JP2006090820A - Method and apparatus for detecting parameter of detection object - Google Patents
Method and apparatus for detecting parameter of detection object Download PDFInfo
- Publication number
- JP2006090820A JP2006090820A JP2004276203A JP2004276203A JP2006090820A JP 2006090820 A JP2006090820 A JP 2006090820A JP 2004276203 A JP2004276203 A JP 2004276203A JP 2004276203 A JP2004276203 A JP 2004276203A JP 2006090820 A JP2006090820 A JP 2006090820A
- Authority
- JP
- Japan
- Prior art keywords
- detection target
- analyzer
- axis direction
- transmission axis
- transmitted light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/23—Bi-refringence
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Nonlinear Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Pure & Applied Mathematics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Algebra (AREA)
- Optics & Photonics (AREA)
- Mathematical Optimization (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Liquid Crystal (AREA)
Abstract
Description
本発明は、複屈折特性を有する検出対象のパラメータ(検出対象の液晶層のリタデーションや厚さ)を検出する、検出対象のパラメータ検出方法及び検出装置に関する。 The present invention relates to a detection target parameter detection method and a detection apparatus that detect a detection target parameter (retardation or thickness of a liquid crystal layer to be detected) having birefringence characteristics.
液晶表示装置を構成する液晶表示素子(以下、「液晶セル」という)として、液晶分子の長軸方向が基板面に対してほぼ平行な方向に配向している液晶セル、例えばツイステッドネマテイック(Twisted Nematic:TN)型、スーパーツイステッドネマティック(Super Twisted Nematic:STN)型、IPS(In-Plane Switching)型の液晶セルや、液晶分子の長軸方向が基板面の法線にほぼ平行な方向、すなわち、基板面に対してほぼ垂直な方向に配向している(Vertical Alignment;VA)液晶セル(以下、「VAセル」という)が知られている。
VAセルは、高いコントラスト比と広い視野角を有するため、液晶テレビや液晶モニタ等に広く採用されている。
液晶セルの表示性能は、液晶セルの液晶層の厚さに大きく依存する。このため、液晶セルの液晶層の厚さの管理が重要である。
液晶セルの液晶層の厚さは、液晶セルの液晶層の厚さと複屈折率の積で表される液晶層のリタデーションを検出し、検出した液晶層のリタデーションを複屈折率で除算することによって求めることができる。
液晶分子の長軸方向が基板面に対してほぼ平行な方向に配向している液晶セルの液晶層のリタデーションは、液晶セルの基板面に垂直に光を入射し、液晶セルを透過した光の偏光状態を解析することにより検出することができる。
しかしながら、VAセルは、液晶分子の長軸方向が基板面に対して垂直な方向に配向されている。したがって、VAセルの基板面に垂直に光を入射しても、液晶分子は光学的には等方的に振る舞うため、VAセルを透過した光の偏光状態は変化しない。つまり、VAセルの基板面に垂直に光を入射する方法を用いることができない。
そこで、VAセルの基板面に斜めに光を入射し、VAセルを透過した光の偏光状態を解析することによって、VAセルの液晶層の厚さを検出する方法が提案されている。(非特許文献1、非特許文献2、特許文献1参照)
VA cells are widely used in liquid crystal televisions, liquid crystal monitors and the like because they have a high contrast ratio and a wide viewing angle.
The display performance of the liquid crystal cell greatly depends on the thickness of the liquid crystal layer of the liquid crystal cell. For this reason, management of the thickness of the liquid crystal layer of the liquid crystal cell is important.
The thickness of the liquid crystal layer of the liquid crystal cell is obtained by detecting the retardation of the liquid crystal layer represented by the product of the thickness of the liquid crystal layer of the liquid crystal cell and the birefringence, and dividing the detected retardation of the liquid crystal layer by the birefringence. Can be sought.
The retardation of the liquid crystal layer of the liquid crystal cell in which the major axis direction of the liquid crystal molecules is aligned in a direction substantially parallel to the substrate surface is such that light is incident perpendicularly to the substrate surface of the liquid crystal cell and transmitted through the liquid crystal cell. It can be detected by analyzing the polarization state.
However, in the VA cell, the major axis direction of the liquid crystal molecules is aligned in a direction perpendicular to the substrate surface. Therefore, even if light is incident perpendicularly to the substrate surface of the VA cell, the liquid crystal molecules behave optically isotropically, so that the polarization state of the light transmitted through the VA cell does not change. That is, it is not possible to use a method in which light is incident perpendicularly to the substrate surface of the VA cell.
Therefore, a method has been proposed in which light is incident obliquely on the substrate surface of the VA cell and the thickness of the liquid crystal layer of the VA cell is detected by analyzing the polarization state of the light transmitted through the VA cell. (See Non-Patent Document 1, Non-Patent Document 2, and Patent Document 1)
例えば、特許文献1に記載の方法では、発光装置、偏光子、検光子、検出装置の順に各要素を配置した測定系を用いる。検出対象のリタデーションを検出する時には、まず、検出対象を、偏光子と検光子の間に配置する。次に、検出対象の遅相軸を偏光子の透過軸方向に対して45°の方向に向けた状態で、偏光子の透過軸方向と検光子の透過軸方向を平行にした時の透過光強度(検出装置の検出信号)Iparaと、偏光子の透過軸方向と検光子の透過軸方向を直交させた時の透過光強度Icrossを測定する。そして、測定した透過光強度IparaとIcrossを用いて、[式1]により、検出対象のリタデーションRを求める。
液晶セルの基板面の法線に平行に、すなわち、液晶セルの基板面に垂直に光を入射する場合には、界面(例えば、空気−ガラス界面)での光の透過率は、入射光の偏光方向によって変化しない。すなわち、透過率の偏光方向依存性は発生しない。
しかしながら、液晶セルの基板面に斜めに光を入射する場合には、界面での光の透過率は、入射する光の偏光方向によって変化する。すなわち、透過率の偏光方向依存性が発生する。
このため、VAセルの基板面に斜めに光を入射させる方法を用いてVAセルの液晶層のリタデーションを検出する場合には、VAセルの液晶層のリタデーションの検出精度を高めるために透過率の偏光方向依存性を考慮する必要がある。
前記した特許文献1に記載の方法では、このような透過率の偏光方向依存性を考慮していないため、液晶層のリタデーションを正確に検出することができない。従って、液晶層の厚さも正確に検出することができない。
また、前記した特許文献1に記載の方法では、常光屈折率と異常光屈折率の平均値を複屈折率として用いている。液晶層の厚さは、検出した液晶層のリタデーションを複屈折率で除算することで得られるが、平均値は近似値であるため、特許文献1に記載の方法では、液晶層の厚さを正確に検出することができない。
前記した非特許文献2には、透過率の偏光方向依存性を考慮する方法が記載されているが、空気−ガラス界面での透過率しか考慮していない。ここで、実際の液晶セルには、ガラス基板、カラーフィルタ、透明電極等が設けられている。液晶セルの透過率を知るためには、液晶セルの全ての部材の透過率を事前に把握する必要があり、現実的ではない。さらに、薄膜材料は、膜を形成する際の条件によって屈折率等の光学特性が変化するため、透過率を事前に把握することが困難である。このため、非特許文献2に記載の方法を応用しても、液晶層のリタデーションを正確に検出することができない。
前記した非特許文献1には、このような透過率の偏光方向依存性を考慮しなくても、液晶層のリタデーションを正確に検出することが可能な方法が記載されている。しかし、光の透過率が極小になるという条件を使用するため、測定領域内でリタデーションが分布している場合には、液晶層のリタデーションを正確に検出することができない。
そこで、本発明が解決しようとする課題は、簡単で、正確に検出対象のリタデーションや厚さというパラメータを検出することができる、検出対象のパラメータ検出方法及び検出装置を提供することである。
When light is incident parallel to the normal of the substrate surface of the liquid crystal cell, that is, perpendicular to the substrate surface of the liquid crystal cell, the light transmittance at the interface (for example, the air-glass interface) is It does not change with the polarization direction. That is, the transmittance does not depend on the polarization direction.
However, when light is incident obliquely on the substrate surface of the liquid crystal cell, the light transmittance at the interface varies depending on the polarization direction of the incident light. That is, the polarization direction dependency of the transmittance occurs.
For this reason, when detecting the retardation of the liquid crystal layer of the VA cell using a method in which light is incident obliquely on the substrate surface of the VA cell, the transmittance of the VA cell is increased in order to increase the detection accuracy of the retardation of the liquid crystal layer of the VA cell. It is necessary to consider the polarization direction dependency.
In the method described in Patent Document 1, the retardation of the liquid crystal layer cannot be accurately detected because the dependency of the transmittance on the polarization direction is not taken into consideration. Therefore, the thickness of the liquid crystal layer cannot be accurately detected.
In the method described in Patent Document 1, the average value of the ordinary light refractive index and the extraordinary light refractive index is used as the birefringence. The thickness of the liquid crystal layer can be obtained by dividing the detected retardation of the liquid crystal layer by the birefringence, but since the average value is an approximate value, in the method described in Patent Document 1, the thickness of the liquid crystal layer is It cannot be detected accurately.
Non-Patent Document 2 described above describes a method that considers the polarization direction dependency of transmittance, but only considers the transmittance at the air-glass interface. Here, an actual liquid crystal cell is provided with a glass substrate, a color filter, a transparent electrode, and the like. In order to know the transmittance of the liquid crystal cell, it is necessary to grasp in advance the transmittance of all the members of the liquid crystal cell, which is not realistic. Furthermore, since the optical characteristics such as the refractive index of the thin film material change depending on the conditions for forming the film, it is difficult to grasp the transmittance in advance. For this reason, even if the method described in Non-Patent Document 2 is applied, the retardation of the liquid crystal layer cannot be accurately detected.
Non-Patent Document 1 described above describes a method capable of accurately detecting the retardation of the liquid crystal layer without considering the polarization direction dependency of the transmittance. However, since the condition that the light transmittance is minimized is used, the retardation of the liquid crystal layer cannot be accurately detected when the retardation is distributed in the measurement region.
Therefore, the problem to be solved by the present invention is to provide a parameter detection method and a detection apparatus for a detection target that can easily and accurately detect parameters such as retardation and thickness of the detection target.
前記課題を解決するための本発明の第1発明は、請求項1に記載されたとおりの検出対象のパラメータ検出方法である。
請求項1に記載のパラメータ検出方法では、検光子の透過軸方向が入射面に対して任意の角度ω0傾けられ、偏光方向が入射面と平行である直線偏光が検出対象に入射された時の透過光強度I(ω0,0°)と、偏光方向が入射面に対して90°傾けられた直線偏光が検出対象に入射された時の透過光強度I(ω0,90°)を検出する。
次に、検出した透過光強度I(ω0,0°)とI(ω0,90°)を用いて、以下の式により比rを算出する。
本発明は、検出対象の基板面に斜めに光を入射し、検出対象を透過した光の強度を用いて検出対象のパラメータ(検出対象の液晶層のリタデーションや厚さ)を検出する場合に好適に用いることができる。
検出対象には、VAセル等の複屈折特性を有する素子が含まれる。
「入射面」は、入射光の進行方向と検出対象の法線を含む面である。
また、本発明の第2発明は、請求項2に記載されたとおりの検出対象のパラメータ検出方法である。
請求項2に記載の検出対象のパラメータ検出方法では、偏光方向が入射面に対して任意の角度α0傾いている直線偏光が検出対象に入射され、検光子の透過軸方向が入射面に平行である時の透過光強度I(0°,α0)と、検光子の透過軸方向が入射面に対して90°傾いている時の透過光強度I(90°,α0)を検出する。
次に、検出した透過光強度I(0°,α0)とI(90°,α0)を用いて、以下の式により比rを算出する。
請求項3に記載の検出対象のパラメータ検出方法では、検光子の透過軸方向が入射面に対して任意の角度ω傾けられ、偏光方向が入射面に対して角度αi傾いている直線偏光が検出対象に入射している時の透過光強度I(ω,αi)を、相異なる少なくとも3つ以上のαiに対して検出する。
そして、検出した少なくとも3つ以上の透過光強度I(ω,αi)と、以下の式を用いて変数A、B、Cを求める。
また、本発明の第4発明は、請求項4に記載されたとおりの検出対象のパラメータ検出方法である。
請求項4に記載の検出対象のパラメータ検出方法では、検光子の透過軸方向が入射面に対して任意の角度ω傾けられ、偏光方向が入射面に対して任意の角度α1傾いている直線偏光が検出対象に入射している時の透過光強度I(ω,α1)と、偏光方向が入射面に対して角度α2(=α1+90°)傾いている直線偏光が検出対象に入射している時の透過光強度I(ω,α2)と、偏光方向が入射面に対して角度α3(=α1+45°)傾いている直線偏光が検出対象に入射している時の透過光強度I(ω,α3)を検出する。
そして、検出した透過光強度I(ω,α1)、I(ω,α2)、I(ω,α3)を用いて、以下の式により検出対象のリタデーションRを求める。
請求項5に記載の検出対象のパラメータ検出方法では、検光子の透過軸方向が入射面に対して任意の角度ω傾けられ、偏光方向が入射面に対して角度α1傾いている直線偏光が検出対象に入射している時の透過光強度I(ω,α1)と、偏光方向が入射面に対して角度α2(=α1+90°)傾いている直線偏光が検出対象に入射している時の透過光強度I(ω,α2)と、偏光方向が入射面に対して角度α4(=α1+135°)傾いている直線偏光が検出対象に入射している時の透過光強度I(ω,α4)を検出する。
そして、検出した透過光強度I(ω,α1)、I(ω,α2)、I(ω,α4)を用いて、以下の式により前記検出対象のリタデーションRを求める。
請求項6に記載の検出対象のパラメータ検出方法では、偏光方向が入射面に対して任意の角度α傾いている直線偏光が検出対象に入射され、検光子の透過軸方向が入射面に対して角度ωi傾いている時の透過光強度I(ωi,α)を、相異なる少なくとも3つ以上のωiに対して検出する。
そして、検出した少なくとも3つ以上の透過光強度I(ωi,α)と以下の式を用いて変数A、B、Cを求める。
また、本発明の第7発明は、請求項7に記載されたとおりの検出対象のパラメータ検出方法である。
請求項7に記載の検出対象のパラメータ検出方法では、偏光方向が入射面に対して任意の角度α傾いている直線偏光が検出対象に入射し、検光子の透過軸方向が入射面に対して任意の角度ω1傾いている時の透過光強度I(ω1,α)と、検光子の透過軸方向が入射面に対して角度ω2(=ω1+90°)傾いている時の透過光強度I(ω2,α)と、検光子の透過軸方向が入射面に対して角度ω3(=ω1+45°)傾いている時の透過光強度I(ω3,α)を検出する。
そして、検出した透過光強度I(ω1,α)、I(ω2,α)、I(ω3,α)を用いて、以下の式により検出対象のリタデーションRを求める。
請求項8に記載の検出対象のパラメータ検出方法では、偏光方向が入射面に対して任意の角度α傾いている直線偏光が検出対象に入射し、検光子の透過軸方向が入射面に対して任意の角度ω1傾いている時の透過光強度I(ω1,α)と、検光子の透過軸方向が入射面に対して角度ω2(=ω1+90°)傾いている時の透過光強度I(ω2,α)と、検光子の透過軸方向が入射面に対して角度ω4(=ω1+135°)傾いている時の透過光強度I(ω4,α)を検出する。
そして、検出した透過光強度I(ω1,α)、I(ω2,α)、I(ω4,α)を用いて、以下の式により前記検出対象のリタデーションRを求める。
請求項9に記載の検出対象のパラメータ検出方法では、検出対象のリタデーションRに基づいて検出対象の厚さdを求める。
検出対象のリタデーションRに基づいて検出対象の厚さdを求める方法としては、検出対象のリタデーションRを検出対象の複屈折率で除算する方法を用いることができる。
また、本発明の第10発明は、請求項10に記載されたとおりの検出対象のパラメータ検出装置である。
請求項10に記載の検出対象のパラメータ検出装置は,発光装置、偏光子、検出対象、検光子、検出装置、処理装置を備えている。
発光装置としては、単色光を照射する発光装置が用いられる。
偏光子及び検光子は、透過軸方向が、光の進行方向に平行な軸を回転軸として回転可能である。偏光子及び検光子を回転させる駆動機構としては、偏光子や検光子を手動で回転させる手動式の駆動機構を用いることもできるし、偏光子や検光子を電動機等の駆動源により回転させる駆動機構を用いることもできる。さらに、各透過光強度を検出する際に、偏光子や検光子の駆動機構に設けられている駆動源を処理装置によって制御することもできる。
検出対象は、検光子を透過した光が基板面の法線に対して傾いた角度で入射するように配置される。例えば、検光子を支持する支持部を光の入射方向に対して傾けて配置する方法や、駆動機構により支持部を回転させる方法を用いることができる。
検出装置は、検光子を透過した光の強度を透過光強度として検出する。
処理装置は、検出装置で検出された透過光強度を入力し、請求項1〜10のいずれかに記載の方法を用いて検出対象のリタデーションRや厚さdを求める。
A first invention of the present invention for solving the above-mentioned problem is a parameter detection method of a detection object as described in claim 1.
In the parameter detection method according to claim 1, when the transmission axis direction of the analyzer is tilted at an arbitrary angle ω 0 with respect to the incident surface, and linearly polarized light whose polarization direction is parallel to the incident surface is incident on the detection target Transmitted light intensity I (ω 0 , 0 °) and transmitted light intensity I (ω 0 , 90 °) when linearly polarized light whose polarization direction is inclined by 90 ° with respect to the incident surface is incident on the detection target. To detect.
Next, using the detected transmitted light intensity I (ω 0 , 0 °) and I (ω 0 , 90 °), the ratio r is calculated by the following equation.
The present invention is suitable for detecting parameters of a detection target (retardation or thickness of a liquid crystal layer to be detected) using light intensity that is incident obliquely on a substrate surface of the detection target and transmitted through the detection target. Can be used.
The detection target includes an element having birefringence characteristics such as a VA cell.
The “incident surface” is a surface including a traveling direction of incident light and a normal line to be detected.
The second invention of the present invention is a parameter detection method of a detection object as described in claim 2.
In the parameter detection method of the detection target according to claim 2, linearly polarized light whose polarization direction is inclined at an arbitrary angle α 0 with respect to the incident surface is incident on the detection target, and the transmission axis direction of the analyzer is parallel to the incident surface. transmitted light intensity I (0 °, α 0) when it is the transmitted light intensity I (90 °, alpha 0) when the transmission axis of the analyzer is inclined 90 ° to the incident surface to detect the .
Next, using the detected transmitted light intensity I (0 °, α 0 ) and I (90 °, α 0 ), the ratio r is calculated by the following equation.
In the parameter detection method of the detection target according to claim 3, linearly polarized light in which the transmission axis direction of the analyzer is inclined at an arbitrary angle ω with respect to the incident surface and the polarization direction is inclined at angle α i with respect to the incident surface. The transmitted light intensity I (ω, α i ) when incident on the detection target is detected for at least three different α i .
Then, variables A, B, and C are obtained using at least three or more detected transmitted light intensities I (ω, α i ) and the following equations.
The fourth invention of the present invention is a parameter detection method of a detection object as described in claim 4.
The detection target parameter detection method according to claim 4, straight line transmission axis of the analyzer is any angle ω inclined to the plane of incidence, the polarization direction is arbitrary angle alpha 1 inclined to the plane of incidence The transmitted light intensity I (ω, α 1 ) when the polarized light is incident on the detection target and the linearly polarized light whose polarization direction is inclined at an angle α 2 (= α 1 + 90 °) with respect to the incident surface are detected. When transmitted light intensity I (ω, α 2 ) when incident and linearly polarized light whose polarization direction is inclined by an angle α 3 (= α 1 + 45 °) with respect to the incident surface is incident on the detection target. The transmitted light intensity I (ω, α 3 ) is detected.
Then, using the detected transmitted light intensity I (ω, α 1 ), I (ω, α 2 ), I (ω, α 3 ), the retardation R to be detected is obtained by the following equation.
The detection target parameter detecting method according to claim 5, the transmission axis direction of the analyzer is any angle ω inclined to the plane of incidence, linearly polarized light whose polarization direction is the angle alpha 1 inclined to the plane of incidence Transmitted light intensity I (ω, α 1 ) when incident on the detection target and linearly polarized light whose polarization direction is inclined at an angle α 2 (= α 1 + 90 °) with respect to the incident surface enter the detection target. Transmitted light intensity I (ω, α 2 ) and transmission when linearly polarized light whose polarization direction is inclined by an angle α 4 (= α 1 + 135 °) with respect to the incident surface is incident on the detection target. The light intensity I (ω, α 4 ) is detected.
Then, using the detected transmitted light intensity I (ω, α 1 ), I (ω, α 2 ), I (ω, α 4 ), the retardation R of the detection target is obtained by the following equation.
In the parameter detection method of the detection target according to claim 6, linearly polarized light whose polarization direction is inclined at an arbitrary angle α with respect to the incident surface is incident on the detection target, and the transmission axis direction of the analyzer is relative to the incident surface. The transmitted light intensity I (ω i , α) when the angle ω i is inclined is detected for at least three different ω i .
Then, variables A, B, and C are obtained using at least three or more detected transmitted light intensities I (ω i , α) and the following expressions.
A seventh aspect of the present invention is a parameter detection method for a detection target as described in the seventh aspect.
In the parameter detection method of the detection target according to claim 7, linearly polarized light whose polarization direction is inclined at an arbitrary angle α with respect to the incident surface is incident on the detection target, and the transmission axis direction of the analyzer is relative to the incident surface. Transmitted light intensity I (ω 1 , α) when tilted at an arbitrary angle ω 1 and transmission when the transmission axis direction of the analyzer is tilted at an angle ω 2 (= ω 1 + 90 °) with respect to the incident surface Light intensity I (ω 2 , α) and transmitted light intensity I (ω 3 , α) when the transmission axis direction of the analyzer is inclined at an angle ω 3 (= ω 1 + 45 °) with respect to the incident surface To do.
Then, using the detected transmitted light intensity I (ω 1 , α), I (ω 2 , α), I (ω 3 , α), the retardation R to be detected is obtained by the following equation.
In the parameter detection method of the detection target according to claim 8, linearly polarized light whose polarization direction is inclined at an arbitrary angle α with respect to the incident surface is incident on the detection target, and the transmission axis direction of the analyzer is relative to the incident surface. Transmitted light intensity I (ω 1 , α) when tilted at an arbitrary angle ω 1 and transmission when the transmission axis direction of the analyzer is tilted at an angle ω 2 (= ω 1 + 90 °) with respect to the incident surface Light intensity I (ω 2 , α) and transmitted light intensity I (ω 4 , α) when the transmission axis direction of the analyzer is inclined at an angle ω 4 (= ω 1 + 135 °) with respect to the incident surface To do.
Then, using the detected transmitted light intensity I (ω 1 , α), I (ω 2 , α), I (ω 4 , α), the retardation R of the detection target is obtained by the following equation.
In the detection target parameter detection method according to the ninth aspect, the thickness d of the detection target is obtained based on the retardation R of the detection target.
As a method for obtaining the thickness d of the detection target based on the retardation R of the detection target, a method of dividing the retardation R of the detection target by the birefringence of the detection target can be used.
The tenth aspect of the present invention is a parameter detection apparatus to be detected as described in the tenth aspect.
According to a tenth aspect of the present invention, there is provided a detection target parameter detection device including a light emitting device, a polarizer, a detection target, an analyzer, a detection device, and a processing device.
As the light emitting device, a light emitting device that emits monochromatic light is used.
The polarizer and the analyzer can rotate with the transmission axis direction as an axis of rotation parallel to the light traveling direction. As the drive mechanism for rotating the polarizer and the analyzer, a manual drive mechanism for manually rotating the polarizer or the analyzer can be used, or the drive for rotating the polarizer or the analyzer by a drive source such as an electric motor. A mechanism can also be used. Furthermore, when detecting the intensity of each transmitted light, the driving source provided in the driving mechanism of the polarizer or the analyzer can be controlled by the processing device.
The detection target is arranged so that light transmitted through the analyzer is incident at an angle inclined with respect to the normal of the substrate surface. For example, it is possible to use a method in which the support portion that supports the analyzer is arranged to be inclined with respect to the light incident direction, or a method in which the support portion is rotated by a driving mechanism.
The detection device detects the intensity of light transmitted through the analyzer as transmitted light intensity.
A processing apparatus inputs the transmitted light intensity detected by the detection apparatus, and calculates | requires the retardation R and thickness d of a detection target using the method in any one of Claims 1-10.
請求項1及び請求項2に記載の検出対象のパラメータ検出方法を用いれば、検出対象に対し斜めに光を入射することによる透過率の偏光方向依存性を考慮しているため、検出対象に斜めに光を入射する場合でも、検出対象のパラメータを正確に検出することができる。また、各部材の屈折率や透過率を把握する必要がないため、処理が簡単である。
請求項3に記載の検出対象のパラメータ検出方法を用いれば、請求項1及び2に記載の検出対象のパラメータ検出方法と同様に、検出対象のパラメータを簡単に、正確に検出することができる。また、請求項1及び2に記載の検出対象のパラメータ検出方法のように、透過光強度の比rを求めるために、検光子の透過軸方向あるいは入射光の偏光方向を特定の方向に設定する必要がなく、検光子の透過軸方向及び入射光の偏光方向を任意に設定することができる。これにより、検光子の透過軸方向や入射光の偏光方向の調整が容易であり、作業時間を短縮することができる。
請求項4及び請求項5に記載の検出対象のパラメータ検出方法を用いれば、請求項1及び2に記載の検出対象のパラメータ検出方法と同様に、検出対象のパラメータを簡単に、正確に検出することができる。また、請求項3に記載の検出対象のパラメータ検出方法と比較して、変数A、B、Cを求める処理が不要である。これにより、処理装置の処理が簡単となり、検出対象のパラメータの検出時間を短縮することができる。
請求項6に記載の検出対象のパラメータ検出方法を用いれば、請求項1及び2に記載の検出対象のパラメータ検出方法と同様に、検出対象のパラメータを簡単に、正確に検出することができる。また、請求項1及び2に記載の検出対象のパラメータ検出方法のように、透過光強度の比rを求めるために、検光子の透過軸方向あるいは入射光の偏光方向を特定の方向に設定する必要がなく、検光子の透過軸方向及び入射光の偏光方向を任意に設定することができる。これにより、検光子の透過軸方向や入射光の偏光方向の調整が容易であり、作業時間を短縮することができる。
請求項7及び請求項8に記載の検出対象のパラメータ検出方法を用いれば、請求項1及び2に記載の検出対象のパラメータ検出方法と同様に、検出対象のパラメータを簡単に、正確に検出することができる。また、請求項6に記載の検出対象のパラメータ検出方法と比較して、変数A、B、Cを求める処理が不要である。これにより、処理装置の処理が簡単となり、検出対象のパラメータの検出時間を短縮することができる。
請求項9に記載の検出対象のパラメータ検出方法を用いれば、検出対象の液晶層の厚さを簡単に、正確に検出することができる。
請求項10に記載の検出対象のパラメータ検出装置を用いれば、検出対象のパラメータを簡単な構成で、容易に、正確に検出することができる。
また、請求項1〜9に記載の検出対象のパラメータ検出方法及び請求項10に記載の検出対象のパラメータ検出装置を用いれば、透過光強度から計算により、検出対象のパラメータを求めることができるため、検出対象のパラメータが測定領域内で分布している場合でも、その分布を容易に求めることができる。
If the parameter detection method for a detection target according to claim 1 or 2 is used, since the polarization direction dependency of the transmittance due to oblique incidence of light on the detection target is considered, the detection target is tilted. Even when light is incident on, the parameter to be detected can be accurately detected. Moreover, since it is not necessary to grasp the refractive index and transmittance of each member, the processing is simple.
If the detection target parameter detection method according to the third aspect is used, the detection target parameter can be detected easily and accurately as in the detection target parameter detection method according to the first and second aspects. In addition, as in the parameter detection method of the detection target according to claims 1 and 2, in order to obtain the ratio r of the transmitted light intensity, the transmission axis direction of the analyzer or the polarization direction of the incident light is set to a specific direction. There is no need, and the transmission axis direction of the analyzer and the polarization direction of the incident light can be arbitrarily set. Thereby, adjustment of the transmission axis direction of the analyzer and the polarization direction of incident light is easy, and the working time can be shortened.
If the detection target parameter detection method according to claim 4 or 5 is used, the detection target parameter can be detected simply and accurately, similarly to the detection target parameter detection method according to claim 1 or 2. be able to. Further, the processing for obtaining the variables A, B, and C is unnecessary as compared with the parameter detection method to be detected according to claim 3. As a result, the processing of the processing apparatus is simplified, and the detection time of the detection target parameter can be shortened.
If the detection target parameter detection method according to the sixth aspect is used, the detection target parameter can be detected easily and accurately as in the detection target parameter detection method according to the first and second aspects. Further, as in the parameter detection method of the detection target according to claims 1 and 2, in order to obtain the ratio r of the transmitted light intensity, the transmission axis direction of the analyzer or the polarization direction of the incident light is set to a specific direction. There is no need, and the transmission axis direction of the analyzer and the polarization direction of the incident light can be arbitrarily set. Thereby, adjustment of the transmission axis direction of the analyzer and the polarization direction of incident light is easy, and the working time can be shortened.
If the detection target parameter detection method according to claim 7 and claim 8 is used, the detection target parameter can be detected simply and accurately as in the detection target parameter detection method according to claims 1 and 2. be able to. Further, in comparison with the detection target parameter detection method according to the sixth aspect, processing for obtaining the variables A, B, and C is unnecessary. As a result, the processing of the processing apparatus is simplified, and the detection time of the detection target parameter can be shortened.
By using the detection target parameter detection method according to the ninth aspect, the thickness of the detection target liquid crystal layer can be detected easily and accurately.
If the detection target parameter detection apparatus according to claim 10 is used, the detection target parameter can be easily and accurately detected with a simple configuration.
In addition, if the detection target parameter detection method according to any one of claims 1 to 9 and the detection target parameter detection device according to claim 10 are used, the detection target parameter can be obtained by calculation from the transmitted light intensity. Even when the parameters to be detected are distributed in the measurement region, the distribution can be easily obtained.
以下に、本発明の実施の形態を説明する。
以下では、液晶分子の長軸方向が基板面の法線に平行な方向に配向されている、すなわち、基板面に垂直な方向に配向されているVAセルを検出対象とし、VAセルのパラメータである液晶層のリタデーションや厚さを検出する場合について説明する。
なお、VAセルの液晶層以外は等方的であり、リタデーションを持たないと仮定する。また、液晶セル以外を検出対象とする場合でも、リタデーションを持つ層は1層のみとする。ただし、遅相軸が入射面内に有り、全体のリタデーションが各層のリタデーションの和になる場合には、それらの層を全て合わせて1層とみなす。
Hereinafter, embodiments of the present invention will be described.
In the following description, a VA cell in which the major axis direction of the liquid crystal molecules is aligned in a direction parallel to the normal line of the substrate surface, that is, in a direction perpendicular to the substrate surface, is detected. A case where the retardation or thickness of a certain liquid crystal layer is detected will be described.
It is assumed that the layers other than the liquid crystal layer of the VA cell are isotropic and have no retardation. Further, even when a target other than the liquid crystal cell is to be detected, only one layer having retardation is provided. However, when the slow axis is in the plane of incidence and the total retardation is the sum of the retardations of each layer, all these layers are considered as one layer.
まず、以下の実施の形態で用いる、検出対象のパラメータ検出装置(以下、単に「パラメータ検出装置」という)を図1に示す。なお、図1に示すパラメータ検出装置の座標系を図2に示す。
図1において、紙面の左右方向をx軸(右方向を正)、紙面の上下方向をz軸(上方向を正)、紙面に垂直な方向をy軸(紙面の裏側方向が正)とする。そして、光の進行方向をz軸の正の方向とし、x軸が入射面内に存在する右手系の座標系を用いている。
なお、本明細書では、「入射面」は、入射光の進行方向とVAセル12の基板面の法線を含む面を意味し、図1では、紙面に相当する。
偏光子、検光子の透過軸方向及び入射光の直線偏光の方向はxy面内での回転角度で指定し、x軸正の方向を0°、x軸正の方向がy軸の正の方向へ向かう回転方向を正とする。
First, FIG. 1 shows a parameter detection device to be detected (hereinafter simply referred to as “parameter detection device”) used in the following embodiments. A coordinate system of the parameter detection apparatus shown in FIG. 1 is shown in FIG.
In FIG. 1, the left-right direction of the paper surface is the x axis (right direction is positive), the vertical direction of the paper surface is the z axis (upward direction is positive), and the direction perpendicular to the paper surface is the y axis (back side direction of the paper surface is positive). . The light traveling direction is the positive direction of the z-axis, and a right-handed coordinate system in which the x-axis exists in the incident plane is used.
In the present specification, the “incident surface” means a surface including the traveling direction of incident light and the normal line of the substrate surface of the VA cell 12, and corresponds to a paper surface in FIG.
The direction of the transmission axis of the polarizer and analyzer and the direction of linear polarization of incident light are specified by the rotation angle in the xy plane, the positive direction of the x axis is 0 °, and the positive direction of the x axis is the positive direction of the y axis. The direction of rotation toward is positive.
図1に示すパラメータ検出装置は、発光装置10、偏光子11、VAセル12、検光子13、検出装置14、処理装置15を有している。各装置は、発光装置10から照射される光の進行方向(図1では、z軸方向)に沿って配置されている。
発光装置10は、パラメータ検出用の単色光を照射する。発光装置10は、単色光を照射する光源(例えば、レーザ)により構成することができる。また、発光装置10は、一定の波長範囲の多色光を照射する多色光源(例えば、ハロゲンランプ)と、多色光を単色化する単色化手段(例えば、分光器や干渉フィルタ)により構成することもできる。
偏光子11は、発光装置11から照射された光の中から、透過軸方向の直線偏光のみを透過する。検光子13は、VAセル12を透過した光の中から、透過軸方向の直線偏光のみを透過する。偏光子11及び検光子13としては、グラントムソンプリズム等の偏光プリズムや、ポラロイドフィルム等の偏光フィルムを用いることができる。
偏光子11や検光子13は、透過軸方向が、光の進行方向(z軸)に平行な軸を回転軸としてxy面内で回転可能に配置される。例えば、偏光子11や検光子13を、駆動機構11aや13aにより回転する支持部により支持する。駆動機構11aや13aとしては、支持部を手動で回転させる手動式の駆動機構や、ステッピングモータ等の駆動源により支持部を回転させる駆動機構を用いることができる。さらに、駆動源は、手動スイッチにより制御してもよいし、処理回路15によって制御してもよい。処理装置15によって制御可能に構成すると、作業を自動化することができ、作業時間を短縮することができる。
The parameter detection device shown in FIG. 1 includes a light emitting device 10, a polarizer 11, a VA cell 12, an analyzer 13, a detection device 14, and a processing device 15. Each device is disposed along the traveling direction of light emitted from the light emitting device 10 (the z-axis direction in FIG. 1).
The light emitting device 10 emits monochromatic light for parameter detection. The light emitting device 10 can be configured by a light source (for example, a laser) that emits monochromatic light. In addition, the light emitting device 10 is configured by a multicolor light source (for example, a halogen lamp) that irradiates multicolor light in a certain wavelength range, and monochromatic means (for example, a spectroscope or an interference filter) for monochromaticizing the multicolor light. You can also.
The polarizer 11 transmits only linearly polarized light in the transmission axis direction from the light emitted from the light emitting device 11. The analyzer 13 transmits only the linearly polarized light in the transmission axis direction from the light transmitted through the VA cell 12. As the polarizer 11 and the analyzer 13, a polarizing prism such as a Glan-Thompson prism or a polarizing film such as a polaroid film can be used.
The polarizer 11 and the analyzer 13 are arranged such that the transmission axis direction is rotatable in the xy plane with an axis parallel to the light traveling direction (z axis) as a rotation axis. For example, the polarizer 11 and the analyzer 13 are supported by a support portion that is rotated by the drive mechanisms 11a and 13a. As the drive mechanisms 11a and 13a, a manual drive mechanism that manually rotates the support portion or a drive mechanism that rotates the support portion with a drive source such as a stepping motor can be used. Further, the drive source may be controlled by a manual switch or may be controlled by the processing circuit 15. If it is configured to be controllable by the processing device 15, the work can be automated and the work time can be shortened.
検出対象12は、光が斜めに入射するように配置される。例えば、検出対象12を支持する支持部を、入射光の進行方向に対して傾けた状態で配置する。あるいは、y軸(図1では、紙面の表裏方向)に平行な軸を回転軸として回転可能な支持部を設ける、支持部は、駆動機構12aにより、手動あるいは駆動源によって駆動される。駆動源を処理装置15によって制御可能に構成すると、作業を自動化することができ、作業時間を短縮することができる。
液晶分子がVAセルの基板面の法線に平行に配向していれば、図1に示すようにVAセル12を配置すると、液晶層の遅相軸(液晶分子の長軸方向)は、必ず入射面に含まれる。液晶分子がVAセルの基板面の法線に対して傾いていたり、あるいは、検出対象が液晶セルでなくても、その遅相軸がその表面の法線に対して平行でない場合には、その遅相軸方向が入射面に含まれるように検出対象を配置するものとする。
なお、駆動機構11a、12a、13aには、偏光子11、検出対象12、検光子13の回転位置を検出あるいは判別可能な回転位置検出器を設けるのが好ましい。
検出装置14としては、フォトダイオードや光電子増倍管等の、入射した光の強度に比例する信号を検出信号として出力するものが用いられる。なお、検出信号が入射光の強度に比例しない場合には、検出信号と入射光の強度との関係を予め求めておき、検出信号が入射光の強度に比例するように補正を行う。
The detection target 12 is arranged so that light is incident obliquely. For example, the support part that supports the detection target 12 is arranged in a state inclined with respect to the traveling direction of the incident light. Alternatively, a support portion that is rotatable about an axis parallel to the y-axis (in FIG. 1, the front and back direction of the paper surface) is provided, and the support portion is driven manually or by a drive source by the drive mechanism 12a. If the drive source is configured to be controllable by the processing device 15, the work can be automated and the work time can be shortened.
If the liquid crystal molecules are aligned parallel to the normal line of the substrate surface of the VA cell, the VA cell 12 as shown in FIG. Included in the entrance surface. If the liquid crystal molecules are tilted with respect to the normal of the substrate surface of the VA cell, or the slow axis is not parallel to the normal of the surface even if the object to be detected is not a liquid crystal cell, It is assumed that the detection target is arranged so that the slow axis direction is included in the incident surface.
The drive mechanisms 11a, 12a, and 13a are preferably provided with rotational position detectors that can detect or determine the rotational positions of the polarizer 11, the detection target 12, and the analyzer 13.
As the detection device 14, a device that outputs a signal proportional to the intensity of incident light, such as a photodiode or a photomultiplier tube, as a detection signal is used. When the detection signal is not proportional to the intensity of the incident light, a relationship between the detection signal and the intensity of the incident light is obtained in advance, and correction is performed so that the detection signal is proportional to the intensity of the incident light.
発光装置10から放射された光は、透過軸方向が入射面に対して角度αの方向に傾けられている偏光子11により、角度αの方向の直線偏光となる。
偏光子11を透過した直線偏光は、VAセル12の基板面に入射すると、s偏光とp偏光に別れて伝播する。s偏光は、入射面に対して垂直な方向の直線偏光であり、p偏光は、入射面に平行な方向の直線偏光である。
VAセル12に入射する前の直線偏光の電場ベクトル<E0>は、[式2]で表される。なお、本明細書では、[<>]はベクトルを表す記号として用いている。
ここで、E0 p、E0 sは、p偏光及びs偏光の電場の大きさである。E0は、入射光の電場ベクトルの大きさ(振幅)である。p偏光とは入射面で振動する直線偏光であり、s偏光とは入射面とは直交する方向(つまりp偏光と直交する方向)に振動する直線偏光である。<e0 p>、<e0 s>は、p偏光及びs偏光の偏光方向の単位ベクトルである。VAセル12に入射する前であるため、<e0 p>及び<e0 s>は、それぞれx軸及びy軸に平行である。
The light emitted from the light emitting device 10 becomes linearly polarized light in the direction of the angle α by the polarizer 11 whose transmission axis direction is inclined in the direction of the angle α with respect to the incident surface.
When the linearly polarized light transmitted through the polarizer 11 enters the substrate surface of the VA cell 12, it propagates separately into s-polarized light and p-polarized light. The s-polarized light is linearly polarized light in a direction perpendicular to the incident surface, and the p-polarized light is linearly polarized light in a direction parallel to the incident surface.
The electric field vector <E 0 > of linearly polarized light before entering the VA cell 12 is expressed by [Expression 2]. In this specification, [<>] is used as a symbol representing a vector.
Here, E 0 p and E 0 s are the magnitudes of the electric fields of p-polarized light and s-polarized light. E 0 is the magnitude (amplitude) of the electric field vector of the incident light. The p-polarized light is linearly polarized light that vibrates on the incident surface, and the s-polarized light is linearly polarized light that vibrates in a direction orthogonal to the incident surface (that is, a direction orthogonal to p-polarized light). <E 0 p > and <e 0 s > are unit vectors in the polarization direction of p-polarized light and s-polarized light. Since it is before entering the VA cell 12, <e 0 p > and <e 0 s > are parallel to the x-axis and the y-axis, respectively.
界面通過直後の電場ベクトル<E1>は、[式3]で表される。
ここで、t10 p、t10 sは、p偏光及びs偏光に対する振幅透過率である。
The electric field vector <E 1 > immediately after passing through the interface is expressed by [Expression 3].
Here, t 10 p and t 10 s are amplitude transmittances for p-polarized light and s-polarized light.
界面で屈折が生じるため、<e1 p>≠<e0 p>であり、<e1 p>は、x軸と平行でなくなるが、xz面内には含まれる。一方、<e1 s>=<e0 s>であり、y軸に平行のままである。
各偏光成分の大きさだけに注目すれば、この最初の界面を透過した後の光の電場の振幅は、[式4]で表される。
If attention is paid only to the magnitude of each polarization component, the electric field amplitude of the light after passing through the first interface is expressed by [Equation 4].
その他の界面、例えばガラス−カラーフィルタ界面や透明電極−配向膜界面などでの光の電場の変化も、同様な方法で記述できる。
いま、入射側の空気−セル最表面の界面を1番目の界面として、i番目の界面を考える。ここで、i番目の界面は、[i−1]番目の媒質(0番目が入射側の空気)とi番目の媒質の界面とする。
<ei p>、<ei s>をi番目の媒質中でのp偏光及びs偏光の偏光方向の単位ベクトルとすると、i番目の媒質での電場ベクトル<Ei>は、[式5]で表される。
Now, consider the i-th interface, with the interface on the incident side air-cell outermost surface as the first interface. Here, the i-th interface is an interface between the [i−1] -th medium (0th is incident side air) and the i-th medium.
If <e i p > and <e i s > are unit vectors in the polarization direction of p-polarized light and s-polarized light in the i-th medium, the electric field vector <E i > in the i-th medium is expressed by ].
i番目の界面を通過直後の電場ベクトル<Ei+1>は、[式6]となる。
ここで、ti+1,i p、ti+1,i sは、i番目の界面でのp偏光及びs偏光に対する振幅透過率である。
The electric field vector <E i + 1 > immediately after passing through the i-th interface is expressed by [Expression 6].
Here, t i + 1, i p , t i + 1, i s is the amplitude transmittance for p-polarized light and s-polarized light at the i-th surface.
界面で屈折が生じるため、<ei+1 p>≠<ei p>であり、<ei+1 p>は、x軸と平行ではないが、xz面内には含まれる。一方、<ei+1 s>=<ei s>=<e0 s>であり、y軸に平行のままである。
各偏光成分の大きさだけに注目すれば、この界面を透過した後の光の電場の振幅は、[式7]で表される。
[式7]は大きさだけに注目しているが、偏光状態を記述するには、s偏光とp偏光の間の相対的な位相差も考慮する必要がある。
ここでは、液晶層以外は光学的に等方と想定しているため、s偏光とp偏光の間に位相差は発生しない。つまり、位相差まで考慮しても、[式7]により光の透過を記述することができる。
Since refraction occurs at the interface, <e i + 1 p > ≠ <e i p >, and <e i + 1 p > is not parallel to the x-axis, but is included in the xz plane. On the other hand, <e i + 1 s > = <e i s > = <e 0 s >, which remains parallel to the y-axis.
If attention is paid only to the magnitude of each polarization component, the amplitude of the electric field of light after passing through this interface is expressed by [Equation 7].
[Equation 7] focuses only on the magnitude, but to describe the polarization state, it is necessary to consider the relative phase difference between s-polarized light and p-polarized light.
Here, since it is assumed that other than the liquid crystal layer is optically isotropic, no phase difference is generated between the s-polarized light and the p-polarized light. That is, light transmission can be described by [Equation 7] even when the phase difference is taken into consideration.
液晶内では、光は常光と異常光に別れて伝播する。しかしながら、図1に示したように、遅相軸が入射面に存在する場合には、常光は、s偏光、すなわち、入射面に垂直な方向の直線偏光であり、異常光は、p偏光、すなわち、入射面内でs偏光と直交する方向の直線偏光である。
したがって、VAセル12を構成するガラス等の各媒質中を伝播してきたs偏光はそのまま常光として、p 偏光は異常光として液晶内を伝播する。このため、液晶層の界面での透過率も、[式7]と同様の形式で表すことができる。
In the liquid crystal, light propagates separately into ordinary light and abnormal light. However, as shown in FIG. 1, when the slow axis exists on the incident surface, ordinary light is s-polarized light, that is, linearly polarized light in a direction perpendicular to the incident surface, and extraordinary light is p-polarized light, That is, it is linearly polarized light in a direction orthogonal to s-polarized light within the incident plane.
Accordingly, the s-polarized light that has propagated through each medium such as glass constituting the VA cell 12 propagates as it is in ordinary light, and the p-polarized light propagates in the liquid crystal as extraordinary light. For this reason, the transmittance at the interface of the liquid crystal layer can also be expressed in the same format as [Formula 7].
ただし、液晶層は異方性を示し、リタデーションを持つ。すなわち、偏光方向で屈折率が異なり、常光と異常光(s偏光とp偏光)の間に位相差が発生する。
液晶層をl番目の媒質とし、常光の屈折率をno eff、異常光の屈折率をne effとすると、液晶層を通過し、[l+1]番目の媒質に入射する直前の光の電場ベクトル<El>の成分El p、El sは、[式8]となる。
ここで、dは液晶層の厚さであり、λは入射光の波長である。
However, the liquid crystal layer exhibits anisotropy and has retardation. That is, the refractive index differs depending on the polarization direction, and a phase difference occurs between ordinary light and extraordinary light (s-polarized light and p-polarized light).
A liquid crystal layer and l-th medium, the refractive index n o eff normal light, and the refractive index of the extraordinary light and n e eff, passes through the liquid crystal layer, [l + 1] -th field just before the light enters a medium The components E l p and E l s of the vector <E l > are represented by [Expression 8].
Here, d is the thickness of the liquid crystal layer, and λ is the wavelength of incident light.
no eff、ne effは、[式9]で表される。
ここで、Θは、入射光とVAセル表面の法線との間の角度である(図1、図2参照)。θは、VAセル表面の法線と液晶層の遅相軸の間の角度である。ne、noは、液晶材料の屈折率であり、電場が液晶分子の長軸方向に平行な方向及び直交する方向の直線偏光に対するものである。
VAセルの場合、液晶分子の長軸方向はVAセル表面の法線に平行(基板面に垂直)に配向されているため、θ=0である。
従って、[式9]は[式10]となる。
Here, Θ is an angle between the incident light and the normal line of the VA cell surface (see FIGS. 1 and 2). θ is an angle between the normal line of the VA cell surface and the slow axis of the liquid crystal layer. n e, n o is the refractive index of the liquid crystal material, an electric field is for linearly polarized light in a direction parallel and perpendicular to the longitudinal direction of the liquid crystal molecules.
In the case of the VA cell, θ = 0 because the long axis direction of the liquid crystal molecules is aligned parallel to the normal line of the VA cell surface (perpendicular to the substrate surface).
Therefore, [Formula 9] becomes [Formula 10].
液晶層を通過した光は、その後何回か等方性媒質間の界面を通過し、最後にVAセルの外部、つまり空気へ出射する。
以上の過程による入射光の偏光状態の変化は、出射光の電場ベクトルを<Em>とすると(液晶層及びVAセルの両側の空気も含めて[m+1]層の媒質層があったとする)、<Em>は、[式11]で表される。
ここで、tp、tsは、p偏光及びs偏光に対するVAセル全体の振幅透過率であり、[式12]で表される各界面での振幅透過率の積である。
The change in the polarization state of incident light due to the above process is as follows. When the electric field vector of the emitted light is <E m > (assuming that there are [m + 1] medium layers including air on both sides of the liquid crystal layer and the VA cell) , <E m > is represented by [Formula 11].
Here, t p and t s are amplitude transmittances of the entire VA cell with respect to p-polarized light and s-polarized light, and are products of amplitude transmittance at each interface expressed by [Equation 12].
透過軸が角度ωの方向を向いた(透過軸方向が入射面に対して角度ω傾けられている)検光子13を介して、この出射光の強度I(ω,α)を検出装置14で検出する場合、I(ω,α)は[式13]で表される。
なお、本明細書では、I(ω,α)は、入射光の偏光方向(偏光子11の透過軸方向)を入射面から角度αの方向に向け、検光子13の透過軸方向を入射面から角度ωの方向に向けた時の、透過光強度(検出装置14の検出信号)を示す。
ここで、I0は、検光子13の透過率で規格化した出射光の強度である。Tp=tp 2、Ts=ts 2は、p偏光、s偏光に対するVAセル12の透過率である。Δneff=ne eff−no effは、VAセル12の液晶層の複屈折率である。また、[R=Δneff・d]は、VAセル12の液晶層のリタデーションである。
The intensity of the emitted light I (ω, α) is detected by the detection device 14 through the analyzer 13 whose transmission axis is oriented in the direction of the angle ω (the transmission axis direction is inclined at an angle ω with respect to the incident surface). In the case of detection, I (ω, α) is expressed by [Equation 13].
In this specification, I (ω, α) is the direction of polarization of incident light (transmission axis direction of the polarizer 11) in the direction of angle α from the incident surface, and the transmission axis direction of the analyzer 13 is incident surface. The transmitted light intensity (detection signal of the detection device 14) when directed from the angle to the direction of angle ω is shown.
Here, I 0 is the intensity of the outgoing light normalized by the transmittance of the analyzer 13. T p = t p 2 and T s = t s 2 are transmittances of the VA cell 12 for p-polarized light and s-polarized light. Δn eff = n e eff -n o eff is the birefringence of the liquid crystal layer of the VA cell 12. [R = Δn eff · d] is a retardation of the liquid crystal layer of the VA cell 12.
液晶層のリタデーションRは、検出装置14で検出される透過光強度を用い、[式13]により、液晶層のリタデーションRを変数として解析することにより求めることができる。
ここで、[式13]は、p偏光、s偏光に対するVAセル12の透過率Tp、Tsを含んでいる。このため、透過光強度を用いて、[式13]から液晶層のリタデーションを求めるには、このVAセル12の透過率Tp、Tsの具体的な値が必要である。
しかしながら、VAセル12の透過率Tp、Tsの具体的な値を事前に得るためには、VAセル12の全ての部材の透過率を事前に把握しておく必要がある。実際のVAセル12には、ITO製の透明電極やカラーフィルタ等の部材を有しており、全ての部材の透過率を事前に把握することは現実的でない。また、薄膜部材は、膜の製造条件によって屈折率などの光学特性が変化するため、事前に把握することが自体が現実的でない。
本発明では、VAセル12の透過率Tp、Tsの値を必要とすることなく、液晶層のリタデーションR、したがって、液晶層の厚さdを正確に検出することができる解析方法を提案する。
The retardation R of the liquid crystal layer can be obtained by analyzing the retardation R of the liquid crystal layer as a variable by [Equation 13] using the transmitted light intensity detected by the detection device 14.
Here, [Formula 13] includes the transmittances T p and T s of the VA cell 12 for p-polarized light and s-polarized light. Therefore, by using the transmitted light intensity, in order to determine the retardation of the liquid crystal layer from the equation 13], the transmittance of the VA cell 12 T p, it is necessary to specific values of T s.
However, in order to obtain specific values of the transmittances T p and T s of the VA cell 12 in advance, it is necessary to grasp the transmittances of all the members of the VA cell 12 in advance. The actual VA cell 12 has members such as ITO transparent electrodes and color filters, and it is not practical to know the transmittance of all members in advance. Moreover, since the optical characteristics such as the refractive index of the thin film member change depending on the film manufacturing conditions, it is not practical to grasp the thin film member in advance.
The present invention proposes an analysis method that can accurately detect the retardation R of the liquid crystal layer, and hence the thickness d of the liquid crystal layer, without requiring the transmittances T p and T s of the VA cell 12. To do.
以下に、図1及び図2に示すパラメータ検出装置を用いて、検出対象のパラメータ(本実施の形態では、VAセル12の液晶層のリタデーションRや厚さd)を検出する方法の実施の形態を説明する。
[第1の実施の形態]
第1の実施の形態では、入射面に対する検光子13の透過軸方向の傾き角度ω(以下、「検光子13の透過軸方向ω」という)を任意の角度に設定し、入射面に対する偏光子11の透過軸方向の傾き角度α(以下、「偏光子11の透過軸方向α」という)を、入射面に平行(α=0°)及び直交(α=90°)とした時の透過光強度の比rを利用して、VAセル12(検出対象)のパラメータを検出する。
Hereinafter, an embodiment of a method for detecting a parameter to be detected (in this embodiment, retardation R and thickness d of the liquid crystal layer of the VA cell 12) using the parameter detection apparatus shown in FIG. 1 and FIG. Will be explained.
[First Embodiment]
In the first embodiment, a tilt angle ω in the transmission axis direction of the analyzer 13 with respect to the incident surface (hereinafter referred to as “transmission axis direction ω of the analyzer 13”) is set to an arbitrary angle, and the polarizer with respect to the incident surface. Transmitted light when the tilt angle α in the transmission axis direction of 11 (hereinafter referred to as “transmission axis direction α of the polarizer 11”) is parallel (α = 0 °) and orthogonal (α = 90 °) to the incident surface. The parameter of the VA cell 12 (detection target) is detected using the intensity ratio r.
検光子13の透過軸方向ωを任意の角度ω0に設定する(検光子13の透過軸方向を角度ω0の方向に向ける)とともに、偏光子11の透過軸方向αを0°に設定した(偏光子11の透過軸方向を0°に向けた)時の透過光強度(検出装置14の検出信号)をI(ω0,0°)とする。
また、検光子13の透過軸方向ωを前記の任意の角度ω0に設定するとともに、偏光子11の透過軸方向αを90°に設定した時の透過光強度をI(ω0,90°)とする。
そして、透過光強度I(ω0,0°)とI(ω0,90°)を用いて、[式14]により、比rを求める。
Further, the transmission axis direction ω of the analyzer 13 is set to the arbitrary angle ω 0, and the transmitted light intensity is set to I (ω 0 , 90 ° when the transmission axis direction α of the polarizer 11 is set to 90 °. ).
Then, using the transmitted light intensity I (ω 0 , 0 °) and I (ω 0 , 90 °), the ratio r is obtained by [Expression 14].
偏光子11の透過軸方向を任意の角度αに、検光子13の透過軸方向を任意の角度ωに設定した時の透過光強度I(ω,α)は、[式14]の比rを用いて、[式15]で表される。
ここで、偏光子11の透過軸方向αと検光子13の透過軸方向ωのすくなくとも一方が異なる、少なくとも2つ以上の組み合わせ(相異なる少なくとも2つ以上の組み合わせ)に対する透過光強度、例えば、任意の角度α1と任意の角度ω1の組み合わせ(ω1,α1)に対する透過光強度I(ω1,α1)と、任意の角度α2と任意の角度ω2の組み合わせ(ω2,α2)に対する透過光強度I(ω2,α2)との比は、[式16]で表される。
なお、(ω,α)の相異なる組み合わせの選択方法としては、αのみが異なる組み合わせ、例えば、(ω1,α1)の組み合わせと(ω1,α2)の組み合わせを選択する方法や、ωのみが異なる組み合わせ、例えば、(ω1,α1)の組み合わせと(ω2,α1)の組み合わせを選択する方法を用いることができる。ω1≠ω2、α1≠α2でも構わない。
The transmitted light intensity I (ω, α) when the transmission axis direction of the polarizer 11 is set to an arbitrary angle α and the transmission axis direction of the analyzer 13 is set to an arbitrary angle ω is the ratio r of [Equation 14]. And is represented by [Equation 15].
Here, the transmitted light intensity with respect to at least two or more combinations (at least two or more different combinations) in which at least one of the transmission axis direction α of the polarizer 11 and the transmission axis direction ω of the analyzer 13 is different, for example, arbitrary angle alpha 1 and any combination of angles ω 1 (ω 1, α 1 ) the transmitted light intensity I (ω 1, α 1) with respect to a, any angle alpha 2 and combinations of any angle omega 2 (omega 2, transmitted light intensity I (omega 2 for alpha 2), the ratio of the alpha 2) is represented by [expression 16].
As a method of selecting different combinations of (ω, α), a method of selecting a combination in which only α is different, for example, a combination of (ω 1 , α 1 ) and a combination of (ω 1 , α 2 ), A combination in which only ω is different, for example, a method of selecting a combination of (ω 1 , α 1 ) and a combination of (ω 2 , α 1 ) can be used. ω 1 ≠ ω 2 and α 1 ≠ α 2 may be used.
[式16]は、VAセル12の液晶層の透過率Tp、Tsを含んでいない。また、α1、α2、ω0、ω1、ω2は既知であり、入射光の波長λも既知である。すなわち、[式16]では、変数はVAセル12の液晶層のリタデーションRのみである。
したがって、I(ω1,α1)とI(ω2,α2)を検出装置14により検出(測定)し、検出(測定)したI(ω1,α1)とI(ω2,α2)を用いて、[式16]により、VAセル12の液晶層のリタデーションRを求めることができる。
なお、[液晶層のリタデーションR=Δneff・d]であり、液晶層の複屈折率Δneffは、[式9]、[式10]に示されているように、液晶層の常光に対する常光屈折率noと異常光に対する異常光屈折率neで表される。
したがって、[式16]により求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率Δneffで除算することによって、VAセル12の液晶層の厚さdを求めることができる。
以上では、[式14]で比rの具体的に値を求めた。しかしながら、[式15]あるいは[式16]中のrに[式14]を代入した数式を使用することにより、rの具体的な値を求める必要がなくなる。
また、[式15]中の未知な変数は、リタデーションRと係数I0・Tpの2つである。このため、検光子13の透過軸方向が入射面に対して任意の角度ω傾き、偏光方向が入射面に対して任意の角度α傾いている時の透過光強度I(ω,α)を、ωあるいはαの少なくとも一方が異なる、少なくとも2つ以上のωとαの組み合わせ(ω,α)に対して検出し、検出した透過光強度I(ω,α)を[式15]による計算値と比較することにより、液晶層のリタデーションRを求めることができる。比較には、例えば、最小二乗法を用いることができる。
[Expression 16] does not include the transmittances T p and T s of the liquid crystal layer of the VA cell 12. Further, α 1 , α 2 , ω 0 , ω 1 , ω 2 are known, and the wavelength λ of the incident light is also known. That is, in [Expression 16], the only variable is the retardation R of the liquid crystal layer of the VA cell 12.
Therefore, I (ω 1 , α 1 ) and I (ω 2 , α 2 ) are detected (measured) by the detection device 14, and the detected (measured) I (ω 1 , α 1 ) and I (ω 2 , α 2 ), the retardation R of the liquid crystal layer of the VA cell 12 can be obtained by [Expression 16].
It is to be noted that [the retardation R of the liquid crystal layer = Δn eff · d], and the birefringence Δn eff of the liquid crystal layer is the normal light with respect to the normal light of the liquid crystal layer, as shown in [Expression 9] and [Expression 10]. represented by extraordinary refractive index n e for the refractive index n o and extraordinary light.
Therefore, the thickness R of the liquid crystal layer of the VA cell 12 is obtained by dividing the retardation R of the liquid crystal layer of the VA cell 12 obtained by [Equation 16] by the birefringence Δn eff of the liquid crystal layer of the VA cell 12. be able to.
In the above, the specific value of the ratio r was obtained by [Equation 14]. However, it is not necessary to obtain a specific value of r by using a formula in which [Formula 14] is substituted for r in [Formula 15] or [Formula 16].
Further, the unknown variables in [Expression 15] are the retardation R and the coefficient I 0 · T p . Therefore, the transmitted light intensity I (ω, α) when the transmission axis direction of the analyzer 13 is inclined at an arbitrary angle ω with respect to the incident surface and the polarization direction is inclined at an arbitrary angle α with respect to the incident surface is Detection is performed for at least two or more combinations of ω and α (ω, α) in which at least one of ω or α is different, and the detected transmitted light intensity I (ω, α) is calculated by [Equation 15] and By comparing, the retardation R of the liquid crystal layer can be obtained. For the comparison, for example, a least square method can be used.
本実施の形態の手順を以下に説明する。
(ステップ1)
VAセル12を、図1に示すパラメータ検出装置に、入射光の進行方向に対して角度Θ傾けて設置する。
例えば、VAセル12を図1に示すパラメータ検出装置の支持部(図示省略)に配設する。そして、駆動装置12aにより、y軸に平行な軸を回転軸として支持部を回転させ、入射光の進行方向(z軸方向)とVAセル12の基板面の法線方向との間の角度をΘに設定する。
あるいは、入射光の進行方向に対して角度Θ傾けられている支持部にVAセル12を支持させる(配設)。この場合には、駆動装置12aは省略することができる。
The procedure of this embodiment will be described below.
(Step 1)
The VA cell 12 is installed in the parameter detection apparatus shown in FIG. 1 at an angle Θ with respect to the traveling direction of incident light.
For example, the VA cell 12 is disposed on a support (not shown) of the parameter detection apparatus shown in FIG. Then, the drive unit 12a rotates the support portion about the axis parallel to the y axis as the rotation axis, and sets the angle between the traveling direction of the incident light (z axis direction) and the normal direction of the substrate surface of the VA cell 12. Set to Θ.
Alternatively, the VA cell 12 is supported (arranged) on a support portion inclined at an angle Θ with respect to the traveling direction of incident light. In this case, the driving device 12a can be omitted.
(ステップ2)
検光子13の透過軸方向を任意の角度ω0の方向に向けた状態で、偏光子11の透過軸方向を0°の方向に向けた時の透過光強度Im(ω0,0°)と、偏光子11の透過軸方向を90°の方向に向けた時の透過光強度Im(ω0,90°)を検出する。
例えば、駆動装置13aにより、z軸(光の進行方向)に平行な軸を回転軸としてxy平面内で検光子13を回転させ、検光子13の透過軸方向ωを任意の角度ω0に設定する。
この状態で、駆動装置11aにより、z軸(光の進行方向)に平行な軸をを回転軸としてxy平面内で偏光子11を回転させ、偏光子11の透過軸方向αを0°に設定する。そして、この時の検出装置14の検出信号を透過光強度Im(ω0,0°)とする。
さらに、駆動装置11aにより偏光子11を回転させ、偏光子11の透過軸方向αを90°に設定する。そして、この時の検出装置14の検出信号を透過光強度Im(ω0,90°)とする。
(ステップ3)
ステップ2で検出した透過光強度Im(ω0,0°)とm(ω0,90°)を用いて、[式17]により比rを求める。
Transmitted light intensity I m (ω 0 , 0 °) when the transmission axis direction of the polarizer 11 is directed to 0 ° with the transmission axis direction of the analyzer 13 directed to an arbitrary angle ω 0 Then, the transmitted light intensity I m (ω 0 , 90 °) when the transmission axis direction of the polarizer 11 is oriented in the direction of 90 ° is detected.
For example, the driving device 13a rotates the analyzer 13 in the xy plane with the axis parallel to the z axis (light traveling direction) as the rotation axis, and sets the transmission axis direction ω of the analyzer 13 to an arbitrary angle ω 0 . To do.
In this state, the driving device 11a rotates the polarizer 11 in the xy plane with the axis parallel to the z-axis (light traveling direction) as the rotation axis, and sets the transmission axis direction α of the polarizer 11 to 0 °. To do. Then, the detection signal of the detection device 14 at this time is set as transmitted light intensity I m (ω 0 , 0 °).
Further, the polarizer 11 is rotated by the driving device 11a, and the transmission axis direction α of the polarizer 11 is set to 90 °. Then, the detection signal of the detection device 14 at this time is assumed to be transmitted light intensity I m (ω 0 , 90 °).
(Step 3)
Using the transmitted light intensity I m (ω 0 , 0 °) and m (ω 0 , 90 °) detected in step 2, the ratio r is obtained by [Equation 17].
(ステップ4)
偏光子11の透過軸方向を任意の角度α1の方向に、検光子13の透過軸方向を任意の角度ω1の方向に向けた時の透過光強度Im(ω1,α1)と、偏光子11の透過軸方向を任意の角度α2の方向に、検光子13の透過軸方向を任意の角度ω2の方向に向けた時の透過光強度Im(ω2,α2)を検出する。なお、α1とα2及びω1とω2は、少なくとも一方が異なっていればよい。
例えば、駆動装置11aにより、z軸(光の進行方向)に平行な軸を回転軸として偏光子11を回転させ、偏光子11の透過軸方向αを任意の角度α1に設定する。
この状態で、駆動装置13aにより、z軸(光の進行方向)に平行な軸を回転軸として検光子13を回転させ、検光子13の透過軸方向ωを任意の角度ω1に設定する。そして、この時の検出装置14の検出信号を透過光強度Im(ω1,α1)とする。
さらに、駆動装置11aにより偏光子11を回転させ、偏光子11の透過軸方向αを任意の角度α2に設定する。
この状態で、駆動装置13aにより回転させ、検光子13の透過軸方向ωを任意の角度ω2に設定する。そして、この時の検出装置14の検出信号を透過光強度Im(ω2,α2)とする。
(Step 4)
The transmitted light intensity I m (ω 1 , α 1 ) when the transmission axis direction of the polarizer 11 is directed to an arbitrary angle α 1 and the transmission axis direction of the analyzer 13 is directed to an arbitrary angle ω 1. The transmitted light intensity I m (ω 2 , α 2 ) when the transmission axis direction of the polarizer 11 is directed to an arbitrary angle α2 and the transmission axis direction of the analyzer 13 is directed to an arbitrary angle ω 2 is obtained. To detect. It should be noted that at least one of α 1 and α 2 and ω 1 and ω 2 may be different.
For example, by the drive unit 11a, to rotate the polarizer 11 as a rotation axis parallel to the z-axis (the traveling direction of light) to set the transmission axis alpha of the polarizer 11 at an arbitrary angle alpha 1.
In this state, by the drive unit 13a, to rotate the analyzer 13 as a rotation axis parallel to the z-axis (the traveling direction of light) to set the transmission axis direction omega of the analyzer 13 at any angle omega 1. The detection signal of the detection device 14 at this time is assumed to be transmitted light intensity Im (ω 1 , α 1 ).
Moreover, by the drive unit 11a rotates the polarizer 11, to set the transmission axis alpha of the polarizer 11 at an arbitrary angle alpha 2.
In this state, it is rotated by the drive unit 13a, to set the transmission axis direction omega of the analyzer 13 at an arbitrary angle omega 2. The detection signal of the detection device 14 at this time is defined as transmitted light intensity I m (ω 2 , α 2 ).
(ステップ5)
ステップ4で検出した透過光強度Im(ω1,α1)とIm(ω2,α2)を用い、[式18]によりVAセル12の液晶層のリタデーションRを求める。
(ステップ6)
VAセル12の液晶層の厚さdを求める場合には、ステップ5で求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率(Δneff=ne eff−no eff)([式9]、[式10]参照)で除算する。
(Step 5)
Using the transmitted light intensity I m (ω 1 , α 1 ) and I m (ω 2 , α 2 ) detected in step 4, the retardation R of the liquid crystal layer of the VA cell 12 is obtained by [Equation 18].
(Step 6)
When determining the thickness d of the liquid crystal layer of the VA cell 12, the retardation R of the liquid crystal layer of the VA cell 12 obtained in Step 5, the birefringence of the liquid crystal layer of the VA cell 12 (Δn eff = n e eff - n o eff ) (see [Expression 9] and [Expression 10]).
以上では、ω、αの少なくとも一方が異なる、少なくとも2つ以上のωとαの組み合わせ(ω,α)に対する透過光強度を用い、[式15]や[式16]により、VAセルの液晶層のリタデーションを求めたが、[式15]や[式16]より簡単な式は用いて液晶層のリタデーションを求めることもできる。
以下に、簡単な式を用いて液晶層のリタデーションを検出することができる検出方法を説明する。
まず、[式14]で求めた比rから、[式19]を用いて角度γを求める。
Below, the detection method which can detect the retardation of a liquid crystal layer using a simple formula is demonstrated.
First, the angle γ is obtained from [ratio r] obtained by [Expression 14] using [Expression 19].
ここで、偏光子11の透過光方向を[式19]で求めた角度γの方向に向け、検光子13の透過軸方向を角度ωの方向に向けた時の透過光強度I(ω,γ)は、[式20]で表される。
これにより、偏光子11の透過軸方向αを角度γに、検光子13の透過軸方向ωを任意の角度ω1に設定した時の透過光強度I(ω1,γ)と、偏光子11の透過軸方向αを角度γに、検光子13の透過軸方向ωを任意の角度ω2(≠ω1)に設定した時の透過光強度I(ω2,γ)との比は、[式21]で表される。
Accordingly, the transmitted light intensity I (ω 1 , γ) when the transmission axis direction α of the polarizer 11 is set to the angle γ and the transmission axis direction ω of the analyzer 13 is set to the arbitrary angle ω 1 , and the polarizer 11. When the transmission axis direction α is set to an angle γ and the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle ω 2 (≠ ω 1 ), the ratio to the transmitted light intensity I (ω 2 , γ) is It is represented by Formula 21].
また、検光子13の透過軸方向を[式19]で求めた角度γの方向に向け、偏光子11の透過軸方向を角度αの方向に向けた時の透過光強度I(γ,α)は、[式22]で表される。
これにより、検光子13の透過軸方向ωを角度γに、偏光子11の透過軸方向αを任意の角度α1に設定した時の透過光強度I(γ、α1)と、検光子13の透過軸方向ωを角度γに、偏光子11の透過軸方向αを任意の角度α2に(≠α1)設定した時の透過光強度I(γ,α2)との比は、[式23]で表される。
Thus, the transmitted light intensity I (γ, α 1 ) when the transmission axis direction ω of the analyzer 13 is set to an angle γ and the transmission axis direction α of the polarizer 11 is set to an arbitrary angle α 1 , and the analyzer 13 When the transmission axis direction ω is set to an angle γ and the transmission axis direction α of the polarizer 11 is set to an arbitrary angle α 2 (≠ α 1 ), the ratio to the transmitted light intensity I (γ, α 2 ) is It is expressed by Equation 23].
このように、偏光子11の透過軸方向あるいは検光子13の透過軸方向を、[式19]で求められる角度γの方向に向けた状態で、検光子13の透過軸方向を相異なる少なくとも2つ以上の任意の角度に設定した時の透過光強度、あるいは、偏光子11の透過軸方向を相異なる少なくとも2つ以上の任意の角度に設定した時の透過光強度を用いることにより、[式15]や[式16]より簡略な[式20]〜[式23]を用いて液晶層のリタデーションRを求めることができる。 In this way, at least two different transmission axis directions of the analyzer 13 with the transmission axis direction of the polarizer 11 or the transmission axis direction of the analyzer 13 oriented in the direction of the angle γ determined by [Equation 19]. By using the transmitted light intensity when set to at least two arbitrary angles or the transmitted light intensity when the transmission axis direction of the polarizer 11 is set to at least two or more different angles different from each other, The retardation R of the liquid crystal layer can be obtained using [Expression 20] to [Expression 23] which are simpler than [15] and [Expression 16].
第1の実施の形態は、VAセル12に斜めに光を入射させる場合のVAセル12の透過率Tp、Tsを考慮しているので、VAセル12の透過率に偏光依存性がある場合でも(Tp≠Ts)、VAセルの液晶層のリタデーションRや厚さdを正確に検出することができる。一方、[式16]や[式21]、[式23]から明らかなように、第1の実施の形態では、これらの透過率Tp、Tsの値を必要とせずに、VAセル12の液晶層のリタデーションRや厚さdを求める(検出する)ことができる。
したがって、VAセル12のパラメータである、VAセル12の液晶層のリタデーションRや厚さdを簡単に、正確に検出することができる。
In the first embodiment, the transmittances T p and T s of the VA cell 12 when light is incident on the VA cell 12 at an angle are taken into consideration, so that the transmittance of the VA cell 12 has polarization dependency. Even in the case (T p ≠ T s ), the retardation R and thickness d of the liquid crystal layer of the VA cell can be accurately detected. On the other hand, as is apparent from [Expression 16], [Expression 21], and [Expression 23], in the first embodiment, the values of these transmittances T p and T s are not required, and the VA cell 12 The retardation R and thickness d of the liquid crystal layer can be obtained (detected).
Therefore, the retardation R and the thickness d of the liquid crystal layer of the VA cell 12, which are parameters of the VA cell 12, can be detected easily and accurately.
[第2の実施の形態]
偏光子の透過軸方向をα、検光子の透過軸方向をωとした時の透過光強度を表す[式13]は、αとωを入れ替えても全く変化しない。すなわち、第1の実施の形態で説明した偏光子を検光子に、検光子を偏光子に置き換えることができる。
第2の実施の形態では、偏光子11の透過軸方向αを任意の角度に設定し、検光子13の透過軸方向ωを、入射面に平行(ω=0°)及び直交(ω=90°)に設定した時の透過光強度の比rを利用して、VAセル12(検出対象)のパラメータを検出する。
[Second Embodiment]
[Equation 13] representing the transmitted light intensity when the transmission axis direction of the polarizer is α and the transmission axis direction of the analyzer is ω does not change at all even when α and ω are interchanged. That is, the polarizer described in the first embodiment can be replaced with an analyzer, and the analyzer can be replaced with a polarizer.
In the second embodiment, the transmission axis direction α of the polarizer 11 is set to an arbitrary angle, and the transmission axis direction ω of the analyzer 13 is parallel (ω = 0 °) and orthogonal (ω = 90) to the incident surface. The parameter of the VA cell 12 (detection target) is detected using the ratio r of the transmitted light intensity when set to (°).
偏光子11の透過軸方向αを任意の角度α0に設定する(偏光子11の透過軸方向を角度α0の方向に向ける)とともに、検光子13の透過軸方向ωを0°に設定した(検光子13の透過軸方向を0°の方向に向けた)時の透過光強度(検出装置14の検出信号)をI(0°,α0)とする。
また、偏光子11の透過軸方向αを前記の任意の角度α0に設定するとともに、検光子13の透過軸方向ωを90°に設定した時の透過光強度をI(90°,α0)とする。
そして、透過光強度I(0°,α0)とI(90°,α0)を用いて、[式24]により、比rを求める。
Further, the transmission axis direction α of the polarizer 11 is set to the arbitrary angle α 0, and the transmitted light intensity is set to I (90 °, α 0 when the transmission axis direction ω of the analyzer 13 is set to 90 °. ).
Then, using the transmitted light intensity I (0 °, α 0 ) and I (90 °, α 0 ), the ratio r is obtained by [Equation 24].
偏光子11の透過軸方向を任意の角度αに、検光子13の透過軸方向を任意の角度ωに設定した時の透過光強度I(ω、α)は、[式24]で求められるrを用いて、[式25]で表される。
ここで、偏光子11の透過軸方向αと検光子13の透過軸方向ωのすくなくとも一方が異なる、少なくとも2つ以上の組み合わせ(相異なる少なくとも2つ以上の組み合わせ)に対する透過光強度、例えば、任意の角度α1と任意の角度ω1の組み合わせ(ω1,α1)に対する透過光強度I(ω1,α1)と、任意の角度α2と任意の角度ω2の組み合わせ(ω2,α2)に対する透過光強度I(ω2,α2)との比は、[式26]で表される。
なお、(ω,α)の相異なる組み合わせの選択方法としては、αのみが異なる組み合わせ、例えば、(ω1,α1)の組み合わせと(ω1,α2)の組み合わせを選択する方法や、ωのみが異なる組み合わせ、例えば、(ω1,α1)の組み合わせと(ω2,α1)の組み合わせを選択する方法を用いることができる。ω1≠ω2、α1≠α2でも構わない。
The transmitted light intensity I (ω, α) when the transmission axis direction of the polarizer 11 is set to an arbitrary angle α and the transmission axis direction of the analyzer 13 is set to an arbitrary angle ω is obtained by [Equation 24]. Is expressed by [Equation 25].
Here, the transmitted light intensity with respect to at least two or more combinations (at least two or more different combinations) in which at least one of the transmission axis direction α of the polarizer 11 and the transmission axis direction ω of the analyzer 13 is different, for example, arbitrary angle alpha 1 and any combination of angles ω 1 (ω 1, α 1 ) the transmitted light intensity I (ω 1, α 1) with respect to a, any angle alpha 2 and combinations of any angle omega 2 (omega 2, transmitted light intensity I (omega 2 for alpha 2), the ratio of the alpha 2) is represented by [expression 26].
As a method of selecting different combinations of (ω, α), a method of selecting a combination in which only α is different, for example, a combination of (ω 1 , α 1 ) and a combination of (ω 1 , α 2 ), A combination in which only ω is different, for example, a method of selecting a combination of (ω 1 , α 1 ) and a combination of (ω 2 , α 1 ) can be used. ω 1 ≠ ω 2 and α 1 ≠ α 2 may be used.
[式26]は、[式16]と同様に、VAセル12の液晶層の透過率Tp、Tsを含んでいない。このため、[式26]では、変数はVAセル12の液晶層のリタデーションRのみである。
したがって、I(ω1,α1)とI(ω2,α2)を検出装置14により検出し、検出したI(ω1,α1)とI(ω2,α2)を用いて、[式26]により、VAセル12の液晶層のリタデーションRを求めることができる。
また、[式26]により求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率Δneffで除算することによって、VAセル12の液晶層の厚さdを求めることができる。
以上では、[式24]でrの具体的に値を求めた。しかしながら、[式25]あるいは[式26]中のrに[式24]を代入した数式を使用することにより、rの具体的な値を求める必要がなくなる。
また、[式25]中の未知な変数は、リタデーションRと係数I0・Tpの2つである。このため、検光子13の透過軸方向が入射面に対して任意の角度ω傾き、直線偏光の偏光方向が入射面に対して任意の角度α傾いている時の透過光強度I(ω,α)を、ωあるいはαの少なくとも一方が異なる、少なくとも2つ以上のωとαの組み合わせ(ω、α)に対して検出し、検出した透過光強度I(ω、α)を[式25]による計算値と比較することにより、液晶層のリタデーションRを求めることができる。比較には、例えば、最小二乗法を用いることができる。
[Equation 26] does not include the transmittances T p and T s of the liquid crystal layer of the VA cell 12 as in [Equation 16]. Therefore, in [Equation 26], the only variable is the retardation R of the liquid crystal layer of the VA cell 12.
Therefore, I (ω 1 , α 1 ) and I (ω 2 , α 2 ) are detected by the detection device 14, and using the detected I (ω 1 , α 1 ) and I (ω 2 , α 2 ), From [Equation 26], the retardation R of the liquid crystal layer of the VA cell 12 can be obtained.
Further, by dividing the retardation R of the liquid crystal layer of the VA cell 12 obtained by [Equation 26] by the birefringence Δn eff of the liquid crystal layer of the VA cell 12, the thickness d of the liquid crystal layer of the VA cell 12 is obtained. be able to.
In the above, the specific value of r was obtained by [Equation 24]. However, it is not necessary to obtain a specific value of r by using an equation in which [Equation 24] is substituted for r in [Equation 25] or [Equation 26].
Further, the unknown variables in [Equation 25] are the retardation R and the coefficient I 0 · T p . Therefore, the transmitted light intensity I (ω, α when the transmission axis direction of the analyzer 13 is inclined at an arbitrary angle ω with respect to the incident surface and the polarization direction of the linearly polarized light is inclined at an arbitrary angle α with respect to the incident surface. ) Is detected for at least two or more combinations of ω and α (ω, α) in which at least one of ω or α is different, and the detected transmitted light intensity I (ω, α) is determined by [Equation 25]. By comparing with the calculated value, the retardation R of the liquid crystal layer can be obtained. For the comparison, for example, a least square method can be used.
本実施の形態の手順を以下に説明する。
(ステップ1)
VAセル12を、図1に示すパラメータ検出装置に、入射光の進行方向(z軸方向)に対して角度Θ傾けて設置する。
(ステップ2)
偏光子11の透過軸方向αを任意の角度α0に設定した状態で、検光子13の透過軸方向ωを0°に設定した時の透過光強度Im(0°,α0)と、検光子13の透過軸方向ωを90°に設定した時の透過光強度Im(90°,α0)を検出する。
(ステップ3)
ステップ2で検出した透過光強度Im(0°,α0)とIm(90°,α0)を用いて、[式27]により比rを求める。
(Step 1)
The VA cell 12 is installed in the parameter detection device shown in FIG.
(Step 2)
In a state where the transmission axis direction α of the polarizer 11 is set to an arbitrary angle α 0 , the transmitted light intensity I m (0 °, α 0 ) when the transmission axis direction ω of the analyzer 13 is set to 0 °, The transmitted light intensity I m (90 °, α 0 ) when the transmission axis direction ω of the analyzer 13 is set to 90 ° is detected.
(Step 3)
Using the transmitted light intensity I m (0 °, α 0 ) and I m (90 °, α 0 ) detected in step 2, the ratio r is obtained by [Equation 27].
(ステップ4)
偏光子11の透過軸方向αを任意の角度α1に、検光子13の透過軸方向ωを任意の角度ω1に設定した時の透過光強度Im(ω1,α1)と、偏光子11の透過軸方向ωを任意の角度α2に、検光子13の透過軸方向ωを任意の角度ω2に設定した時の透過光強度Im(ω2,α2)を検出する。なお、α1とα2及びω1とω2は、少なくとも一方が異なっていればよい。
(ステップ5)
ステップ4で検出した透過光強度Im(ω1,α1)とIm(ω2,α2)を用い、[式28]により、VAセル12の液晶層のリタデーションRを求める。
(ステップ6)
VAセル12の液晶層の厚さdを求める場合には、ステップ5で求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率(Δneff=ne eff−no eff)で除算する。
(Step 4)
The transmitted light intensity I m (ω 1 , α 1 ) when the transmission axis direction α of the polarizer 11 is set to an arbitrary angle α 1 and the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle ω 1 , and polarization The transmitted light intensity I m (ω 2 , α 2 ) when the transmission axis direction ω of the optical element 11 is set to an arbitrary angle α 2 and the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle ω 2 is detected. It should be noted that at least one of α 1 and α 2 and ω 1 and ω 2 may be different.
(Step 5)
Using the transmitted light intensity I m (ω 1 , α 1 ) and I m (ω 2 , α 2 ) detected in step 4, the retardation R of the liquid crystal layer of the VA cell 12 is obtained by [Equation 28].
(Step 6)
When determining the thickness d of the liquid crystal layer of the VA cell 12, the retardation R of the liquid crystal layer of the VA cell 12 obtained in Step 5, the birefringence of the liquid crystal layer of the VA cell 12 (Δn eff = n e eff - n o eff ).
以上では、ω、αの少なくとも一方が異なる、少なくとも2つ以上ωとαの組み合わせ(ω,α)に対する透過光強度を用い、[式25]や[式26]により、VAセルの液晶のリタデーションRを求めたが、[式25]や[式26]より簡略な式を用いて液晶層のリタデーションRを求めることもできる。
以下に、簡単な式を用いて液晶層のリタデーションを検出する検出方法を説明する。
まず、[式24]で求めた比rから、[式29]を用いて角度γを求める。
Below, the detection method which detects the retardation of a liquid crystal layer using a simple formula is demonstrated.
First, the angle γ is obtained from the ratio r obtained in [Expression 24] using [Expression 29].
ここで、偏光子11の透過光方向を[式29]で求めた角度γの方向に向け、検光子13の透過軸方向を角度ωの方向に向けた時の透過光強度I(ω,γ)は、[式22]で表される。
これにより、偏光子11の透過軸方向を角度γに、検光子13の透過軸方向を任意の角度ω1に設定した時の透過光強度I(ω1,γ)と、偏光子11の透過軸方向を角度γに、検光子13の透過軸方向を任意の角度ω2(≠ω1)に設定した時の透過光強度I(ω2,γ)との比は、[式19]で表される。
Here, the transmitted light intensity I (ω, γ when the transmitted light direction of the polarizer 11 is directed to the direction of the angle γ obtained by [Equation 29] and the transmission axis direction of the analyzer 13 is directed to the direction of the angle ω. ) Is expressed by [Expression 22].
Thereby, the transmitted light intensity I (ω 1 , γ) when the transmission axis direction of the polarizer 11 is set to the angle γ and the transmission axis direction of the analyzer 13 is set to the arbitrary angle ω 1 , and the transmission of the polarizer 11 is obtained. The ratio with the transmitted light intensity I (ω 2 , γ) when the axial direction is set to an angle γ and the transmission axis direction of the analyzer 13 is set to an arbitrary angle ω 2 (≠ ω 1 ) is expressed by [Equation 19]. expressed.
また、検光子13の透過軸方向を角度γの方向に向け、偏光子11の透過軸方向を角度αの方向に向けた時の透過光強度I(γ,α)は、[式20]で表される。
これにより、検光子13の透過軸方向を角度γに、偏光子11の透過軸方向を任意の角度α1に設定した時の透過光強度I(γ、α1)と、検光子13の透過軸方向を角度γに、偏光子11の透過軸方向を任意の角度α2(≠α1)に設定した時の透過光強度I(γ,α2)との比は、[式23]で表される。
The transmitted light intensity I (γ, α) when the transmission axis direction of the analyzer 13 is directed in the direction of the angle γ and the transmission axis direction of the polarizer 11 is directed in the direction of the angle α is expressed.
Accordingly, the transmitted light intensity I (γ, α 1 ) when the transmission axis direction of the analyzer 13 is set to the angle γ and the transmission axis direction of the polarizer 11 is set to the arbitrary angle α 1 , and the transmission of the analyzer 13 is obtained. The ratio with the transmitted light intensity I (γ, α 2 ) when the axial direction is set to an angle γ and the transmission axis direction of the polarizer 11 is set to an arbitrary angle α 2 (≠ α 1 ) is expressed by [Equation 23]. expressed.
このように、偏光子11の透過軸方向あるいは検光子13の透過軸方向を、[式29]で求められる角度γの方向に向けた状態で、検光子13の透過軸方向を相異なる少なくとも2つ以上の任意の角度に設定した時の透過光強度、あるいは、偏光子11の透過軸方向を相異なる少なくとも2つ以上の任意の角度に設定した時の透過光強度を用いることにより、[式25]や[式26]より簡略な[式20]〜[式23]を用いて液晶層のリタデーションRを求めることができる。 In this way, at least two different transmission axis directions of the analyzer 13 with the transmission axis direction of the polarizer 11 or the transmission axis direction of the analyzer 13 oriented in the direction of the angle γ determined by [Equation 29]. By using the transmitted light intensity when set to at least two arbitrary angles or the transmitted light intensity when the transmission axis direction of the polarizer 11 is set to at least two or more different angles different from each other, The retardation R of the liquid crystal layer can be obtained using [Expression 20] to [Expression 23] which are simpler than [25] and [Expression 26].
第2の実施の形態は、第1の実施の形態と同様に、VAセル12に斜めに光を入射させる場合のVAセル12の透過率Tp、Tsを考慮しているので、VAセル12の透過率に偏光依存性がある場合でも(Tp≠Ts)、VAセルの液晶層のリタデーションRや厚さdを正確に検出することができる。その上、これらの透過率Tp、Tsの値を必要とせずに、VAセル12の液晶層のリタデーションRや厚さdを求めることができる。
したがって、VAセル12のパラメータである、VAセル12の液晶層のリタデーションRや厚さを簡単に、正確に検出することができる。
Since the second embodiment considers the transmittances T p and T s of the VA cell 12 when light is incident obliquely on the VA cell 12 as in the first embodiment, the VA cell Even when the transmittance of 12 is polarization-dependent (T p ≠ T s ), the retardation R and thickness d of the liquid crystal layer of the VA cell can be accurately detected. In addition, the retardation R and thickness d of the liquid crystal layer of the VA cell 12 can be obtained without requiring the values of these transmittances T p and T s .
Therefore, the retardation R and thickness of the liquid crystal layer of the VA cell 12, which are parameters of the VA cell 12, can be detected easily and accurately.
[第3の実施の形態]
第1の実施の形態または第2の実施の形態では、透過光強度の比rを求めるために、検光子13の透過軸方向ωあるいは偏光子11の透過軸方向αを特定の方向に設定したが、偏光子11の透過軸方向αや検光子13の透過軸方向ωの設定操作を容易にすることもできる。
第3の実施の形態では、偏光子11の透過軸方向αを任意の角度に設定した状態で、検光子13の透過軸方向ωを、任意の相異なる3つ以上の角度に設定した時の透過光強度を用いて、VAセル12の液晶層のリタデーションRを直接検出する。
[Third embodiment]
In the first embodiment or the second embodiment, the transmission axis direction ω of the analyzer 13 or the transmission axis direction α of the polarizer 11 is set to a specific direction in order to obtain the ratio r of the transmitted light intensity. However, the setting operation of the transmission axis direction α of the polarizer 11 and the transmission axis direction ω of the analyzer 13 can be facilitated.
In the third embodiment, when the transmission axis direction α of the polarizer 11 is set to an arbitrary angle, the transmission axis direction ω of the analyzer 13 is set to any three or more different angles. Using the transmitted light intensity, the retardation R of the liquid crystal layer of the VA cell 12 is directly detected.
偏光子1の透過軸方向をα、検光子13の透過軸方向をωとした時の透過光強度を表す[式13]は、[式30]のように書き換えることができる。
[式30]では、偏光子11の透過軸方向α、検光子13の透過軸方向ωは既知であるが、I0・Tp、I0・Ts、R、A、B、Cが未知である。
ここで、3つの変数A、B、Cは、偏光子11の透過軸方向αを任意の角度に設定した状態で、検光子13の透過軸方向ωを、少なくとも3つ以上の相異なる角度に設定した時の透過光強度と[式31]を比較することによって求めることができる。例えば、検光子13の透過軸方向ωを3つの異なる角度ω1、ω2、ω3[ωi(i=1,2,3)]に設定した時の3つの透過光強度I(ω1,α)、I(ω2,α)、I(ω3,α)[I(ωi,α)(i=1,2,3)]と[式31]を比較することによって変数A、B、Cを求めることができる。比較方法としては、例えば、最小二乗法を用いることができる。
そして、求めた変数A、B、Cを用いて、[式32]によりVAセル12の液晶層のリタデーションRを求めることができる。
Here, the three variables A, B, and C are set such that the transmission axis direction ω of the analyzer 13 is set to at least three different angles while the transmission axis direction α of the polarizer 11 is set to an arbitrary angle. It can be obtained by comparing the transmitted light intensity when set with [Equation 31]. For example, three transmitted light intensities I (ω 1 when the transmission axis direction ω of the analyzer 13 is set to three different angles ω 1 , ω 2 , ω 3 [ω i (i = 1, 2, 3)]. , Α), I (ω 2 , α), I (ω 3 , α) [I (ω i , α) (i = 1, 2, 3)] and [Equation 31] B and C can be obtained. As a comparison method, for example, a least square method can be used.
Then, using the obtained variables A, B, and C, the retardation R of the liquid crystal layer of the VA cell 12 can be obtained by [Expression 32].
なお、検光子13の透過軸方向ωを3つの透過軸方向ω1〜ω3に設定した時の3つの透過光強度を用いて3つの変数A、B、Cを求める場合、3つの透過軸方向ω1〜ω3の中に45°と135°が同時に含まれていると、3つの透過光強度だけでは3つの変数A、B、Cを求めることができない。この場合には、検光子13の透過軸方向ωを4つ以上の角度に設定した時の4つ以上の透過光強度を用いる。
また、偏光子11の透過軸方向αを0°あるいは90°に設定すると、変数Cが常に「0」となる。このため、偏光子11の透過軸方向αは、0°及び90°以外の角度に設定する必要がある。
When three variables A, B, and C are obtained using three transmitted light intensities when the transmission axis direction ω of the analyzer 13 is set to three transmission axis directions ω 1 to ω 3, the three transmission axes When 45 ° and 135 ° in the direction ω 1 ~ω 3 is included at the same time, only three of the transmitted light intensity can not be obtained three variables a, B, and C. In this case, four or more transmitted light intensities when the transmission axis direction ω of the analyzer 13 is set to four or more angles are used.
When the transmission axis direction α of the polarizer 11 is set to 0 ° or 90 °, the variable C is always “0”. For this reason, it is necessary to set the transmission axis direction α of the polarizer 11 to an angle other than 0 ° and 90 °.
本実施の形態の手順を以下に説明する。
(ステップ1)
VAセル12を、図1に示すパラメータ検出装置に、入射光の進行方向に対して角度Θ傾けて設置する。
(ステップ2)
偏光子11の透過軸方向αを0°及び90°以外の任意の角度に設定した状態で、検光子13の透過軸方向ωを異なる3つの角度ω1、ω2、ω3(45°と135°を同時に含まない)に設定した時の透過光強度Im(ω1,α)、Im(ω2,α)、Im(ω3,α)を検出する。
(ステップ3)
ステップ2で検出した透過光強度Im(ωi,α)(i=1,2,3)と[式33]で表される透過光強度Im(ωi,α)(i=1,2,3)を比較することによって、変数Am、Bm、Cmを求める。
(ステップ4)
ステップ3で求めた変数Am、Bm、Cmを用いて、[式34]によりVAセル12の液晶層のリタデーションRを求める。
(ステップ5)
VAセル12の液晶層の厚さdを求める場合には、ステップ4で求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率(Δneff=ne eff−no eff)で除算する。
The procedure of this embodiment will be described below.
(Step 1)
The VA cell 12 is installed in the parameter detection apparatus shown in FIG. 1 at an angle Θ with respect to the traveling direction of incident light.
(Step 2)
With the transmission axis direction α of the polarizer 11 set to an arbitrary angle other than 0 ° and 90 °, the transmission axis direction ω of the analyzer 13 is set to three different angles ω 1 , ω 2 , ω 3 (45 ° The transmitted light intensity I m (ω 1 , α), I m (ω 2 , α), and I m (ω 3 , α) when it is set to not include 135 ° at the same time are detected.
(Step 3)
The transmitted light intensity detected in step 2 I m (ω i, α ) (i = 1,2,3) and transmitted light intensities represented by the [formula 33] I m (ω i, α) (i = 1, 2, 3) are compared to determine the variables A m , B m , and C m .
(Step 4)
Using the variables A m , B m , and C m obtained in step 3, the retardation R of the liquid crystal layer of the VA cell 12 is obtained by [Expression 34].
(Step 5)
When determining the thickness d of the liquid crystal layer of the VA cell 12, the retardation R of the liquid crystal layer of the VA cell 12 obtained in Step 4, the birefringence of the liquid crystal layer of the VA cell 12 (Δn eff = n e eff - n o eff ).
第3の実施の形態は、第1及び第2の実施の形態と同様に、VAセル12に斜めに光を入射させる場合のVAセル12の透過率Tp、Tsを考慮しているので、VAセル12の透過率に偏光依存性がある場合でも(Tp≠Ts)、VAセルの液晶層のリタデーションRや厚さdを正確に検出することができる。その上、これらの透過率Tp、Tsの値を必要とせずに、VAセル12の液晶層のリタデーションRや厚さdを求めることができる。
したがって、VAセル12のパラメータである、VAセル12の液晶層のリタデーションRや厚さを簡単に、正確に検出することができる。
また、第3の実施の形態は、第1の実施の形態と比べて、偏光子11の透過軸方向αや検光子13の透過軸方向ωを任意の角度に設定することができる。
このため、偏光子11の透過軸方向αや検光子13の透過軸方向ωの設定が容易であり、透過光強度の検出時間を短縮することができる。
Since the third embodiment considers the transmittances T p and T s of the VA cell 12 when light is incident obliquely on the VA cell 12 as in the first and second embodiments. Even when the transmittance of the VA cell 12 has polarization dependency (T p ≠ T s ), the retardation R and the thickness d of the liquid crystal layer of the VA cell can be accurately detected. In addition, the retardation R and thickness d of the liquid crystal layer of the VA cell 12 can be obtained without requiring the values of these transmittances T p and T s .
Therefore, the retardation R and thickness of the liquid crystal layer of the VA cell 12, which are parameters of the VA cell 12, can be detected easily and accurately.
Further, in the third embodiment, the transmission axis direction α of the polarizer 11 and the transmission axis direction ω of the analyzer 13 can be set to arbitrary angles as compared with the first embodiment.
For this reason, the transmission axis direction α of the polarizer 11 and the transmission axis direction ω of the analyzer 13 can be easily set, and the detection time of the transmitted light intensity can be shortened.
[第4の実施の形態]
第3の実施の形態では、検光子13の透過軸方向ωを3以上の異なる角度ωi(i=1,2,3,・・・)に設定した時の透過光強度I(ωi,α)(i=1,2,3,・・・)を用いて変数A、B、Cを求めたが、角度ωiとして適切な角度を用いることにより変数A、B、Cを求める処理を省略することができる。
第4の実施の形態では、偏光子11の透過軸方向αを任意の角度に設定した状態で、検光子13の透過軸方向ωを任意の角度ω1に設定した時の透過光強度I(ω1、α)と、検光子の透過軸方向ωを角度ω2(=ω1+90°)に設定した時の透過光強度I(ω2、α)と、検光子の透過軸方向ωを角度ω3(=ω1+45°)に設定した時の透過光強度I(ω3、α)を用いて、VAセル12の液晶層のリタデーションRを直接検出する。
[Fourth Embodiment]
In the third embodiment, the transmitted light intensity I (ω i , when the transmission axis direction ω of the analyzer 13 is set to three or more different angles ω i (i = 1, 2, 3,...). α) (i = 1, 2, 3,...) was used to determine the variables A, B, and C. However, the processing for determining the variables A, B, and C by using an appropriate angle as the angle ω i is performed. Can be omitted.
In the fourth embodiment, the transmitted light intensity I (() when the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle ω 1 while the transmission axis direction α of the polarizer 11 is set to an arbitrary angle. ω 1 , α), the transmitted light intensity I (ω 2 , α) when the transmission axis direction ω of the analyzer is set to an angle ω 2 (= ω 1 + 90 °), and the transmission axis direction ω of the analyzer The retardation R of the liquid crystal layer of the VA cell 12 is directly detected using the transmitted light intensity I (ω 3 , α) when the angle ω 3 (= ω 1 + 45 °) is set.
偏光子の透過光強度を任意の角度αに設定した状態で、検光子13の透過光強度ωを任意の角度ω1、ω2=ω1+90°、ω3=ω1+45°、ω4=ω1+135°に設定した時の透過光強度をI(ω1、α)、I(ω2、α)、I(ω3、α)、I(ω4、α)とすると、[式30]は[式35]で表される。
したがって、3つの透過光強度I(ω1、α)、I(ω2、α)、I(ω3、α)を用いて、[式36]によりVAセル12の液晶層のリタデーションRを直接求めることができる。
また、[式36]により求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率Δneffで除算することによって、VAセル12の液晶層の厚さdを求めることができる。
Accordingly, using the three transmitted light intensities I (ω 1 , α), I (ω 2 , α), I (ω 3 , α), the retardation R of the liquid crystal layer of the VA cell 12 is directly calculated by [Equation 36]. Can be sought.
Further, by dividing the retardation R of the liquid crystal layer of the VA cell 12 obtained by [Expression 36] by the birefringence Δn eff of the liquid crystal layer of the VA cell 12, the thickness d of the liquid crystal layer of the VA cell 12 is obtained. be able to.
本実施の形態の手順を以下に説明する。
(ステップ1)
VAセル12を、図1に示すパラメータ検出装置に、入射光の進行方向に対して角度Θ傾けて設置する。
(ステップ2)
偏光子11の透過軸方向αを0°及び90°以外の任意の角度に設定した状態で、検光子13の透過軸方向ωを任意の角度ω1に設定した時の透過光強度Im(ω1、α)と、検光子の透過軸方向ωを角度ω2(=ω1+90°)に設定した時の透過光強度Im(ω2、α)と、検光子の透過軸方向ωを角度ω3(=ω1+45°)に設定した時の透過光強度Im(ω3、α)を検出する。
(ステップ3)
ステップ2で検出した透過光強度Im(ω1、α)、Im(ω2、α)、Im(ω3、α)を用いて、[式37]によりVAセル12の液晶層のリタデーションRを求める。
(ステップ4)
VAセル12の液晶層の厚さdを求める場合には、ステップ3で求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率(Δneff=ne eff−no eff)で除算する。
The procedure of this embodiment will be described below.
(Step 1)
The VA cell 12 is installed in the parameter detection apparatus shown in FIG. 1 at an angle Θ with respect to the traveling direction of incident light.
(Step 2)
In a state where the transmission axis direction α of the polarizer 11 is set to an arbitrary angle other than 0 ° and 90 °, the transmitted light intensity I m (when the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle ω 1 ( ω 1 , α), the transmitted light intensity I m (ω 2 , α) when the transmission axis direction ω of the analyzer is set to an angle ω 2 (= ω 1 + 90 °), and the transmission axis direction ω of the analyzer Is detected at an angle ω 3 (= ω 1 + 45 °), and the transmitted light intensity I m (ω 3 , α) is detected.
(Step 3)
Using the transmitted light intensity I m (ω 1 , α), I m (ω 2 , α), I m (ω 3 , α) detected in step 2, the liquid crystal layer of the VA cell 12 is expressed by [Expression 37]. The retardation R is obtained.
(Step 4)
When determining the thickness d of the liquid crystal layer of the VA cell 12, the retardation R of the liquid crystal layer of the VA cell 12 obtained in Step 3, the birefringence of the liquid crystal layer of the VA cell 12 (Δn eff = n e eff - n o eff ).
[第5の実施の形態]
第4の実施の形態では、検光子13の透過軸方向ωを任意の角度ω1、ω2=ω1+90°、ω3=ω1+45°に設定することにより変数A、B、Cを求める処理を省略したが、検光子13の透過軸方向ωをこれ以外の角度に設定することによっても変数A、B、Cを求める処理を省略することができる。
第5の実施の形態では、偏光子11の透過軸方向を任意の角度αに設定した状態で、検光子13の透過軸方向ωを任意の角度ω1、ω2=ω1+90°、ω4=ω1+135°に設定した時の透過光強度を用いて、VAセル12の液晶層のリタデーションRを直接検出する。
[Fifth Embodiment]
In the fourth embodiment, the variables A, B, and C are set by setting the transmission axis direction ω of the analyzer 13 to an arbitrary angle ω 1 , ω 2 = ω 1 + 90 °, and ω 3 = ω 1 + 45 °. Although the processing to obtain is omitted, the processing to obtain the variables A, B, and C can also be omitted by setting the transmission axis direction ω of the analyzer 13 to an angle other than this.
In the fifth embodiment, with the transmission axis direction of the polarizer 11 set to an arbitrary angle α, the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle ω 1 , ω 2 = ω 1 + 90 °, ω The retardation R of the liquid crystal layer of the VA cell 12 is directly detected using the transmitted light intensity when set to 4 = ω 1 + 135 °.
偏光子の透過光強度を任意の角度αに設定した状態で、検光子13の透過光強度ωを任意の角度ω1、ω2=ω1+90°、ω3=ω1+45°、ω4=ω1+135°に設定した時の透過光強度をI(ω1、α)、I(ω2、α)、I(ω3、α)、I(ω4、α)とすると、[式30]は[式35]で表される。
したがって、3つの透過光強度I(ω1、α)、I(ω2、α)、I(ω4、α)を用いて、[式38]によりVAセル12の液晶層のリタデーションRを直接求めることができる。
また、[式38]により求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率Δneffで除算することによって、VAセル12の液晶層の厚さdを求めることができる。
With the transmitted light intensity of the polarizer set to an arbitrary angle α, the transmitted light intensity ω of the analyzer 13 is set to an arbitrary angle ω 1 , ω 2 = ω 1 + 90 °, ω 3 = ω 1 + 45 °, ω 4 = Ω 1 + 135 ° When the transmitted light intensity is I (ω 1 , α), I (ω 2 , α), I (ω 3 , α), I (ω 4 , α), 30] is expressed by [Expression 35].
Therefore, using the three transmitted light intensities I (ω 1 , α), I (ω 2 , α), I (ω 4 , α), the retardation R of the liquid crystal layer of the VA cell 12 is directly calculated by [Equation 38]. Can be sought.
Further, by dividing the retardation R of the liquid crystal layer of the VA cell 12 obtained by [Equation 38] by the birefringence Δn eff of the liquid crystal layer of the VA cell 12, the thickness d of the liquid crystal layer of the VA cell 12 is obtained. be able to.
本実施の形態の手順を以下に説明する。
(ステップ1)
VAセル12を、図1に示すパラメータ検出装置に、入射光の進行方向に対して角度Θ傾けて設置する。
(ステップ2)
偏光子11の透過軸方向を0°及び90°以外の任意の角度αに設定した状態で、検光子13の透過軸方向を任意の角度ω1に設定した時の透過光強度Im(ω1、α)と、検光子の透過軸方向をω2(=ω1+90°)に設定した時の透過光強度Im(ω2、α)と、検光子の透過軸方向をω4(=ω1+135°)に設定した時の透過光強度Im(ω4、α)を検出する。
(ステップ3)
ステップ2で検出した透過光強度Im(ω1、α)、Im(ω2、α)、Im(ω4、α)を用いて、[式39]によりVAセル12の液晶層のリタデーションRを求める。
(ステップ4)
VAセル12の液晶層の厚さdを求める場合には、ステップ3で求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率(Δneff=ne eff−no eff)で除算する。
The procedure of this embodiment will be described below.
(Step 1)
The VA cell 12 is installed in the parameter detection apparatus shown in FIG. 1 at an angle Θ with respect to the traveling direction of incident light.
(Step 2)
The transmitted light intensity I m (ω when the transmission axis direction of the analyzer 13 is set to an arbitrary angle ω 1 in a state where the transmission axis direction of the polarizer 11 is set to an arbitrary angle α other than 0 ° and 90 °. 1 , α), the transmitted light intensity I m (ω 2 , α) when the transmission axis direction of the analyzer is set to ω 2 (= ω 1 + 90 °), and the transmission axis direction of the analyzer to ω 4 ( = (Transmitted light intensity I m (ω 4 , α)) when set to (ω 1 + 135 °).
(Step 3)
Using the transmitted light intensity I m (ω 1 , α), I m (ω 2 , α), I m (ω 4 , α) detected in step 2, the liquid crystal layer of the VA cell 12 is expressed by [Equation 39]. The retardation R is obtained.
(Step 4)
When determining the thickness d of the liquid crystal layer of the VA cell 12, the retardation R of the liquid crystal layer of the VA cell 12 obtained in Step 3, the birefringence of the liquid crystal layer of the VA cell 12 (Δn eff = n e eff - n o eff ).
第4及び第5の実施の形態は、第1〜第3の実施の形態と同様に、VAセル12に斜めに光を入射させる場合のVAセル12の透過率Tp、Tsを考慮しているので、VAセル12の透過率に偏光依存性がある場合でも(Tp≠Ts)、VAセルの液晶層のリタデーションRや厚さdを正確に検出することができる。その上、これらの透過率Tp、Tsの値を必要とせずに、VAセル12の液晶層のリタデーションRや厚さdを求めることができる。
したがって、VAセル12のパラメータである、VAセル12の液晶層のリタデーションRや厚さを簡単に、正確に検出することができる。
また、第4及び第5の実施の形態は、第3の実施の形態と比べて、変数A,B、Cを求める必要がないため、処理装置15の処理が簡単になる。
As in the first to third embodiments, the fourth and fifth embodiments take into account the transmittances T p and T s of the VA cell 12 when light is incident on the VA cell 12 obliquely. Therefore, even when the transmittance of the VA cell 12 has polarization dependency (T p ≠ T s ), the retardation R and thickness d of the liquid crystal layer of the VA cell can be accurately detected. In addition, the retardation R and thickness d of the liquid crystal layer of the VA cell 12 can be obtained without requiring the values of these transmittances T p and T s .
Therefore, the retardation R and thickness of the liquid crystal layer of the VA cell 12, which are parameters of the VA cell 12, can be detected easily and accurately.
Further, in the fourth and fifth embodiments, it is not necessary to obtain the variables A, B, and C as compared with the third embodiment, so that the processing of the processing device 15 is simplified.
[第6の実施の形態]
偏光子の透過軸方向をα、検光子の透過軸方向をωとした時の透過光強度を表す[式13]は、αとωを入れ替えても全く変化しない。すなわち、第3の実施の形態で説明した偏光子を検光子に、検光子を偏光子に置き換えることができる。
第6の実施の形態では、検光子13の透過軸方向ωを任意の角度に設定した状態で、偏光子11の透過軸方向αを、任意の異なる3以上の角度に設定した時の透過光強度を用いて、VAセル12の液晶層のリタデーションRを直接検出する。
[Sixth Embodiment]
[Equation 13] representing the transmitted light intensity when the transmission axis direction of the polarizer is α and the transmission axis direction of the analyzer is ω does not change at all even when α and ω are interchanged. That is, the polarizer described in the third embodiment can be replaced with an analyzer, and the analyzer can be replaced with a polarizer.
In the sixth embodiment, the transmitted light when the transmission axis direction α of the polarizer 11 is set to any three or more different angles while the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle. Using the intensity, the retardation R of the liquid crystal layer of the VA cell 12 is directly detected.
偏光子11の透過軸方向をα、検光子13の透過軸方向をωとする。第3の実施の形態では検光子13の透過軸方向ωを変化させたが、偏光子11の透過軸方向αを変化させるとすると、透過光強度を表す[式19]は、[式40]のように書き換えることができる。
[式40]では、偏光子11の透過軸方向α、検光子13の透過軸方向ωは既知であるが、I0・Tp、I0・Ts、R、A、B、Cが未知である。
ここで、3つの変数A、B、Cは、検光子13の透過軸方向ωを任意の角度に設定した状態で、偏光子11の透過軸方向αを、少なくとも3つ以上の異なる角度に設定した時の透過光強度と[式41]を比較することによって求めることができる。例えば、偏光子11の透過軸方向ωを3つの異なる角度α1、α2、α3[αi(i=1,2,3)]に設定した時の3つの透過光強度I(ω,α1)、I(ω,α2)、I(ω,α3)[I(ω,αi)(i=1,2,3)]と[式41]を比較することによって変数A、B、Cを求めることができる。比較方法としては、例えば、最小二乗法を用いることができる。
そして、求めた変数A、B、Cを用いて、[式32]によりVAセル12の液晶層のリタデーションRを求めることができる。
The transmission axis direction of the polarizer 11 is α, and the transmission axis direction of the analyzer 13 is ω. In the third embodiment, the transmission axis direction ω of the analyzer 13 is changed. However, if the transmission axis direction α of the polarizer 11 is changed, [Expression 19] representing the transmitted light intensity is expressed by [Expression 40]. Can be rewritten as
In [Equation 40], the transmission axis direction α of the polarizer 11 and the transmission axis direction ω of the analyzer 13 are known, but I 0 · T p , I 0 · T s , R, A, B, and C are unknown. It is.
Here, the three variables A, B, and C set the transmission axis direction α of the polarizer 11 to at least three or more different angles in a state where the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle. It can be obtained by comparing the transmitted light intensity with [Equation 41]. For example, when the transmission axis direction ω of the polarizer 11 is set to three different angles α 1 , α 2 , α 3 [α i (i = 1, 2, 3)], three transmitted light intensities I (ω, α 1 ), I (ω, α 2 ), I (ω, α 3 ) [I (ω, α i ) (i = 1, 2, 3)] and [Equation 41] are compared to determine the variable A, B and C can be obtained. As a comparison method, for example, a least square method can be used.
Then, using the obtained variables A, B, and C, the retardation R of the liquid crystal layer of the VA cell 12 can be obtained by [Expression 32].
なお、偏光子11の透過軸方向αを3つの透過軸方向α1〜α3に設定した時の3つの透過光強度を用いて3つの変数A、B、Cを求める場合、3つの透過軸方向α1〜α3の中に45°と135°が同時に含まれていると、3つの透過光強度だけでは3つの変数A、B、Cを求めることができない。この場合には、偏光子11の透過軸方向αを4つ以上の角度に設定した時の4つ以上の透過光強度を用いる。
また、検光子13の透過軸方向ωを0°あるいは90°に設定すると、変数Cが常に「0」となる。このため、検光子13の透過軸方向ωは、0°及び90°以外の角度に設定する必要がある。
When the three variables A, B, and C are obtained using the three transmitted light intensities when the transmission axis direction α of the polarizer 11 is set to the three transmission axis directions α 1 to α 3 , the three transmission axes If 45 ° and 135 ° are simultaneously included in the directions α 1 to α 3 , the three variables A, B, and C cannot be obtained with only the three transmitted light intensities. In this case, four or more transmitted light intensities when the transmission axis direction α of the polarizer 11 is set to four or more angles are used.
When the transmission axis direction ω of the analyzer 13 is set to 0 ° or 90 °, the variable C is always “0”. For this reason, the transmission axis direction ω of the analyzer 13 needs to be set to an angle other than 0 ° and 90 °.
本実施の形態の手順を以下に説明する。
(ステップ1)
VAセル12を、図1に示すパラメータ検出装置に、入射光の進行方向に対して角度Θ傾けて設置する。
(ステップ2)
検光子13の透過軸方向ωを0°及び90°以外の任意の角度に設定した状態で、偏光子11の透過軸方向αを異なる3つの角度α1、α2、α3(45°と135°を同時に含まない)に設定した時の透過光強度Im(ω,α1)、Im(ω,α2)、Im(ω,α3)を検出する。
(ステップ3)
ステップ2で検出した透過光強度Im(ω,αi)(i=1,2,3)と[式42]で表される透過光強度Im(ω,αi)(i=1,2,3)を比較することによって、変数Am、Bm、Cmを求める。
(ステップ4)
ステップ3で求めた変数Am、Bm、Cmを用いて、[式34]によりVAセル12の液晶層のリタデーションRを求める。
(ステップ5)
VAセル12の液晶層の厚さdを求める場合には、ステップ4で求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率(Δneff=ne eff−no eff)で除算する。
The procedure of this embodiment will be described below.
(Step 1)
The VA cell 12 is installed in the parameter detection apparatus shown in FIG. 1 at an angle Θ with respect to the traveling direction of incident light.
(Step 2)
With the transmission axis direction ω of the analyzer 13 set to an arbitrary angle other than 0 ° and 90 °, the transmission axis direction α of the polarizer 11 is set to three different angles α 1 , α 2 , α 3 (45 ° The transmitted light intensity I m (ω, α 1 ), I m (ω, α 2 ), and I m (ω, α 3 ) are set.
(Step 3)
Transmitted light intensity I m (ω, α i ) (i = 1, 2, 3) detected in step 2 and transmitted light intensity I m (ω, α i ) (i = 1, 2, 3) are compared to determine the variables A m , B m , and C m .
(Step 4)
Using the variables A m , B m , and C m obtained in step 3, the retardation R of the liquid crystal layer of the VA cell 12 is obtained by [Expression 34].
(Step 5)
When determining the thickness d of the liquid crystal layer of the VA cell 12, the retardation R of the liquid crystal layer of the VA cell 12 obtained in Step 4, the birefringence of the liquid crystal layer of the VA cell 12 (Δn eff = n e eff - n o eff ).
第6の実施の形態は、第3の実施の形態と同様に、VAセル12に斜めに光を入射させる場合のVAセル12の透過率Tp、Tsを考慮しているので、VAセル12の透過率に偏光依存性がある場合でも(Tp≠Ts)、VAセルの液晶層のリタデーションRや厚さdを正確に検出することができる。その上、これらの透過率Tp、Tsの値を必要とせずに、VAセル12の液晶層のリタデーションRや厚さdを求めることができる。
したがって、VAセル12のパラメータである、VAセル12の液晶層のリタデーションRや厚さdを簡単に、正確に検出することができる。
また、第6の実施の形態は、第2の実施の形態と比べて、偏光子11の透過軸方向αや検光子13の透過軸方向ωを任意の角度に設定することができる。
このため、偏光子11の透過軸方向αや検光子13の透過軸方向ωの設定が容易であり、透過光強度の検出時間を短縮することができる。
Since the sixth embodiment takes into account the transmittances T p and T s of the VA cell 12 when light is incident obliquely on the VA cell 12 as in the third embodiment, the VA cell Even when the transmittance of 12 has polarization dependency (T p ≠ T s ), the retardation R and thickness d of the liquid crystal layer of the VA cell can be accurately detected. In addition, the retardation R and thickness d of the liquid crystal layer of the VA cell 12 can be obtained without requiring the values of these transmittances T p and T s .
Therefore, the retardation R and the thickness d of the liquid crystal layer of the VA cell 12, which are parameters of the VA cell 12, can be detected easily and accurately.
Further, in the sixth embodiment, the transmission axis direction α of the polarizer 11 and the transmission axis direction ω of the analyzer 13 can be set to arbitrary angles as compared with the second embodiment.
For this reason, the transmission axis direction α of the polarizer 11 and the transmission axis direction ω of the analyzer 13 can be easily set, and the detection time of the transmitted light intensity can be shortened.
[第7の実施の形態]
第6の実施の形態では、偏光子11の透過軸方向αを3以上の異なる角度αi(i=1,2,3、・・・)に設定した時の透過光強度I(ω,αi)(i=1,2,3、・・・)を用いて変数A、B、Cを求めたが、角度αiとして適切な角度を用いることにより変数A、B、Cを求める処理を省略することができる。
第7の実施の形態では、検光子13の透過軸方向ω任意の角度に設定した状態で、偏光子11の透過軸方向αを角度α1、角度α2=α1+90度、α3=α1+45°に設定した時の透過光強度を用いて、VAセル12の液晶層のリタデーションRを直接検出する。
[Seventh Embodiment]
In the sixth embodiment, the transmitted light intensity I (ω, α when the transmission axis direction α of the polarizer 11 is set to three or more different angles α i (i = 1, 2, 3,...). i ) The variables A, B, and C are obtained using (i = 1, 2, 3,...), but the variables A, B, and C are processed by using an appropriate angle as the angle α i. Can be omitted.
In the seventh embodiment, in a state where the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle, the transmission axis direction α of the polarizer 11 is an angle α 1 , an angle α 2 = α 1 +90 degrees, and α 3 = The retardation R of the liquid crystal layer of the VA cell 12 is directly detected using the transmitted light intensity when set to α 1 + 45 °.
検光子13の透過光強度ωを任意の角度に設定した状態で、偏光子11の透過軸方向αを任意の角度α1、α2=α1+90度、α3=α1+45°、α4=α1+135度に設定した時の透過光強度をI(ω,α1)、I(ω,α2)、I(ω,α3)、I(ω,α4)とすると、[式30]は[式43]で表される。
したがって、3つの透過光強度I(ω,α1)、I(ω,α2)、I(ω,α3)を用いて、[式44]によりVAセル12の液晶層のリタデーションRを直接求めることができる。
また、[式44]により求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率Δneffで除算することによって、VAセル12の液晶層の厚さdを求めることができる。
Accordingly, using the three transmitted light intensities I (ω, α 1 ), I (ω, α 2 ), I (ω, α 3 ), the retardation R of the liquid crystal layer of the VA cell 12 is directly calculated by [Equation 44]. Can be sought.
Further, by dividing the retardation R of the liquid crystal layer of the VA cell 12 obtained by [Expression 44] by the birefringence Δn eff of the liquid crystal layer of the VA cell 12, the thickness d of the liquid crystal layer of the VA cell 12 is obtained. be able to.
本実施の形態の手順を以下に説明する。
(ステップ1)
VAセル12を、図1に示すパラメータ検出装置に、入射光の進行方向に対して角度Θ傾けて設置する。
(ステップ2)
検光子13の透過軸方向ωを0°及び90°以外の任意の角度に設定した状態で、偏光子11の透過軸方向αを任意の角度α1に設定した時の透過光強度Im(ω,α1)と、偏光子11の透過軸方向αを角度α2(=α1+90°)に設定した時の透過光強度Im(ω,α2)と、偏光子11の透過軸方向αを角度α3(=α1+45°)に設定した時の透過光強度Im(ω,α3)を検出する。
(ステップ3)
ステップ2で検出した透過光強度Im(ω,α1)、Im(ω,α2)、Im(ω,α3)を用いて、[式45]によりVAセル12の液晶層のリタデーションRを求める。
(ステップ4)
VAセル12の液晶層の厚さdを求める場合には、ステップ3で求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率(Δneff=ne eff−no eff)で除算する。
The procedure of this embodiment will be described below.
(Step 1)
The VA cell 12 is installed in the parameter detection apparatus shown in FIG. 1 at an angle Θ with respect to the traveling direction of incident light.
(Step 2)
In a state where the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle other than 0 ° and 90 °, the transmitted light intensity I m (when the transmission axis direction α of the polarizer 11 is set to an arbitrary angle α 1 ( ω, α 1 ), the transmitted light intensity I m (ω, α 2 ) when the transmission axis direction α of the polarizer 11 is set to an angle α 2 (= α 1 + 90 °), and the transmission axis of the polarizer 11 The transmitted light intensity I m (ω, α 3 ) when the direction α is set to an angle α 3 (= α 1 + 45 °) is detected.
(Step 3)
Using the transmitted light intensity I m (ω, α 1 ), I m (ω, α 2 ), and I m (ω, α 3 ) detected in step 2, the liquid crystal layer of the VA cell 12 is expressed by [Equation 45]. The retardation R is obtained.
(Step 4)
When determining the thickness d of the liquid crystal layer of the VA cell 12, the retardation R of the liquid crystal layer of the VA cell 12 obtained in Step 3, the birefringence of the liquid crystal layer of the VA cell 12 (Δn eff = n e eff - n o eff ).
[第8の実施の形態]
第7の実施の形態では、偏光子11の透過軸方向を任意の角度α1、α2=α1+90°、α3=α1+45°に設定することにより変数A、B、Cを求める処理を省略したが、偏光子11の透過軸方向αをこれ以外の角度に設定することによっても変数A、B、Cを求める処理を省略することができる。
第8の実施の形態では、検光子13の透過軸方向ωを任意の角度に設定した状態で、偏光子11の透過軸方向を任意の角度α1、α2=α1+90°、α3=α1+135°に設定した時の透過光強度を用いて、VAセル12の液晶層のリタデーションRを直接検出する。
[Eighth Embodiment]
In the seventh embodiment, the variables A, B, and C are obtained by setting the transmission axis direction of the polarizer 11 to arbitrary angles α 1 , α 2 = α 1 + 90 °, and α 3 = α 1 + 45 °. Although the processing is omitted, the processing for obtaining the variables A, B, and C can be omitted by setting the transmission axis direction α of the polarizer 11 to an angle other than this.
In the eighth embodiment, with the transmission axis direction ω of the analyzer 13 set to an arbitrary angle, the transmission axis direction of the polarizer 11 is set to an arbitrary angle α 1 , α 2 = α 1 + 90 °, α 3. = The retardation R of the liquid crystal layer of the VA cell 12 is directly detected using the transmitted light intensity when it is set to = α 1 + 135 °.
検光子13の透過光強度ωを任意の角度に設定した状態で、偏光子11の透過光強度αを任意の角度α1、α2=α1+90°、α3=α1+45°、α4=α1+135°に設定した時の透過光強度をI(ω,α1)、I(ω,α2)、I(ω,α3)、I(ω,α4)とすると、[式30]は[式43]で表される。
したがって、3つの透過光強度I(ω,α1)、I(ω,α2)、I(ω,α4)を用いて、[式46]によりVAセル12の液晶層のリタデーションRを直接求めることができる。
また、[式46]により求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率Δneffで除算することによって、VAセル12の液晶層の厚さdを求めることができる。
With the transmitted light intensity ω of the analyzer 13 set to an arbitrary angle, the transmitted light intensity α of the polarizer 11 is set to an arbitrary angle α 1 , α 2 = α 1 + 90 °, α3 = α1 + 45 °, α 4 = α When the transmitted light intensity when set to 1 + 135 ° is I (ω, α 1 ), I (ω, α 2 ), I (ω, α 3 ), I (ω, α 4 ), [Equation 30] Is represented by [Equation 43].
Therefore, using the three transmitted light intensities I (ω, α 1 ), I (ω, α 2 ), I (ω, α 4 ), the retardation R of the liquid crystal layer of the VA cell 12 is directly calculated by [Equation 46]. Can be sought.
Further, the retardation R of the liquid crystal layer of the VA cell 12 obtained by [Equation 46] is divided by the birefringence Δn eff of the liquid crystal layer of the VA cell 12 to obtain the thickness d of the liquid crystal layer of the VA cell 12. be able to.
本実施の形態の手順を以下に説明する。
(ステップ1)
VAセル12を、図1に示すパラメータ検出装置に、入射光の進行方向に対して角度Θ傾けて設置する。
(ステップ2)
検光子13の透過軸方向ωを0°及び90°以外の任意の角度に設定した状態で、偏光子11の透過軸方向αを任意の角度α1に設定した時の透過光強度Im(ω,α1)と、偏光子11の透過軸方向αを角度α2(=α1+90°)に設定した時の透過光強度Im(ω,α2)と、偏光子11の透過軸方向αを角度α4(=α1+135°)に設定した時の透過光強度Im(ω,α4)を検出する。
(ステップ3)
ステップ2で検出した透過光強度Im(ω,α1)、Im(ω,α2)、Im(ω,α4)を用いて、[式47]によりVAセル12の液晶層のリタデーションRを求める。
(ステップ4)
VAセル12の液晶層の厚さdを求める場合には、ステップ3で求めたVAセル12の液晶層のリタデーションRを、VAセル12の液晶層の複屈折率(Δneff=ne eff−no eff)で除算する。
The procedure of this embodiment will be described below.
(Step 1)
The VA cell 12 is installed in the parameter detection apparatus shown in FIG. 1 at an angle Θ with respect to the traveling direction of incident light.
(Step 2)
In a state where the transmission axis direction ω of the analyzer 13 is set to an arbitrary angle other than 0 ° and 90 °, the transmitted light intensity I m (when the transmission axis direction α of the polarizer 11 is set to an arbitrary angle α 1 ( ω, α 1 ), the transmitted light intensity I m (ω, α 2 ) when the transmission axis direction α of the polarizer 11 is set to an angle α 2 (= α 1 + 90 °), and the transmission axis of the polarizer 11. The transmitted light intensity I m (ω, α 4 ) when the direction α is set to an angle α 4 (= α1 + 135 °) is detected.
(Step 3)
Using the transmitted light intensity I m (ω, α 1 ), I m (ω, α 2 ), I m (ω, α 4 ) detected in step 2, the liquid crystal layer of the VA cell 12 is expressed by [Equation 47]. The retardation R is obtained.
(Step 4)
When determining the thickness d of the liquid crystal layer of the VA cell 12, the retardation R of the liquid crystal layer of the VA cell 12 obtained in Step 3, the birefringence of the liquid crystal layer of the VA cell 12 (Δn eff = n e eff - n o eff ).
第7及び第8の実施の形態は、第1〜第6の実施の形態と同様に、VAセル12に斜めに光を入射させる場合のVAセル12の透過率Tp、Tsを考慮しているので、VAセル12の透過率に偏光依存性がある場合でも(Tp≠Ts)、VAセルの液晶層のリタデーションRや厚さdを正確に検出することができる。その上、これらの透過率Tp、Tsの値を必要とせずに、VAセル12の液晶層のリタデーションRや厚さdを求めることができる。
したがって、VAセル12のパラメータである、VAセル12の液晶層のリタデーションRや厚さを簡単に、正確に検出することができる。
また、第7及び第8の実施の形態は、第6の実施の形態と比べて、変数A,B、Cを求める必要がないため、処理装置15の処理が簡単になる。
As in the first to sixth embodiments, the seventh and eighth embodiments take into account the transmittances T p and T s of the VA cell 12 when light is incident on the VA cell 12 obliquely. Therefore, even when the transmittance of the VA cell 12 has polarization dependency (T p ≠ T s ), the retardation R and the thickness d of the liquid crystal layer of the VA cell can be accurately detected. In addition, the retardation R and thickness d of the liquid crystal layer of the VA cell 12 can be obtained without requiring the values of these transmittances T p and T s .
Therefore, the retardation R and thickness of the liquid crystal layer of the VA cell 12, which are parameters of the VA cell 12, can be detected easily and accurately.
Further, the seventh and eighth embodiments do not require the variables A, B, and C as compared with the sixth embodiment, and therefore the processing of the processing device 15 is simplified.
本発明を用いて検出対象の各透過光強度を検出し、検出した各透過光強度を用いて検出対象のリタデーション及び厚さを検出した実験例を説明する。
[実験例1]
検出対象として、以下のようにして作製したVAセルを用いた。
透明電極として、片面に、直径約1cmの円形の透明電極を有する、約3cm角のガラス基板を用いた。ガラス基板の透明電極側には、液晶分子を、ガラス基板の法線に平行に配向させるためのポリイミド膜が設けられている。そして、2枚のガラス基板を、透明電極側が対向するように接着した。ここで、直径4.5μmの樹脂製のビーズを混入した紫外線硬化性接着剤をガラス基板の周囲の内側5mm程度の部分に塗布し、紫外線を照射して硬化させることにより2枚のガラス基板を接着したので、ガラス基板間には、ビーズの径に対応する間隙が形成されている。このガラス基板の間隙に、液晶材料を毛細管現象を利用して注入することによってVAセルを作製した。
発光装置10は、ハロゲンランプと、波長λが546nmの単色光を透過する干渉フィルタにより構成した。
偏光子11及び検光子13は、偏光フィルムを使用した。
検出装置14は、CCDカメラを使用した。
前記した方法で作製したVAセルを、偏光子11と検光子13の間に、入射光の入射角(VAセル12の基板面の法線と入射光の入射方向との間の角度)Θが30°になるように設置した。
An experimental example will be described in which each transmitted light intensity of a detection target is detected using the present invention, and the retardation and thickness of the detection target are detected using each detected transmitted light intensity.
[Experimental Example 1]
As a detection target, a VA cell produced as follows was used.
As the transparent electrode, an approximately 3 cm square glass substrate having a circular transparent electrode having a diameter of about 1 cm on one side was used. A polyimide film for aligning liquid crystal molecules in parallel with the normal line of the glass substrate is provided on the transparent electrode side of the glass substrate. And the two glass substrates were adhere | attached so that the transparent electrode side might oppose. Here, an ultraviolet curable adhesive mixed with resin beads having a diameter of 4.5 μm is applied to an inner portion of about 5 mm around the glass substrate, and the two glass substrates are cured by irradiating with ultraviolet rays to be cured. Since they are bonded, a gap corresponding to the diameter of the beads is formed between the glass substrates. A VA cell was fabricated by injecting a liquid crystal material into the gap between the glass substrates by utilizing capillary action.
The light emitting device 10 includes a halogen lamp and an interference filter that transmits monochromatic light having a wavelength λ of 546 nm.
Polarizer films were used for the polarizer 11 and the analyzer 13.
The detection device 14 used a CCD camera.
In the VA cell produced by the above-described method, the incident angle of incident light (angle between the normal of the substrate surface of the VA cell 12 and the incident direction of incident light) Θ is between the polarizer 11 and the analyzer 13. It installed so that it might become 30 degrees.
この状態で、偏光子11の透過軸方向αを45°に設定し(偏光子11の透過軸方向を45°の方向に向け)、検光子13の透過軸方向ωを0°に設定した(検光子13の透過軸方向を0°の方向に向けた)時の透過光強度(検出装置14の検出信号)Im(0°,45°)を検出した。また、偏光子11の透過軸方向αを45°に設定し、検光子13の透過軸方向ωを90°に設定した時の透過光強度Im(90°,45°)を検出した。
そして、検出したIm(0°,45°)とIm(90°,45°)を用い、[式27]により比rを求めたところ、r=0.665が得られた。
次に、偏光子11の透過軸方向αを、rを用いて[式29]により求められる角度[γ=50.8°]に設定し、検光子13の透過軸方向ωを45°に設定した時の透過光強度Im(45°,α)を検出した。また、偏光子11の透過軸方向αを、前記角度[γ=50.8°]に設定し、検光子13の透過軸方向ωを135°に設定した時の透過光強度Im(135°,α)を検出した。
そして、検出したIm(45°,α)とIm(135°,α)を用い、[式48]により、VAセルの液晶層のリタデーションRを求めたところ、R=40.4nmが得られた。
また、VAセルの液晶材料の異常光屈折率ne=1.5633、常光屈折率no=1.4776及び入射角Θ=30°を用いて、[式10]によりVAセルの液晶層の複屈折率Δneffを求めた。そして、[式48]で求めたVAセルの液晶層のリタデーションR=40.4nmを、VAセルの液晶層の複屈折率Δneffで除算することによって、VAセルの液晶層の厚さd=4.23μmが得られた。
In this state, the transmission axis direction α of the polarizer 11 is set to 45 ° (the transmission axis direction of the polarizer 11 is directed to 45 °), and the transmission axis direction ω of the analyzer 13 is set to 0 ° ( The transmitted light intensity (detection signal of the detection device 14) Im (0 °, 45 °) when the transmission axis direction of the analyzer 13 was directed to 0 ° was detected. Further, the transmitted light intensity Im (90 °, 45 °) when the transmission axis direction α of the polarizer 11 was set to 45 ° and the transmission axis direction ω of the analyzer 13 was set to 90 ° was detected.
Then, using the detected I m (0 °, 45 °) and I m (90 °, 45 °), the ratio r was obtained by [Equation 27], and r = 0.665 was obtained.
Next, the transmission axis direction α of the polarizer 11 is set to an angle [γ = 50.8 °] obtained by [Equation 29] using r, and the transmission axis direction ω of the analyzer 13 is set to 45 °. The transmitted light intensity I m (45 °, α) was detected. The transmitted light intensity I m (135 °) when the transmission axis direction α of the polarizer 11 is set to the angle [γ = 50.8 °] and the transmission axis direction ω of the analyzer 13 is set to 135 °. , Α) was detected.
Then, using the detected I m (45 °, α) and I m (135 °, α), the retardation R of the liquid crystal layer of the VA cell was obtained by [Equation 48], and R = 40.4 nm was obtained. It was.
Further, using the extraordinary refractive index n e = 1.5633, the ordinary refractive index n o = 1.4776, and the incident angle Θ = 30 ° of the liquid crystal material of the VA cell, the liquid crystal layer of the VA cell is expressed by [Equation 10]. The birefringence index Δn eff was determined. Then, by dividing the retardation R = 40.4 nm of the liquid crystal layer of the VA cell obtained by [Equation 48] by the birefringence Δn eff of the liquid crystal layer of the VA cell, the thickness d = 4.23 μm was obtained.
[実験例2]
実験例1の測定を行った後、VAセルを動かさずに、続けて実験例2の測定を行った。
角度γを求めるところまでは実験例1と同じ手順で行ったところ、r=0.670が得られた。
検光子13の透過軸方向ωを、rを用いて[式29]によりで求められる角度[γ=50.7°]に設定し、偏光子11の透過軸方向αを45°に設定した時の透過光強度Im(ω,45°)を測定した。また、検光子13の透過軸方向ωを、前記角度[γ=50.7°]に設定し、偏光子11の透過軸方向αを135°に設定した時の透過光強度Im(ω,135°)を測定した。
そして、検出したIm(ω,45°)とIm(ω,135°)を用い、[式49]によりVAセルの液晶層のリタデーションRを求めたところ、R=40.3nmが得られた。
また、実験例1と同じ手順でVAセルの液晶層の厚さdを求めたところ、d=4.22μmが得られた。
After the measurement of Experimental Example 1, the measurement of Experimental Example 2 was performed continuously without moving the VA cell.
When the same procedure as in Experimental Example 1 was performed until the angle γ was obtained, r = 0.670 was obtained.
When the transmission axis direction ω of the analyzer 13 is set to an angle [γ = 50.7 °] obtained by [Equation 29] using r, and the transmission axis direction α of the polarizer 11 is set to 45 °. The transmitted light intensity I m (ω, 45 °) was measured. The transmitted light intensity I m (ω, when the transmission axis direction ω of the analyzer 13 is set to the angle [γ = 50.7 °] and the transmission axis direction α of the polarizer 11 is set to 135 °. 135 °).
Then, using the detected I m (ω, 45 °) and I m (ω, 135 °), the retardation R of the liquid crystal layer of the VA cell was obtained by [Equation 49], and R = 40.3 nm was obtained. It was.
Further, when the thickness d of the liquid crystal layer of the VA cell was determined in the same procedure as in Experimental Example 1, d = 4.22 μm was obtained.
[実験例3]
実験例1と同じVAセルを使用し、VAセルを動かさずに、実験例1、2の測定を行った後、続けて実験例2の測定を行った。
検光子13の透過軸方向ωを45°に設定し、偏光子11の透過軸方向αを0°に設定した時の透過光強度Im(45°,0°)を検出した。また、検光子13の透過軸方向ωを45°に設定し、偏光子11の透過軸方向αを90°に設定した時の透過光強度Im(45°,90°)を検出した。
検出したIm(45°,0°)とIm(45°,90°)を用い、[式17]により比rを求めたところ、r=0.665が得られた。
次に、偏光子11の透過軸方向αを、rを用いて[式29]により求められる角度[γ=50.8°]に設定し、検光子13の透過軸方向ωを45°に設定した時の透過光強度Im(45°,α)を検出した。また、偏光子11の透過軸方向αを、前記角度[γ=50.8°]に設定し、検光子13の透過軸方向ωを135°に設定した時の透過光強度Im(135°,α)を検出した。
そして、検出したIm(45°,α)とIm(135°,α)を用い、[式49]により、VAセルの液晶層のリタデーションRを求めたところ、R=40.3nmが得られた。
また、実験例1と同じ手順でVAセルの液晶層の厚さdを求めたところ、d=4.22μmが得られた。
[Experiment 3]
The same VA cell as in experimental example 1 was used, and the measurement of experimental example 1 and 2 was performed without moving the VA cell, and then the measurement of experimental example 2 was performed.
The transmitted light intensity Im (45 °, 0 °) was detected when the transmission axis direction ω of the analyzer 13 was set to 45 ° and the transmission axis direction α of the polarizer 11 was set to 0 °. Further, the transmitted light intensity Im (45 °, 90 °) when the transmission axis direction ω of the analyzer 13 was set to 45 ° and the transmission axis direction α of the polarizer 11 was set to 90 ° was detected.
Using the detected I m (45 °, 0 °) and I m (45 °, 90 °), the ratio r was obtained by [Equation 17], and r = 0.665 was obtained.
Next, the transmission axis direction α of the polarizer 11 is set to an angle [γ = 50.8 °] obtained by [Equation 29] using r, and the transmission axis direction ω of the analyzer 13 is set to 45 °. The transmitted light intensity I m (45 °, α) was detected. The transmitted light intensity I m (135 °) when the transmission axis direction α of the polarizer 11 is set to the angle [γ = 50.8 °] and the transmission axis direction ω of the analyzer 13 is set to 135 °. , Α) was detected.
Then, using the detected I m (45 °, α) and I m (135 °, α), the retardation R of the liquid crystal layer of the VA cell was obtained by [Equation 49], and R = 40.3 nm was obtained. It was.
Further, when the thickness d of the liquid crystal layer of the VA cell was determined in the same procedure as in Experimental Example 1, d = 4.22 μm was obtained.
[実施例4]
実験例3の測定を行った後、VAセルを動かさずに、続けて実験例4の測定を行った。
角度γを求めるところまでは実験例4と同じ手順で行ったところ、r=0.660が得られた。
次に、検光子13の透過軸方向ωを、rを用いて[式29]から求められる]角度[50.9°]に設定し、偏光子11の透過軸方向αを45°に設定した時の透過光強度Im(ω,45°)を検出した。また、検光子13の透過軸方向ωを、前記角度[50.9°]に設定し、偏光子11の透過軸方向αを135°に設定した時の透過光強度Im(ω,135°)を検出した。
そして、検出したIm(ω,45°)とIm(ω,135°)を用い、[式49]により、VAセルの液晶層のリタデーションRを求めたところ、R=40.5nmが得られた。
また、実験例1と同じ手順でVAセルの液晶層の厚さdを求めたところ、d=4.24μmが得られた。
[Example 4]
After the measurement of Experimental Example 3, the measurement of Experimental Example 4 was performed continuously without moving the VA cell.
When the same procedure as in Experimental Example 4 was performed until the angle γ was obtained, r = 0.660 was obtained.
Next, the transmission axis direction ω of the analyzer 13 was set to an angle [50.9 °] obtained from [Equation 29] using r, and the transmission axis direction α of the polarizer 11 was set to 45 °. The transmitted light intensity I m (ω, 45 °) at the time was detected. The transmitted light intensity I m (ω, 135 °) when the transmission axis direction ω of the analyzer 13 is set to the angle [50.9 °] and the transmission axis direction α of the polarizer 11 is set to 135 °. ) Was detected.
Then, using the detected I m (ω, 45 °) and I m (ω, 135 °), the retardation R of the liquid crystal layer of the VA cell was obtained by [Equation 49], and R = 40.5 nm was obtained. It was.
Further, when the thickness d of the liquid crystal layer of the VA cell was determined in the same procedure as in Experimental Example 1, d = 4.24 μm was obtained.
実験例1〜4は、同じVAセルの同じ場所を連続的に測定した。
そして、各実験例1〜4では、VAセルのリタデーションR及び厚さdとしてほぼ等しい値が得られた。
Experimental examples 1-4 measured the same place of the same VA cell continuously.
And in each Experimental example 1-4, the substantially equal value was obtained as retardation R and thickness d of a VA cell.
[比較例1]
液晶層の透過率の異方性を考慮した本発明を用いて検出対象のリタデーションや厚さを検出した場合の検出精度を確認するために、回転検光子法を用いて検出対象のリタデーションや厚さを検出した。
実験例4の測定を行った後、VAセルを動かさずに、続けて比較例の測定を行った。
偏光子11の透過軸方向αを45°に設定し、検光子13の透過軸方向ωを45°に設定した時の透過光強度Im(45°,45°)を検出した。また、偏光子11の透過軸方向αを45°に設定し、検光子13の透過軸方向ωを135°に設定した時の透過光強度Im(135°,45°)を検出した。
そして、検出した、Im(45°,45°)とIm(135°,45°)を用い、[式50]により、VAセルの液晶層のリタデーションRを求めたところ、R=43.8nmが得られた。
また、実験例1と同じ手順でVAセルの液晶層の厚さdを求めたところ、d=4.58μmが得られた。
[Comparative Example 1]
In order to confirm the detection accuracy when the retardation and thickness of the detection target are detected using the present invention in consideration of the anisotropy of the transmittance of the liquid crystal layer, the detection target retardation and thickness are detected using the rotational analyzer method. Detected.
After performing the measurement of Experimental Example 4, the measurement of the Comparative Example was continuously performed without moving the VA cell.
The transmitted light intensity I m (45 °, 45 °) when the transmission axis direction α of the polarizer 11 was set to 45 ° and the transmission axis direction ω of the analyzer 13 was set to 45 ° was detected. Further, the transmitted light intensity Im (135 °, 45 °) when the transmission axis direction α of the polarizer 11 was set to 45 ° and the transmission axis direction ω of the analyzer 13 was set to 135 ° was detected.
Then, using the detected I m (45 °, 45 °) and I m (135 °, 45 °), the retardation R of the liquid crystal layer of the VA cell was obtained by [Equation 50], and R = 43. 8 nm was obtained.
Further, when the thickness d of the liquid crystal layer of the VA cell was determined in the same procedure as in Experimental Example 1, d = 4.58 μm was obtained.
比較例の検出結果と、液晶層の透過率の異方性を考慮した実験例1〜4の検出結果を比較すると、同じVAセルの同じ場所を測定したにもかかわらず、比較例の検出結果は、実験例1〜4の検出結果と異なっている。 When the detection result of the comparative example and the detection result of Experimental Examples 1 to 4 in consideration of the anisotropy of the transmittance of the liquid crystal layer are compared, the detection result of the comparative example is measured despite measuring the same location of the same VA cell. Is different from the detection results of Experimental Examples 1 to 4.
[実験例5]
比較例の測定を行った後、VAセルを動かさずに、続けて実験例5の測定を行った。
偏光子11の透過軸方向αを45°に設定し、検光子13の透過軸方向ωを、10°間隔で0°から90°までの範囲内で設定した時の透過光強度Im(ωi,45°)(ωi=0°、10°、20°・・・80°、90°)を検出した。
そして、検出したIm(ωi,45°)と[式51]のI(ωi,45°)を、最小二乗法を用いて比較することによって、変数Am、Bm、Cmを求めたところ、Am=24605、Bm=17227、Cm=18412(任意単位)が得られた。
次に、求めた変数Am、Bm、Cmを用いて、[式34]により、VAセルの液晶層のリタデーションRを求めたところ、R=40.3nmが得られた。
また、実験例1と同じ手順でVAセルの液晶層の厚さdを求めたところ、d=4.22μmが得られた。
[Experimental Example 5]
After performing the measurement of the comparative example, the measurement of the experimental example 5 was continuously performed without moving the VA cell.
Transmitted light intensity I m (ω) when the transmission axis direction α of the polarizer 11 is set to 45 ° and the transmission axis direction ω of the analyzer 13 is set within a range from 0 ° to 90 ° at 10 ° intervals. i , 45 °) (ω i = 0 °, 10 °, 20 °... 80 °, 90 °).
Then, the detected I m (ω i, 45 ° ) and the I (ω i, 45 °) in the Expression 51], by comparing with the least squares method, the variable A m, B m, the C m As a result, A m = 24605, B m = 17227, and C m = 18412 (arbitrary unit) were obtained.
Next, the retardation R of the liquid crystal layer of the VA cell was obtained by [Formula 34] using the obtained variables A m , B m , and C m , and R = 40.3 nm was obtained.
Further, when the thickness d of the liquid crystal layer of the VA cell was determined in the same procedure as in Experimental Example 1, d = 4.22 μm was obtained.
[実験例6]
実験例5の測定を行った後、VAセルを動かさずに、続けて実験例6の測定を行った。
偏光子11の透過軸方向αを45°に設定し、検光子13の透過軸方向ωを0°、45°、90°に設定した時の透過光強度Im(0°,45°)、Im(45°,45°)、Im(90°,45°)を検出した。
そして、検出したIm(0°,45°)、Im(45°,45°)、Im(90°,45°)を用い、[式52]により、VAセルの液晶層のリタデーションRを求めたところ、R=40.4nmが得られた。
また、実験例1と同じ手順でVAセルの液晶層の厚さdを求めたところ、d=4.2
3μmが得られた。
[Experimental Example 6]
After performing the measurement of Experimental Example 5, the measurement of Experimental Example 6 was continuously performed without moving the VA cell.
Transmitted light intensity I m (0 °, 45 °) when the transmission axis direction α of the polarizer 11 is set to 45 ° and the transmission axis direction ω of the analyzer 13 is set to 0 °, 45 °, 90 °, I m (45 °, 45 °) and I m (90 °, 45 °) were detected.
Then, using the detected I m (0 °, 45 °), I m (45 °, 45 °), and I m (90 °, 45 °), the retardation R of the liquid crystal layer of the VA cell is expressed by [Formula 52]. As a result, R = 40.4 nm was obtained.
Further, when the thickness d of the liquid crystal layer of the VA cell was determined by the same procedure as in Experimental Example 1, d = 4.2.
3 μm was obtained.
[実験例7]
実験例6の測定を行った後、VAセルを動かさずに、続けて実験例7の測定を行った。
偏光子11の透過軸方向αを45°に設定し、検光子13の透過軸方向ωを0°、90°、135°に設定した時の透過光強度Im(0°,45°)、Im(90°,45°)、Im(135°,45°)を検出した。
そして、検出したIm(0°,45°)、Im(90°,45°)、Im(135°,45°)を用い、[式53]により、VAセルの液晶層のリタデーションRを求めたところ、R=40.4nmが得られた。
また、実験例1と同じ手順でVAセルの液晶層の厚さdを求めたところ、d=4.2
3μmが得られた。
[Experimental Example 7]
After the measurement of Experimental Example 6, the measurement of Experimental Example 7 was performed continuously without moving the VA cell.
Transmitted light intensity I m (0 °, 45 °) when the transmission axis direction α of the polarizer 11 is set to 45 ° and the transmission axis direction ω of the analyzer 13 is set to 0 °, 90 °, 135 °, I m (90 °, 45 °) and I m (135 °, 45 °) were detected.
Then, using the detected I m (0 °, 45 °), I m (90 °, 45 °), and I m (135 °, 45 °), the retardation R of the liquid crystal layer of the VA cell is expressed by [Formula 53]. As a result, R = 40.4 nm was obtained.
Further, when the thickness d of the liquid crystal layer of the VA cell was determined by the same procedure as in Experimental Example 1, d = 4.2.
3 μm was obtained.
[実験例8]
実験例7の測定を行った後、VAセルを動かさずに、続けて実験例8の測定を行った。
検光子13の透過軸方向ωを45°に設定し、偏光子11の透過軸方向αを、10°間隔で0°から90°までの範囲内で設定した時の透過光強度Im(45°,αi)(αi=0°、10°、20°・・・80°、90°)を検出した。
そして、検出したIm(45°,αi)と[式54]のI(45°,αi)を、最小二乗法を用いて比較することによって、変数Am、Bm、Cmを求めたところ、Am=24857、Bm=17650、Cm=18711(任意単位)が得られた。
次に、求めた変数Am、Bm、Cmを用いて、[式34]により、VAセルの液晶層のリタデーションRを求めたところ、R=40.5nmが得られた。
また、実験例1と同じ手順でVAセルの液晶層の厚さdを求めたところ、d=4.2
4μmが得られた。
[Experimental Example 8]
After the measurement of Experimental Example 7, the measurement of Experimental Example 8 was performed continuously without moving the VA cell.
The transmitted light intensity I m (45) when the transmission axis direction ω of the analyzer 13 is set to 45 ° and the transmission axis direction α of the polarizer 11 is set within a range from 0 ° to 90 ° at 10 ° intervals. °, α i ) (α i = 0 °, 10 °, 20 °... 80 °, 90 °) were detected.
Then, the detected I m (45 °, α i ) and I (45 °, α i) of Expression 54], and by comparing with the least squares method, the variable A m, B m, the C m As a result, A m = 24857, B m = 17650, and C m = 18711 (arbitrary unit) were obtained.
Next, the retardation R of the liquid crystal layer of the VA cell was obtained by [Formula 34] using the obtained variables A m , B m , and C m , and R = 40.5 nm was obtained.
Further, when the thickness d of the liquid crystal layer of the VA cell was determined by the same procedure as in Experimental Example 1, d = 4.2.
4 μm was obtained.
[実施例9]
実験例8の測定を行った後、VAセルを動かさずに、続けて実験例9の測定を行った。
検光子13の透過軸方向ωを45°に設定し、偏光子11の透過軸方向αを0°、45°、90°に設定した時の透過光強度Im(45°,0°)、Im(45°,45°)、Im(45°,90°)を検出した。
そして、検出した透過光強度Im(45°,0°)、Im(45°,45°)、Im(45°,90°)を用いて、[式55]により、VAセルの液晶層のリタデーションRを求めたところ、R=40.6nmが得られた。
また、実験例1と同じ手順でVAセルの液晶層の厚さdを求めたところ、d=4.2
5μmが得られた。
[Example 9]
After the measurement of Experimental Example 8, the measurement of Experimental Example 9 was performed continuously without moving the VA cell.
Transmitted light intensity I m (45 °, 0 °) when the transmission axis direction ω of the analyzer 13 is set to 45 ° and the transmission axis direction α of the polarizer 11 is set to 0 °, 45 °, 90 °, I m (45 °, 45 °) and I m (45 °, 90 °) were detected.
Then, using the detected transmitted light intensity I m (45 °, 0 °), I m (45 °, 45 °), and I m (45 °, 90 °), the liquid crystal of the VA cell is expressed by [Expression 55]. When the retardation R of the layer was determined, R = 40.6 nm was obtained.
Further, when the thickness d of the liquid crystal layer of the VA cell was determined by the same procedure as in Experimental Example 1, d = 4.2.
5 μm was obtained.
[実施例10]
実験例9の測定を行った後、VAセルを動かさずに、続けて実験例10の測定を行った。
検光子13の透過軸方向ωを45°に設定し、偏光子11の透過軸方向αを0°、90°、135°に設定した時の透過光強度Im(45°,0°)、Im(45°,90°)、Im(45°,135°)を検出した。
そして、検出した透過光強度Im(45°,0°)、Im(45°,90°)、Im(45°,135°)を用いて、[式56]により、VAセルの液晶層のリタデーションRを求めたところ、R=40.6nmが得られた。
また、実験例1と同じ手順でVAセルの液晶層の厚さdを求めたところ、d=4.2
5μmが得られた。
[Example 10]
After performing the measurement of Experimental Example 9, the measurement of Experimental Example 10 was continuously performed without moving the VA cell.
Transmitted light intensity I m (45 °, 0 °) when the transmission axis direction ω of the analyzer 13 is set to 45 ° and the transmission axis direction α of the polarizer 11 is set to 0 °, 90 °, 135 °, I m (45 °, 90 °) and I m (45 °, 135 °) were detected.
Then, using the detected transmitted light intensity I m (45 °, 0 °), I m (45 °, 90 °), I m (45 °, 135 °), the liquid crystal of the VA cell according to [Formula 56]. When the retardation R of the layer was determined, R = 40.6 nm was obtained.
Further, when the thickness d of the liquid crystal layer of the VA cell was determined by the same procedure as in Experimental Example 1, d = 4.2.
5 μm was obtained.
[実験例5]〜[実験例10]は、[実験例1]〜[実験例4]と同じVAセルの同じ場所を連続的に測定した。
そして、[実験例5]〜[実験例10]で検出したVAセルの液晶層のリタデーションR及び厚さdは、[実施例1]〜[実施例4]で検出した値とほぼ等しい値であり、比較例とは異なる値であった。
[Experimental Example 5] to [Experimental Example 10] continuously measured the same place of the same VA cell as [Experimental Example 1] to [Experimental Example 4].
The retardation R and thickness d of the liquid crystal layer of the VA cell detected in [Experimental Example 5] to [Experimental Example 10] are substantially equal to the values detected in [Example 1] to [Example 4]. There was a value different from the comparative example.
本発明は、実施の形態で説明した構成に限定されず、種々の変更、追加、削除が可能である。
例えば、VAセルのパラメータであるリタデーションや厚さを検出したが、本発明は、VAセルに限定されず、光学的一軸媒質と同じ光学特性を示す検出対象のパラメータであるリタデーションや厚さを検出するパラメータ検出装置として用いることができる。
また、パラメータ検出装置は、図1に示した構成のものに限定されず、前記した各透過光強度を検出することができ、あるいは、各透過光強度に基づいて検出対象のパラメータであるリタデーションや厚さを検出することができればよい。
また、前記した各透過光強度の検出順序や、検出対象のリタデーションや厚さを検出する各ステップの順序は、適宜変更可能である。
The present invention is not limited to the configuration described in the embodiment, and various changes, additions, and deletions are possible.
For example, the retardation and thickness that are parameters of the VA cell are detected. However, the present invention is not limited to the VA cell, and the retardation and thickness that are the detection target parameters exhibiting the same optical characteristics as the optical uniaxial medium are detected. It can be used as a parameter detection device.
Further, the parameter detection device is not limited to the configuration shown in FIG. 1 and can detect each of the transmitted light intensities described above, or can be a retardation that is a parameter to be detected based on each transmitted light intensity. It is sufficient if the thickness can be detected.
In addition, the order of detecting each transmitted light intensity and the order of steps for detecting the retardation and thickness of the detection target can be appropriately changed.
10 発光装置
11 偏光子
12 VAセル(検出対象)
13 検光子
14 検出装置
15 処理装置
10 Light Emitting Device 11 Polarizer 12 VA Cell (Detection Object)
13 Analyzer 14 Detection Device 15 Processing Device
Claims (10)
前記検光子の透過軸方向が入射面に対して任意の角度ω0傾き、偏光方向が入射面に平行である直線偏光が前記検出対象に入射している時の透過光強度I(ω0,0)を検出し、
前記検光子の透過軸方向が入射面に対して前記任意の角度ω0傾き、偏光方向が入射面に対して90°傾いている直線偏光が前記検出対象に入射している時の透過光強度I(ω0,90°)を検出し、
前記検出した透過光強度I(ω0,0°)とI(ω0,90°)を用いて、以下の式により比rを算出し、
当該検出した少なくとも2つ以上の透過光強度I(ω、α)と以下の式を用いて前記検出対象のリタデーションRを求める、
ことを特徴とする検出対象のパラメータ検出方法。 A method for detecting a parameter of a detection target, wherein linearly polarized light is incident on a detection target having birefringence characteristics, and the parameter of the detection target is detected based on a transmitted light intensity of light transmitted through the detection target and an analyzer.
The transmitted light intensity I (ω 0 , when the transmission axis direction of the analyzer is inclined at an arbitrary angle ω 0 with respect to the incident surface and linearly polarized light whose polarization direction is parallel to the incident surface is incident on the detection target. 0)
Transmitted light intensity when linearly polarized light having the transmission axis direction of the analyzer inclined by the arbitrary angle ω 0 with respect to the incident surface and the polarization direction inclined by 90 ° with respect to the incident surface is incident on the detection target I (ω 0 , 90 °) is detected,
Using the detected transmitted light intensity I (ω 0, 0 °) and I (ω 0, 90 °) , to calculate the ratio r by the following equation,
Using the detected at least two or more transmitted light intensities I (ω, α) and the following formula, the retardation R of the detection target is determined.
A method for detecting a parameter of a detection target, characterized by:
偏光方向が入射面に対して任意の角度α0傾いている直線偏光が前記検出対象に入射し、前記検光子の透過軸方向が入射面に平行である時の透過光強度I(0°,α0)を検出し、
偏光方向が入射面に対して前記任意の角度α0傾いている直線偏光が前記検出対象に入射し、前記検光子の透過軸方向が入射面に対して90°傾いている時の透過光強度I(90°,α0)を検出し、
前記検出した透過光強度I(0°,α0)とI(90°,α0)を用いて、以下の式により比rを算出し、
当該検出した少なくとも2つ以上の透過光強度I(ω、α)と以下の式を用いて前記検出対象のリタデーションRを求める、
ことを特徴とする検出対象のパラメータ検出方法。 A method for detecting a parameter of a detection target, wherein linearly polarized light is incident on a detection target having birefringence characteristics, and the parameter of the detection target is detected based on a transmitted light intensity of light transmitted through the detection target and an analyzer.
Linearly polarized light whose polarization direction is inclined at an arbitrary angle α 0 with respect to the incident surface is incident on the detection target, and the transmitted light intensity I (0 °, 0 °, when the transmission axis direction of the analyzer is parallel to the incident surface). α 0 )
Linearly polarized light whose polarization direction is inclined at the arbitrary angle α 0 with respect to the incident surface is incident on the detection target, and the transmitted light intensity when the transmission axis direction of the analyzer is inclined by 90 ° with respect to the incident surface. I (90 °, α 0 ) is detected,
Using the detected transmitted light intensity I (0 °, α 0 ) and I (90 °, α 0 ), the ratio r is calculated by the following equation:
Using the detected at least two or more transmitted light intensities I (ω, α) and the following formula, the retardation R of the detection target is determined.
A method for detecting a parameter of a detection target, characterized by:
前記検光子の透過軸方向が入射面に対して任意の角度ω傾き、偏光方向が入射面に対して角度αi傾いている直線偏光が前記検出対象に入射している時の透過光強度I(ω,αi)を、相異なる少なくとも3つ以上のαiに対して検出し、
前記検出した少なくとも3つ以上の透過光強度I(ω,αi)と以下の式を用いて変数A、B、Cを求め、
Transmitted light intensity I when linearly polarized light having a transmission axis direction of the analyzer inclined by an arbitrary angle ω with respect to the incident surface and a polarization direction inclined by an angle α i with respect to the incident surface is incident on the detection target. (ω, α i ) is detected for at least three different α i ,
Variables A, B, and C are obtained using the detected at least three transmitted light intensities I (ω, α i ) and the following formulas:
前記検光子の透過軸方向が入射面に対して任意の角度ω傾き、
偏光方向が入射面に対して任意の角度α1傾いている直線偏光が前記検出対象に入射している時の透過光強度I(ω,α1)と、
偏光方向が入射面に対して角度α2(=α1+90°)傾いている直線偏光が前記検出対象に入射している時の透過光強度I(ω,α2)と、
偏光方向が入射面に対して角度α3(=α1+45°)傾いている直線偏光が前記検出対象に入射している時の透過光強度I(ω,α3)を検出し、
前記検出した透過光強度I(ω,α1)、I(ω,α2)、I(ω,α3)を用いて、以下の式により前記検出対象のリタデーションRを求める、
The transmission axis direction of the analyzer is inclined at an arbitrary angle ω with respect to the incident surface,
Transmitted light intensity I (ω, α 1 ) when linearly polarized light whose polarization direction is inclined at an arbitrary angle α 1 with respect to the incident surface is incident on the detection target;
Transmitted light intensity I (ω, α 2 ) when linearly polarized light whose polarization direction is inclined at an angle α 2 (= α 1 + 90 °) with respect to the incident surface is incident on the detection target;
Detecting the transmitted light intensity I (ω, α 3 ) when linearly polarized light whose polarization direction is inclined at an angle α 3 (= α 1 + 45 °) with respect to the incident surface is incident on the detection target;
Using the detected transmitted light intensity I (ω, α 1 ), I (ω, α 2 ), I (ω, α 3 ), the retardation R of the detection target is obtained by the following equation:
前記検光子の透過軸方向が入射面に対して任意の角度ω傾き、
偏光方向が入射面に対して任意の角度α1傾いている直線偏光が前記検出対象に入射している時の透過光強度I(ω,α1)と、
偏光方向が入射面に対して角度α2(=α1+90°)傾いている直線偏光が前記検出対象に入射している時の透過光強度I(ω,α2)と、
偏光方向が入射面に対して角度α4(=α1+135°)傾いている直線偏光が前記検出対象に入射している時の透過光強度I(ω,α4)を検出し、
前記検出した透過光強度I(ω,α1)、I(ω,α2)、I(ω,α4)を用いて、以下の式により前記検出対象のリタデーションRを求める、
The transmission axis direction of the analyzer is inclined at an arbitrary angle ω with respect to the incident surface,
Transmitted light intensity I (ω, α 1 ) when linearly polarized light whose polarization direction is inclined at an arbitrary angle α 1 with respect to the incident surface is incident on the detection target;
Transmitted light intensity I (ω, α 2 ) when linearly polarized light whose polarization direction is inclined at an angle α 2 (= α 1 + 90 °) with respect to the incident surface is incident on the detection target;
Detecting the transmitted light intensity I (ω, α 4 ) when the linearly polarized light whose polarization direction is inclined at an angle α 4 (= α 1 + 135 °) with respect to the incident surface is incident on the detection target;
Using the detected transmitted light intensity I (ω, α 1 ), I (ω, α 2 ), I (ω, α 4 ), the retardation R of the detection target is obtained by the following equation:
偏光方向が入射面に対して任意の角度α傾いている直線偏光が前記検出対象に入射し、前記検光子の透過軸方向が入射面に対して角度ωi傾いている時の透過光強度I(ωi,α)を、相異なる少なくとも3つ以上のωiに対して検出し、
前記検出した少なくとも3つ以上の透過光強度I(ωi,α)と以下の式を用いて変数A、B、Cを求め、
Linearly polarized light whose polarization direction is inclined at an arbitrary angle α with respect to the incident surface enters the detection target, and transmitted light intensity I when the transmission axis direction of the analyzer is inclined at an angle ω i with respect to the incident surface. (ω i , α) is detected for at least three different ω i ,
Variables A, B, and C are determined using the detected at least three transmitted light intensities I (ω i , α) and the following formulae:
偏光方向が入射面に対して任意の角度α傾いている直線偏光が前記検出対象に入射し、
前記検光子の透過軸方向が入射面に対して任意の角度ω1傾いている時の透過光強度I(ω1,α)と、
前記検光子の透過軸方向が入射面に対して角度ω2(=ω1+90°)傾いている時の透過光強度I(ω2,α)と、
前記検光子の透過軸方向が入射面に対して角度ω3(=ω1+45°)傾いている時の透過光強度I(ω3,α)を検出し、
前記検出した透過光強度I(ω1,α)、I(ω2,α)、I(ω3,α)を用いて、以下の式により前記検出対象のリタデーションRを求める、
Linearly polarized light whose polarization direction is inclined at an arbitrary angle α with respect to the incident surface is incident on the detection target,
Transmitted light intensity I (ω 1 , α) when the transmission axis direction of the analyzer is inclined at an arbitrary angle ω 1 with respect to the incident surface;
Transmitted light intensity I (ω 2 , α) when the transmission axis direction of the analyzer is inclined at an angle ω 2 (= ω 1 + 90 °) with respect to the incident surface;
A transmitted light intensity I (ω 3 , α) is detected when the transmission axis direction of the analyzer is inclined at an angle ω 3 (= ω 1 + 45 °) with respect to the incident surface;
Using the detected transmitted light intensity I (ω 1 , α), I (ω 2 , α), I (ω 3 , α), the retardation R to be detected is obtained by the following equation:
偏光方向が入射面に対して任意の角度α傾いている直線偏光が前記検出対象に入射し、
前記検光子の透過軸方向が入射面に対して任意の角度ω1傾いている時の透過光強度 I(ω1,α)と、
前記検光子の透過軸方向が入射面に対して角度ω2(=ω1+90°)傾いている時の透過光強度I(ω2,α)と、
前記検光子の透過軸方向が入射面に対して角度ω4(=ω1+135°)傾いている時の透過光強度I(ω4,α)を検出し、
前記検出した透過光強度I(ω1,α)、I(ω2,α)、I(ω4,α)を用いて、以下の式により前記検出対象のリタデーションRを求める、
Linearly polarized light whose polarization direction is inclined at an arbitrary angle α with respect to the incident surface is incident on the detection target,
Transmitted light intensity I (ω 1 , α) when the transmission axis direction of the analyzer is inclined at an arbitrary angle ω 1 with respect to the incident surface;
Transmitted light intensity I (ω 2 , α) when the transmission axis direction of the analyzer is inclined at an angle ω 2 (= ω 1 + 90 °) with respect to the incident surface;
Detecting the transmitted light intensity I (ω 4 , α) when the transmission axis direction of the analyzer is inclined at an angle ω 4 (= ω 1 + 135 °) with respect to the incident surface;
Using the detected transmitted light intensities I (ω 1 , α), I (ω 2 , α), I (ω 4 , α), the retardation R to be detected is obtained by the following equation:
検出した前記検出対象のリタデーションRに基づいて前記検出対象の厚さdを求める、
ことを特徴とする検出対象のパラメータ検出方法。 It is a parameter detection method of the detection object in any one of Claims 1-8,
The thickness d of the detection target is obtained based on the detected retardation R of the detection target.
A method for detecting a parameter of a detection target, characterized by:
前記光源から照射された光の中から透過軸方向の直線偏光を透過し、当該透過軸方向が前記光源から発光された光の進行方向に平行な軸を回転軸として回転可能な偏光子と、
前記偏光子を透過した光が、基板面の法線に対して傾いた角度で入射するように配置された検出対象と、
前記検出対象を透過した光の中から、透過軸方向の直線偏光を透過し、当該透過軸方向が前記検出対象を透過した光の進行方向に平行な軸を回転軸として回転可能な検光子と、
前記検光子を透過した光の強度を透過光強度として検出する検出装置と、
前記検出装置で検出した透過光強度を入力する処理装置を備え、
前記処理装置は、請求項1〜9のいずれかに記載の方法を用いて前記検出対象のリタデーションRと厚さdの少なくとも一方を求める、
ことを特徴とする検出対象のパラメータ検出装置。 A light source;
A polarizer that transmits linearly polarized light in the transmission axis direction from the light emitted from the light source, and that is rotatable about an axis parallel to the traveling direction of the light emitted from the light source.
A detection object arranged such that light transmitted through the polarizer is incident at an angle inclined with respect to the normal of the substrate surface;
An analyzer that transmits linearly polarized light in a transmission axis direction from the light transmitted through the detection target, and the transmission axis direction is rotatable about an axis parallel to the traveling direction of the light transmitted through the detection target; ,
A detection device that detects the intensity of light transmitted through the analyzer as transmitted light intensity;
A processing device for inputting the transmitted light intensity detected by the detection device;
The processing apparatus obtains at least one of the retardation R and the thickness d of the detection target using the method according to any one of claims 1 to 9.
A parameter detection device to be detected.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004276203A JP3936712B2 (en) | 2004-09-22 | 2004-09-22 | Parameter detection method and detection apparatus for detection object |
TW094129970A TWI288823B (en) | 2004-09-22 | 2005-08-31 | Method and apparatus for detecting a parameter of a detected object |
KR1020050088442A KR100662323B1 (en) | 2004-09-22 | 2005-09-22 | Method and apparatus for detecting a parameter of a detected object |
CNB200510106330XA CN100381877C (en) | 2004-09-22 | 2005-09-22 | Parameter checkout method and device for object being checked |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004276203A JP3936712B2 (en) | 2004-09-22 | 2004-09-22 | Parameter detection method and detection apparatus for detection object |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006352974A Division JP4364233B2 (en) | 2006-12-27 | 2006-12-27 | Parameter detection method and detection apparatus for detection object |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006090820A true JP2006090820A (en) | 2006-04-06 |
JP3936712B2 JP3936712B2 (en) | 2007-06-27 |
Family
ID=36231958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004276203A Expired - Fee Related JP3936712B2 (en) | 2004-09-22 | 2004-09-22 | Parameter detection method and detection apparatus for detection object |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP3936712B2 (en) |
KR (1) | KR100662323B1 (en) |
CN (1) | CN100381877C (en) |
TW (1) | TWI288823B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008026363A1 (en) * | 2006-08-29 | 2008-03-06 | Tokyo Denki University | Double refraction measuring equipment and double refraction measuring method |
CN108152825A (en) * | 2016-12-02 | 2018-06-12 | 欧姆龙汽车电子株式会社 | Article detection device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5140451B2 (en) * | 2008-02-05 | 2013-02-06 | 富士フイルム株式会社 | Birefringence measuring method, apparatus and program |
JP5198980B2 (en) * | 2008-09-02 | 2013-05-15 | 株式会社モリテックス | Optical anisotropy parameter measuring method and measuring apparatus |
TWI432715B (en) * | 2010-12-16 | 2014-04-01 | Ind Tech Res Inst | Method and apparatus for measuring liquid crystal cell parameters |
CN103018213B (en) * | 2011-09-26 | 2015-04-15 | 同济大学 | Method and device for measuring wide spectral transmittance in 0-70-degree incidence of optical film |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2974564B2 (en) * | 1993-12-20 | 1999-11-10 | シャープ株式会社 | Liquid crystal electronic device and driving method thereof |
JPH09292208A (en) * | 1996-04-25 | 1997-11-11 | Toyo Commun Equip Co Ltd | Optical plate thickness measuring method and device therefor |
DE69924282T2 (en) * | 1999-09-20 | 2006-03-30 | Otsuka Electronics Co., Ltd., Hirakata | MEASURE THE LIGHT WIDTH BETWEEN THE SURFACES OF A VA LIQUID CRYSTAL PLATE WITH AN ADJUSTED ANGLE |
JP2001290118A (en) * | 2000-01-31 | 2001-10-19 | Sharp Corp | Thickness measuring method of liquid crystal layer and thickness measuring device thereof |
-
2004
- 2004-09-22 JP JP2004276203A patent/JP3936712B2/en not_active Expired - Fee Related
-
2005
- 2005-08-31 TW TW094129970A patent/TWI288823B/en not_active IP Right Cessation
- 2005-09-22 CN CNB200510106330XA patent/CN100381877C/en not_active Expired - Fee Related
- 2005-09-22 KR KR1020050088442A patent/KR100662323B1/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008026363A1 (en) * | 2006-08-29 | 2008-03-06 | Tokyo Denki University | Double refraction measuring equipment and double refraction measuring method |
JPWO2008026363A1 (en) * | 2006-08-29 | 2010-01-14 | 学校法人東京電機大学 | Birefringence measuring apparatus and birefringence measuring method |
US8279439B2 (en) | 2006-08-29 | 2012-10-02 | Tokyo Denki University | Birefringence measuring device and birefringence measuring method |
CN108152825A (en) * | 2016-12-02 | 2018-06-12 | 欧姆龙汽车电子株式会社 | Article detection device |
Also Published As
Publication number | Publication date |
---|---|
CN100381877C (en) | 2008-04-16 |
TWI288823B (en) | 2007-10-21 |
KR20060051548A (en) | 2006-05-19 |
CN1752799A (en) | 2006-03-29 |
KR100662323B1 (en) | 2006-12-28 |
JP3936712B2 (en) | 2007-06-27 |
TW200624796A (en) | 2006-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3910352B2 (en) | Pretilt angle detection method and detection apparatus | |
JP5198980B2 (en) | Optical anisotropy parameter measuring method and measuring apparatus | |
US9989454B2 (en) | Method and apparatus for measuring parameters of optical anisotropy | |
KR100662323B1 (en) | Method and apparatus for detecting a parameter of a detected object | |
JP2010204378A (en) | Method and apparatus of measuring tilt angle of reflective liquid crystal cell | |
JP4031643B2 (en) | Method and apparatus for measuring cell gap of VA liquid crystal panel | |
JP2008268339A (en) | Retardation plate, method for manufacturing same, its manufacturing device, method for determining optical parameter, and polarization analyzer | |
JP2010107758A (en) | Method and device for measuring tilt angle of liquid crystal cell | |
JP4364233B2 (en) | Parameter detection method and detection apparatus for detection object | |
JP3813800B2 (en) | Liquid crystal cell parameter detector | |
JP4926003B2 (en) | Polarization analysis method | |
TWI437220B (en) | System and method for measuring pre-tilt angle of liquid crystal | |
CN106154593A (en) | Anisotropy measurement system, anisotropy measurement method and calibration method thereof | |
JP5049705B2 (en) | Transparent film, polarizing plate, and liquid crystal display device | |
JP4303075B2 (en) | Method for measuring physical properties of liquid crystalline material and apparatus for measuring physical properties of liquid crystalline material | |
JP3787344B2 (en) | Parameter detection method and detection apparatus for liquid crystal element | |
JP3855080B2 (en) | Optical characteristic measuring method for liquid crystal element and optical characteristic measuring system for liquid crystal element | |
JP2012032346A (en) | Evaluation method for optical element and evaluation device for optical element | |
JP2565147B2 (en) | Method of measuring twist angle and cell gap | |
JPH02118406A (en) | Liquid crystal cell gap measuring device | |
JP2009085887A (en) | Measuring device and method | |
JP3609311B2 (en) | Method and apparatus for evaluating azimuth anchoring energy of liquid crystal display element | |
JP2005283534A (en) | Cell thickness measuring method and measuring device for vertically oriented liquid crystal panel | |
Chiang et al. | Entanglement-free determination of pretilt angles of twisted nematic liquid-crystal cells by phase measurement | |
JP2008241634A (en) | Method and apparatus for detecting orientation ratio of liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061228 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20070116 |
|
TRDD | Decision of grant or rejection written | ||
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070315 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070323 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140330 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |