 9. A bearing 9a is mounted on the front portion of the cap body 9 along the traveling direction R of the airframe K, and an input shaft 11 connected to the PTO shaft (power take-off shaft) of the tractor rotates on the bearing 9a. It is supported freely. A bevel gear 11 a is attached to the end of the input shaft 11. The cap body 9 of the center frame 6 has a bearing support portion 12 extending rearward, and is attached to the bearing 12a attached to the bearing support portion 12 and the upper portion of the side frame 8 on one side. The transmission shaft 14 is rotatably supported on the bearing 13 a of the bearing bracket 13. A bevel gear 14a that meshes with the bevel gear 11a of the input shaft 11 described above is attached to one end of the transmission shaft 14 (the end on the side of the center frame 6). The upper chain gear 15 is attached to the end portion on the other side. In FIGS. 3 and 4, the input shaft 11 is arranged vertically for the purpose of illustration, but in an actual no-tillage direct sowing machine, the input shaft 11 is arranged almost horizontally.

図3ないし図5に示されるように、機体Kの下方には、本発明に係る作溝輪駆動軸装置Aが配設されている。作溝輪駆動軸装置Aは、作溝輪駆動軸Bと、該作溝輪駆動軸Bを駆動回転させるための駆動手段(後述)とから構成されている。本実施例の作溝輪駆動軸Bは軸方向に三分割されていて、多数の作溝輪Wが所定の取付間隔Pをおいて外嵌される駆動軸本体16と、該駆動軸本体16の両側に連結される一対の駆動軸分割体(駆動側の駆動軸分割体17aと従動側の駆動軸分割体17b)より成る。以下、多数の作溝輪Wが外嵌された状態の駆動軸本体16を、「駆動軸本体ユニットU」と記載する。   As shown in FIGS. 3 to 5, a grooved wheel drive shaft device A according to the present invention is disposed below the machine body K. The grooved wheel drive shaft device A includes a grooved wheel drive shaft B and drive means (described later) for driving and rotating the grooved wheel drive shaft B. The grooved wheel drive shaft B of the present embodiment is divided into three in the axial direction, and a drive shaft body 16 on which a large number of grooved wheels W are fitted with a predetermined mounting interval P, and the drive shaft body 16 It comprises a pair of drive shaft divided bodies (a drive side drive shaft divided body 17a and a driven side drive shaft divided body 17b) connected to both sides of the drive shaft. Hereinafter, the drive shaft main body 16 in which a large number of grooved wheels W are externally fitted is referred to as a “drive shaft main body unit U”.

最初に、駆動軸本体16について説明する。図4及び図5に示されるように、パイプ状の駆動軸本体16における軸方向の一端部には、該駆動軸本体16の外径よりも大径の円板状の連結鍔部18が軸心同一にして固着されていると共に、他端部は開放されていて、従動側の駆動軸分割体17bと連結される駆動軸連結体19が着脱可能に取付けられている。駆動軸本体16の外周面には、多数の作溝輪Wを外嵌固定させる各作溝輪連結ピン21を挿通させるためのピン挿通孔16aが、軸方向に所定間隔(作溝輪Wの取付間隔Pと等しい間隔)をおいて貫通状態で設けられていると共に、駆動軸連結体19を挿入固定させる軸連結ピン22を挿通させるためのピン挿通孔16bが貫通状態で設けられている。また、前記連結鍔部18には、駆動軸本体16を駆動側の駆動軸分割体17aと連結する連結ボルト23を挿通させるための各ボルト挿通孔18aが、円周方向に沿って設けられている。   First, the drive shaft body 16 will be described. As shown in FIGS. 4 and 5, at one end in the axial direction of the pipe-shaped drive shaft main body 16, a disk-shaped connecting collar portion 18 having a diameter larger than the outer diameter of the drive shaft main body 16 is pivoted. While being fixed with the same center, the other end is opened, and a drive shaft connecting body 19 connected to the driven side drive shaft dividing body 17b is detachably attached. On the outer peripheral surface of the drive shaft main body 16, pin insertion holes 16 a for inserting each grooved ring connection pin 21 for fitting and fixing a large number of grooved wheels W are provided at predetermined intervals in the axial direction (the grooves of the grooved wheels W). A pin insertion hole 16b through which a shaft coupling pin 22 for inserting and fixing the drive shaft coupling body 19 is inserted is provided in a penetrating state with an interval equal to the mounting interval P). Further, each of the connecting flange portions 18 is provided with bolt insertion holes 18a through which the connecting bolts 23 for connecting the driving shaft main body 16 and the driving shaft divided body 17a are inserted along the circumferential direction. Yes.

図8ないし図10に示されるように、前記駆動軸連結体19は、パイプ材より成り、駆動軸本体16の内径よりも僅かに小径の連結軸部24の端部に、駆動軸本体16の一端部に取付けられた連結鍔部18と同様の連結鍔部25が軸心同一にして固着されている。そして、前記連結軸部24の外周面には、前述した作溝輪連結ピン21と軸連結ピン22を挿通させるための各ピン挿通孔24a,24b が貫通状態で設けられている。該駆動軸連結体19は、連結軸部24が駆動軸本体16の他端部(連結鍔部18が設けられていない側の端部)に挿入され、両者のピン挿通孔16b,24b が合致される。そして、各ピン挿通孔16b,24b に軸連結ピン22が挿通されて、駆動軸本体16と駆動軸連結体19とが一体化される。これにより、駆動軸本体16と駆動軸連結体19とが回り止め状態で一体に固定される。そして、前記駆動軸本体16と前記駆動軸連結体19が連結固定されて構成される作溝輪駆動軸Bの両端部に、一対の本体側の連結鍔部18,25が形成される。図11に示されるように、軸連結ピン22において、駆動軸本体16から突出された部分に抜止めピン26が取付けられたことにより、前記軸連結ピン22の抜止めが図られている。   As shown in FIGS. 8 to 10, the drive shaft connecting body 19 is made of a pipe material, and is connected to the end of the connecting shaft portion 24 having a diameter slightly smaller than the inner diameter of the drive shaft main body 16. A connection flange 25 similar to the connection flange 18 attached to one end is fixed with the same axial center. Further, on the outer peripheral surface of the connecting shaft portion 24, pin insertion holes 24a and 24b for inserting the grooved ring connecting pin 21 and the shaft connecting pin 22 are provided in a penetrating state. In the drive shaft connecting body 19, the connecting shaft portion 24 is inserted into the other end portion of the drive shaft main body 16 (the end portion on the side where the connecting collar portion 18 is not provided), and the pin insertion holes 16b, 24b of both are matched. Is done. Then, the shaft connecting pin 22 is inserted into each pin insertion hole 16b, 24b, and the drive shaft main body 16 and the drive shaft connecting body 19 are integrated. Thereby, the drive shaft main body 16 and the drive shaft coupling body 19 are integrally fixed in a non-rotating state. A pair of body-side connecting collars 18 and 25 are formed at both ends of the grooved wheel drive shaft B constituted by connecting and fixing the drive shaft body 16 and the drive shaft coupling body 19. As shown in FIG. 11, in the shaft coupling pin 22, the retaining pin 26 is attached to a portion protruding from the drive shaft main body 16, so that the shaft coupling pin 22 is prevented from being detached.

本実施例の作溝輪駆動軸Bでは、駆動軸本体16の端部に駆動軸連結体19の連結軸部24が挿入され、両者の重なり部分に作溝輪Wが外嵌されている。これにより、駆動軸本体16の端部にまで作溝輪Wを外嵌することができるため、機体Kの幅を長くしなくても、前記駆動軸本体16に外嵌される作溝輪Wの数が多くなり、一度の播種溝作業において形成される播種溝Vの条数が増して、作業効率が増す。   In the grooved wheel drive shaft B of the present embodiment, the connecting shaft portion 24 of the drive shaft connecting body 19 is inserted into the end portion of the drive shaft main body 16, and the grooved wheel W is externally fitted to the overlapping portion between them. Accordingly, since the grooved ring W can be externally fitted to the end of the drive shaft main body 16, the grooved ring W that is externally fitted to the drive shaft main body 16 without increasing the width of the machine body K. The number of seeding grooves V formed in one seeding groove operation increases, and the working efficiency increases.

次に、本実施例の作溝輪駆動軸Bを駆動させるための手段と、一対の駆動軸分割体17a,17b について説明する。機体Kに取付けられた一対のサイドフレーム8の下端部には、各軸受ブラケット27が相対向して取付けられている。図6に示されるように、各軸受ブラケット27には、それぞれ軸受28が内装されていて、各軸受28にそれぞれ駆動軸分割体17a,17b が回転自在に支承されている。一対の駆動軸分割体17a,17b の差異は、駆動手段(下側チェーン歯車29)に連結されているか否かだけであるため、ここでは、駆動側(下側チェーン歯車29に連結されている側)の駆動軸分割体17aについてのみ説明する。駆動軸分割体17aは、軸受28に嵌合される段付軸部31の一端部に、該段付軸部31の外径よりも大径の連結鍔部32が軸心同一にして固着されていると共に、前記段付軸部31の他端部に、下側チェーン歯車29に嵌合されるスプライン軸部31aの端部に、押えリング33が設けられた形態である。前記連結鍔部32には、前述した各連結ボルト23を挿通させるための多数個のボルト挿通孔32aが、駆動軸本体16における連結鍔部18の各ボルト挿通孔18a、及び駆動軸連結体19における連結鍔部25の各ボルト挿通孔25aに対応して設けられている。   Next, the means for driving the grooved wheel drive shaft B of this embodiment and the pair of drive shaft split bodies 17a and 17b will be described. The bearing brackets 27 are attached to the lower ends of the pair of side frames 8 attached to the machine body K so as to face each other. As shown in FIG. 6, each bearing bracket 27 includes a bearing 28, and drive shaft divided bodies 17 a and 17 b are rotatably supported by the bearings 28. Since the difference between the pair of drive shaft split bodies 17a and 17b is only whether or not they are connected to the drive means (lower chain gear 29), here they are connected to the drive side (lower chain gear 29). Only the drive shaft divided body 17a will be described. The drive shaft divided body 17a is fixed to one end portion of the stepped shaft portion 31 fitted to the bearing 28 with a connecting collar portion 32 having a diameter larger than the outer diameter of the stepped shaft portion 31 having the same axial center. In addition, a presser ring 33 is provided at the other end of the stepped shaft 31 at the end of the spline shaft 31 a fitted to the lower chain gear 29. The connecting hook 32 has a plurality of bolt insertion holes 32a for inserting the connecting bolts 23 described above, the bolt insertion holes 18a of the connecting hook 18 in the drive shaft body 16, and the drive shaft connecting body 19. Are provided corresponding to the respective bolt insertion holes 25a of the connecting collar 25.

前記駆動軸分割体17aは、サイドフレーム8の下部に取付けられた軸受ブラケット27の軸受28に支承される。そして、駆動軸分割体17aにおける軸受28からの突出部分のうち、スプライン軸部31aに下側チェーン歯車29が嵌合され、押えリング33によって固定される。この状態で、上下の各チェーン歯車15,29は平面視においてほぼ同一の位置に配置される。図3に示されるように、上下の各チェーン歯車15,29に、チェーン34が掛装されている。入力軸11から各傘歯車11a,14a を介して伝動軸14に伝達された牽引車の動力は、上下の各チェーン歯車15,29及びチェーン34を介して駆動側の駆動軸分割体17aに伝達される。これにより、駆動軸分割体17aが駆動回転される。本実施例の場合、牽引車の動力は、駆動側の駆動軸分割体17aにのみ伝達され、従動側の駆動軸分割体17bは、駆動軸本体16と連れ回りするのみである。図9に示されるように、従動側の駆動軸分割体17bの構成は、段付軸部31にスプライン軸部31aが設けられていないことを除いて、駆動側の駆動軸分割体17aの構成とほぼ同一である。なお、図3において、35は、上下の各チェーン歯車15,29及びチェーン34を覆うためのカバー体である。   The drive shaft split body 17a is supported by a bearing 28 of a bearing bracket 27 attached to the lower portion of the side frame 8. Then, the lower chain gear 29 is fitted to the spline shaft portion 31 a in the protruding portion from the bearing 28 in the drive shaft divided body 17 a and is fixed by the pressing ring 33. In this state, the upper and lower chain gears 15 and 29 are arranged at substantially the same position in plan view. As shown in FIG. 3, a chain 34 is hung on the upper and lower chain gears 15 and 29. The power of the towing vehicle transmitted from the input shaft 11 to the transmission shaft 14 via the bevel gears 11a and 14a is transmitted to the drive-side drive shaft divided body 17a via the upper and lower chain gears 15 and 29 and the chain 34. Is done. Thereby, the drive shaft division body 17a is driven to rotate. In the case of the present embodiment, the power of the towing vehicle is transmitted only to the drive-side drive shaft divided body 17a, and the driven-side drive shaft divided body 17b only rotates with the drive shaft main body 16. As shown in FIG. 9, the configuration of the driven-side drive shaft divided body 17b is the same as that of the drive-side divided drive shaft 17a except that the stepped shaft portion 31 is not provided with the spline shaft portion 31a. Is almost the same. In FIG. 3, reference numeral 35 denotes a cover body for covering the upper and lower chain gears 15 and 29 and the chain 34.

図4及び図6に示されるように、駆動軸本体16及び駆動軸連結体19の各連結鍔部18,25と一対の駆動軸分割体17a,17b の連結鍔部32とが重ね合わせられたとき、各ボルト挿通孔18a,25a,32a が合致する。この状態で、駆動軸本体16及び駆動軸連結体の各連結鍔部18,25の側から、各ボルト挿通孔18a,25a,32a に連結ボルト23が挿通され、一対の駆動軸分割体17a,17b の各連結鍔部32から突出された雄ねじ部に六角ナット36が螺合される。各六角ナット36が強固に締め込まれることにより、駆動軸本体16及び駆動軸連結体19と一対の駆動軸分割体17a,17b とが一体に連結される。前記各六角ナット36を緩め、各連結ボルト23を抜き取ることにより、駆動軸本体16及び駆動軸連結体19と一対の駆動軸分割体17a,17b とを分離させることができる。   As shown in FIGS. 4 and 6, the connecting flange portions 18 and 25 of the drive shaft main body 16 and the drive shaft connecting body 19 and the connecting flange portions 32 of the pair of drive shaft split bodies 17 a and 17 b are overlapped. At this time, each bolt insertion hole 18a, 25a, 32a is matched. In this state, the connecting bolts 23 are inserted into the bolt insertion holes 18a, 25a, 32a from the connecting shaft portions 18, 25 of the driving shaft main body 16 and the driving shaft connecting body, and a pair of driving shaft split bodies 17a, A hexagonal nut 36 is screwed into the male thread portion projecting from each connecting flange portion 32 of 17b. When the hexagon nuts 36 are firmly tightened, the drive shaft main body 16 and the drive shaft coupling body 19 and the pair of drive shaft divided bodies 17a and 17b are integrally coupled. By loosening the hexagon nuts 36 and extracting the connecting bolts 23, the drive shaft main body 16 and the drive shaft connecting body 19 and the pair of drive shaft split bodies 17a and 17b can be separated.

次に、作溝輪Wについて説明する。図6及び図7に示されるように、作溝輪Wは、僅かに外径の異なる一対のわん曲円板37,38の各凹面を対向させて、一対のわん曲円板37,38の外周縁部を相密着させた状態で一体溶接することにより成形される。そして、一対のわん曲円板37,38の外周縁部(外周縁から所定長の部分)のみが地中に入り込み得るように、一対のわん曲円板37,38の各外周面に同一径の鍔リング39が一体に取付けられた構成である。一対のわん曲円板37,38のうち、大径のわん曲円板37の凸面側の外周縁部の環状をした範囲にのみ高周波焼入が施されている。   Next, the groove ring W will be described. As shown in FIGS. 6 and 7, the grooved ring W is formed so that the concave surfaces of the pair of curved disks 37, 38 having slightly different outer diameters face each other. It is formed by integrally welding with the outer peripheral edge part in close contact with each other. The outer peripheral surfaces of the pair of curved discs 37, 38 have the same diameter on the outer peripheral surfaces of the pair of curved discs 37, 38 so that only the outer peripheral edge portion (a portion having a predetermined length from the outer peripheral edge) can enter the ground. The heel ring 39 is integrally attached. Of the pair of curved discs 37, 38, induction hardening is performed only in the annular region of the outer peripheral edge on the convex surface side of the large-diameter curved disc 37.

各わん曲円板37,38の軸心部分には、それぞれ取付孔37a,38a が設けられている。各取付孔37a,38a にパイプ状の取付体41が嵌め込まれ、両者の接合部分が溶接されることにより、各わん曲円板37,38と取付体41とが一体化されている。前記取付体41の端部(鍔リング39から外れた部分)には、作溝輪連結ピン21を挿通させるための各ピン挿通孔41aが、軸直角方向に貫通状態で設けられている。更に、前記取付体41の外周面で、軸方向における一対のわん曲円板37,38よりも外側の部分には、前記ピン挿通孔41aと軸直角にして、各ボルト挿通孔41bが設けられている。取付体41の外周面における各ボルト挿通孔41bの部分には、各ボルト挿通孔41bと軸心同一にして六角ナット42が固着されていて、各六角ナット42に固定ボルト43が螺合されている。   Mounting holes 37a and 38a are provided in the axial center portions of the curved disks 37 and 38, respectively. Pipe-shaped attachment bodies 41 are fitted into the attachment holes 37a, 38a, and the joint portions of the two are welded, so that the curved disks 37, 38 and the attachment body 41 are integrated. Each end of the mounting body 41 (the part removed from the collar ring 39) is provided with a pin insertion hole 41a through which the grooved ring connecting pin 21 is inserted in a penetrating state in the direction perpendicular to the axis. Further, on the outer peripheral surface of the mounting body 41, the bolt insertion holes 41b are provided on the outer side of the pair of curved disks 37 and 38 in the axial direction so as to be perpendicular to the pin insertion holes 41a. ing. Hex nuts 42 are fixed to the bolt insertion holes 41b on the outer peripheral surface of the mounting body 41 in the same axial center as the bolt insertion holes 41b, and the fixing bolts 43 are screwed to the hexagon nuts 42. Yes.

図6及び図7に示されるように、各作溝輪Wは、取付体41が駆動軸本体16の外周面に嵌め込まれることによって装着される。そして、前記取付体41のピン挿通孔41aと、該ピン挿通孔41aと対応して駆動軸本体16及び駆動軸連結体19の連結軸部24に設けられたピン挿通孔16a,24a とが合致され、各ピン挿通孔16a,24a,41a に作溝輪連結ピン21が挿通されることによって回り止め状態で固定される。更に、各六角ナット42に螺合され、取付体41のボルト挿通孔41bから僅かに突出された固定ボルト43が、駆動軸本体16を押圧する。これにより、駆動軸本体16に対する作溝輪Wのガタツキが解消される。なお、図6において、44は、作溝輪連結ピン21を抜止め状態で保持するための抜止めピンである。   As shown in FIGS. 6 and 7, each grooved wheel W is mounted by fitting the attachment body 41 into the outer peripheral surface of the drive shaft main body 16. The pin insertion hole 41a of the mounting body 41 and the pin insertion holes 16a and 24a provided in the connection shaft portion 24 of the drive shaft main body 16 and the drive shaft connection body 19 corresponding to the pin insertion hole 41a are matched. The grooved ring connecting pin 21 is inserted into the pin insertion holes 16a, 24a, 41a and fixed in a non-rotating state. Further, the fixing bolt 43 that is screwed into each hexagon nut 42 and slightly protrudes from the bolt insertion hole 41 b of the mounting body 41 presses the drive shaft body 16. Thereby, the rattling of the groove ring W with respect to the drive shaft main body 16 is eliminated. In FIG. 6, reference numeral 44 denotes a retaining pin for holding the grooved ring connecting pin 21 in a retaining state.

本発明に係る作溝輪駆動軸装置Aの作用について説明する。図1及び図2に示されるように、牽引車により機体Kが牽引されて走行方向Rに走行すると、牽引車の動力が作溝輪駆動軸Bに伝達されて各作溝輪Wが駆動回転され、圃場には鍔リング39から作溝輪Wの外周縁までの長さに対応する深さDの播種溝Vが、所定間隔(作溝輪Wどうしの取付間隔P)をおいて形成される(図13参照)。また、駆動輪4が回転されることにより、該駆動輪4の回転力が伝動機構(図示せず)を介してホッパH内の繰出機構(図示せず)を作動させる。ホッパH内の各収容室1a,1b に分離して収容されている種子Sと肥料が繰り出されて、直下の受け器2内で混合され、播種ホース3を介して両者の混合物が、機体Kの走行速度に比例した量だけ各播種溝Vに落下される。即ち、播種溝Vに対する播種と施肥とが同時に行われる。播種と施肥の直後には、覆土チェーン5により前記播種溝V内に少量の土が落下され、種子Sと肥料が覆土される。   The operation of the grooved wheel drive shaft device A according to the present invention will be described. As shown in FIGS. 1 and 2, when the airframe K is pulled by the towing vehicle and travels in the traveling direction R, the power of the towing vehicle is transmitted to the grooved wheel drive shaft B and each grooved wheel W is driven to rotate. In the field, seeding grooves V having a depth D corresponding to the length from the heel ring 39 to the outer peripheral edge of the grooved wheel W are formed at a predetermined interval (mounting interval P between the grooved wheels W). (See FIG. 13). Further, when the driving wheel 4 is rotated, the rotational force of the driving wheel 4 operates a feeding mechanism (not shown) in the hopper H via a transmission mechanism (not shown). The seed S and the fertilizer separately stored in the storage chambers 1a and 1b in the hopper H are fed out and mixed in the receiver 2 immediately below, and the mixture of both is transferred to the machine body K through the sowing hose 3. Is dropped into each sowing groove V by an amount proportional to the traveling speed of the. That is, sowing and fertilization are simultaneously performed on the sowing groove V. Immediately after sowing and fertilization, a small amount of soil is dropped in the sowing groove V by the soil covering chain 5 to cover the seed S and fertilizer.

各作溝輪Wを構成する一対のわん曲円板37,38の外周縁部は、長期間の使用により磨耗されるため、定期的な交換が必要である。次に、磨耗した作溝輪Wを、新規の作溝輪Wに交換するときの作用について説明する。最初に、機体Kから作溝輪駆動軸Bを分離させる。本実施例の作溝輪駆動軸装置Aの場合、作溝輪駆動軸Bは三分割されていて、駆動軸本体ユニットU(駆動軸本体16に多数の作溝輪Wが外嵌された状態)と、機体Kのサイドフレーム8に取付けられた一対の駆動軸分割体17a,17b との連結を解除させることにより、前記駆動軸本体ユニットUのみが機体Kから分離される。   Since the outer peripheral edge portions of the pair of curved disks 37 and 38 constituting each grooved ring W are worn by long-term use, they must be periodically replaced. Next, an operation when the worn grooved ring W is replaced with a new grooved ring W will be described. First, the grooved wheel drive shaft B is separated from the machine body K. In the case of the grooved wheel drive shaft device A of the present embodiment, the grooved wheel drive shaft B is divided into three parts, and the drive shaft body unit U (a state where a large number of grooved wheels W are externally fitted to the drive shaft body 16). ) And the pair of drive shaft split bodies 17a and 17b attached to the side frame 8 of the machine body K are released, so that only the drive shaft body unit U is separated from the machine body K.

図4に示されるように、駆動軸本体ユニットUにおける軸方向の両端部に設けられた連結鍔部18,25と一対の駆動軸分割体17a,17b の各連結鍔部32とを連結している多数本の六角ナット36を緩め、各連結ボルト23を抜き取る。これにより、駆動軸本体ユニットUと一対の駆動軸分割体17との連結が解放される。そして、駆動軸本体16と駆動軸連結体19とを連結固定している軸連結ピン22、及び駆動軸本体16と該駆動軸本体16の一端部(連結鍔部18が設けられていない側の端部)に外嵌された作溝輪Wとを連結固定している作溝輪連結ピン21を抜き取る。これにより、駆動軸本体16と駆動軸連結体19とが分離可能となる。駆動軸本体16と駆動軸連結体19とを分離させると、駆動軸本体16の一端部が開放される。続いて、駆動軸本体16と他の作溝輪Wとを連結固定している各作溝輪連結ピン21を抜き取る。駆動軸本体16との連結が開放された各作溝輪Wを、駆動軸本体16の外周面を滑らせながら駆動軸本体16の一端部に移動させて、磨耗された前記各作溝輪Wを駆動軸本体16から取り外す。これにより、全ての作溝輪Wを駆動軸本体16から、順次取り外すことができる。   As shown in FIG. 4, the connecting rod portions 18 and 25 provided at both ends in the axial direction of the drive shaft main unit U are connected to the connecting rod portions 32 of the pair of drive shaft divided bodies 17a and 17b. Loosen the numerous hexagon nuts 36 that are present, and pull out each connecting bolt 23. Thereby, the connection between the drive shaft body unit U and the pair of drive shaft divided bodies 17 is released. The shaft connecting pin 22 that connects and fixes the drive shaft main body 16 and the drive shaft connecting body 19 and one end of the drive shaft main body 16 and the drive shaft main body 16 (on the side where the connecting collar 18 is not provided). The grooved ring connecting pin 21 for connecting and fixing the grooved ring W fitted to the end) is extracted. Thereby, the drive shaft main body 16 and the drive shaft coupling body 19 can be separated. When the drive shaft main body 16 and the drive shaft coupling body 19 are separated, one end of the drive shaft main body 16 is opened. Subsequently, each grooved ring connection pin 21 that connects and fixes the drive shaft body 16 and the other grooved ring W is extracted. Each grooved ring W that has been disconnected from the drive shaft main body 16 is moved to one end of the drive shaft main body 16 while sliding the outer peripheral surface of the drive shaft main body 16, and each grooved ring W that has been worn is worn. Is removed from the drive shaft body 16. Thereby, all the grooved wheels W can be sequentially removed from the drive shaft main body 16.

そして、駆動軸本体16における連結鍔部18が設けられていない側から、新規の作溝輪Wを順次駆動軸本体16に外嵌させ、駆動軸本体16の外周面を滑らせながら軸方向に移動させて所定位置に配置させる。続いて、駆動軸本体16の一端部に駆動軸連結体19の連結軸部24を挿入する。駆動軸本体16のピン挿通孔16bと、駆動軸連結体19の連結軸部24のピン挿通孔24bとを合致させ、軸連結ピン22を挿通させて、駆動軸本体16と駆動軸連結体19とを連結固定させる。この状態で、各作溝輪Wの取付体41におけるピン挿通孔41aと駆動軸本体16及び駆動軸連結体19の各ピン挿通孔16a,24a とを合致させ、各作溝輪連結ピン21を挿通させて、各作溝輪Wを駆動軸本体16に連結固定させる。上記した作業により、新規の作溝輪Wが外嵌された駆動軸本体ユニットUが形成される。前記駆動軸本体ユニットUの軸方向の両端部に設けられた一対の連結鍔部18,25を、対応する一対の駆動軸分割体17a,17b の各連結鍔部32に当てがい、各ボルト挿通孔18a,25a,32a を合致させる。駆動軸本体ユニットUの一対の連結鍔部18,25の側から、各ボルト挿通孔18a,25a,32a に連結ボルト23を挿通させ、一対の駆動軸分割体17a,17b の各連結鍔部32から突出された雄ねじ部に六角ナット36を締め込む。これにより、駆動軸本体ユニットUと一対の駆動軸分割体17a,17b とが一体に連結固定される。   Then, from the side of the drive shaft main body 16 where the connecting collar 18 is not provided, new grooved wheels W are sequentially fitted onto the drive shaft main body 16, and the outer peripheral surface of the drive shaft main body 16 is slid in the axial direction. It is moved and placed at a predetermined position. Subsequently, the connecting shaft portion 24 of the driving shaft connecting body 19 is inserted into one end portion of the driving shaft main body 16. The pin insertion hole 16b of the drive shaft main body 16 and the pin insertion hole 24b of the connection shaft portion 24 of the drive shaft connecting body 19 are matched to each other, and the shaft connecting pin 22 is inserted, so that the drive shaft main body 16 and the drive shaft connecting body 19 are inserted. And fix them together. In this state, the pin insertion hole 41a in the mounting body 41 of each grooved wheel W and the pin insertion holes 16a, 24a of the drive shaft main body 16 and the drive shaft connecting body 19 are matched to each other, and each grooved ring connecting pin 21 is Each grooved ring W is connected and fixed to the drive shaft body 16 by being inserted. By the above-described operation, the drive shaft main unit U to which the new groove ring W is fitted is formed. A pair of connecting flanges 18 and 25 provided at both axial ends of the drive shaft main unit U are applied to the corresponding connecting flanges 32 of the corresponding pair of drive shaft divided bodies 17a and 17b, and each bolt is inserted. The holes 18a, 25a, 32a are matched. The connecting bolts 23 are inserted into the bolt insertion holes 18a, 25a, 32a from the pair of connecting rod portions 18, 25 of the drive shaft main unit U, and the connecting rod portions 32 of the pair of drive shaft divided bodies 17a, 17b are inserted. The hexagonal nut 36 is tightened into the male thread portion protruding from the end. As a result, the drive shaft body unit U and the pair of drive shaft divided bodies 17a and 17b are integrally connected and fixed.

上記したように、本実施例の作溝輪駆動軸装置Aでは、不耕起直播機の機体Kから作溝輪駆動軸Bの駆動軸本体ユニットUを分離させるとき、機体Kを構成するサイドフレーム8から軸受57(図15参照)を取り外す必要がない。換言すれば、軸受57をサイドフレーム8に取付けたまま駆動軸本体ユニットUのみを取り外すことができるため、新旧の作溝輪Wの交換作業が容易である。そして、新旧の作溝輪Wの交換作業が行われている間、一対の駆動軸分割体17a,17b は機体Kのサイドフレーム8に支持されたままであるため、各駆動軸分割体17a,17b の分解・組付作業が不要となり、この面からしても、新旧の作溝輪Wの交換作業が容易になる。   As described above, in the grooved wheel drive shaft device A of the present embodiment, when the drive shaft body unit U of the grooved wheel drive shaft B is separated from the machine body K of the no-tillage direct sowing machine, the side constituting the machine body K is separated. It is not necessary to remove the bearing 57 (see FIG. 15) from the frame 8. In other words, since only the drive shaft body unit U can be removed while the bearings 57 are attached to the side frames 8, the replacement work of the old and new grooved wheels W is easy. Since the pair of drive shaft split bodies 17a and 17b remain supported by the side frame 8 of the machine body K while the old and new grooved wheels W are being replaced, the drive shaft split bodies 17a and 17b are supported. No need to disassemble and assemble, and even from this aspect, it is easy to replace the old and new grooved wheels W.

図12に示されるように、本実施例の作溝輪Wでは、取付体41にピン挿通孔41aを設けるために、各わん曲円板37,38の取付位置(各わん曲円板の接合位置)は、前記取付体41の長手方向の中央部Cよりも距離bだけ軸方向にずれている。そして、駆動軸本体16には多数個(本実施例では10個)の作溝輪Wが、前記駆動軸本体16の軸方向のほぼ中央に対して左右両側の各部分に、互いに左右反転された状態(本実施例では、5個の作溝輪Wが相対向する形態)で外嵌されている。このため、駆動軸本体16における左右両側の部分には、左右反転されて外嵌される各作溝輪Wを固定するために、作溝輪Wの取付間隔Pで、しかも、作溝輪Wの数に対応した個数(本実施例では、10個)のピン挿通孔16aが設けられている。このうち、駆動軸本体16のほぼ中央部に設けられる2個のピン挿通孔16aどうしの間隔P’は、当該各ピン挿通孔16aに対向して外嵌される一対の作溝輪Wに対応している。即ち、作溝輪Wにおいて、一対のわん曲円板37,38の接合位置から、取付体41におけるピン挿通孔24aまでの距離を「a」とすると、P=2×a+P’であり、前式から、P’=P−2×aが成立する。ここで、作溝輪Wどうしの取付間隔Pは一定であるため、駆動軸本体16の軸方向のほぼ中央部における2個のピン挿通孔16aの間隔P’が、(P−2×a)になるようにすれば、多数個の作溝輪Wを駆動軸本体16の軸方向の中央部に対して左右両側の各部分に、互いに左右反転された状態で外嵌させることができる。   As shown in FIG. 12, in the grooved wheel W of the present embodiment, in order to provide the pin insertion hole 41a in the mounting body 41, the mounting positions of the curved disks 37 and 38 (joining of the curved disks) Position) is shifted in the axial direction by a distance b from the longitudinal center C of the mounting body 41. A large number (10 in this embodiment) of grooved wheels W in the drive shaft main body 16 are horizontally reversed from each other at each of the left and right sides with respect to the approximate center of the drive shaft main body 16 in the axial direction. (In this embodiment, five grooved wheels W are opposed to each other). For this reason, in order to fix each grooved ring W that is turned right and left and is fitted to the left and right sides of the drive shaft body 16, the grooved ring W is mounted at the mounting interval P of the grooved ring W. The number of pin insertion holes 16a (10 in this embodiment) corresponding to the number of pin insertion holes 16a is provided. Among these, the interval P ′ between the two pin insertion holes 16a provided in the substantially central portion of the drive shaft body 16 corresponds to a pair of grooved wheels W that are externally fitted to face the respective pin insertion holes 16a. is doing. That is, in the grooved ring W, when the distance from the joining position of the pair of curved disks 37 and 38 to the pin insertion hole 24a in the mounting body 41 is “a”, P = 2 × a + P ′, From the equation, P ′ = P−2 × a is established. Here, since the mounting interval P between the grooved wheels W is constant, the interval P ′ between the two pin insertion holes 16a at the substantially central portion in the axial direction of the drive shaft body 16 is (P−2 × a). As a result, a large number of grooved wheels W can be externally fitted to the left and right sides of the axial center of the drive shaft body 16 in a state where the left and right sides are reversed.

これにより、全ての作溝輪Wどうしの取付間隔Pを一定にし、かつ、機体Kの幅を大きくすることなく、該機体Kに取付けられる作溝輪Wの数を増やすことができる。また、駆動軸本体16に外嵌される全ての作溝輪Wを同一形状のもので済ませられ、駆動軸本体16の両端部にのみ別構造の作溝輪Wを使用する必要がなくなる。   Thereby, it is possible to increase the number of grooved wheels W attached to the machine body K without making the mounting interval P between all the grooved wheels W constant and increasing the width of the machined body K. In addition, all the grooved wheels W fitted on the drive shaft body 16 can be of the same shape, and it is not necessary to use the grooved wheels W of different structures only at both ends of the drive shaft body 16.

本実施例の駆動軸本体16及び駆動軸連結体19と一対の駆動軸分割体17a,17b とは、各連結鍔部18,25,32を介して連結される。このため、駆動軸本体16及び駆動軸連結体19と一対の駆動軸分割体17a,17b との重なり面が広くなって、多数本の連結ボルト23を配置させることができ、牽引車の動力を各作溝輪Wに確実に伝達させることができる。   The drive shaft main body 16 and the drive shaft coupling body 19 and the pair of drive shaft divided bodies 17a and 17b according to the present embodiment are coupled to each other through the coupling flanges 18, 25, and 32. For this reason, the overlapping surface of the drive shaft main body 16 and the drive shaft coupling body 19 and the pair of drive shaft divided bodies 17a and 17b is widened, so that a large number of coupling bolts 23 can be arranged, and the power of the towing vehicle can be increased. Each grooved ring W can be reliably transmitted.

本実施例の作溝輪駆動軸装置Aでは、駆動手段(上下の各チェーン歯車15,29とチェーン34)は、駆動軸本体16において連結鍔部18が設けられている側(駆動軸連結体19が挿入されていない側)に設けられている。このため、牽引車の動力が前記駆動手段を介して、直接に駆動軸本体16(即ち、各作溝輪W)に伝達される。もし、前記駆動手段が、駆動軸本体における反対側(駆動軸連結体19が挿入されている側)に設けられている場合、牽引車の動力は、駆動軸連結体19を介して伝達される。ここで、駆動軸本体16と駆動軸連結体19とは、軸連結ピン22によって連結されているため、軸連結ピン22とピン挿通孔16b,24b との間に僅かな隙間があることも考えられる。すると、牽引車の動力が僅かに遅れて駆動軸本体16に伝達され、駆動軸本体16と駆動軸連結体19との間で「ねじれ」が発生して伝達効率を低下させてしまう。しかし、本実施例の作溝輪駆動軸装置Aでは、前記駆動軸連結体19は、動力の非伝達側に配置されていて連れ回りされる構成であるため、伝達効率を低下させるおそれはないと共に、駆動軸伝達部(駆動軸本体16と駆動軸連結体19との連結部分)の連結強度を確保できる。換言すれば、駆動軸本体16と駆動軸連結体19を、単に軸連結ピン22で連結させるという簡便な連結方法であっても、両者の間に生ずるねじり応力に耐えられる。   In the grooved wheel drive shaft device A of the present embodiment, the drive means (upper and lower chain gears 15 and 29 and the chain 34) are provided on the drive shaft body 16 on the side where the connecting collar 18 is provided (drive shaft connector). 19 is provided on the side where 19 is not inserted. For this reason, the power of the towing vehicle is directly transmitted to the drive shaft main body 16 (that is, each grooved wheel W) via the drive means. If the drive means is provided on the opposite side of the drive shaft body (the side where the drive shaft coupling body 19 is inserted), the power of the towing vehicle is transmitted via the drive shaft coupling body 19. . Here, since the drive shaft main body 16 and the drive shaft coupling body 19 are coupled by the shaft coupling pin 22, it is considered that there is a slight gap between the shaft coupling pin 22 and the pin insertion holes 16b and 24b. It is done. Then, the power of the towing vehicle is transmitted to the drive shaft main body 16 with a slight delay, and a “twist” is generated between the drive shaft main body 16 and the drive shaft coupling body 19 to reduce the transmission efficiency. However, in the grooved wheel drive shaft device A of the present embodiment, the drive shaft coupling body 19 is arranged on the non-transmission side of the power and is rotated together, so there is no possibility of reducing transmission efficiency. At the same time, the connection strength of the drive shaft transmission portion (the connection portion between the drive shaft main body 16 and the drive shaft coupling body 19) can be ensured. In other words, even a simple connection method in which the drive shaft main body 16 and the drive shaft connecting body 19 are simply connected by the shaft connecting pins 22 can withstand torsional stress generated between them.

請求項1に記載の発明の技術思想は、以下の構成のサイドドライブ式の「ロータリー耕耘装置」に対しても適用可能である。即ち、上記実施例の作溝輪と同様な構成の多数の耕耘爪ユニットを備えていて、駆動軸本体に外嵌される耕耘爪ユニットとして、スリーブ(取付体)に対して直接に耕耘爪が溶接等の固着手段により一体に固着されていて、駆動軸本体に耕耘爪ユニットが取付けられた状態では、磨耗した耕耘爪の交換が不可能な構成のロータリー耕耘装置である。   The technical idea of the invention described in claim 1 is also applicable to a side drive type “rotary tiller” having the following configuration. That is, it has a plurality of tilling claw units having the same configuration as the grooved ring of the above embodiment, and the tilling claw unit is directly fitted to the sleeve (mounting body) as a tilling claw unit fitted on the drive shaft body. The rotary tiller is configured so that the worn tillage claw cannot be replaced in a state where the tillage claw unit is attached to the drive shaft main body and is fixed integrally by a fastening means such as welding.

本発明の作溝輪駆動軸装置Aが取付けられた不耕起直播機の側面図である。It is a side view of the non-tilling direct seeding machine to which the grooved wheel drive shaft device A of the present invention is attached. 同じく概略平面図である。Similarly, it is a schematic plan view. 作溝輪駆動軸装置Aを進行方向前方から見た図である。It is the figure which looked at the grooved wheel drive shaft apparatus A from the front of the advancing direction. 機体Kから、作溝輪駆動軸Bの駆動軸本体ユニットUを分離させた状態の斜視図である。2 is a perspective view of a state where a drive shaft main unit U of a grooved wheel drive shaft B is separated from a machine body K. FIG. 作溝輪駆動軸Bの分解図である。It is an exploded view of the grooved wheel drive shaft B. 駆動側の駆動軸分割体17aの部分の断面図である。It is sectional drawing of the part of the drive shaft division body 17a by the side of a drive. 図6のX−X線断面図である。It is the XX sectional view taken on the line of FIG. 作溝輪駆動軸Bの他端部の一部を破断した斜視図である。It is the perspective view which fractured | ruptured a part of other end part of the grooved wheel drive shaft B. FIG. 従動側の駆動軸分割体17bの部分の断面図である。It is sectional drawing of the part of the drive shaft division body 17b of a driven side. 駆動軸本体16と駆動軸連結体19とを分離した状態の斜視図である。FIG. 4 is a perspective view of a state in which a drive shaft main body 16 and a drive shaft coupling body 19 are separated. 駆動軸本体16と駆動軸連結体19との連結部分の断面図である。4 is a cross-sectional view of a connection portion between a drive shaft main body 16 and a drive shaft connecting body 19. FIG. 10個の作溝輪Wが、駆動軸本体16に左右反転させて取付けられる状態を示す図である。It is a figure which shows the state in which ten grooved wheels W are attached to the drive shaft main body 16 by reversing left and right. (イ),(ロ)は、使用開始時及び所定時間使用後における従来の作溝輪W’の磨耗状況を示す拡大断面図である。(A) and (B) are enlarged cross-sectional views showing a state of wear of the conventional grooved ring W ′ at the start of use and after use for a predetermined time. (イ),(ロ)は、播種溝Vに種子Sが落下された状態を示す拡大断面図である。(A) and (B) are enlarged cross-sectional views showing a state where the seed S is dropped in the sowing groove V. FIG. 従来の作溝輪駆動軸装置A’において、作溝輪駆動軸51とを分離させる状態の図である。It is a figure of the state which isolate | separates the grooved wheel drive shaft 51 in the conventional grooved wheel drive shaft apparatus A '.

符号の説明Explanation of symbols

A:作溝輪駆動軸装置
B:作溝輪駆動軸
K:機体
P:取付間隔(所定間隔)
V:播種溝
W:作溝輪
8:サイドフレーム
16:駆動軸本体
17a,17b :駆動軸分割体
18,25,32:連結鍔部
19:駆動軸連結体
24:連結軸部(短軸体)
31:段付軸部(短軸体)
37,38:わん曲円板(作溝輪本体)
41:取付体
A: Grooved wheel drive shaft device
B: Grooved wheel drive shaft
K: Aircraft
P: Mounting interval (predetermined interval)
V: Sowing groove
W: Groove ring
8: Side frame
16: Drive shaft body 17a, 17b: Drive shaft divided bodies 18, 25, 32: Connecting flange
19: Drive shaft coupling body
24: Connecting shaft (short shaft)
31: Stepped shaft (short shaft)
37, 38: Curved disk (groove ring body)
41: Mounting body

Claims (4)

機体の幅方向に支持された作溝輪駆動軸に多数の作溝輪が所定間隔をおいて取付けられ、牽引車により牽引されて、圃場に作溝された多条の播種溝に作溝直後に直接に播種する構成の不耕起直播機において、
前記作溝輪駆動軸は、多数の作溝輪が所定間隔をおいて外嵌状態で一体に取付けられて、軸方向の一端部のみに連結鍔部が一体に取付けられた駆動軸本体と、
短軸体の内端部のみに連結鍔部が一体に取付けられて、前記機体の幅方向の両端部に相対向して設けられた一対のサイドフレームの下端部内側に相対向して支持される一対の駆動軸分割体とから成り、
短軸体の外端部のみに連結鍔部が一体に取付けられて、前記駆動軸本体の連結鍔部と反対側の端部に前記短軸体を挿入して、前記駆動軸本体に取付けられる駆動軸連結体を備え、
前記駆動軸本体の一端部は、連結鍔部を介して一方の駆動軸分割体に連結され、前記駆動軸本体の他端部は前記駆動軸連結体を介して他方の駆動軸分割体に連結されていることを特徴とする不耕起直播機の作溝輪駆動軸装置。
Immediately after grooving in the multiple sowing grooves that are cultivated in the field by a large number of grooving wheels mounted at predetermined intervals on the grooving wheel drive shaft supported in the width direction of the machine body, pulled by a towing vehicle In the no-tillage direct sowing machine configured to sow directly on
The grooved wheel drive shaft is a drive shaft body in which a large number of grooved wheels are integrally attached with a predetermined interval in an externally fitted state, and a connecting collar is integrally attached only to one end in the axial direction;
A connecting collar is integrally attached only to the inner end of the short shaft body, and is supported opposite to the inside of the lower ends of a pair of side frames provided opposite to both ends in the width direction of the machine body. A pair of drive shaft split bodies,
A connecting hook is integrally attached only to the outer end of the short shaft, and the short shaft is inserted into the end opposite to the connecting hook of the drive shaft main body and attached to the drive shaft main body. A drive shaft coupling body,
One end of the drive shaft main body is connected to one drive shaft divided body via a connecting collar, and the other end of the drive shaft main body is connected to the other drive shaft divided body via the drive shaft connected body. A grooved wheel drive shaft device for a no-tillage direct sowing machine.
前記駆動軸本体の端部に挿入された駆動軸連結体は、当該端部に外嵌された作溝輪と一体となって前記駆動軸本体に連結されることを特徴とする請求項1に記載の不耕起直播機の作溝輪駆動軸装置。 The drive shaft coupling body inserted into the end portion of the drive shaft main body is connected to the drive shaft main body integrally with a grooved ring fitted around the end portion. The grooved wheel drive shaft device of the described no-tillage direct sowing machine. 前記駆動軸本体に一体に取付けられた連結鍔部は駆動側に配置されて、当該駆動側の駆動軸分割体の連結鍔部と一体に連結されることを特徴とする請求項1又は2に記載の不耕起直播機の作溝輪駆動軸装置。 The connecting rod part integrally attached to the drive shaft main body is disposed on the drive side, and is integrally connected to the connecting rod part of the drive shaft divided body on the drive side. The grooved wheel drive shaft device of the described no-tillage direct sowing machine. 前記作溝輪は、駆動軸本体に外嵌される取付体の長手方向の中央に対して軸方向にずれた位置に作溝輪本体が一体に取付けられた構成であって、
前記駆動軸本体に外嵌される多数の作溝輪は、該駆動軸本体の軸方向の中央部に対して左右両側の各部分に、互いに左右反転された状態で外嵌されていることを特徴とする請求項1ないし3のいずれかに記載の不耕起直播機の作溝輪駆動軸装置。
The grooved ring is a configuration in which the grooved ring main body is integrally attached at a position shifted in the axial direction with respect to the center in the longitudinal direction of the attachment body that is externally fitted to the drive shaft main body,
A large number of grooved wheels that are externally fitted to the drive shaft main body are externally fitted to the left and right sides of the central portion in the axial direction of the drive shaft main body in a state of being reversed left and right. A grooved wheel drive shaft device for a no-tillage direct sowing machine according to any one of claims 1 to 3.
JP2004281168A 2004-09-28 2004-09-28 Groove-wheel drive shaft device for no-tillage direct sowing machine Active JP4583858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281168A JP4583858B2 (en) 2004-09-28 2004-09-28 Groove-wheel drive shaft device for no-tillage direct sowing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004281168A JP4583858B2 (en) 2004-09-28 2004-09-28 Groove-wheel drive shaft device for no-tillage direct sowing machine

Publications (2)

Publication Number Publication Date
JP2006094711A true JP2006094711A (en) 2006-04-13
JP4583858B2 JP4583858B2 (en) 2010-11-17

Family

ID=36235116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281168A Active JP4583858B2 (en) 2004-09-28 2004-09-28 Groove-wheel drive shaft device for no-tillage direct sowing machine

Country Status (1)

Country Link
JP (1) JP4583858B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654074A (en) * 1992-07-28 1994-02-25 Hitachi Ltd Remote supervisory system
CN104264733A (en) * 2014-08-06 2015-01-07 嘉兴职业技术学院 Ditching plate for ditcher
JP2015029477A (en) * 2013-08-05 2015-02-16 鋤柄農機株式会社 Direct planting machine capable of dry rice field direct planting at early time after rain fall
CN106937539A (en) * 2017-04-01 2017-07-11 江苏科弘岩土工程有限公司 One kind trench digging width-adjusting ditching machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197109U (en) * 1975-01-31 1976-08-04
JPS5798704U (en) * 1980-12-10 1982-06-17
JPH01108005U (en) * 1988-01-11 1989-07-21
JP2002065008A (en) * 2000-09-01 2002-03-05 Sukigara Noki Kk Groove-forming wheel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197109U (en) * 1975-01-31 1976-08-04
JPS5798704U (en) * 1980-12-10 1982-06-17
JPH01108005U (en) * 1988-01-11 1989-07-21
JP2002065008A (en) * 2000-09-01 2002-03-05 Sukigara Noki Kk Groove-forming wheel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654074A (en) * 1992-07-28 1994-02-25 Hitachi Ltd Remote supervisory system
JP2015029477A (en) * 2013-08-05 2015-02-16 鋤柄農機株式会社 Direct planting machine capable of dry rice field direct planting at early time after rain fall
CN104264733A (en) * 2014-08-06 2015-01-07 嘉兴职业技术学院 Ditching plate for ditcher
CN106937539A (en) * 2017-04-01 2017-07-11 江苏科弘岩土工程有限公司 One kind trench digging width-adjusting ditching machine

Also Published As

Publication number Publication date
JP4583858B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
CN108243642B (en) Driving disc corn ridge-planting no-tillage seeder
KR20090103265A (en) Direct seeder
CN107580810A (en) A kind of active disc blade stubble breaking no-tillage seeding machine
JP4583858B2 (en) Groove-wheel drive shaft device for no-tillage direct sowing machine
CN105379459A (en) Deep-loosening, leveling and sowing integrated device matched with four wheels
CN205179656U (en) With supporting dark loose flattening seeding all -in -one of four -wheel
CN203661546U (en) Deep scarification and stubble cleaning no-tillage combined seed and fertilizer drill for wheat and rape
CN207744374U (en) A kind of beans grain drill
CN104756650B (en) Backpack zero-tillage wide cut combined seed and fertilizer drill
CN211297674U (en) Ground wheel driving mechanism, fertilizer applicator and seeder
CN108617201A (en) Small corn planter
CN104054435A (en) Sowing machine
KR102111298B1 (en) garlic seeding machine
CN206807998U (en) A kind of rotary cultivating precision quantitative seed planting device of antiwind no-tillage fertilizing groundnut planter
CN2302633Y (en) Machine for directly sowing rice on dry field
CN105284209A (en) Blade unit and blade unit assembly used for forming punching ventilator
JP2016146761A (en) Agricultural implement
CN201294725Y (en) Rotary drill
JP3703700B2 (en) Groove ring
CN206024498U (en) Simple fertilizer spreading car
JP4965087B2 (en) Direct seeding machine
CN2088324U (en) Dibbler for maize seed fertilizer
CN218244333U (en) Towed agricultural seeder
CN204762049U (en) No -tillage broad width fertilizing and seeding of backpack machine
CN215601782U (en) Multi-shaft output mechanism and rotary cultivator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4583858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250