JP2006089636A - Tire tread rubber composition and pneumatic tire - Google Patents
Tire tread rubber composition and pneumatic tire Download PDFInfo
- Publication number
- JP2006089636A JP2006089636A JP2004278156A JP2004278156A JP2006089636A JP 2006089636 A JP2006089636 A JP 2006089636A JP 2004278156 A JP2004278156 A JP 2004278156A JP 2004278156 A JP2004278156 A JP 2004278156A JP 2006089636 A JP2006089636 A JP 2006089636A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- silica
- weight
- rubber composition
- tire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、タイヤトレッド用ゴム組成物に関し、さらに詳しくは、低転がり抵抗と湿潤路面での制動性能をバランスよく両立し、かつ耐摩耗性を向上させたトレッドに適したゴム組成物、及びこのタイヤトレッド用ゴム組成物をトレッド部に適用した空気入りタイヤに関する。 The present invention relates to a rubber composition for a tire tread, and more specifically, a rubber composition suitable for a tread having both a low rolling resistance and a braking performance on a wet road surface in a well-balanced manner and improved wear resistance. The present invention relates to a pneumatic tire in which a tire tread rubber composition is applied to a tread portion.
タイヤ用、中でもトレッド部に用いられるゴム組成物は、低燃費性の市場ニーズから低転がり抵抗の要求が強く、また安全性の面からの湿潤路面での制動性能や操縦安定性(以下、ウエット性能という)の向上が求められ、さらに耐久性、経済性の点で優れた耐摩耗性が求められており、ゴム特性として背反傾向を示すこれら低転がり抵抗とウェット性能及び耐摩耗性の各性能を高次元でバランスよく向上させることが要求されている。 Rubber compositions used for tires, especially in the tread area, are strongly demanded for low rolling resistance due to market needs for low fuel consumption, and also have braking performance and handling stability on wet roads (hereinafter referred to as wet) from the standpoint of safety. Performance) and excellent wear resistance in terms of durability and economy, and the low rolling resistance, wet performance, and wear resistance, which show a contradiction in rubber properties. Is required to be improved in a high-dimensional and well-balanced manner.
このような要求に基づいて、ゴム組成物に用いられるポリマーのミクロ構造の改良や末端変性による改質、ポリマーブレンドの組み合わせやそのブレンド比の検討が多くなされ、特に近年では、補強性フィラーとしてシリカを配合し低転がり抵抗とウェット性能とをバランスさせることが注目されるようになっている。 Based on such requirements, many studies have been made on improvement of the microstructure of the polymer used in the rubber composition, modification by terminal modification, combination of polymer blends and blend ratio thereof, and in recent years, silica has been used as a reinforcing filler. In order to balance low rolling resistance and wet performance.
この様な改良技術としては、ミクロ構造を特定するスチレンブタジエンゴムにシリカとコロイダル特性を特定したカーボンブラックを配合したタイヤトレッド用ゴム組成物、ゴム成分にΔ熱重量減少率とCTABとが特定の関係にあるシリカを配合するもの、ゴム成分にシリカとカーボンブラック、及び特定の炭酸カルシウムや無機化合物粉体を配合するもの、などの種々の改良が開示されている(例えば、特許文献1〜4)。
上記特許文献に記載の各ゴム組成物は、ゴム成分を構成するポリマーの改良、そのブレンド比やカーボンブラック、シリカなどの補強性フィラーの改質などのゴム組成物を構成する配合材料を改良することにより、低転がり抵抗とウェット性能及び耐摩耗性とを向上させる効果があることが記載されている。 Each rubber composition described in the above-mentioned patent documents improves the compounding material constituting the rubber composition, such as improvement of the polymer constituting the rubber component, blend ratio thereof, modification of reinforcing filler such as carbon black, silica and the like. Thus, it is described that there is an effect of improving low rolling resistance, wet performance, and wear resistance.
ブレンドゴムにシリカを配合するゴム組成物では、シリカによるtanδの温度依存性を改良し低転がり抵抗とウェット性能とを向上し、補強性の低下を抑えて耐摩耗性を維持することがなされている。しかし、このシリカの特長を最大限に発揮させるにはシリカをブレンドゴム中に均一に分布させる必要があるが、シリカは表面のシラノール基同士で結合して凝集塊を作りやすくし、分散性が低下するとともに一方のポリマーに偏って存在しやすく、ブレンドゴムの長所が十分発揮されていないのが実状である。 In a rubber composition in which silica is blended with blended rubber, the temperature dependency of tan δ due to silica is improved, low rolling resistance and wet performance are improved, and a decrease in reinforcement is suppressed and wear resistance is maintained. Yes. However, in order to maximize the characteristics of this silica, it is necessary to distribute the silica uniformly in the blend rubber. However, silica is easy to form agglomerates by bonding silanol groups on the surface, and dispersibility is improved. The actual condition is that the strength of the blended rubber is not fully exhibited because the strength of the blended rubber tends to exist in one polymer.
従来のゴム配合技術では、ポリマーの改良やブレンド配合の改善、補強性フィラーの改良、添加剤の改良などが多くなされてきたが、加硫された後のゴム組成物におけるポリマーモルフォロジーやその場合の各ポリマーに含まれる補強性フィラーの含有量の観点からの検討にはなされておらず、これらの観点をポリマーやフィラーなどの改良検討にさらに導入することで各材料の持つ特長を高度にバランスさせ、低転がり抵抗やウェット性能及び耐摩耗性との背反関係にあるゴム特性を高度に両立させ得ることが考えられる。 In conventional rubber compounding technology, many improvements have been made to polymers, blends, reinforcing fillers, additives, etc., but polymer morphologies in the rubber composition after vulcanization and in that case It has not been studied from the viewpoint of the content of the reinforcing filler contained in each polymer, and by further introducing these viewpoints into the study of improvement of polymers and fillers, the features of each material are highly balanced. It is conceivable that rubber properties having a contradiction with low rolling resistance, wet performance, and wear resistance can be highly compatible.
本発明は、上記の点に鑑みてなされたものであり、トレッド部に主として使用されるスチレンブタジエンゴムを用いたブレンド配合系のゴム組成物において、特定のポリマーモルフォロジーを有し、その各ポリマーへの補強性フィラーの分配量を定量的に制御することにより、低転がり抵抗とウェット性能及び耐摩耗性とをバランスよく向上させることのできるタイヤトレッド用ゴム組成物、及びそれを適用した空気入りタイヤを提供することを目的とする。 The present invention has been made in view of the above points, and in a rubber composition of a blend compounding system using a styrene butadiene rubber mainly used in a tread portion, the polymer has a specific polymer morphology, and each of the polymers. Rubber composition for tire tread capable of improving low rolling resistance, wet performance and wear resistance in a well-balanced manner by quantitatively controlling the distribution amount of the reinforcing filler of the tire, and a pneumatic tire to which the rubber composition is applied The purpose is to provide.
本発明のタイヤトレッド用ゴム組成物は、スチレンブタジエンゴム(A)及び前記スチレンブタジエンゴム以外の他のジエン系ゴム(B)を含むゴム成分に、シリカを配合してなるタイヤトレッド用ゴム組成物において、加硫された前記タイヤトレッド用ゴム組成物が、前記(A)ゴムからなるマトリックス中に前記(B)ゴムが島相として分散せしめられてなる海島構造を有し、前記島相の平均粒子径が0.1〜1.0μmにあり、かつ、前記島相を構成する(B)ゴムに含まれるシリカ量Y(重量部)が、下記式(1)で示される範囲にあることを特徴とする。 (X/100)・Z・1.4≧Y≧(X/100)・Z・0.7……(1) (式中、Xはゴム成分100重量部に対する(B)ゴムの配合量(重量部)、Zはゴム成分100重量部に対するシリカの配合量(重量部)である) The rubber composition for a tire tread of the present invention is a rubber composition for a tire tread formed by blending silica with a rubber component containing a styrene butadiene rubber (A) and a diene rubber (B) other than the styrene butadiene rubber. The vulcanized rubber composition for tire treads has a sea-island structure in which the rubber (B) is dispersed as an island phase in the matrix (A) rubber, and the average of the island phases The particle diameter is in the range of 0.1 to 1.0 μm, and the silica amount Y (part by weight) contained in the rubber (B) constituting the island phase is in the range represented by the following formula (1). Features. (X / 100) · Z · 1.4 ≧ Y ≧ (X / 100) · Z · 0.7 (1) (wherein X is the blending amount of (B) rubber with respect to 100 parts by weight of rubber component ( Parts by weight), Z is the amount of silica blended (parts by weight) with respect to 100 parts by weight of the rubber component)
本発明のタイヤトレッド用ゴム組成物においては、前記(A)ゴムの配合量が、ゴム成分100重量部に対し30〜90重量部であり、また、前記シリカが、窒素吸着比表面積(BET)が100〜300m2/g、DBP吸油量が150〜300ml/100gであり、その配合量は前記ゴム成分100重量部に対し10〜120重量部であることが好ましい。 In the rubber composition for a tire tread of the present invention, the blending amount of the rubber (A) is 30 to 90 parts by weight with respect to 100 parts by weight of the rubber component, and the silica is a nitrogen adsorption specific surface area (BET). Is 100 to 300 m 2 / g, DBP oil absorption is 150 to 300 ml / 100 g, and the blending amount is preferably 10 to 120 parts by weight with respect to 100 parts by weight of the rubber component.
本発明のタイヤトレッド用ゴム組成物によれば、スチレンブタジエンゴム(A)からなるマトリックス中に、(B)ゴムからなる平均粒子径が0.1〜1.0μmの微粒子相を微細に分散させることにより、海相の(A)ゴム成分と島相の(B)ゴム成分とが適度な相溶性を有し、かつ、従来の通常ブレンド配合において海島構造を形成する場合には海相を構成するスチレンブタジエンゴム中に配合されるシリカの大半、例えば70〜80%以上のシリカが偏在していた(式(1)中の係数が0.1〜0.4)ものを、島相を構成する(B)ゴム成分にシリカを従来より多く分配しブレンドゴム全体にシリカを均等に存在させることで、(A)ゴムと(B)ゴムのそれぞれ独自の作用効果を発揮させ、ブレンドポリマーの特長を有効に発現させるとともに、シリカの分配制御によりゴム組成物のtanδの温度依存性を改善して低温域でのtanδを高めてヒステリシスロスを小さくし、高温域でのtanδを低いレベルに抑えてヒステリシスロスを大きくしてシリカ配合の効果を有効に発揮させ、その特長である低転がり抵抗性とウェット性能を共に向上し、耐摩耗性を良好にして従来の相反していた各性能をそれぞれバランスさせ向上することができる。 According to the rubber composition for a tire tread of the present invention, a fine particle phase having an average particle diameter of 0.1 to 1.0 μm made of (B) rubber is finely dispersed in a matrix made of styrene butadiene rubber (A). Thus, when the sea phase (A) rubber component and the island phase (B) rubber component have appropriate compatibility and form a sea-island structure in a conventional normal blend formulation, the sea phase is constituted. The majority of the silica blended in the styrene butadiene rubber to be used, for example, 70 to 80% or more of the silica is unevenly distributed (the coefficient in the formula (1) is 0.1 to 0.4) constitutes the island phase. (B) The silica is distributed more in the rubber component than in the past, and the silica is uniformly present in the entire blend rubber, so that the unique effects of (A) rubber and (B) rubber are exhibited, and the blend polymer features Effectively expressed In addition, the temperature dependence of the tan δ of the rubber composition is improved by controlling the silica distribution to increase the tan δ in the low temperature range to reduce the hysteresis loss, and suppress the tan δ in the high temperature range to a low level to increase the hysteresis loss. In order to effectively demonstrate the effect of silica blending, improve both the low rolling resistance and wet performance, which are its features, improve wear resistance, and balance and improve each of the conventional conflicting performances. Can do.
本発明の空気入りタイヤによれば、上記タイヤトレッド用ゴム組成物をトレッド部に適用することにより、低転がり抵抗とウェット性能をバランスよく両立し、かつ耐摩耗性を向上させる空気入りタイヤを提供するものとなる。 According to the pneumatic tire of the present invention, by applying the rubber composition for a tire tread to the tread portion, a pneumatic tire that achieves a balance between low rolling resistance and wet performance and improves wear resistance is provided. To be.
本発明のタイヤトレッド用ゴム組成物は、スチレンブタジエンゴム(A)と(B)ゴムとのブレンドからなる加硫されたゴム組成物が海島構造を有し、海島相のスチレンブタジエンゴム(A)と(B)ゴムとの両ゴム成分中にシリカをより均等に分配させることにより、各ゴム成分の特長を有効に発現させ背反関係にある低転がり抵抗とウェット性能及び耐摩耗性の各性能をバランスよく向上するという優れた効果を有し、それをトレッド部に適用することでバランスのよいタイヤ性能を備えた空気入りタイヤを得ることができる。 The rubber composition for a tire tread of the present invention has a sea-island structure in which a vulcanized rubber composition comprising a blend of styrene-butadiene rubber (A) and (B) rubber has a sea-island structure (A) And (B) By distributing silica more evenly in both rubber components, the characteristics of each rubber component are effectively expressed, and the low rolling resistance, wet performance, and wear resistance in a contradictory relationship are achieved. A pneumatic tire having an excellent effect of improving in a balanced manner and having a well-balanced tire performance can be obtained by applying it to the tread portion.
以下に、本発明に係る実施の形態について説明する。本発明のタイヤトレッド用ゴム組成物のゴム成分は、スチレンブタジエンゴム(SBR(A))と、前記SBR(A)以外の他のジエン系ゴム(B)ゴムとから構成され、加硫されたゴム組成物が前記SBR(A)からなるマトリックス(海相)中に前記(B)ゴムが島相として分散せしめられてなる海島構造を有している。 Embodiments according to the present invention will be described below. The rubber component of the rubber composition for a tire tread of the present invention is composed of a styrene butadiene rubber (SBR (A)) and a diene rubber (B) rubber other than the SBR (A) and vulcanized. The rubber composition has a sea-island structure in which the rubber (B) is dispersed as an island phase in a matrix (sea phase) composed of the SBR (A).
本発明において海相を構成するSBR(A)としては、重合方法やスチレン含有率などのポリマーのミクロ構造、分子量、或いは末端変性の有無などにより制限されることはなく、通常のタイヤトレッド用に用いられている溶液重合或いは乳化重合により得られるSBRから選択し使用することができる。 In the present invention, the SBR (A) constituting the sea phase is not limited by the polymer microstructure such as the polymerization method or styrene content, the molecular weight, or the presence or absence of terminal modification, and for ordinary tire treads. It can be selected from SBR obtained by solution polymerization or emulsion polymerization used.
その中でも、好ましくはスチレン含有率が10〜45重量%、より好ましくは15〜40重量%にあり、ビニル含有率は30〜60重量%程度であるSBRがタイヤトレッド用として転がり抵抗や耐摩耗性に優れ好適である。スチレン含有率が45重量%を超えるとガラス転移温度(Tg)が上昇し、ウエット性能は維持されるが、転がり抵抗が大きくなり耐摩耗性が低下し、ビニル含有率を上記範囲とすることでSBRのTgを適正な範囲とすることができる。 Among them, SBR having a styrene content of preferably 10 to 45% by weight, more preferably 15 to 40% by weight, and a vinyl content of about 30 to 60% by weight is used for tire treads. Excellent and suitable. When the styrene content exceeds 45% by weight, the glass transition temperature (Tg) increases and the wet performance is maintained, but the rolling resistance increases and the wear resistance decreases, and the vinyl content is within the above range. The TBR of SBR can be in an appropriate range.
島相を構成する(B)ゴムとしては、例えば天然ゴム(NR)、前記SBR(A)以外の各種のSBR、各種ブタジエンゴム(BR)、イソプレンゴム(IR)、ニトリルゴム(NBR)等のジエン系ゴムが例示され、その単独または2種以上を用いることもできる。BRを用いる場合は、シス含有量が93重量%以上のハイシスBRが耐摩耗性に優れ好ましい。 Examples of the (B) rubber constituting the island phase include natural rubber (NR), various SBRs other than the SBR (A), various butadiene rubbers (BR), isoprene rubber (IR), nitrile rubber (NBR), and the like. Examples of the diene rubber include one or two or more of them. When BR is used, a high cis BR having a cis content of 93% by weight or more is preferable because of its excellent wear resistance.
(B)ゴムとしてSBRを用いる場合は、ポリマーの重合方法やそのミクロ構造、分子量、分子量分布等がSBR(A)とは異なり、シリカとの親和性を向上するために末端変性されたSBRであってもよく、前記海相を構成するSBR(A)以外のSBRであれば使用することができる。 (B) When SBR is used as the rubber, the polymer polymerization method and its microstructure, molecular weight, molecular weight distribution, etc. are different from SBR (A), and the SBR is terminal-modified to improve the affinity with silica. Any SBR other than SBR (A) constituting the sea phase may be used.
このような末端変性溶液重合SBRとしては、スチレン含有率が10〜30重量%程度、ビニル含有率が40〜80重量%程度の任意の溶液重合SBRを常法に従い末端変性したものが使用される。末端変性法としては、SBR分子鎖中にベンゾフェノンやイソシアナート等の官能基をアルカリ金属触媒の存在下で導入し末端変性されたものや、特開昭63−150338号公報、特開平3−252433号公報等に開示の方法による末端変性SBRを特に制限を受けること無く用いることができ、シリカとの親和性を向上し、またシリカの分散性をよくすることができる。 As such a terminal-modified solution-polymerized SBR, a solution obtained by terminal-modifying an arbitrary solution-polymerized SBR having a styrene content of about 10 to 30% by weight and a vinyl content of about 40 to 80% by weight according to a conventional method is used. . As the terminal modification method, a functional group such as benzophenone or isocyanate is introduced into the SBR molecular chain in the presence of an alkali metal catalyst to modify the terminal, or Japanese Patent Application Laid-Open Nos. 63-150338 and 3252433. The terminal-modified SBR by the method disclosed in Japanese Patent Laid-Open No. 1993 and the like can be used without any particular limitation, and the affinity with silica can be improved and the dispersibility of silica can be improved.
本発明のタイヤトレッド用ゴム組成物においては、海相を構成するSBR(A)の配合量が、ゴム成分100重量部に対し30〜90重量部であることが好ましく、この範囲で加硫後のゴム組成物においてSBR(A)ポリマーがブレンドゴムのミクロ構造に海相を構成すればよい。 In the tire tread rubber composition of the present invention, the amount of SBR (A) constituting the sea phase is preferably 30 to 90 parts by weight with respect to 100 parts by weight of the rubber component. In this rubber composition, the SBR (A) polymer may constitute the sea phase in the microstructure of the blend rubber.
SBR(A)の配合量が30〜90重量部の範囲を外れるとシリカの両ゴム成分への均等分配が困難となり、すなわち配合量が30重量部よりも少なくなると、SBR(A)を海相として形成するのが困難となり補強性、耐摩耗性が低下し低転がり抵抗とウエット性能との両立効果が充分に奏されず、逆に多すぎると(B)ゴムによる島相の形成が少なくなりシリカの分配制御を困難とし、低転がり抵抗とウエット性能のバランスが両立し得なくなる。 When the blending amount of SBR (A) is out of the range of 30 to 90 parts by weight, it is difficult to evenly distribute the silica to both rubber components, that is, when the blending amount is less than 30 parts by weight, SBR (A) is removed from the sea phase. As a result, it becomes difficult to form as the reinforcing and wear resistance, and the effect of achieving both low rolling resistance and wet performance is not fully achieved. This makes it difficult to control the distribution of silica and makes it impossible to achieve a balance between low rolling resistance and wet performance.
本発明のタイヤトレッド用ゴム組成物に配合使用されるシリカとしては、通常のゴム補強用に用いられる湿式シリカ、乾式シリカなどが使用でき、特に湿式シリカが好ましい。シリカの窒素吸着比表面積(BET)は100〜300m2/g、DBP吸油量が150〜300ml/100gにあるものが好ましく、BETが100m2/g未満であるとシリカの補強効果が得られにくくなり、300m2/gを越えるとシリカの分散性が低下し、加工性(混合、押出性)が著しく低下する傾向にある。また、DBP吸油量を150〜300ml/100gとすることで分散性を良好に維持することができる。このようなシリカとしては、日本シリカ工業(株)製のニップシールVN3、AQ、トクヤマ(株)製のトクシールUR、U−13、デグッサ社製のウルトラジルVN3などの市販品が使用できる。なお、シリカのBETはASTM D3037に、DBP吸油量はJIS K6221に記載の方法に準拠し測定される。 As silica used in the rubber composition for a tire tread of the present invention, wet silica, dry silica and the like used for usual rubber reinforcement can be used, and wet silica is particularly preferable. The silica preferably has a nitrogen adsorption specific surface area (BET) of 100 to 300 m 2 / g and a DBP oil absorption of 150 to 300 ml / 100 g. If the BET is less than 100 m 2 / g, it is difficult to obtain a silica reinforcing effect. When it exceeds 300 m 2 / g, the dispersibility of silica is lowered, and the processability (mixing, extrudability) tends to be remarkably lowered. Moreover, a dispersibility can be favorably maintained by making DBP oil absorption amount 150-300 ml / 100g. As such silica, commercially available products such as NIPSEAL VN3 and AQ manufactured by Nippon Silica Kogyo Co., Ltd., Toksil UR and U-13 manufactured by Tokuyama Co., Ltd., and Ultrazil VN3 manufactured by Degussa Co., Ltd. can be used. The silica BET is measured according to ASTM D3037, and the DBP oil absorption is measured according to the method described in JIS K6221.
シリカの配合量はゴム成分100重量部に対して10〜120重量部である。シリカの配合量が10重量部未満ではシリカを配合する効果が得られず、120重量部を越えると加工性が低下する。 The compounding quantity of a silica is 10-120 weight part with respect to 100 weight part of rubber components. If the blending amount of silica is less than 10 parts by weight, the effect of blending silica cannot be obtained, and if it exceeds 120 parts by weight, the workability decreases.
本発明のゴム組成物には、従来からシリカと併用される任意のシランカップリング剤を配合することが好ましい。シランカップリング剤としては、ビス−(3−(トリエトキシシリル)プロピル)テトラスルフィドなどのスルフィド系、3−メルカプトプロピルトリメトキシシランなどのメルカプト系、3−アミノプロピルトリメトキシシランなどのアミノ系、ビニルトリエトキシシランなどのビニル系等の通常使用されるシランカップリング剤が挙げられ、その単独又は2種以上を併用することができる。 In the rubber composition of the present invention, any silane coupling agent that has been conventionally used in combination with silica is preferably blended. Examples of the silane coupling agent include sulfide systems such as bis- (3- (triethoxysilyl) propyl) tetrasulfide, mercapto systems such as 3-mercaptopropyltrimethoxysilane, amino systems such as 3-aminopropyltrimethoxysilane, Examples of the commonly used silane coupling agent such as vinyl type such as vinyltriethoxysilane may be used alone or in combination of two or more.
このシランカップリング剤の配合量は、シリカ配合量の1〜20重量%であり、シランカップリング剤が1重量%未満ではそのカップリング効果が十分得られずシリカ配合の長所が発揮されず、20重量%を越えるとコストの上昇の割にそれ以上のカップリング効果が得られず、逆に補強性、耐摩耗性が低下し加工性も悪くなる傾向にある。 The compounding amount of this silane coupling agent is 1 to 20% by weight of the silica compounding amount. If the silane coupling agent is less than 1% by weight, the coupling effect is not sufficiently obtained, and the advantages of silica compounding are not exhibited, If it exceeds 20% by weight, no further coupling effect can be obtained for the cost increase, and conversely, the reinforcement and wear resistance tend to be lowered and the workability tends to be deteriorated.
本発明のタイヤトレッド用ゴム組成物は、その加硫後のゴム組成物において、海相をなすSBR(A)のマトリックス中に(B)ゴムからなる島相が微細に分散する海島構造を構成する。 The rubber composition for a tire tread of the present invention constitutes a sea-island structure in which an island phase made of (B) rubber is finely dispersed in a matrix of SBR (A) forming a sea phase in the rubber composition after vulcanization. To do.
本発明における海島構造では、(B)ゴムからなる島相の平均粒子径が0.1〜1.0μmにあり、加硫後ゴム組成物のミクロ構造のマトリックス中に島相が微細に、かつ均一に分散される。島相の平均粒子径が0.1μm未満になるとマトリックス中の島相が微細になりすぎ海島構造を呈さなくなりポリマーモルフォロジーの形態をなさず本発明から逸脱し、逆に1.0μmを越える島相が大きくなりすぎ、いわゆる団子状を呈して島相をマトリックス中に均一に分散させず海相と島相の良好な相溶性が得られなくなる。従って、平均粒子径は0.1〜1.0μmの範囲であると、SBR(A)からなる海相と(B)ゴムからなる島相との相溶性が良好となり、互いの特性を相殺することなく両者の特長を高度にバランスよく創出することができる。 In the sea-island structure in the present invention, (B) the average particle size of the island phase made of rubber is 0.1 to 1.0 μm, the island phase is fine in the microstructure matrix of the rubber composition after vulcanization, and Evenly distributed. When the average particle size of the island phase is less than 0.1 μm, the island phase in the matrix becomes too fine to exhibit a sea-island structure and does not form a polymer morphology, and deviates from the present invention. Conversely, an island phase exceeding 1.0 μm is large. As a result, so-called dumplings are formed and the island phase is not uniformly dispersed in the matrix, so that good compatibility between the sea phase and the island phase cannot be obtained. Therefore, when the average particle size is in the range of 0.1 to 1.0 μm, the compatibility between the sea phase composed of SBR (A) and the island phase composed of (B) rubber is improved, and the characteristics of each other are offset. The features of both can be created in a highly balanced manner.
ここで、本発明のタイヤトレッド用ゴム組成物は、加硫後のゴム組成物における島相を構成する(B)ゴムに含まれるシリカ量Y(重量部)が、式(X/100)・Z・1.4≧Y≧(X/100)・Z・0.7……(1)(式中、Xはゴム成分100重量部に対する(B)ゴムの配合量(重量部)、Zはゴム成分100重量部に対するシリカの配合量(重量部)である)の範囲内にあることで、SBR(A)と(B)ゴムとの配合比率に関わらず海島両相のゴム中にシリカを均等な分配量で分布させることができる。 Here, the rubber composition for a tire tread of the present invention has (B) the amount of silica contained in the rubber (B) constituting the island phase in the rubber composition after vulcanization, and the formula (X / 100) · Z · 1.4 ≧ Y ≧ (X / 100) · Z · 0.7 (1) (wherein X is the blending amount of rubber (B) with respect to 100 parts by weight of rubber component, and Z is Silica is added to the rubber in both phases of the sea island regardless of the blending ratio of SBR (A) and (B) rubber. It can be distributed with an even distribution amount.
これは、従来の通常配合でのブレンドゴムにおいては海相を構成するSBR(A)にシリカの大半が偏在していたものを、ポリマーモルフォロジーの観点に補強性フィラーの含有量の観点を導入することにより改善したものである。すなわち、島相を構成する(B)ゴム側に通常よりも多くのシリカを分配制御することでシリカの分布をブレンドゴム全体に満遍なく均一化し、ブレンドされる各ポリマーの特長を有効に発現させるとともにシリカの特長であるtanδの温度依存性を大きく改善したものである。 This introduces the viewpoint of the content of the reinforcing filler from the viewpoint of polymer morphology of the blend rubber in the conventional normal blend in which the majority of silica is unevenly distributed in SBR (A) constituting the sea phase. This is an improvement. In other words, (B) the distribution of more silica than usual on the rubber side that constitutes the island phase is uniformly distributed throughout the blend rubber by controlling the distribution of silica more than usual, and the characteristics of each blended polymer are effectively expressed. This greatly improves the temperature dependence of tan δ, which is a feature of silica.
すなわち、島相のシリカ量Yが、上記の式(1)の範囲であると、通常は海相のSBR(A)にシリカの大半が偏在(式中の係数が0.1〜0.4)していたものを、島相を構成する(B)ゴム成分側にも均等に分配させることになり、シリカの分配量を均等化することでブレンドポリマーの特長を有効に発現させるとともに、従来のシリカ偏在によるtanδの温度依存性を改善し、低温域、例えば0℃付近でのtanδを高めてウェット性能を向上し、60℃付近でのtanδを低いレベルに抑えて走行温度域でのヒステリシスロスを小さくし低転がり抵抗と耐摩耗性を良好にし、相反する性能をそれぞれ向上し高次元にバランスさせることができる。 That is, when the amount Y of silica in the island phase is in the range of the above formula (1), the majority of silica is normally unevenly distributed in the SBR (A) of the sea phase (the coefficient in the formula is 0.1 to 0.4). ) Is distributed evenly on the (B) rubber component side that constitutes the island phase, and the characteristics of the blend polymer are effectively expressed by equalizing the amount of silica distributed, Improves the temperature dependence of tan δ due to the uneven distribution of silica, improves the wet performance by increasing tan δ in the low temperature range, for example, near 0 ° C, and suppresses the tan δ in the low temperature range to a low level to achieve hysteresis in the running temperature range The loss can be reduced, the rolling resistance and wear resistance can be improved, and the conflicting performance can be improved and balanced in a high dimension.
上記シリカ量Yが式(1)の範囲を外れると、シリカが海相又は島相に偏在することになり、本発明のシリカ分散の均等化に反し発明の目的を達成することができない。 If the silica amount Y is out of the range of the formula (1), the silica is unevenly distributed in the sea phase or the island phase, and the object of the invention cannot be achieved contrary to the equalization of silica dispersion of the present invention.
本発明のゴム組成物では、海相を構成するSBR(A)と島相を構成する(B)ゴムとにシリカを配合したブレンドゴムに海島構造が形成され、かつシリカが上記式(1)の範囲内で定量的に分配し調整されるものであればその調整方法は特に制限されることはない。 In the rubber composition of the present invention, a sea-island structure is formed in a blend rubber in which silica is blended with SBR (A) constituting the sea phase and (B) rubber constituting the island phase, and the silica is represented by the formula (1). The adjustment method is not particularly limited as long as it is distributed and adjusted quantitatively within the above range.
その調整方法としては、SBR(A)と(B)ゴムとの間で、ポリマーの有するミクロ構造やTg、凝集状態などの差やシリカの特性を組み合わせ、それに混合条件などを付加してブレンドゴムに海島構造を形成するものであればよく、配合手法や混合手法などの組み合わせにより適宜実施することができる。 As the adjustment method, the blend rubber is obtained by combining the difference in the microstructure, Tg, aggregation state, etc. of the polymer and the characteristics of silica between the SBR (A) and the (B) rubber, and adding the mixing conditions to it. Any structure that forms a sea-island structure can be used, and can be appropriately implemented by a combination of a blending technique and a mixing technique.
例えば、海相を構成するSBR(A)と島相を構成する(B)ゴム及びシリカの全量を同時に配合し、他の配合成分と同時に混合して均一に分散させブレンドゴムを調整することができ、この場合は混合温度や時間、バンバリーミキサーのローター回転トルク等の混合条件を考慮し調整すればよい。この場合は、島相のゴム成分にシリカとの親和性を向上させた末端変性SBRなどの活性なポリマーを使用する等の各種手法を同時に採用することができる。 For example, SBR (A) constituting the sea phase and (B) rubber and silica constituting the island phase may be blended simultaneously and mixed simultaneously with other blending components to uniformly disperse and adjust the blend rubber. In this case, adjustment may be made in consideration of mixing conditions such as the mixing temperature and time, and the rotor rotational torque of the Banbury mixer. In this case, various methods such as using an active polymer such as terminal-modified SBR with improved affinity with silica for the rubber component of the island phase can be employed at the same time.
また、海相を構成するSBR(A)のシリカマスターバッチと、島相を構成する(B)ゴムのシリカマスターバッチとをそれぞれシリカ量を調整し個別に作製し、そのマスターバッチを混合し分散させることでブレンドゴムを得ることもできる。また、(B)ゴムにシリカの全量を配合したマスターバッチとSBR(A)ポリマーとを混合しブレンドゴムとするなど、各種の手法を用いることができる。 Moreover, the silica masterbatch of SBR (A) that constitutes the sea phase and the silica masterbatch of rubber (B) that constitutes the island phase are individually prepared by adjusting the amount of silica, and the masterbatch is mixed and dispersed. Blend rubber can be obtained. Moreover, various methods, such as mixing the masterbatch which mix | blended the whole quantity of the silica with (B) rubber, and SBR (A) polymer, can be used, for example.
本発明のタイヤ用ゴム組成物においては、上記シリカと併用してカーボンブラックを用いてもよい。カーボンブラックを配合することで、補強性や耐摩耗性を向上し、シリカによる混合時の発熱(焼け)の問題や加工性の低下を改善することができる。 In the rubber composition for tires of the present invention, carbon black may be used in combination with the silica. By blending carbon black, the reinforcing property and wear resistance can be improved, and the problem of heat generation (burning) during mixing with silica and the deterioration of workability can be improved.
このカーボンブラックとしては、通常のタイヤトレッドに用いられるものであればよいが、特に耐摩耗性や低転がり抵抗に優れるHAF級以上の補強性を有するカーボンブラックが好ましく、すなわち、窒素吸着比表面積(N2SA)が70〜130m2/g、及びDBP吸油量が70〜120ml/100gのカーボンブラックが好適に使用され、例えば、HAF、ISAF、SAF級のカーボンブラックが実用に適し、これらの2種以上を併用してもよい。 As this carbon black, any carbon black may be used as long as it is used for ordinary tire treads. In particular, carbon black having a HAF class or higher reinforcing property excellent in wear resistance and low rolling resistance is preferable. N 2 SA) of 70 to 130 m 2 / g and DBP oil absorption of 70 to 120 ml / 100 g are preferably used. For example, HAF, ISAF, and SAF grade carbon black are suitable for practical use. More than one species may be used in combination.
上記カーボンブラックを用いる場合の配合量は、ゴム成分100重量部に対し100重量部未満でシリカとの合計量が10〜140重量部程度の範囲で配合されることが好ましい。配合量が100重量部を超えるとゴム組成物の転がり抵抗が大きくなり、またゴム中への分散性、混合性が悪化するため海島相へのシリカ分配量の調整が困難となり、加工性にも影響し工程性を低下させるおそれがある。 When the carbon black is used, the blending amount is preferably less than 100 parts by weight with respect to 100 parts by weight of the rubber component, and the total amount with silica is preferably in the range of about 10 to 140 parts by weight. If the blending amount exceeds 100 parts by weight, the rolling resistance of the rubber composition will increase, and the dispersibility and mixing properties in the rubber will deteriorate, making it difficult to adjust the amount of silica distributed to the sea-island phase and improving processability. There is a risk of affecting the processability.
本発明のタイヤトレッド用ゴム組成物には、上記ゴム成分とシリカの他に、カーボンブラック、ゴム工業において通常に用いられる硫黄などの加硫剤、加硫促進剤、プロセスオイル、老化防止剤、亜鉛華、ステアリン酸、加硫助剤などの各種配合剤を、本発明の効果を損なわない範囲で必要に応じ適宜配合し用いることができる。 In addition to the rubber component and silica, the rubber composition for tire tread of the present invention includes carbon black, a vulcanizing agent such as sulfur usually used in the rubber industry, a vulcanization accelerator, a process oil, an anti-aging agent, Various compounding agents such as zinc white, stearic acid, and vulcanization aid can be appropriately blended and used as necessary within the range not impairing the effects of the present invention.
本発明では、原料ゴムとシリカに、或いはシリカマスターバッチに各種配合剤を配合しバンバリーミキサー、ロール、ニーダーなどの各種混練機を使用して常法に従い作製することができ、タイヤのトレッド部を始めとしてサイドウォール部、ビード部などのタイヤ各部位に使用することができるが、特にタイヤトレッド用ゴムとして好適に使用される。 In the present invention, various compounding agents can be blended with raw rubber and silica, or a silica masterbatch, and can be produced according to a conventional method using various kneaders such as a Banbury mixer, roll, kneader, etc. Although it can be used for each part of the tire such as a sidewall part and a bead part at the beginning, it is particularly suitably used as a tire tread rubber.
以下に実施例を用いて本発明を説明するが、本発明はこれらの実施例によってなんら限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
下記の2種類のSBR−A,Bとシリカとを用い、それぞれシリカの配合量を調整したマスターバッチを作製し、表1に記載の各タイヤトレッド用ゴム組成物をマスターバッチに下記シランカップリング剤と下記共通の配合成分を配合し、容量20リットルのバンバリーミキサーにより混練し調整した。また、必要に応じて各ゴム組成物はバンバリーミキサーによる混練時間とローターの回転トルクを調整することでブレンドゴムの海島構造及びシリカの両ゴム成分への分配量を調整した。なお、表1中のSBR−Aの配合量はゴム成分のみの配合量を示す。 Using the following two types of SBR-A, B and silica, master batches each having an adjusted amount of silica were prepared, and the rubber compositions for tire treads shown in Table 1 were used as master batches with the following silane couplings. The ingredients and the following common ingredients were blended and kneaded and adjusted with a 20 liter Banbury mixer. Moreover, each rubber composition adjusted the kneading time by a Banbury mixer and the rotational torque of the rotor to adjust the distribution amount of the blended rubber to the sea-island structure and silica to both rubber components. In addition, the compounding quantity of SBR-A in Table 1 shows the compounding quantity of only a rubber component.
[SBR−A,B、シリカ、シランカップリング剤]
・SBR−A:溶液重合SBR、スチレン含有率35重量%、ビニル含有率40重量% (37.5%油展)
・SBR−B:末端変性溶液重合SBR、スチレン含有率15重量%、ビニル含有率65重量%
・シリカ:日本シリカ工業(株)製、ニップシールAQ、(BET:210m2/g)
・シランカップリング剤:デグッサ社製 Si69
[SBR-A, B, silica, silane coupling agent]
SBR-A: solution polymerization SBR, styrene content 35% by weight, vinyl content 40% by weight (37.5% oil exhibition)
SBR-B: terminal-modified solution polymerization SBR, styrene content 15% by weight, vinyl content 65% by weight
Silica: Nippon Silica Kogyo Co., Ltd., nip seal AQ, (BET: 210 m 2 / g)
Silane coupling agent: Si69 manufactured by Degussa
[共通配合成分]
・アロマオイル:30重量部(ジャパンエナジー(株)製、プロセスX−140)
・亜鉛華:3重量部(三井金属鉱業(株)製、亜鉛華1号)
・ワックス:1重量部(大内新興化学工業(株)製、サンノック)
・老化防止剤6C:2重量部(大内新興化学工業(株)製、ノクラック6C)
・硫黄:1.8重量部(細井化学工業(株)製、ゴム用粉末硫黄150メッシュ)
・加硫促進剤CZ:1重量部(大内新興化学工業(株)製、ノクセラーCZ)
[Common ingredients]
Aroma oil: 30 parts by weight (manufactured by Japan Energy Co., Ltd., Process X-140)
・ Zinc flower: 3 parts by weight (Mitsui Metal Mining Co., Ltd., Zinc flower No. 1)
・ Wax: 1 part by weight (Ouchi Shinsei Chemical Co., Ltd., Sunnock)
-Anti-aging agent 6C: 2 parts by weight (Ouchi Shinsei Chemical Co., Ltd., Nocrack 6C)
-Sulfur: 1.8 parts by weight (manufactured by Hosoi Chemical Co., Ltd., powdered sulfur for rubber 150 mesh)
・ Vulcanization accelerator CZ: 1 part by weight (Ouchi Shinsei Chemical Co., Ltd., Noxeller CZ)
得られた各タイヤトレッド用ゴム組成物について、加硫後ゴム組成物の海島構造の島相の平均粒子径、島相のシリカの存在量を測定し、さらに各ゴム組成物をトレッド部に適用したサイズ185/70R14の試験用ラジアルタイヤを製造し、各タイヤの転がり抵抗、ウェット性能、耐摩耗性を下記の方法に従い評価し、その結果を比較例1のタイヤを100とする指数で表1に示した。 For each tire tread rubber composition obtained, the average particle diameter of the island phase of the sea-island structure of the rubber composition after vulcanization and the amount of silica in the island phase were measured, and each rubber composition was applied to the tread portion. The test radial tires of size 185 / 70R14 were manufactured, and the rolling resistance, wet performance, and wear resistance of each tire were evaluated according to the following methods. It was shown to.
試験方法
[島相の平均粒子径(μm)]
各ゴム組成物を試験用ロールを用いてシートにし、15×15×1cmの試験用モールドを用いて、150℃×30分間のプレス加硫を行い加硫シートを作製し、これをミクロトームを用いて超薄切片を作成し透過型電子顕微鏡(TEM)を用いて観察した。島相の粒子径を測定し、その平均値を求めた。
Test method [average particle size of island phase (μm)]
Each rubber composition is made into a sheet using a test roll, and a vulcanized sheet is produced by performing press vulcanization at 150 ° C. for 30 minutes using a 15 × 15 × 1 cm test mold, and this is used using a microtome. An ultrathin section was prepared and observed using a transmission electron microscope (TEM). The particle size of the island phase was measured and the average value was determined.
[島相のシリカの存在量(重量部)]
島相の平均粒子径測定用の試験サンプルを使用し、走査型プローブ顕微鏡を用いて海相と島相のシリカ数を測定し、その比率より島相のシリカ存在量を配合したシリカ量に基づいて求めた。
[Abundance of silica in island phase (parts by weight)]
Using a test sample for measuring the average particle size of the island phase, measure the number of silica in the sea phase and the island phase using a scanning probe microscope, and based on the amount of silica blended with the abundance of the silica in the island phase from the ratio Asked.
[転がり抵抗]
1軸ドラム試験機を用い、内圧200kPa、負荷荷重400Kg、速度80Km/hでドラム上を走行する時の転がり抵抗を測定し、次式により各試験タイヤの転がり抵抗指数を計算した。値が小さいほど燃費性が良く良好である。 転がり抵抗(指数)=(各試験タイヤの転がり抵抗)×100/(比較例1のタイヤの転がり抵抗)
[Rolling resistance]
Using a uniaxial drum tester, the rolling resistance when running on the drum at an internal pressure of 200 kPa, a load load of 400 kg, and a speed of 80 km / h was measured, and the rolling resistance index of each test tire was calculated by the following formula. The smaller the value, the better the fuel efficiency and the better. Rolling resistance (index) = (rolling resistance of each test tire) × 100 / (rolling resistance of the tire of Comparative Example 1)
[ウェット性能]
排気量2000ccの国産乗用車に同種の試験タイヤ4本を内圧200kPaに調整し取り付け、水深2〜3mmに水没したアスファルト路面を時速60Km/hで通過中に急ブレーキをかけてから停止するまでの距離を測定し、次式により各試験タイヤのウエット制動性指数を計算し、ウエット性を評価した。値が大きいほど制動性が良く良好である。 ウエット性(指数)=(比較例1の試験タイヤの停止距離)×100/(各試験タイヤの停止距離)
[Wet performance]
The distance from applying a sudden brake while stopping on an asphalt road surface submerged to a depth of 2 to 3 mm at a speed of 60 Km / h until stopping after the same type of test tire is adjusted to 200 kPa on a domestic passenger car with a displacement of 2000 cc. Was measured, the wet braking index of each test tire was calculated by the following formula, and the wettability was evaluated. The larger the value, the better and better the braking performance. Wetness (index) = (stop distance of test tire of Comparative Example 1) × 100 / (stop distance of each test tire)
[耐摩耗性]
排気量2000ccの国産乗用車に2種類の試験タイヤを、内圧200kPaに調整し前輪と後輪にそれぞれ取り付け、走行5,000Km毎にローティションを行いながら一般路を20,000Km走行後、各タイヤのトレッドの残溝深さを測定し摩耗量を求め、次式により各試験タイヤの耐摩耗性指数を計算し、耐摩耗性を評価した。値が大きいほど耐摩耗性が良好である。 耐摩耗性(指数)=(比較例1の試験タイヤの摩耗量)×100/(各試験タイヤの摩耗量)
[Abrasion resistance]
Two types of test tires are installed on a domestic passenger car with a displacement of 2000 cc, and the internal pressure is adjusted to 200 kPa and attached to the front and rear wheels, respectively. After running 20,000 km on a general road while rotating every 5,000 km, The residual groove depth of the tread was measured to determine the amount of wear, and the wear resistance index of each test tire was calculated by the following formula to evaluate the wear resistance. The higher the value, the better the wear resistance. Abrasion resistance (index) = (Abrasion amount of test tire of Comparative Example 1) × 100 / (Abrasion amount of each test tire)
表1に示す通り、実施例の各ゴム組成物をトレッド部に適用したタイヤは、従来の比較例1に比べて、島相へのシリカ分配量を増加しブレンドゴム中のシリカ分布を均等化することで、シリカ配合による良好なウェッ性能を維持した上で転がり抵抗と耐摩耗性を向上し、バランスのよいタイヤ性能が得られる。特に島相のシリカを増量する(実施例3)ことで各性能をより優れたものとすることができる。 As shown in Table 1, in the tire in which each rubber composition of the example was applied to the tread portion, the silica distribution amount to the island phase was increased and the silica distribution in the blend rubber was equalized compared to the conventional Comparative Example 1. By doing so, the rolling resistance and the wear resistance are improved while maintaining the good wet performance by the silica blending, and a well-balanced tire performance can be obtained. In particular, by increasing the amount of island-phase silica (Example 3), each performance can be made more excellent.
しかし、島相のシリカ分配量が多くなる(比較例2)と、海相のゴム成分に対するシリカ配合の効果が低下しバランスが崩れ始め、また、島相の粒子径が小さい比較例3は島相形成の効果が得られず転がり抵抗とウェット性能とのバランスが低下し、大きすぎる比較例4は相溶性が低下し耐摩耗性が悪化してしまう結果となり、島相の粒子径を0.1〜1.0μmの範囲内に制限することでポリマーの特長が発揮され本発明を達成することができる。 However, when the amount of silica distribution in the island phase increases (Comparative Example 2), the effect of the silica compounding on the rubber component of the sea phase decreases and the balance starts to be lost. Since the effect of phase formation cannot be obtained, the balance between rolling resistance and wet performance is lowered, and Comparative Example 4 which is too large results in a decrease in compatibility and deterioration in wear resistance. By limiting within the range of 1 to 1.0 μm, the features of the polymer are exhibited and the present invention can be achieved.
本発明のタイヤトレッド用ゴム組成物は、ブレンドゴムのゴム成分の特長を有効に発現させ低転がり抵抗とウェット性能及び耐摩耗性の各性能をバランスよく向上するものとなり、燃費、安全性、耐久性に優れた空気入りタイヤを提供し、特に乗用車用タイヤに好適である。
The rubber composition for tire tread of the present invention effectively exhibits the characteristics of the rubber component of the blend rubber and improves each of the low rolling resistance, wet performance, and wear resistance in a balanced manner. A pneumatic tire excellent in performance is provided, and is particularly suitable for a tire for a passenger car.
Claims (4)
加硫された前記タイヤトレッド用ゴム組成物が、前記(A)ゴムからなるマトリックス中に前記(B)ゴムが島相として分散せしめられてなる海島構造を有し、
前記島相の平均粒子径が0.1〜1.0μmにあり、かつ、
前記島相を構成する(B)ゴムに含まれるシリカ量Y(重量部)が、下記式(1)で示される範囲にある
ことを特徴とするタイヤトレッド用ゴム組成物。
(X/100)・Z・1.4≧Y≧(X/100)・Z・0.7……(1)
(式中、Xはゴム成分100重量部に対する(B)ゴムの配合量(重量部)、Zはゴム成分100重量部に対するシリカの配合量(重量部)である) In a rubber composition for a tire tread formed by blending silica with a rubber component containing a styrene butadiene rubber (A) and a diene rubber (B) other than the styrene butadiene rubber (A),
The vulcanized rubber composition for a tire tread has a sea-island structure in which the rubber (B) is dispersed as an island phase in the matrix (A) rubber,
The average particle size of the island phase is 0.1 to 1.0 μm, and
The rubber composition for a tire tread, wherein the amount of silica Y (parts by weight) contained in the rubber (B) constituting the island phase is in the range represented by the following formula (1).
(X / 100) · Z · 1.4 ≧ Y ≧ (X / 100) · Z · 0.7 (1)
(In the formula, X is the blending amount (part by weight) of (B) rubber with respect to 100 parts by weight of the rubber component, and Z is the blending amount (part by weight) of silica with respect to 100 parts by weight of the rubber component)
ことを特徴とする請求項1に記載のタイヤトレッド用ゴム組成物。 The rubber composition for a tire tread according to claim 1, wherein the blending amount of the rubber (A) is 30 to 90 parts by weight with respect to 100 parts by weight of the rubber component.
ことを特徴とする請求項1又は2に記載のタイヤトレッド用ゴム組成物。 The silica has a nitrogen adsorption specific surface area (BET) of 100 to 300 m 2 / g, a DBP oil absorption of 150 to 300 ml / 100 g, and a blending amount of 10 to 120 parts by weight with respect to 100 parts by weight of the rubber component. The rubber composition for a tire tread according to claim 1 or 2, wherein
ことを特徴とする空気入りタイヤ。
A pneumatic tire, wherein the rubber composition for a tire tread according to any one of claims 1 to 3 is applied to a tread portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004278156A JP2006089636A (en) | 2004-09-24 | 2004-09-24 | Tire tread rubber composition and pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004278156A JP2006089636A (en) | 2004-09-24 | 2004-09-24 | Tire tread rubber composition and pneumatic tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006089636A true JP2006089636A (en) | 2006-04-06 |
Family
ID=36230920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004278156A Withdrawn JP2006089636A (en) | 2004-09-24 | 2004-09-24 | Tire tread rubber composition and pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006089636A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006348222A (en) * | 2005-06-17 | 2006-12-28 | Sumitomo Rubber Ind Ltd | Rubber composition for sidewall |
JP2014145062A (en) * | 2013-01-30 | 2014-08-14 | Sumitomo Rubber Ind Ltd | Sidewall rubber composition and pneumatic tire |
CN107011552A (en) * | 2015-11-04 | 2017-08-04 | 住友橡胶工业株式会社 | Vulcanize rubber composition and use the tire for having the vulcanization rubber composition |
WO2018159621A1 (en) | 2017-03-01 | 2018-09-07 | 住友ゴム工業株式会社 | Studless winter tire |
EP2868697B1 (en) | 2012-07-25 | 2019-03-27 | Sumitomo Rubber Industries, Ltd. | Method of producing rubber composition for tyres |
US10494515B2 (en) | 2014-11-14 | 2019-12-03 | Sumitomo Rubber Industries, Ltd. | Process for preparing vulcanized rubber composition, vulcanized rubber composition and studless tire using same |
-
2004
- 2004-09-24 JP JP2004278156A patent/JP2006089636A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006348222A (en) * | 2005-06-17 | 2006-12-28 | Sumitomo Rubber Ind Ltd | Rubber composition for sidewall |
EP2868697B1 (en) | 2012-07-25 | 2019-03-27 | Sumitomo Rubber Industries, Ltd. | Method of producing rubber composition for tyres |
JP2014145062A (en) * | 2013-01-30 | 2014-08-14 | Sumitomo Rubber Ind Ltd | Sidewall rubber composition and pneumatic tire |
US10494515B2 (en) | 2014-11-14 | 2019-12-03 | Sumitomo Rubber Industries, Ltd. | Process for preparing vulcanized rubber composition, vulcanized rubber composition and studless tire using same |
CN107011552A (en) * | 2015-11-04 | 2017-08-04 | 住友橡胶工业株式会社 | Vulcanize rubber composition and use the tire for having the vulcanization rubber composition |
CN107011552B (en) * | 2015-11-04 | 2021-01-29 | 住友橡胶工业株式会社 | Vulcanized rubber composition and tire using the same |
WO2018159621A1 (en) | 2017-03-01 | 2018-09-07 | 住友ゴム工業株式会社 | Studless winter tire |
US11433705B2 (en) | 2017-03-01 | 2022-09-06 | Sumitomo Rubber Industries, Ltd. | Studless tire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5634913B2 (en) | Rubber composition, method for producing the same, and pneumatic tire | |
JP6287339B2 (en) | Rubber composition for tire tread | |
JP2007238682A (en) | Rubber composition and pneumatic tire | |
JP2013177501A (en) | Rubber composition for tire and pneumatic tire | |
JP2006036822A (en) | Rubber composition and pneumatic tire | |
JP3811548B2 (en) | Rubber composition for tire tread | |
JP3938612B2 (en) | Rubber composition for tire tread and method for producing the same | |
JP2006089636A (en) | Tire tread rubber composition and pneumatic tire | |
JP2009029991A (en) | Rubber composition for tire tread | |
JP5038040B2 (en) | Rubber composition for tire tread and tire | |
JP2006131718A (en) | Rubber composition | |
JP4438336B2 (en) | Rubber composition for tread and tire using the same | |
JP5044903B2 (en) | Rubber composition for tire | |
JP6024390B2 (en) | Rubber composition for tire | |
JP4127916B2 (en) | Pneumatic tire | |
JP2006089635A (en) | Tire tread rubber composition and pneumatic tire | |
JP2002226631A (en) | Rubber composition for tire | |
JP2007002031A (en) | Rubber composition and pneumatic tire | |
JP2005194418A (en) | Rubber composition for pneumatic tire | |
JP2007284544A (en) | Rubber composition and pneumatic tire | |
JP3410984B2 (en) | Rubber composition | |
JP6657759B2 (en) | Rubber composition for tire | |
JP6686362B2 (en) | Rubber composition for tires | |
JP2016094560A (en) | Manufacturing method of vulcanized rubber composition, vulcanized rubber composition and studless tire using the same | |
JP2006291105A (en) | Rubber composition for tread, and pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20071204 |