JP3703700B2 - Groove ring - Google Patents

Groove ring Download PDF

Info

Publication number
JP3703700B2
JP3703700B2 JP2000264758A JP2000264758A JP3703700B2 JP 3703700 B2 JP3703700 B2 JP 3703700B2 JP 2000264758 A JP2000264758 A JP 2000264758A JP 2000264758 A JP2000264758 A JP 2000264758A JP 3703700 B2 JP3703700 B2 JP 3703700B2
Authority
JP
Japan
Prior art keywords
outer peripheral
peripheral edge
grooved ring
groove
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000264758A
Other languages
Japanese (ja)
Other versions
JP2002065008A (en
Inventor
国佐 鋤柄
弘二 青木
Original Assignee
鋤柄農機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鋤柄農機株式会社 filed Critical 鋤柄農機株式会社
Priority to JP2000264758A priority Critical patent/JP3703700B2/en
Publication of JP2002065008A publication Critical patent/JP2002065008A/en
Application granted granted Critical
Publication of JP3703700B2 publication Critical patent/JP3703700B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries

Landscapes

  • Sowing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圃場に狭開口の略V字形の播種溝を形成して、その直後に該播種溝に播種と施肥を行う不耕起直播に使用される作溝輪に関するものである。
【0002】
【従来の技術】
最初に、本発明に係る図面を参照にして、不耕起直播方法と、これに使用される従来の作溝輪W’の構造について説明する。図1は、本発明に係る作溝輪W1 を備えた不耕起直播機の側面図であり、図2は、同じく概略平面図であり、図3は、ロータリー軸33の部分を進行方向前方から見た図であり、図4は、作溝輪W1 により播種溝Vが形成される状況を示す斜視図であり、図5は、作溝輪W1 が取付けられたロータリー軸33の部分拡大図であり、図6は、図5のX−X線断面図である。図1ないし図3において、不耕起直播方法の実施に使用される直播機は、牽引車であるトラクターに牽引されて、機体31の前部における左右両端のいずれか一方に駆動輪32が取付けられ、機体31における前記駆動輪32の後方に、駆動回転するロータリー軸33が進行方向Rに対して直交して水平に支持され、該ロータリー軸33に、形成する条間に対応した間隔(約20cm)をおいて多数の作溝輪W’が固定され、各作溝輪W’のほぼ直上に、種子と肥料とを分離して収容可能なホッパー34がそれぞれ設けられた構成である。前記駆動輪32は、圧縮バネ(図示せず)によって、常時下方に付勢され、その接地圧によってスリップすることなく回転可能にしてある。また、各ホッパー34は、その内部に設けられた分離板37によって種子収容室34aと肥料収容室34bとに分離されて、各ホッパー34の下方には、該ホッパー34の各収容室34a,34bから別々に繰り出された種子と肥料とを混合状態で収容可能な受け器38が取付けられ、各受け器38には、形成された播種溝Vに、種子と肥料との混合物を案内するための播種ホース35がそれぞれ連結され、機体31における前記ロータリー軸33の後方には、該ロータリー軸33の軸方向に沿って各作溝輪W’と同一位置に、それぞれ覆土チェーン36が連結されている。
【0003】
前記作溝輪W’は、図10(イ)に示されるように、僅かに外径の異なる一対のわん曲円板1,2を、その各凹面を対向させると共に、その外周縁部を相密着させた状態で一体溶接することにより、その外周縁部が鋭利に形成されて、半径方向の断面が略V字状をした円盤状を呈していて、外周縁から所定長の部分のみが地中に入り込み得るように、前記各わん曲円板1,2の外周面に同一径の鍔リング3が一体に取付けられた構成である。また、本願の図面である図5ないし図7に示されるように、本願発明に係る作溝輪W1 と同様に、作溝輪W’を構成する一対のわん曲円板1,2には、取付孔1a,2aが設けられていて、該取付孔1a,2aにパイプ状の取付体4を嵌め込んで、両者W',4は、溶接により一体化されており、前記取付体4を前記ロータリー軸33の外側に嵌め込んで、取付体4とロータリー軸33の各ピン挿通孔4a,33aに連結ピン9が挿通され、更に、固定ボルト5を介して取付体4をロータリー軸33に固定することによって、ロータリー軸33に対する取付体4のガタツキが解消されて、該ロータリー軸33に作溝輪W’が固定される。なお、図6において、11は、連結ピンの抜け止めのための抜止めピンを示し、図10において、6は、一対のわん曲円板1,2を一体にしている溶接部を示す。
【0004】
また、図3に示されるように、前記ロータリー軸33を軸方向に二分した一方の部分の上方には、これと平行となって円筒ケーシング41内に伝動軸42が配設されて、その両端部が支持され、前記伝動軸42の一端部(ロータリー軸33を基準にすると、該軸33の軸方向の中央部に対応する部分)には、該伝動軸42と直交する入力軸43から傘歯車44a,44bを介して牽引車であるトラクターの動力が伝達されると共に、伝動軸42の他端部に取付けられたチェーン歯車45と、ロータリー軸33の一端部に取付けられたチェーン歯車46との間に無端チェーン47が掛装されて、トラクターの動力は、前記伝動軸42の他端部においてロータリー軸33に伝達されることにより、該ロータリー軸33は、駆動回転される。即ち、ロータリー軸33は、不耕起直播機を牽引するトラクターの動力によって駆動回転される。また、前記入力軸43とトラクターのPTO軸とは、ユニバーサルジョイント(いずれも図示せず)を介して連結されている。なお、図3において、入力軸43は、図示可能にするために垂直に配置した状態で表示されているが、現実の配置は、ほぼ水平である。
【0005】
そして、トラクターにより機体31が牽引されて、矢印R方向に進行すると、該トラクターの動力がロータリー軸33に伝達されて、各作溝輪W’が駆動回転されると共に、駆動輪32が従動回転されることにより、該駆動輪32の回転力が伝動機構(図示せず)を介して前記ホッパー34内の繰出機構(図示せず)を作動させて、該ホッパー34内の各収容室34a,34bに分離して収容されている種子Sと肥料とをそれぞれ繰り出して、その直下の受け器38内において両者を混合させて、その混合物が、機体31の走行速度に比例した量だけ繰り出される。そして、図4に示されるように、各作溝輪W’の駆動回転により、圃場には、鍔リング3から作溝輪W’の外周縁までの長さに対応した深さ(H)の多数の播種溝Vが所定間隔(P)をおいて形成される。形成直後の播種溝Vには、前記ホッパー34内の各収容室34a,34bから別々に繰り出されて受け器38内で混合された種子Sと肥料との混合物が播種ホース35を介して供給されて、前記播種溝Vの溝底に播種と施肥とが同時に行われる。この播種と施肥の直後には、前記覆土チェーン36により前記播種溝V内に少量の土が落下されて、種子が覆土される。
【0006】
このように、作溝輪W’は、駆動回転されるために、その両側面(各わん曲円板1,2の凸面)は、土との接触により磨耗され、鋭利となっている外周縁部の磨耗は、特に激しい。この結果、長時間使用すると、図10(ロ)に示されるように、作溝輪W’の外周縁部の鋭利性がなくなって、徐々に丸みを帯びるに至る。これにより、鍔リング3から作溝輪W’の外周縁までの長さが短くなると共に、該作溝輪W’の外周縁部が磨耗により丸くなることにより、土に対する作溝輪W’の喰込み抵抗が大きくなって、鍔リング3が土の表面から浮き上がる結果、形成される播種溝V’の深さ(H')は、設定深さ(H)よりも浅くなってしまうと共に、その底部の形状も、丸みを帯びた作溝輪W’の外周縁部の形状に対応した幅広となってしまう。
【0007】
そして、播種溝の底部の断面形状が幅広になると、該底部に落下された種子の発芽条件が悪くなる。即ち、不耕起直播方法においては、図11(イ)に示されるように、播種溝Vの底部に落下した種子Sは、該溝Vの底部の両内壁面(土壁)Vaに密着することが最もよい発芽条件とされており、同(ロ)に示されるように、播種溝V’の底部が丸くなって幅広となると、上記のことが実現不能となって、発芽条件も悪くなる。即ち、同(イ)に示されるように、播種溝Vの溝底部が鋭利なV字形を維持していて、落下された種子Sが両内壁面(土壁)Vaに接触していると、種子Sの周辺の湿度が高くて、該種子Sに対して水分が適正に供給されて、良好な局所気候が維持されるために、良好な発芽条件が維持される。これに対して、同(ロ)に示されるように、幅広の溝底に種子Sが落下された場合には、該種子Sが乾燥され易くなって、発芽条件が悪くなり、種子Sの発芽率が低下すると共に、発芽状態も不揃いとなり、ひいては、稲等の作物の収穫率が下がる。また、溝底が広くなると、播種溝が浅くなって、成育した稲等が倒伏し易くなると共に、播種された直後の種子が害鳥により捕食され易くもなる。
【0008】
【発明が解決しようとする課題】
本発明の課題は、不耕起直播方法に使用される作溝輪において、その外周縁部の磨耗を少なくして鋭利な形状を長時間持続させることにより、その寿命を長くして、鋭利なV字状をした溝底を有する播種溝の形成を可能にして、播種後の局所気候を常に良好に保持させて、良好な発芽状態を維持することである。
【0009】
【課題を解決するための手段】
上記課題を解決するための請求項1の発明は、一対のわん曲円板の各凹面を対向させて、各外周縁部のみが相密着した状態で一体に接合されて、半径方向の断面が略V字状となった円盤状の不耕起直播用作溝輪であって、(1)前記一対のわん曲円板は、その外径に僅かの差が設けられ、(2)大径わん曲円板の凹面側外周縁部と、小径わん曲円板の外周縁部とが溶接により一体接合され、(3)前記大径わん曲円板の凸面側外周縁部の環状範囲のみに高周波焼入等の焼入れが部分的に施されて、焼入硬化され、(4)鋭利に成形された外周縁部の両面に硬度差が設けられていることを、その特徴としている。
【0010】
【0011】
このように、請求項1の発明に係る作溝輪は、これを構成する大径わん曲円板の凸面側外周縁部の環状範囲のみに焼入れが施されて、小径わん曲円板には、焼入れが施されていないために、鋭利に成形された外周縁部の両面に所定の硬度差が設けられる。よって、長期間使用しても、作溝輪の外周縁部の一方側である大径わん曲円板の凸面側の磨耗は、非常に少なく、その他方側である小径わん曲円板の凸面側及び溶接部は、通常に磨耗されるのである。この結果、作溝輪の外周縁部は、長期間使用しても、鋭利な状態が常に維持されるために、形成される播種溝の底部は、常に鋭利なV字状をしている。
【0012】
【0013】
【発明の実施の形態】
以下、実施例を挙げて、請求項1に係る発明を更に詳細に説明する。なお、本発明に係る図面である図1ないし図4を参照にして「従来の技術」の項目で説明した部分と同一部分には同一符号を付し、重複説明を避けて、本発明独自の部分についてのみ説明する。請求項1の発明の第1実施例の作溝輪W1 は、上記した従来の作溝輪W’において、大径わん曲円板1の凸面側外周縁部の環状をした範囲のみに高周波焼入等の焼入れが施されている。また、前記大径わん曲円板1の外周縁部は、鋭利に形成されて、その両面が凸面となっており、小径わん曲円板2は、内外の凹凸面に対してほぼ直交する外周面7が設けられていて、大径わん曲円板1の最外周縁の僅かに内側の凹面に、小径わん曲円板2の外周縁のエッジ部2bが当接することにより形成される環状凹部8に全周に亘って溶接が施されて、大径及び小径の各わん曲円板1,2は、溶接部6によって一体に接合されている。この溶接部6の外面は、小径わん曲円板2の外面である凸面よりも僅かに突出している。なお、大径わん曲円板1は、炭素鋼板等の焼入れ可能な材質で構成する必要があるが、小径わん曲円板2は、このような制限はなくて、軟鋼等で構成してもよい。
【0014】
また、上記した作溝輪W1 は、以下のようにして製作される。即ち、図7に示されるように、作溝輪W1 を構成する一対のわん曲円板1,2の各凹面を対向させた状態で、その取付孔1a,2aにパイプ状の取付体4を嵌め込んだ後に、一対のわん曲円板1,2の外周縁部を互いに当接させることにより生ずる前記環状凹部8の部分に溶接を施して、両わん曲円板1,2を一体化し、その後に、作溝輪W1 と取付体4とを溶接により一体化させる。次に、作溝輪W1 を構成する一対のわん曲円板1,2の凸面である外側面にそれぞれ鍔リング3を同心を保持して当てがった状態で、各鍔リング3を一対のわん曲円板1,2の外側面に溶接して一体化させる。最後に、大径わん曲円板1の凸面側外周縁部の環状範囲のみに焼入れを施して、作溝輪W1 の外周縁部の両面に硬度差を設ける。また、作溝輪W1 に一体に溶接された前記取付体4をロータリー軸33の外側に嵌め込んで、取付体4とロータリー軸33の各ピン挿通孔4a,33aに連結ピン9を挿通すると共に、取付体4に螺合された固定ボルト5をロータリー軸33の外周面に押し付けることにより、ロータリー軸33と各取付体4との間のガタツキを解消すると、ロータリー軸33に多数の作溝輪W1 が所定間隔(P)をおいて取付けられることは、既述の通りである。なお、図7において、4bは、固定ボルト5の先端部を挿入するために取付体4に設けられたボルト挿入孔を示す。
【0015】
このため、トラクターにより牽引されて機体31が矢印R方向に進行すると共に、該トラクターの動力によってロータリー軸33が駆動回転されると、図4に示されるように、圃場には、ロータリー軸33に取付けられた作溝輪W1 と同一ピッチ(P)の多数の播種溝Vが形成され、ホッパー34内に分離して収容された種子Sと肥料とが別々に繰り出されて、その直下の受け器38内で混合された種子Sと肥料との混合物が前記播種溝Vの底部に供給された後に、該播種溝Vの底部には、覆土チェーン36によって僅かの土が落下されて、種子Sが僅かに覆土される。
【0016】
また、播種溝Vの形成時には、図8(イ)に示されるように、鍔リング3が土の表面に押圧されることにより、設定深さ(H)の播種溝Vが圃場に形成される。ここで、作溝輪W1 は、その外周縁部が土中に入り込んだ状態で駆動回転されるために、その両側面(各わん曲円板1,2の凸面)は、土との接触によって磨耗され、鋭利となっている外周縁部の磨耗は、最も激しい。しかし、請求項1の発明に係る作溝輪W1 は、これを構成する大径わん曲円板1の凸面側外周縁部の環状範囲のみに焼入れが施されているために、図8(ロ)に示されるように、この焼入れ部Qの部分は、耐磨耗性が高いために、その磨耗が非常に少ないのに対して、小径わん曲円板2には、その凸面側を含めて素地のままで、焼入硬化されていないので、耐磨耗性は低いために、通常の状態で磨耗する。即ち、作溝輪W1 の外周縁部の両面には、硬度差が設けられていて、焼入れ部Qを有する硬度の高い側の面は、その磨耗が非常に少ないのに対して、その反対側の硬度の低い側の面は、通常の状態で磨耗されて、いわゆる「片減り」するのである。
【0017】
そして、作溝輪W1 に対して上記作用が奏されると、図8(ロ)に示されるように、作溝輪W1 の外周縁部は、使用時間とは無関係に、常に鋭利な状態を維持するのである。この結果、従来の作溝輪W’のように、土に対する作溝輪W1 の喰込み抵抗の増大もなくなって、常に鍔リング3が土の表面に押圧された状態で播種溝Vが形成されるために、播種溝Vは、その溝底が常に鋭利な形状であって、ほぼ設定深さ(H)を維持するのである。このように、請求項1の発明に係る作溝輪W1 によって形成される播種溝Vは、その溝底が常に鋭利になっているために、該溝底に落下された種子Sは、その両内壁面Vaに挟まれた状態となって、発芽に対して良好な気候環境が保持される〔図11(イ)参照〕。
【0018】
特に、第1実施例の作溝輪W1 は、大径わん曲円板1の外周縁部の両面が凸面として機能していて、溶接部6は、その最外周縁から僅かに内側に入り込んだ部分に設けられるために、耐磨耗性の最も低い溶接部6が保護されると共に、作溝輪W1 の外周縁部は、その使用当初から最も鋭利な状態となっているという特有の利点がある。
【0019】
引き続いて、請求項1の発明の第2実施例の作溝輪W2 について説明する。この作溝輪W2 は、図9(イ)に示されるように、大径わん曲円板1’の凸面側外周部の環状範囲のみに焼入れが施され、該大径わん曲円板1’の凹面側と、小径わん曲円板2’の外周面7との間に形成される環状凹部8’に溶接部6’が設けられた構成であって、作溝輪W2 の外周縁部の一方の側面は、大径わん曲円板1’の凸面が構成されていると共に、その他方の側面は、前記溶接部6’の外側面で構成されている。
【0020】
よって、この作溝輪W2 においても、その外周縁部の一方の面は、焼入れ部Qを有するために、その硬度が高くなっているのに対して、その他方の面は、素地のままであるために、その硬度が低くなっていて、その外周縁部の両面に硬度差が設けられている。このため、図9(ロ)に示されるように、硬度の低い小径わん曲円板2’の凸面側外周縁部、及び溶接部6’の表面部は、通常の状態で磨耗されるが、硬度の高い大径わん曲円板1’の凸面側外周縁部は、その磨耗が非常に少ないために、作溝輪W2 の外周縁部は、常に鋭利な状態を維持する。特に、第2実施例の作溝輪W2 は、硬度の低い小径わん曲円板2’の凸面側外周縁部は磨耗されるに従って、作溝輪W2 の外周縁部は、より鋭利となる利点がある。
【0021】
なお、請求項1の発明を構成する一対のわん曲円板は、この凹面を対向させて一体接合された状態において、その外周縁部の半径方向に沿った断面が略V字状をしておれば足り、その中心部の半径方向に沿った断面形状は、特に問題とならないので、「わん曲円板」とは、上記実施例のように、全面に亘ってわん曲している必要はなく、その中心部(外周縁部を除く部分)は平面状であって、その外周縁部のみが、他方のわん曲円板と一体接合した際に、断面V字状となる形状、即ち、「皿形状」であってもよい。
【0022】
【0023】
【0024】
【0025】
【発明の効果】
このように、請求項1の発明に係る作溝輪は、これを構成する大径わん曲円板の凸面側外周縁部の環状範囲のみに焼入れを施すことにより、作溝輪の外周縁部の両面に硬度差を設けてあって、長時間使用しても、その外周縁部は鋭利な状態を維持しているので、長時間使用後において、溝底部が鋭利なV字状となった使用当初とほぼ同一の設定形状の播種溝を形成できる。このため、溝底に落下された種子は、その両側の土壁に挟まれた状態が維持されるために、種子の発芽に良好な気候環境が保持される。
【図面の簡単な説明】
【図1】 請求項1の発明に係る作溝輪W1 を備えた不耕起直播機の側面図である。
【図2】 同じく概略平面図である。
【図3】 ロータリー軸33の部分を進行方向前方から見た図である。
【図4】 作溝輪W1 により播種溝Vが形成される状況を示す斜視図である。
【図5】 作溝輪W1 が取付けられたロータリー軸33の部分拡大図である。
【図6】 図5のX−X線断面図である。
【図7】 製造方法を含めて表示した作溝輪W1 の分解図である。
【図8】 (イ),(ロ)は、使用開始時、及び所定時間使用後における作溝輪W1 の磨耗状況を示す拡大断面図である。
【図9】 (イ),(ロ)は、使用開始時、及び所定時間使用後における作溝輪W2 の磨耗状況を示す拡大断面図である。
【図10】 (イ),(ロ)は、使用開始時、及び所定時間使用後における従来の作溝輪W’の磨耗状況を示す拡大断面図である。
【図11】 (イ),(ロ)は、溝底部が鋭利なV字状をした播種溝V、及び溝底部が幅広の丸い形状の播種溝V’に種子Sが落下された状態を示す拡大断面図である。
【符号の説明】
Q:焼入れ部
1 , 2 ,:作溝輪
1,1’:大径わん曲円板
2,2’:小径わん曲円板
6:溶接部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grooving ring used for non-tillage direct sowing in which a substantially V-shaped sowing groove having a narrow opening is formed in a field, and immediately after that sowing and fertilization is performed in the sowing groove.
[0002]
[Prior art]
First, with reference to the drawings according to the present invention, a no-tillage direct sowing method and the structure of a conventional grooved ring W ′ used for this will be described. FIG. 1 is a side view of a non-tilled direct sowing machine provided with a grooved ring W 1 according to the present invention, FIG. 2 is a schematic plan view of the same, and FIG. is a view as seen from the front, FIG. 4 is a perspective view showing a situation where sowing groove V is formed by Sakumizowa W 1, Fig. 5, the rotary shaft 33 Sakumizowa W 1 is attached FIG. 6 is a partially enlarged view, and FIG. 6 is a cross-sectional view taken along line XX of FIG. 1 to 3, the direct sowing machine used for carrying out the no-till direct sowing method is pulled by a tractor that is a towing vehicle, and drive wheels 32 are attached to either one of the left and right ends of the front part of the airframe 31. Further, a rotary shaft 33 that is driven and rotated is supported horizontally at a right angle to the traveling direction R behind the drive wheel 32 in the machine body 31, and the rotary shaft 33 has an interval (about approximately) corresponding to the gaps to be formed. A large number of grooved wheels W ′ are fixed at 20 cm), and a hopper 34 that can separate and accommodate seeds and fertilizers is provided almost directly above each grooved wheel W ′. The drive wheel 32 is always urged downward by a compression spring (not shown), and can rotate without slipping due to the ground pressure. Each hopper 34 is separated into a seed storage chamber 34a and a fertilizer storage chamber 34b by a separation plate 37 provided therein, and below each hopper 34, each storage chamber 34a, 34b of the hopper 34 is provided. A receiver 38 that can accommodate seeds and fertilizers fed separately from each other in a mixed state is attached, and each receiver 38 is used for guiding the mixture of seeds and fertilizers to the formed sowing groove V. A seeding hose 35 is connected to each other, and a covering soil chain 36 is connected to the rear side of the rotary shaft 33 in the body 31 at the same position as each grooved wheel W ′ along the axial direction of the rotary shaft 33. .
[0003]
As shown in FIG. 10 (a), the grooved ring W ′ has a pair of curved disks 1 and 2 having slightly different outer diameters, with their concave surfaces facing each other, and the outer peripheral edge portion of the grooves W ′ . By integrally welding in close contact with each other, the outer peripheral edge is sharply formed, the disk has a substantially V-shaped disk in the radial direction, and only a predetermined length from the outer peripheral edge is ground. It is the structure by which the collar ring 3 of the same diameter was integrally attached to the outer peripheral surface of each said bending discs 1 and 2 so that it might enter inside. Further, as shown in FIGS. 5 to 7 which are drawings of the present application, like the grooved ring W 1 according to the present invention, the pair of curved disks 1 and 2 constituting the grooved ring W ′ include The mounting holes 1a and 2a are provided, and the pipe-shaped mounting body 4 is fitted into the mounting holes 1a and 2a, and both W 'and 4 are integrated by welding. The connecting pin 9 is inserted into the pin insertion holes 4 a and 33 a of the mounting body 4 and the rotary shaft 33 by being fitted to the outside of the rotary shaft 33, and the mounting body 4 is connected to the rotary shaft 33 via the fixing bolt 5. By fixing, the rattling of the mounting body 4 with respect to the rotary shaft 33 is eliminated, and the grooved wheel W ′ is fixed to the rotary shaft 33. In FIG. 6, reference numeral 11 denotes a retaining pin for retaining the connecting pin, and in FIG. 10 , reference numeral 6 denotes a welded portion in which the pair of curved disks 1 and 2 are integrated.
[0004]
Further, as shown in FIG. 3, a transmission shaft 42 is disposed in a cylindrical casing 41 in parallel with the rotary shaft 33 that is divided into two portions in the axial direction, and both ends thereof are arranged. A portion is supported, and an end portion of the transmission shaft 42 (a portion corresponding to a central portion in the axial direction of the shaft 33 with respect to the rotary shaft 33) is umbrellad from an input shaft 43 orthogonal to the transmission shaft 42. Power of a tractor that is a towing vehicle is transmitted through gears 44a and 44b, a chain gear 45 attached to the other end of the transmission shaft 42, and a chain gear 46 attached to one end of the rotary shaft 33, An endless chain 47 is hung between them, and the power of the tractor is transmitted to the rotary shaft 33 at the other end of the transmission shaft 42, whereby the rotary shaft 33 is driven to rotate. That is, the rotary shaft 33 is driven and rotated by the power of the tractor that pulls the no-tillage direct seeder. Further, the input shaft 43 and the PTO shaft of the tractor are connected via a universal joint (both not shown). In FIG. 3, the input shaft 43 is displayed in a vertically arranged state so that it can be illustrated, but the actual arrangement is substantially horizontal.
[0005]
Then, when the vehicle body 31 is pulled by the tractor and travels in the direction of the arrow R, the power of the tractor is transmitted to the rotary shaft 33 and each grooved wheel W ′ is driven to rotate and the driving wheel 32 is driven to rotate. As a result, the rotational force of the driving wheel 32 operates a feeding mechanism (not shown) in the hopper 34 via a transmission mechanism (not shown), and each storage chamber 34a in the hopper 34, The seed S and the fertilizer separated and accommodated in 34 b are fed out and mixed together in the receptacle 38 immediately below, and the mixture is fed out by an amount proportional to the traveling speed of the airframe 31. And as FIG. 4 shows, the depth (H) corresponding to the length from the eaves ring 3 to the outer periphery of the groove ring W ′ is provided in the field by the drive rotation of each groove ring W ′. A number of seeding grooves V are formed at a predetermined interval (P). A mixture of seed S and fertilizer that is separately fed from the respective storage chambers 34 a and 34 b in the hopper 34 and mixed in the receptacle 38 is supplied to the sowing groove V immediately after formation through the sowing hose 35. Thus, sowing and fertilization are simultaneously performed on the bottom of the sowing groove V. Immediately after the sowing and fertilization, a small amount of soil is dropped into the sowing groove V by the soil covering chain 36 to cover the seed.
[0006]
Thus, since the grooved ring W ′ is driven and rotated, both side surfaces (convex surfaces of the curved disks 1 and 2) are worn by contact with the soil and become sharp outer peripheries. Part wear is particularly severe. As a result, when used for a long time, as shown in FIG. 10 (b), the sharpness of the outer peripheral edge portion of the grooved ring W ′ is lost and gradually becomes rounded. As a result, the length from the eaves ring 3 to the outer peripheral edge of the grooved ring W ′ is shortened, and the outer peripheral edge of the grooved ring W ′ is rounded due to wear. As a result of the encroachment resistance increasing and the heel ring 3 floating from the surface of the soil, the depth (H ′) of the sowing groove V ′ formed becomes shallower than the set depth (H). The shape of the bottom portion also becomes wide corresponding to the shape of the outer peripheral edge portion of the round grooved ring W ′.
[0007]
And if the cross-sectional shape of the bottom part of a sowing groove becomes wide, the germination conditions of the seed which fell to this bottom part will worsen. That is, in the no-tillage direct sowing method, as shown in FIG. 11 (a), the seed S falling on the bottom of the sowing groove V is in close contact with both inner wall surfaces (earth walls) Va of the bottom of the groove V. This is the best germination condition, and as shown in (b), when the bottom of the sowing groove V ′ becomes round and wide, the above becomes impossible and the germination conditions also deteriorate. . That is, as shown in (i), when the bottom of the sowing groove V maintains a sharp V-shape and the dropped seed S is in contact with both inner wall surfaces (earth walls) Va, Since the humidity around the seed S is high, moisture is properly supplied to the seed S, and a good local climate is maintained, so that good germination conditions are maintained. On the other hand, as shown in (b), when the seed S is dropped on the wide groove bottom, the seed S is easily dried, the germination conditions are deteriorated, and the germination of the seed S is caused. As the rate decreases, the germination state becomes uneven, and as a result, the harvest rate of crops such as rice is reduced. In addition, when the groove bottom is widened, the sowing groove becomes shallow, so that the grown rice and the like are liable to fall down, and the seeds immediately after sowing become prey by the harmful birds.
[0008]
[Problems to be solved by the invention]
The problem of the present invention is that, in the grooved ring used in the no-tillage direct sowing method, the wear of the outer peripheral edge is reduced and the sharp shape is maintained for a long time, thereby extending its life and sharpness. It is possible to form a sowing groove having a V-shaped groove bottom, to maintain a good local climate after sowing, and to maintain a good germination state.
[0009]
[Means for Solving the Problems]
The invention of claim 1 for solving the above-mentioned problem is that the concave surfaces of the pair of curved disks are opposed to each other, and are joined together with only the outer peripheral edge portions in close contact with each other. A disk-shaped non-tillage direct sowing groove formed in a substantially V shape, wherein (1) the pair of curved disks are provided with a slight difference in outer diameter; (2) large diameter The concave outer peripheral edge of the curved disk and the outer peripheral edge of the small-diameter curved disk are integrally joined by welding. (3) Only in the annular range of the convex outer peripheral edge of the large-diameter curved disk (4) It is characterized in that a hardness difference is provided on both surfaces of the outer peripheral edge portion that is partially hardened by induction hardening or the like and hardened and hardened.
[0010]
[0011]
Thus, the grooved ring according to the invention of claim 1 is quenched only in the annular range of the outer peripheral edge of the convex surface of the large-diameter curved disk that constitutes the grooved ring. Since the quenching is not performed, a predetermined hardness difference is provided on both surfaces of the outer peripheral edge formed sharply. Therefore, even if it is used for a long time, there is very little wear on the convex surface of the large-diameter curved disk on one side of the outer peripheral edge of the grooved ring, and the convex surface of the small-diameter curved disk on the other side. Sides and welds are usually worn. As a result, the outer peripheral edge portion of the grooved ring is always maintained in a sharp state even when used for a long period of time, so that the bottom portion of the sowing groove formed is always in a sharp V shape.
[0012]
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the invention according to claim 1 will be described in more detail with reference to examples. 1 to 4 which are drawings according to the present invention, the same reference numerals are given to the same portions as those described in the section of “Prior Art”, and a duplicate description is avoided to avoid the redundant description. Only the part will be described. The groove ring W 1 according to the first embodiment of the invention of claim 1 has a high frequency only in the above-described conventional groove ring W ′ in an annular range of the outer peripheral edge of the convex surface of the large-diameter curved disk 1. Quenching such as quenching is applied. The outer peripheral edge of the large-diameter curved disk 1 is sharply formed, and both surfaces thereof are convex, and the small-diameter curved disk 2 is an outer periphery that is substantially orthogonal to the inner and outer irregular surfaces. An annular recess formed by the surface 7 being provided and the edge 2b of the outer peripheral edge of the small-diameter curved disk 2 abutting the concave surface slightly inside the outermost peripheral edge of the large-diameter curved disk 1 8 is welded over the entire circumference, and the large-diameter and small-diameter bent discs 1 and 2 are joined together by a welded portion 6. The outer surface of the weld 6 protrudes slightly from the convex surface, which is the outer surface of the small-diameter curved disk 2. The large-diameter curved disk 1 needs to be made of a quenchable material such as a carbon steel plate, but the small-diameter curved disk 2 is not limited to this and may be made of mild steel or the like. Good.
[0014]
Further, the groove ring W 1 described above is manufactured as follows. That is, as shown in FIG. 7, in a state in which the concave surfaces of the pair of curved disks 1 and 2 constituting the grooved ring W 1 are opposed to each other, the pipe-shaped attachment body 4 is inserted into the attachment holes 1a and 2a. Are inserted into the annular concave portion 8 which is formed by bringing the outer peripheral edge portions of the pair of curved disks 1 and 2 into contact with each other, thereby integrating the curved disks 1 and 2 together. Then, the groove ring W 1 and the attachment body 4 are integrated by welding. Next, in a state where the collar rings 3 are concentrically held on the outer surfaces which are convex surfaces of the pair of curved disks 1 and 2 constituting the grooved ring W 1 , each pair of collar rings 3 is paired. The outer curved surfaces of the curved discs 1 and 2 are integrated by welding. Finally, quenching is performed only on the annular range of the outer peripheral edge of the convex surface of the large-diameter curved disk 1 , and a hardness difference is provided on both surfaces of the outer peripheral edge of the grooved ring W1. Further, the mounting body 4 integrally welded to the grooved ring W 1 is fitted to the outside of the rotary shaft 33, and the connecting pin 9 is inserted into the pin insertion holes 4 a and 33 a of the mounting body 4 and the rotary shaft 33. At the same time, when the fixing bolt 5 screwed to the mounting body 4 is pressed against the outer peripheral surface of the rotary shaft 33 to eliminate rattling between the rotary shaft 33 and each mounting body 4, a large number of grooves are formed on the rotary shaft 33. As described above, the wheel W 1 is attached at a predetermined interval (P). In FIG. 7, reference numeral 4 b denotes a bolt insertion hole provided in the attachment body 4 for inserting the distal end portion of the fixing bolt 5.
[0015]
Therefore, when the body 31 is pulled by the tractor and advances in the direction of the arrow R, and the rotary shaft 33 is driven and rotated by the power of the tractor, as shown in FIG. A number of sowing grooves V having the same pitch (P) as the attached grooved wheel W 1 are formed, and the seeds S and the fertilizer separated and accommodated in the hopper 34 are separately fed out and received immediately below them. After the mixture of seed S and fertilizer mixed in the vessel 38 is supplied to the bottom of the sowing groove V, a small amount of soil is dropped on the bottom of the sowing groove V by the cover soil chain 36, and the seed S Is covered slightly.
[0016]
Further, when the sowing groove V is formed, as shown in FIG. 8 (a), the sowing ring 3 having a set depth (H) is formed in the field by pressing the paddle ring 3 against the surface of the soil. . Here, since the grooved ring W 1 is driven and rotated with the outer peripheral edge of the grooved ring W 1 entering the soil, both side surfaces (convex surfaces of the curved disks 1 and 2) are in contact with the soil. The outer peripheral edge, which is worn and sharpened, is worn most severely. However, since the grooved ring W 1 according to the invention of claim 1 is quenched only in the annular range of the outer peripheral edge portion of the convex surface of the large-diameter curved disk 1 constituting the groove ring W 1 shown in FIG. As shown in (b), the hardened portion Q has a high wear resistance, so its wear is very small, whereas the small-diameter curved disk 2 includes its convex side. Since the substrate is not hardened and hardened, the wear resistance is low. That is, a difference in hardness is provided on both surfaces of the outer peripheral edge of the grooved ring W 1 , and the surface on the higher hardness side having the quenched portion Q has very little wear, whereas the opposite is the case. The lower hardness side surface is worn under normal conditions and is so-called “depleted”.
[0017]
When the action is exerted against Sakumizowa W 1, as shown in FIG. 8 (b), the outer peripheral edge portion of Sakumizowa W 1, regardless of the use time, always sharp The state is maintained. As a result, unlike the conventional grooving ring W ′, there is no increase in the biting resistance of the grooving ring W 1 with respect to the soil, and the sowing groove V is always formed with the heel ring 3 pressed against the surface of the soil. Therefore, the sowing groove V always has a sharp shape at the bottom of the groove, and substantially maintains the set depth (H). Thus, since the sowing groove V 1 formed by the grooved wheel W 1 according to the invention of claim 1 has a sharp groove bottom, the seed S dropped on the groove bottom is A favorable climatic environment is maintained against germination in a state sandwiched between both inner wall surfaces Va [see FIG. 11 (A)].
[0018]
Particularly, in the grooved ring W 1 of the first embodiment, both surfaces of the outer peripheral edge portion of the large-diameter curved disk 1 function as convex surfaces, and the welded portion 6 slightly enters inside from the outermost peripheral edge. Since the welded portion 6 having the lowest wear resistance is protected, the outer peripheral edge of the grooved ring W 1 is in a most sharp state from the beginning of use. There are advantages.
[0019]
Subsequently, a grooved wheel W 2 according to a second embodiment of the invention of claim 1 will be described. As shown in FIG. 9 (A), the grooved ring W 2 is quenched only in the annular region of the outer peripheral portion of the convex surface side of the large-diameter curved disk 1 ′, and the large-diameter curved disk 1 The welded portion 6 'is provided in the annular recessed portion 8' formed between the concave surface side of 'and the outer peripheral surface 7 of the small-diameter curved disk 2 ', and the outer peripheral edge of the grooved ring W 2 One side surface of the portion is formed with the convex surface of the large-diameter curved disk 1 ′, and the other side surface is formed with the outer surface of the welded portion 6 ′.
[0020]
Therefore, also in this grooved ring W 2 , one surface of the outer peripheral edge portion has a hardened portion Q, so that the hardness thereof is high, while the other surface remains a base. Therefore, the hardness is low, and a hardness difference is provided on both surfaces of the outer peripheral edge. For this reason, as shown in FIG. 9 (b), the convex outer peripheral edge portion of the small-diameter curved disk 2 ′ having low hardness and the surface portion of the welded portion 6 ′ are worn in a normal state. Since the outer peripheral edge of the convex surface of the large-diameter curved disk 1 ′ having high hardness is very little worn, the outer peripheral edge of the grooved ring W 2 always maintains a sharp state. In particular, Sakumizowa W 2 of the second embodiment in accordance with the convex surface side outer periphery of the low hardness smaller diameter Curved discs 2 'is worn, the outer peripheral edge portion of Sakumizowa W 2 is sharper There are advantages.
[0021]
The pair of curved discs constituting the invention of claim 1 has a substantially V-shaped cross section along the radial direction of the outer peripheral edge in a state where the concave surfaces are opposed to each other and are integrally joined. Since the cross-sectional shape along the radial direction of the central portion is sufficient, there is no particular problem. Therefore, the “curved disk” needs to be bent over the entire surface as in the above-described embodiment. The center portion (portion excluding the outer peripheral edge portion) is planar, and only the outer peripheral edge portion has a V-shaped cross section when integrally joined with the other curved disk, that is, It may be “dish-shaped”.
[0022]
[0023]
[0024]
[0025]
【The invention's effect】
Thus, Sakumizowa according to a first aspect of the invention, more applying hardening only the annular zone of the convex side outer periphery of the large-diameter bend in a circular plate constituting this outer peripheral edge of Sakumizowa Since there is a difference in hardness on both sides of the part and the outer peripheral edge portion maintains a sharp state even when used for a long time, the groove bottom becomes a sharp V-shape after long time use. It is possible to form a seeding groove having a setting shape almost the same as the initial use. For this reason, since the seed dropped on the bottom of the groove is maintained in a state of being sandwiched between soil walls on both sides thereof, a favorable climatic environment is maintained for seed germination.
[Brief description of the drawings]
1 is a side view of a no-tillage direct sowing machine provided with a grooved ring W 1 according to the invention of claim 1;
FIG. 2 is a schematic plan view of the same.
FIG. 3 is a view of a rotary shaft 33 viewed from the front in the traveling direction.
FIG. 4 is a perspective view showing a situation in which a sowing groove V is formed by the groove ring W 1 .
FIG. 5 is a partially enlarged view of a rotary shaft 33 to which a groove ring W 1 is attached.
6 is a cross-sectional view taken along line XX in FIG.
FIG. 7 is an exploded view of the groove ring W 1 displayed including the manufacturing method.
FIGS. 8A and 8B are enlarged cross-sectional views showing the state of wear of the grooved ring W 1 at the start of use and after use for a predetermined time.
FIGS. 9A and 9B are enlarged cross-sectional views showing the state of wear of the grooved ring W 2 at the start of use and after use for a predetermined time.
FIGS . 10A and 10B are enlarged cross-sectional views showing the wear state of a conventional grooved ring W ′ at the start of use and after use for a predetermined time.
FIGS. 11A and 11B show a state in which seeds S are dropped into a sowing groove V having a sharp V-shaped groove bottom and a wide sowing groove V ′ having a wide groove bottom. It is an expanded sectional view.
[Explanation of symbols]
Q: Quenching part
W 1, W 2,: Sakumizowa
1,1 ': Large diameter curved disk
2, 2 ': Small-diameter curved disk
6: Welded part

Claims (3)

一対のわん曲円板の各凹面を対向させて、各外周縁部のみが相密着した状態で一体に接合されて、半径方向の断面が略V字状となった円盤状の作溝輪であって、
前記一対のわん曲円板は、その外径に僅かの差が設けられ、
大径わん曲円板の凹面側外周縁部と、小径わん曲円板の外周縁部とが溶接により一体接合され、
前記大径わん曲円板の凸面側外周縁部の環状範囲のみに高周波焼入等の焼入れが部分的に施されて、焼入硬化され、
鋭利に成形された外周縁部の両面に硬度差が設けられていることを特徴とする作溝輪。
A disk-shaped grooved ring in which the concave surfaces of a pair of curved disks are opposed to each other and are joined together in a state where only the outer peripheral edges are in close contact with each other, and the cross section in the radial direction is substantially V-shaped. There,
The pair of curved disks are provided with a slight difference in the outer diameter,
The concave outer peripheral edge of the large-diameter curved disk and the outer peripheral edge of the small-diameter curved disk are integrally joined by welding,
Quenching such as induction hardening is partially applied only to the annular range of the outer peripheral edge of the convex side of the large-diameter curved disk, and is hardened and hardened,
A grooved ring characterized in that a difference in hardness is provided on both sides of an outer peripheral edge formed sharply.
前記大径わん曲円板の外周縁部両面は先鋭に成形されて、その両面が凸面として機能していることを特徴とする請求項1に記載の作溝輪。  2. The grooved ring according to claim 1, wherein both surfaces of the outer peripheral edge of the large-diameter curved disk are sharply formed and both surfaces function as convex surfaces. 前記小径わん曲円板は、その内外の凹凸面に対してほぼ直交する外周面を有していることを特徴とする請求項1又は2に記載の作溝輪。  The grooved ring according to claim 1 or 2, wherein the small-diameter curved disk has an outer peripheral surface substantially orthogonal to the inner and outer irregular surfaces.
JP2000264758A 2000-09-01 2000-09-01 Groove ring Expired - Lifetime JP3703700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264758A JP3703700B2 (en) 2000-09-01 2000-09-01 Groove ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264758A JP3703700B2 (en) 2000-09-01 2000-09-01 Groove ring

Publications (2)

Publication Number Publication Date
JP2002065008A JP2002065008A (en) 2002-03-05
JP3703700B2 true JP3703700B2 (en) 2005-10-05

Family

ID=18752127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264758A Expired - Lifetime JP3703700B2 (en) 2000-09-01 2000-09-01 Groove ring

Country Status (1)

Country Link
JP (1) JP3703700B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583858B2 (en) * 2004-09-28 2010-11-17 鋤柄農機株式会社 Groove-wheel drive shaft device for no-tillage direct sowing machine
CN101823203B (en) * 2010-03-30 2011-11-02 冯建荣 Method for processing V-shaped straight-hole single-groove stamping part belt pulley
CN106937539B (en) * 2017-04-01 2023-06-02 江苏科弘岩土工程有限公司 Ditching machine with adjustable ditching width

Also Published As

Publication number Publication date
JP2002065008A (en) 2002-03-05

Similar Documents

Publication Publication Date Title
CA2143476C (en) Scalloped closing wheel for a seeding machine
JP6139227B2 (en) Fertilizer sowing device
US4043404A (en) Tillage apparatus having improved cutting and drive structure
CA1110923A (en) Cutter wheel for tillage apparatus
US10624252B2 (en) Rotary harrow disks and devices
US4250968A (en) Minimum wrap bi-rotational cutter wheel for a tillage implement
AU2003262497A1 (en) Furrow opener/closer in an agricultural machine
JP3703700B2 (en) Groove ring
US6279666B1 (en) Row crop debris clearing apparatus
JP6173825B2 (en) A direct sowing machine that can directly sow dry rice fields in the early days after rainfall.
US10426076B1 (en) Depth wheels
US20230225240A1 (en) Modular wheel assembly
US4469185A (en) Cutter wheel for tillage apparatus
CN211297674U (en) Ground wheel driving mechanism, fertilizer applicator and seeder
JP4583858B2 (en) Groove-wheel drive shaft device for no-tillage direct sowing machine
JP3995306B2 (en) Tillage direct sowing work equipment
RU2166242C1 (en) Share
EP1378155A1 (en) A disc entity, a soil tillage entity and an agricultural machine provided with these
JPH0613616Y2 (en) No-till sowing machine
FR2478942A1 (en) METHOD FOR SEEDING SEEDS FOR PRECISION SOWING AND SEMIOR USING SUCH A METHOD
JP2006101815A (en) Farm implement
JP6871601B2 (en) V-groove direct seeder
US20220240429A1 (en) Gauge Wheel Device, Row Unit, Agricultural Implement and Method of Operating Gauge Wheel Device
JP2002233214A (en) Direct seeding machine
RU2799085C2 (en) Agricultural disk knife with a multi-diameter edge with flat grooves (variants)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050720

R150 Certificate of patent or registration of utility model

Ref document number: 3703700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term