JP2006089586A - Magnetic abrasive grain and method for producing the same - Google Patents

Magnetic abrasive grain and method for producing the same Download PDF

Info

Publication number
JP2006089586A
JP2006089586A JP2004276530A JP2004276530A JP2006089586A JP 2006089586 A JP2006089586 A JP 2006089586A JP 2004276530 A JP2004276530 A JP 2004276530A JP 2004276530 A JP2004276530 A JP 2004276530A JP 2006089586 A JP2006089586 A JP 2006089586A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic abrasive
diamond particles
plating layer
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004276530A
Other languages
Japanese (ja)
Inventor
Sachio Yoshihara
佐知雄 吉原
Enei Cho
延栄 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP2004276530A priority Critical patent/JP2006089586A/en
Publication of JP2006089586A publication Critical patent/JP2006089586A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic abrasive grain enabling precise surface processing and to provide a method for producing the abrasive grain. <P>SOLUTION: In the magnetic abrasive grain 1, an electroless plating layer 3 having magnetism is formed on diamond particles 2. The magnetic abrasive grain 1 can be produced by carrying out hydrophilization treatment of diamond particles 2 by using concentrated H<SB>2</SB>SO<SB>4</SB>/HNO<SB>3</SB>, adding a catalyst thereto and carrying out sensitizing treatment of the treated diamond particles and carrying out electroless plating and forming the electroless plating layer 3 having magnetism onto the surface of the diamond particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁性砥粒及びその製造方法に関し、更に詳しくは、磁気研磨法等に利用される磁性砥粒及びその製造方法に関するものである。   The present invention relates to a magnetic abrasive grain and a manufacturing method thereof, and more particularly to a magnetic abrasive grain used for a magnetic polishing method and a manufacturing method thereof.

磁気研磨法は、研磨作用を有する砥粒を磁場の作用により運動させて被加工物の表面を研磨する精密加工方法である。この磁気研磨法は、従来の機械加工では困難な部品の研磨を可能にする方法であり、例えば、複雑形状を有する部品の表面、工具が入らない穴の内面、工具が届かない管の内面等の研磨について一部実用化されている。   The magnetic polishing method is a precision processing method for polishing the surface of a workpiece by moving abrasive grains having a polishing action by the action of a magnetic field. This magnetic polishing method is a method that enables polishing of parts that are difficult with conventional machining, such as the surface of a part having a complicated shape, the inner surface of a hole that does not receive a tool, the inner surface of a tube that does not reach the tool, etc. Part of the polishing has been put to practical use.

磁気研磨法で利用される研磨砥粒は、磁場の作用により被加工物に対して相対運動するものである。一般的には、磁性を有する研磨粒子を含む磁性砥粒や、磁性を有しない非磁性の研磨粒子と磁性を有する粒子との混合物からなる磁性砥粒が知られている。前者の場合は磁場により研磨粒子自体が運動するが、後者の場合は、磁場により運動するのは磁性を有する粒子であり、研磨粒子は磁性を有する粒子と共に運動して被加工物の表面を研磨する。したがって、後者の磁性砥粒は、磁性を有する粒子が磨耗して研磨屑になり易く、被加工物の表面が汚染されてしまう等の問題がある。   Abrasive grains used in the magnetic polishing method move relative to the workpiece by the action of a magnetic field. In general, magnetic abrasive grains containing magnetic abrasive particles and magnetic abrasive grains made of a mixture of non-magnetic non-magnetic abrasive particles and magnetic particles are known. In the former case, the abrasive particles move by the magnetic field. In the latter case, the magnetic particles move by the magnetic field, and the abrasive particles move with the magnetic particles to polish the surface of the workpiece. To do. Therefore, the latter magnetic abrasive grains have a problem that the magnetic particles are easily worn and become polishing scraps, and the surface of the workpiece is contaminated.

一方、前者の磁性砥粒にはそうした問題がなく、例えば、磁性粒子と研磨粒子との焼結体を粉砕した磁性砥粒や、磁性粒子の表面に研磨粒子を含有した無電解めっき皮膜を形成した磁性砥粒(例えば特許文献1を参照。)が報告されている。
特開2002−265933号公報(請求項3)
On the other hand, the former magnetic abrasive grains do not have such a problem. For example, magnetic abrasive grains obtained by pulverizing a sintered body of magnetic particles and abrasive particles, or electroless plating film containing abrasive particles on the surface of the magnetic particles are formed. Magnetic abrasive grains (see, for example, Patent Document 1) have been reported.
JP 2002-265933 A (Claim 3)

上述した特許文献1に記載の磁性砥粒は、その体積の大部分が比重の高い磁性粒子で占められているので重くて大きな研磨効果を有するものの、より精密な研磨加工を行う際には、必要以上に被加工物の表面を研磨してしまうことから必ずしも好ましい研磨砥粒であるとは言えないものであった。   Although the magnetic abrasive grain described in Patent Document 1 described above is heavy and has a large polishing effect because most of its volume is occupied by magnetic particles having a high specific gravity, when performing a more precise polishing process, Since the surface of the workpiece was polished more than necessary, it was not necessarily a preferable abrasive grain.

また、近年、次世代半導体や医療分野の製造プロセス等に用いられるスーパークリーンパイプ等においては、高精度の表面研磨が要求されている。しかし、現状の磁性砥粒では、精密研磨を被加工物の表面に施すことは難しいという問題があり、依然として上記の要求を十分に満たすことはできていない。   In recent years, high-precision surface polishing is required for super clean pipes and the like used for manufacturing processes in next-generation semiconductors and medical fields. However, the current magnetic abrasive grains have a problem that it is difficult to perform precision polishing on the surface of the workpiece, and the above requirements are still not fully satisfied.

本発明は、上記課題を解決するためになされたものであって、その目的は、より精密な表面研磨を行える磁性砥粒及びその製造方法を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a magnetic abrasive grain capable of performing more precise surface polishing and a method for producing the same.

上記目的を達成するための本発明の磁性砥粒は、ダイヤモンド粒子上に磁性を有する無電解めっき層が形成されていることを特徴とする。   In order to achieve the above object, the magnetic abrasive grains of the present invention are characterized in that an electroless plating layer having magnetism is formed on diamond particles.

この発明によれば、優れた研磨粒子であるダイヤモンド粒子それ自体の上に磁性層としての無電解めっき層が形成された磁性粒子であるので、磁気研磨法に用いることのできる、高い研磨能力を有する磁性砥粒となる。なお、ダイヤモンドは比重の大きい従来の磁性砥粒に比べて軽量であるので、表面加工の際の磁性砥粒の動きが容易になり、複雑な形状を有する被加工物を容易に加工できるという利点がある。   According to the present invention, since the electroless plating layer as the magnetic layer is formed on the diamond particle itself, which is an excellent abrasive particle, a high polishing ability that can be used in the magnetic polishing method is obtained. It becomes the magnetic abrasive grain which has. Since diamond is lighter than conventional magnetic abrasive grains having a large specific gravity, the magnetic abrasive grains can be easily moved during surface processing, so that workpieces having complicated shapes can be easily machined. There is.

本発明の磁性砥粒においては、前記ダイヤモンド粒子の平均粒径が1〜5μmであることを特徴とする。この発明によれば、磁性砥粒の核体としてダイヤモンド粒子それ自体を用いるために、磁性砥粒の大きさを非常に小さくすることができ、より精密な表面加工が可能となる。   In the magnetic abrasive grains of the present invention, the diamond particles have an average particle diameter of 1 to 5 μm. According to the present invention, since the diamond particles themselves are used as the core of the magnetic abrasive grains, the size of the magnetic abrasive grains can be made extremely small, and more precise surface processing can be performed.

本発明の磁性砥粒においては、前記無電解めっき層が、無電解マグネタイトめっき層又は無電解ニッケルめっき層であることを特徴とする。特に磁気特性に優れた無電解マグネタイトめっき層であることが好ましい。この発明によれば、前記めっき層を形成することにより、磁気研磨法に適用できる磁性砥粒を提供できる。   In the magnetic abrasive grain of the present invention, the electroless plating layer is an electroless magnetite plating layer or an electroless nickel plating layer. In particular, an electroless magnetite plating layer having excellent magnetic properties is preferable. According to this invention, the magnetic abrasive grain applicable to a magnetic polishing method can be provided by forming the said plating layer.

さらに、本発明の磁性砥粒においては、前記ダイヤモンド粒子は、前記磁性砥粒の使用に先立ち或いは使用初期において、前記ダイヤモンド粒子上に形成された無電解めっき層の一部が除去されてダイヤモンド粒子の表面が一部露出するものであることを特徴とする。ダイヤモンド粒子表面に磁性を有する無電解めっき層が形成されるため、砥粒として機能するダイヤモンドの表面はその製造直後は無電解めっき層により覆われている。しかし、本発明の磁性砥粒の使用に先立ち或いは使用初期において、その磁性砥粒が相互に或いは他の物体と衝突を起すことにより、特にダイヤモンド粒子表面の凸部では無電解めっき層が除去され、研磨作用を発揮するダイヤモンド面が露出する。その結果、高い研磨作用を有する磁性砥粒として有効に用いることができる。   Further, in the magnetic abrasive grains of the present invention, the diamond particles are obtained by removing a part of the electroless plating layer formed on the diamond particles prior to or at the initial use of the magnetic abrasive grains. It is characterized in that a part of the surface is exposed. Since an electroless plating layer having magnetism is formed on the surface of the diamond particles, the surface of diamond functioning as abrasive grains is covered with the electroless plating layer immediately after its production. However, before or during the use of the magnetic abrasive grains of the present invention, the magnetic abrasive grains collide with each other or with other objects, so that the electroless plating layer is removed particularly at the convex portions on the diamond particle surface. As a result, the diamond surface that exhibits the polishing action is exposed. As a result, it can be effectively used as a magnetic abrasive having a high polishing action.

上記目的を達成するための本発明の磁性砥粒の製造方法は、ダイヤモンド粒子を濃HSO/HNOを用いて親水化処理し、次いで、触媒付与・増感処理を行った後、無電解めっきを行い、ダイヤモンド粒子の表面に磁性を有する無電解めっき層を形成することを特徴とする。この製造方法においては、上述したような優れた特性を有する磁性砥粒を比較的簡単な手法により製造できる。 In order to achieve the above object, the method for producing magnetic abrasive grains of the present invention comprises hydrophilizing diamond particles using concentrated H 2 SO 4 / HNO 3 , and then performing catalyst application / sensitization treatment, Electroless plating is performed to form a non-electrolytic plating layer having magnetism on the surface of diamond particles. In this manufacturing method, magnetic abrasive grains having excellent characteristics as described above can be manufactured by a relatively simple method.

以上説明したように、本発明の磁性砥粒によれば、極めて硬質で優れた研磨性能を有するダイヤモンド粒子に磁性を与えることができるので、軽量でかつ研磨性能に優れた磁性砥粒とすることができ、さらに、この磁性砥粒を用いて磁気研磨法による精密研磨を行うことができる。このため、被加工物の表面の精密加工が可能となると共に、複雑な形状を有する被加工物を容易に加工することができる。また磁性粒子の核体としてダイヤモンド粒子そのものを用いているために、使用によりその磁性粒子が磨損してしまうおそれもなく、長期間安定した特性を発揮できる。   As described above, according to the magnetic abrasive grains of the present invention, magnetism can be imparted to diamond particles that are extremely hard and have excellent polishing performance, so that the magnetic abrasive grains are lightweight and have excellent polishing performance. Furthermore, precision polishing by a magnetic polishing method can be performed using the magnetic abrasive grains. For this reason, precision processing of the surface of a workpiece becomes possible, and a workpiece having a complicated shape can be easily processed. Further, since the diamond particles themselves are used as the core of the magnetic particles, there is no fear that the magnetic particles will be worn away by use, and stable characteristics can be exhibited for a long time.

以下、本発明の磁性砥粒及びその製造方法について、図面に基づき詳細に説明する。   Hereinafter, the magnetic abrasive grains and the production method thereof according to the present invention will be described in detail with reference to the drawings.

(磁性砥粒)
図1は、本発明の磁性砥粒の一例を示す模式断面図である。本発明の磁性砥粒1は、ダイヤモンド粒子2の表面上に磁性を有する無電解めっき層3が形成された構成を有している。なお、図1において、ダイヤモンド粒子2の表面は電解めっき層3で被覆されているが、本発明に係る磁性砥粒は、その使用に先立ち或いは使用初期において、ダイヤモンド粒子2上に形成された無電解めっき層3の一部が除去されることにより、核体となるダイヤモンド粒子2表面の凸部等が一部露出する。
(Magnetic abrasive)
FIG. 1 is a schematic cross-sectional view showing an example of the magnetic abrasive grains of the present invention. The magnetic abrasive grain 1 of the present invention has a configuration in which an electroless plating layer 3 having magnetism is formed on the surface of diamond particles 2. In FIG. 1, the surface of the diamond particle 2 is coated with the electrolytic plating layer 3, but the magnetic abrasive according to the present invention is formed on the diamond particle 2 before or at the beginning of use. By removing a part of the electroplating layer 3, a part of the projections on the surface of the diamond particles 2 serving as the core is exposed.

ダイヤモンド粒子2は磁性砥粒1の中核をなす基体であり、人工、天然のいずれのものも用いることもできる。また、ダイヤモンド粒子2の粒径としては、加工対象である被加工物の材質や形状及びその被加工物への加工目的等に応じて適宜選定され得るが、粒径の大きなものは一般に高価なものとなり、また、超精密加工等の上からはある程度その粒径が小さいものが望ましい。こうした観点から、ダイヤモンド粒子2の平均粒径は、通常1〜5μm、より望ましくは1〜3μmである。   The diamond particle 2 is a base that forms the core of the magnetic abrasive grain 1, and any of artificial and natural ones can be used. The particle size of the diamond particles 2 can be appropriately selected according to the material and shape of the workpiece to be processed and the purpose of processing the workpiece, but those having a large particle size are generally expensive. In addition, it is desirable that the particle size is small to some extent from the viewpoint of ultraprecision machining. From such a viewpoint, the average particle diameter of the diamond particles 2 is usually 1 to 5 μm, and more preferably 1 to 3 μm.

ダイヤモンド粒子2の表面に形成される無電解めっき層3は、少なくとも磁場によりダイヤモンド粒子を運動させることができる磁気特性を有するものであればよい。無電解めっき層3の形成材料としては、例えばマグネタイト(Fe)等の鉄系の磁性材料、或いはニッケル又はニッケル合金からなる磁性材料であることが好ましい。ニッケル合金としては、Ni−P合金やNi−B合金を好ましく挙げることができ、さらにそれらの合金中に他の元素が含まれるものであってもよい。 The electroless plating layer 3 formed on the surface of the diamond particles 2 only needs to have a magnetic property capable of moving the diamond particles by at least a magnetic field. The material for forming the electroless plating layer 3 is preferably an iron-based magnetic material such as magnetite (Fe 3 O 4 ), or a magnetic material made of nickel or a nickel alloy. As a nickel alloy, a Ni-P alloy and a Ni-B alloy can be mentioned preferably, and other elements may be contained in these alloys.

特にマグネタイト(Fe)が高い磁性を示すので望ましい。さらにそのマグネタイト(Fe)は、ダイヤモンド粒子2の表面に層として付着した場合よりも粒子として付着したものであることが望ましい。ダイヤモンド粒子の表面に粒子として付着したマグネタイト(Fe)は、ダイヤモンド粒子に確実に固着し、かつ磁性体として高い特性を発揮する。 Magnetite (Fe 3 O 4 ) is particularly desirable because it exhibits high magnetism. Further, it is desirable that the magnetite (Fe 3 O 4 ) is attached as particles rather than the case where the magnetite (Fe 3 O 4 ) is attached as a layer on the surface of the diamond particles 2. Magnetite (Fe 3 O 4 ) adhering to the surface of the diamond particle as a particle reliably adheres to the diamond particle and exhibits high characteristics as a magnetic substance.

無電解めっき層3の厚さは、磁気研磨用の磁性砥粒1に要求される磁気特性を確保できる厚さであればよく、したがってその厚さは、無電解めっき層3を形成する材料の種類に応じて適宜変化させることが望ましい。本発明においては、無電解めっき層3の形成材料として、マグネタイト(Fe)、Ni−P合金、Ni−B合金等を好ましく挙げることができ、これらの材料からなる無電解めっき層3は、上述した1〜5μmのダイヤモンド粒子2上に10〜100nm程度の厚さで形成されることが望ましい。より好ましくは、無電解めっき層3がダイヤモンド粒子上に部分的に形成されることであるが、部分的に形成されない場合であっても、上述したように、その使用に先立ち或いは使用初期において、ダイヤモンド粒子2上に形成された無電解めっき層3の一部が除去されることにより、核体となるダイヤモンド粒子2表面の凸部等が一部露出すればよい。なお、後述するように磁性砥粒1を磁性砥液の構成材料として用いる場合には、磁性砥液を構成する液状媒体の比重を考慮して、無電解めっき層3の厚さを調整する。 The thickness of the electroless plating layer 3 may be any thickness that can ensure the magnetic characteristics required for the magnetic abrasive grains 1 for magnetic polishing. Therefore, the thickness of the material for forming the electroless plating layer 3 is not limited. It is desirable to change appropriately according to the type. In the present invention, preferred examples of the material for forming the electroless plating layer 3 include magnetite (Fe 3 O 4 ), Ni—P alloy, Ni—B alloy and the like, and the electroless plating layer 3 made of these materials. Is preferably formed on the above-described 1 to 5 μm diamond particle 2 with a thickness of about 10 to 100 nm. More preferably, the electroless plating layer 3 is partially formed on the diamond particles, but even when it is not partially formed, as described above, prior to its use or in the initial stage of use, By removing a part of the electroless plating layer 3 formed on the diamond particles 2, it is only necessary to partially expose the convex portions on the surface of the diamond particles 2 serving as nuclei. As will be described later, when the magnetic abrasive grains 1 are used as the constituent material of the magnetic abrasive liquid, the thickness of the electroless plating layer 3 is adjusted in consideration of the specific gravity of the liquid medium constituting the magnetic abrasive liquid.

(磁性砥粒の製造方法)
本発明の磁性砥粒の製造方法として、無電解めっき法によって無電解めっき層をダイヤモンド粒子の表面に形成する方法について詳細に説明する。
(Method for producing magnetic abrasive grains)
As a method for producing magnetic abrasive grains of the present invention, a method for forming an electroless plating layer on the surface of diamond particles by electroless plating will be described in detail.

本発明に係る磁性砥粒の製造方法は、先ず、ダイヤモンド粒子を濃HSO/HNOを用いて親水化処理する。ダイヤモンド粒子の表面は周知のように疎水性であるため、そのままでは無電解めっき液に浸漬した際にめっき液がダイヤモンド粒子の表面で濡れず(接触できず)、めっき層が形成され難い。このため、本発明においては、めっきの前処理として、ダイヤモンド粒子2の親水化処理を行う。 In the method for producing magnetic abrasive grains according to the present invention, first, diamond particles are hydrophilized using concentrated H 2 SO 4 / HNO 3 . Since the surface of the diamond particles is hydrophobic as is well known, the plating solution does not get wet (cannot contact) on the surface of the diamond particles when immersed in an electroless plating solution as it is, and a plating layer is difficult to form. For this reason, in this invention, the hydrophilic treatment of the diamond particle 2 is performed as a pretreatment of plating.

親水化処理液としては、濃HSO/HNO液が好ましく、その混合比としては、容積比で9:1程度が望ましい。そして、90℃程度に保った濃HSO/HNO液中にダイヤモンド粒子を30分間程度浸漬することにより、そのダイヤモンド粒子の表面を親水化処理することができる。 The hydrophilic treatment liquid is preferably concentrated H 2 SO 4 / HNO 3 liquid, and the mixing ratio is preferably about 9: 1 by volume ratio. Then, by immersing the diamond particles in a concentrated H 2 SO 4 / HNO 3 liquid kept at about 90 ° C. for about 30 minutes, the surface of the diamond particles can be hydrophilized.

親水化処理後には、濾過や遠心分離等により親水化処理液とダイヤモンド粒子とを分離し、その後、分離されたダイヤモンド粒子を水等で十分に洗浄する。   After the hydrophilization treatment, the hydrophilization solution and the diamond particles are separated by filtration, centrifugation, or the like, and then the separated diamond particles are sufficiently washed with water or the like.

次いで、親水化処理されたダイヤモンド粒子の表面に触媒を付与し、さらに増感処理を行う。この触媒付与・増感処理は、ガラスやプラスチック等の非金属の表面に無電解めっきを施す際に、めっきを付き易くするために一般に行われる触媒付与・増感処理と同様のものである。例えば、触媒付与・増感処理は、錫溶液、パラジウム溶液若しくは錫−パラジウム錯体溶液等を用いて、ダイヤモンド粒子の表面に金属元素又は金属錯体を吸着させ、さらに吸着させた金属元素又は金属錯体を酸化還元反応等によって活性な金属元素を表面に生成させるための処理である。   Next, a catalyst is applied to the surface of the hydrophilized diamond particles, and further sensitization is performed. This catalyst application / sensitization treatment is the same as the catalyst application / sensitization treatment that is generally performed to facilitate plating when electroless plating is performed on a non-metallic surface such as glass or plastic. For example, the catalyst imparting / sensitization treatment is performed by adsorbing a metal element or metal complex on the surface of diamond particles using a tin solution, a palladium solution or a tin-palladium complex solution, and further adsorbing the adsorbed metal element or metal complex. This is a treatment for generating an active metal element on the surface by oxidation-reduction reaction or the like.

このようにして触媒付与・増感処理されたダイヤモンド粒子は、成膜後に磁気特性を有することになるイオン種を含む無電解めっき液に浸漬される。触媒付与・増感処理されたダイヤモンド粒子をめっき液に浸漬することにより、磁気特性を有する無電解めっき層を生成することができる。こうした無電解めっきの原理は、ダイヤモンド粒子表面に付着した触媒活性の金属元素(例えば、パラジウム)でめっき液中の還元剤が酸化され、その際に放出される電子によってめっき液中の磁性体となるイオン種が還元され、その結果、磁気特性を有する無電解めっき層が生成する。   The diamond particles subjected to the catalyst application / sensitization treatment in this way are immersed in an electroless plating solution containing ionic species that will have magnetic properties after film formation. An electroless plating layer having magnetic properties can be generated by immersing the diamond particles subjected to the catalyst application / sensitization treatment in a plating solution. The principle of such electroless plating is that the reducing agent in the plating solution is oxidized by the catalytically active metal element (for example, palladium) adhering to the surface of the diamond particle, and the magnetic substance in the plating solution is formed by the electrons released at that time. As a result, an electroless plating layer having magnetic properties is generated.

なお、無電解めっき処理に際しては、個々のダイヤモンド粒子2の表面に所定厚さの無電解めっき層を形成できるように、めっき液中のダイヤモンド粒子を均一に分散させることが好ましく、具体的には、機械攪拌、エアー等のガス攪拌、超音波ホモジナイザー等による超音波攪拌等の攪拌手段を用いることが好ましい。   In the electroless plating treatment, it is preferable to uniformly disperse the diamond particles in the plating solution so that an electroless plating layer having a predetermined thickness can be formed on the surface of each diamond particle 2. It is preferable to use stirring means such as mechanical stirring, gas stirring such as air, and ultrasonic stirring using an ultrasonic homogenizer.

(磁性砥液)
本発明に係る磁性砥粒は、そのままの態様で例えば磁気研磨法等の精密加工用の砥粒として使用したり、液状媒体と共に磁性砥液として使用したりすることができる。
(Magnetic abrasive fluid)
The magnetic abrasive according to the present invention can be used as it is, for example, as an abrasive for precision machining such as a magnetic polishing method, or as a magnetic abrasive liquid together with a liquid medium.

本発明の磁性砥粒を磁性砥液の構成材料として使用する場合には、無電解めっき層3の厚さを変えて磁性砥粒の重さを調整し、磁性砥液中での浮遊の程度や沈降の程度を調整することも可能である。   When the magnetic abrasive grains of the present invention are used as the constituent material of the magnetic abrasive liquid, the thickness of the electroless plating layer 3 is changed to adjust the weight of the magnetic abrasive grains, and the degree of floating in the magnetic abrasive liquid It is also possible to adjust the degree of sedimentation.

磁性砥液を構成する液状媒体は、磁性砥粒を自由に動き易くさせる媒体であればよく、被加工物の種類や磁性砥粒の比重等を考慮して適宜選定される。例えば、水、水性潤滑剤、油、油性潤滑剤等を用いることができる。また、磁性砥液中の磁性砥粒の含有量についても、加工用途や被加工物に応じて適宜調整される。   The liquid medium constituting the magnetic abrasive liquid may be any medium that allows the magnetic abrasive grains to freely move, and is appropriately selected in consideration of the type of workpiece and the specific gravity of the magnetic abrasive grains. For example, water, water-based lubricant, oil, oil-based lubricant, etc. can be used. Further, the content of the magnetic abrasive grains in the magnetic abrasive liquid is also appropriately adjusted according to the processing application and the workpiece.

(磁性砥粒の使用)
本発明の磁性砥粒は、磁気研磨法による各種被加工物の精密加工への適用が期待でき、例えば、次世代半導体や医療分野の製造プロセス等に用いられるスーパークリーンパイプ等のように、精密研磨が要求される製品やパイプ内のような微小空間の高精度の研磨が要求される製品等の研磨に有効である。また、例えば、ハードディスク装置のハードディスク基板表面のテクスチャ加工への応用が挙げられる。また、例えば、半導体基板に銅配線を形成するダマシン工程で使用される化学的機械的研磨(CMP)の代替工程としての応用が期待できる。ダマシン工程とは、絶縁膜上の配線溝にバリア層と銅めっき層を形成した後、表面の不要な銅を取り除く工程である。本発明の磁性砥粒は、こうした応用に限定されず、本発明の磁性砥粒の機能を発揮できる各種の用途に広く適用可能である。
(Use of magnetic abrasive grains)
The magnetic abrasive grains of the present invention can be expected to be applied to precision processing of various workpieces by the magnetic polishing method. For example, precision abrasive pipes used in next-generation semiconductors and manufacturing processes in the medical field, etc. It is effective for polishing products that require polishing and products that require high-precision polishing of a minute space such as in a pipe. In addition, for example, application to texture processing of a hard disk substrate surface of a hard disk device can be mentioned. Further, for example, application as an alternative process of chemical mechanical polishing (CMP) used in a damascene process for forming a copper wiring on a semiconductor substrate can be expected. The damascene process is a process of removing unnecessary copper on the surface after forming a barrier layer and a copper plating layer in a wiring groove on an insulating film. The magnetic abrasive grains of the present invention are not limited to such applications, and can be widely applied to various uses that can exhibit the functions of the magnetic abrasive grains of the present invention.

図2は、本発明の磁気研磨法を実施するための磁気研磨装置の一例である。なお、本発明の磁性砥粒はこうした態様の磁気研磨装置への適用に限定されるものではない。   FIG. 2 is an example of a magnetic polishing apparatus for carrying out the magnetic polishing method of the present invention. The magnetic abrasive grains of the present invention are not limited to application to such a magnetic polishing apparatus.

図2の磁気研磨装置は、被加工物である円管71をその周方向に回転可能に支持する管支持部(図示せず)と、円管71の外部に配置された磁極72とから主に構成されている。   The magnetic polishing apparatus of FIG. 2 is mainly composed of a tube support portion (not shown) that rotatably supports a circular tube 71 that is a workpiece, and a magnetic pole 72 that is disposed outside the circular tube 71. It is configured.

磁極72は、例えば、その周方向に略90°間隔で4個、ヨーク73を介して配置されている。磁極72が配置されたヨーク73は、円管71の軸方向に往復運動(例えば振幅)可能に設けられている。ヨーク73が円管71の軸方向に往復運動することにより、磁極72が円管71の軸方向に振幅することになる。磁極72は、円管71内に磁場を与えるものであり、永久磁石や電磁石が使用される。また、磁極72の個数及び配置も任意に設定される。円管71の内部に入れられた磁性砥粒70は、円管71内に付与された磁場で円管71の内壁に引き寄せられる。この力が磁気研磨での加工力となり、磁性砥粒が円管71の内壁を押圧して押圧力が発生する。   For example, four magnetic poles 72 are arranged in the circumferential direction at approximately 90 ° intervals via yokes 73. The yoke 73 on which the magnetic pole 72 is disposed is provided so as to be capable of reciprocating (for example, amplitude) in the axial direction of the circular tube 71. As the yoke 73 reciprocates in the axial direction of the circular tube 71, the magnetic pole 72 swings in the axial direction of the circular tube 71. The magnetic pole 72 applies a magnetic field to the circular tube 71, and a permanent magnet or an electromagnet is used. Also, the number and arrangement of the magnetic poles 72 are arbitrarily set. The magnetic abrasive grains 70 put in the circular tube 71 are attracted to the inner wall of the circular tube 71 by a magnetic field applied in the circular tube 71. This force becomes a processing force in magnetic polishing, and magnetic abrasive grains press the inner wall of the circular tube 71 to generate a pressing force.

この状態で円管71をその周方向に回転させると、磁性砥粒70は円管71の内面との間で相対運動し、円管内面が研磨される。なお、円管71を回転させて研磨加工を行う場合について説明したが、円管71を固定して磁極72を回転させて研磨加工を行ってもよいし、円管71と磁極72の両方を回転させて研磨加工を行ってもよい。   When the circular tube 71 is rotated in the circumferential direction in this state, the magnetic abrasive grains 70 move relative to the inner surface of the circular tube 71, and the inner surface of the circular tube is polished. Although the case where the circular pipe 71 is rotated to perform the polishing process has been described, the circular pipe 71 may be fixed and the magnetic pole 72 may be rotated to perform the polishing process, or both the circular pipe 71 and the magnetic pole 72 may be connected. Polishing may be performed by rotating.

本発明の磁気研磨法は円管の内面を研磨加工する場合に限定されず、本発明の磁性砥粒の機能を発揮できる上述した各種の用途に広く適用可能である。一例としては、既述したように、次世代半導体や医療分野の製造プロセス等に用いられるスーパークリーンパイプの内面等の研磨加工や、ハードディスク装置のハードディスク基板表面のテクスチャ加工への応用が期待できる。また、半導体基板に銅配線を形成するダマシン工程で使用される化学的機械的研磨(CMP)の代替工程としての応用が期待できる。   The magnetic polishing method of the present invention is not limited to the case of polishing the inner surface of a circular tube, and can be widely applied to the various uses described above that can exhibit the function of the magnetic abrasive grains of the present invention. As an example, as described above, application to polishing processing of the inner surface of a super clean pipe used for next-generation semiconductors and manufacturing processes in the medical field, and texture processing of a hard disk substrate surface of a hard disk device can be expected. Moreover, application as an alternative process of chemical mechanical polishing (CMP) used in a damascene process for forming a copper wiring on a semiconductor substrate can be expected.

以下に、実施例を挙げて本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
ダイヤモンド粒子として平均粒径2.1μmのダイヤモンド粒子(トーメイダイヤ株式会社製)を用いた。まず、このダイヤモンド粒子の表面を親水化させるために、ダイヤモンド粒子を約90℃に保たれた濃HSO/HNO(混合容積比9:1)中に30分間浸漬し、その後、ダイヤモンド粒子を濾過により取り出し、十分に水洗した。
Example 1
Diamond particles having an average particle diameter of 2.1 μm (Tomei Diamond Co., Ltd.) were used as diamond particles. First, in order to hydrophilize the surface of the diamond particles, the diamond particles are immersed in concentrated H 2 SO 4 / HNO 3 (mixing volume ratio 9: 1) kept at about 90 ° C. for 30 minutes, and then diamond The particles were removed by filtration and washed thoroughly with water.

次いで、親水化処理されたダイヤモンド粒子を、(i)錫溶液(上村工業株式会社製、製品名:S−10X)に1分間浸漬、(ii)1分間水洗、(iii)パラジウム溶液(上村工業株式会社製、製品名:A−10X)に1分間浸漬、(iv)1分間水洗、という(i)〜(iv)の操作を2回繰り返し、親水化したダイヤモンド粒子の表面を触媒付与・増感処理した。   Next, the hydrophilized diamond particles were immersed in (i) tin solution (product name: S-10X, manufactured by Uemura Kogyo Co., Ltd.) for 1 minute, (ii) washed with water for 1 minute, and (iii) palladium solution (Uemura Industries). (I) (product name: A-10X) for 1 minute, (iv) 1 minute washing with water is repeated twice (i) to (iv), and the surface of the hydrophilized diamond particles is imparted with catalyst and increased. Sensation was processed.

無電解めっき液としては、Fe(NO)・9HO:0.1mol/L(リットル。以下同じ。)、ジメチルアミンボラン:0.03mol/L、グリシン:0.5mol/L、硝酸鉛:1mg/dmを含み、アンモニアでpH9.0に調整した無電解マグネタイト(Fe)めっき液を調製した。この無電解マグネタイトめっき液に、上記親水化処理及び触媒付与・増感処理を行ったダイヤモンド粒子を1.6g/L添加し、めっき液温度:50℃±1℃、めっき時間:30分間、窒素攪拌の条件下で厚さ約1μmとなるように無電解マグネタイトめっきを行い、実施例1の磁性砥粒を得た。 The electroless plating solution, Fe (NO 3) 3 · 9H 2 O: 0.1mol / L, dimethylamine borane (liter same..): 0.03mol / L, glycine: 0.5 mol / L, nitrate Lead: An electroless magnetite (Fe 3 O 4 ) plating solution containing 1 mg / dm 3 and adjusted to pH 9.0 with ammonia was prepared. To this electroless magnetite plating solution, 1.6 g / L of the diamond particles subjected to the above hydrophilization treatment and catalyst application / sensitization treatment are added, plating solution temperature: 50 ° C. ± 1 ° C., plating time: 30 minutes, nitrogen Electroless magnetite plating was performed to a thickness of about 1 μm under stirring conditions, and the magnetic abrasive grains of Example 1 were obtained.

図3は、めっき処理前のダイヤモンド粒子の表面状態を示す走査電子顕微鏡写真(倍率25,000倍)であり、図4はFeめっき処理後のダイヤモンド粒子の表面状態を示す走査電子顕微鏡写真(倍率25,000倍)であり、図5はFeめっき処理後のダイヤモンド粒子の表面をさらに拡大した走査電子顕微鏡写真(倍率40,000倍)である。図4及び図5に示すように、無電解めっきによって、ダイヤモンド粒子の表面にマグネタイト(Fe)粒子が析出して厚さ約1μmのめっき層が形成されていることがわかる。走査電子顕微鏡写真の結果から、Feは一般的なめっき層のような均一な層として成膜されているのではなく、ダイヤモンド粒子の表面に析出したマグネタイト粒子が積み重なって層状になっていることがわかった。こうした態様からなる磁性砥粒は、ダイヤモンド粒子の表面にマグネタイト(Fe)粒子が析出して層状に形成されているために磁性が強い。図6は、得られた磁性砥粒をX線回折装置(XRD)を用いて分析した結果である。 FIG. 3 is a scanning electron micrograph (25,000 times magnification) showing the surface state of diamond particles before plating treatment, and FIG. 4 is a scanning electron micrograph showing the surface state of diamond particles after Fe 3 O 4 plating treatment ( FIG. 5 is a scanning electron micrograph (magnification 40,000 times) in which the surface of the diamond particles after the Fe 3 O 4 plating treatment is further enlarged. As shown in FIGS. 4 and 5, it can be seen that magnetite (Fe 3 O 4 ) particles are deposited on the surface of the diamond particles by electroless plating to form a plating layer having a thickness of about 1 μm. From the results of scanning electron micrographs, Fe 3 O 4 is not formed as a uniform layer like a general plating layer, but magnetite particles deposited on the surface of diamond particles are stacked to form a layer. I found out. The magnetic abrasive grains having such an aspect are strong in magnetism because magnetite (Fe 3 O 4 ) particles are deposited on the surface of the diamond particles and formed into a layer. FIG. 6 shows the results of analyzing the obtained magnetic abrasive grains using an X-ray diffractometer (XRD).

(実施例2)
ダイヤモンド粒子の表面に形成するめっき層を無電解Ni−Bめっき層とした以外は、ダイヤモンド粒子、親水化処理及び触媒付与・増感処理は上記実施例1と同じにして実施例2の磁性砥粒を作製した。
(Example 2)
The magnetic abrasive of Example 2 is the same as Example 1 except that the plating layer formed on the surface of the diamond particles is an electroless Ni-B plating layer, and the diamond particles, hydrophilization treatment, and catalyst application / sensitization treatment are the same as in Example 1 above. Grains were made.

無電解Ni−Bめっき液は、硫酸ニッケル:0.1mol/L(リットル。以下同じ。)、ジメチルアミンボラン:0.025mol/L、グリシン:0.5mol/L、硝酸鉛:1mg/dmを含み、アンモニアでpH9.0に調整した無電解Ni−Bめっき液を調製した。この無電解Ni−Bめっき液に、上記親水化処理及び触媒付与・増感処理を行ったダイヤモンド粒子を1.6g/L添加し、めっき液温度:70℃±1℃、めっき時間:7分間、エアー攪拌の条件下で厚さ約1μmとなるように無電解Ni−Bめっきを行い、実施例2の磁性砥粒を得た。 The electroless Ni-B plating solution is nickel sulfate: 0.1 mol / L (liter, the same applies hereinafter), dimethylamine borane: 0.025 mol / L, glycine: 0.5 mol / L, lead nitrate: 1 mg / dm 3 An electroless Ni-B plating solution adjusted to pH 9.0 with ammonia was prepared. To this electroless Ni-B plating solution, 1.6 g / L of the diamond particles subjected to the above hydrophilization treatment and catalyst application / sensitization treatment are added, plating solution temperature: 70 ° C. ± 1 ° C., plating time: 7 minutes. Then, electroless Ni-B plating was performed so as to have a thickness of about 1 μm under air stirring conditions, and magnetic abrasive grains of Example 2 were obtained.

本発明の磁性砥粒の一例を示す模式断面図である。It is a schematic cross section which shows an example of the magnetic abrasive grain of this invention. 磁気研磨装置の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of a magnetic polishing apparatus. 実施例1及び実施例2で用いたダイヤモンド粒子の走査電子顕微鏡写真(倍率25,000倍)である。2 is a scanning electron micrograph (magnification 25,000 times) of diamond particles used in Example 1 and Example 2. FIG. 実施例1の磁性砥粒の走査電子顕微鏡写真(倍率25,000倍)である。2 is a scanning electron micrograph (magnification 25,000 times) of the magnetic abrasive grains of Example 1. FIG. 実施例1の磁性砥粒をさらに拡大した走査電子顕微鏡写真(倍率40,000倍)である。2 is a scanning electron micrograph (magnification 40,000 times) obtained by further enlarging the magnetic abrasive grains of Example 1. 実施例1の磁性砥粒のXRDチャートである。2 is an XRD chart of magnetic abrasive grains of Example 1. FIG.

符号の説明Explanation of symbols

1 磁性砥粒
2 ダイヤモンド粒子
3 無電解めっき層
DESCRIPTION OF SYMBOLS 1 Magnetic abrasive grain 2 Diamond particle 3 Electroless plating layer

Claims (6)

ダイヤモンド粒子上に磁性を有する無電解めっき層が形成されていることを特徴とする磁性砥粒。   A magnetic abrasive comprising a nonelectrolytic plating layer having magnetism formed on diamond particles. 前記ダイヤモンド粒子の平均粒径が1〜5μmであることを特徴とする請求項1又は2に記載の磁性砥粒。   3. The magnetic abrasive according to claim 1, wherein the diamond particles have an average particle diameter of 1 to 5 μm. 前記無電解めっき層の膜厚が10〜100nmであることを特徴とする請求項1又は2に記載の磁性砥粒。   The magnetic abrasive according to claim 1 or 2, wherein the electroless plating layer has a thickness of 10 to 100 nm. 前記無電解めっき層が無電解マグネタイトめっき層又は無電解ニッケルめっき層であることを特徴とする請求項1〜3のいずれか1項に記載の磁性砥粒。   The magnetic abrasive grain according to any one of claims 1 to 3, wherein the electroless plating layer is an electroless magnetite plating layer or an electroless nickel plating layer. 前記ダイヤモンド粒子は、前記磁性砥粒の使用に先立ち或いは使用初期において、当該ダイヤモンド粒子上に形成された無電解めっき層の一部が除去されてダイヤモンド粒子の表面が一部露出するものであることを特徴とする請求項1〜4のいずれか1項に記載の磁性砥粒。   Prior to the use of the magnetic abrasive grains or in the initial stage of use, the diamond particles are such that a portion of the electroless plating layer formed on the diamond particles is removed and a part of the surface of the diamond particles is exposed. The magnetic abrasive grain according to any one of claims 1 to 4, wherein: ダイヤモンド粒子を、濃HSO/HNOを用いて親水化処理し、次いで、触媒付与・増感処理を行った後、無電解めっきを行い、前記ダイヤモンド粒子の表面に磁性を有する無電解めっき層を形成することを特徴とする磁性砥粒の製造方法。 The diamond particles are hydrophilized using concentrated H 2 SO 4 / HNO 3 , then subjected to catalyst application and sensitization, and then subjected to electroless plating, whereby the surface of the diamond particles is magnetized. The manufacturing method of the magnetic abrasive grain characterized by forming a plating layer.
JP2004276530A 2004-09-24 2004-09-24 Magnetic abrasive grain and method for producing the same Pending JP2006089586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276530A JP2006089586A (en) 2004-09-24 2004-09-24 Magnetic abrasive grain and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276530A JP2006089586A (en) 2004-09-24 2004-09-24 Magnetic abrasive grain and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006089586A true JP2006089586A (en) 2006-04-06

Family

ID=36230870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276530A Pending JP2006089586A (en) 2004-09-24 2004-09-24 Magnetic abrasive grain and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006089586A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326183A (en) * 2006-06-08 2007-12-20 Fdk Corp Magnetic polishing liquid
JP2008105169A (en) * 2006-09-30 2008-05-08 Fdk Corp Paste material
JP2013056805A (en) * 2011-09-08 2013-03-28 Vision Development Co Ltd Magnetic diamond microparticle and method for producing the same
JP2016528329A (en) * 2013-06-28 2016-09-15 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Nickel-coated diamond particles and method for producing the particles
WO2018080799A1 (en) * 2016-10-25 2018-05-03 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
WO2018080705A1 (en) * 2016-10-25 2018-05-03 3M Innovative Properties Company Magnetizable agglomerate abrasive particles, abrasive articles, and methods of making the same
WO2018080756A1 (en) * 2016-10-25 2018-05-03 3M Innovative Properties Company Functional abrasive particles, abrasive articles, and methods of making the same
WO2018080703A1 (en) * 2016-10-25 2018-05-03 3M Innovative Properties Company Magnetizable abrasive particles and abrasive articles including them
WO2019197948A1 (en) * 2018-04-12 2019-10-17 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
KR20200035633A (en) * 2018-09-27 2020-04-06 주식회사 씨앤씨머티리얼즈 Nickel-coated super-abrasive particles with excellent magnetic properties and wire saw using the same
US10655038B2 (en) 2016-10-25 2020-05-19 3M Innovative Properties Company Method of making magnetizable abrasive particles
US11253972B2 (en) 2016-10-25 2022-02-22 3M Innovative Properties Company Structured abrasive articles and methods of making the same
US11452891B2 (en) 2016-08-26 2022-09-27 3M Innovative Properties Company Pleated filter element comprising pleated filter media with edge dams, and method of making and using
US11597860B2 (en) 2016-10-25 2023-03-07 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326183A (en) * 2006-06-08 2007-12-20 Fdk Corp Magnetic polishing liquid
JP2008105169A (en) * 2006-09-30 2008-05-08 Fdk Corp Paste material
JP2013056805A (en) * 2011-09-08 2013-03-28 Vision Development Co Ltd Magnetic diamond microparticle and method for producing the same
JP2016528329A (en) * 2013-06-28 2016-09-15 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Nickel-coated diamond particles and method for producing the particles
US11452891B2 (en) 2016-08-26 2022-09-27 3M Innovative Properties Company Pleated filter element comprising pleated filter media with edge dams, and method of making and using
CN109890930A (en) * 2016-10-25 2019-06-14 3M创新有限公司 Magnetisable abrasive grain and preparation method thereof
US11597860B2 (en) 2016-10-25 2023-03-07 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
WO2018080703A1 (en) * 2016-10-25 2018-05-03 3M Innovative Properties Company Magnetizable abrasive particles and abrasive articles including them
CN109844054A (en) * 2016-10-25 2019-06-04 3M创新有限公司 Magnetisable aggregate abrasive grain, abrasive product and preparation method thereof
CN109863220A (en) * 2016-10-25 2019-06-07 3M创新有限公司 Functional abrasive grain, abrasive product and preparation method thereof
CN109844054B (en) * 2016-10-25 2021-08-24 3M创新有限公司 Magnetizable agglomerate abrasive particles, abrasive articles, and methods of making the same
CN109890931A (en) * 2016-10-25 2019-06-14 3M创新有限公司 Magnetisable abrasive grain and abrasive product comprising magnetisable abrasive grain
WO2018080705A1 (en) * 2016-10-25 2018-05-03 3M Innovative Properties Company Magnetizable agglomerate abrasive particles, abrasive articles, and methods of making the same
EP3532560A4 (en) * 2016-10-25 2020-04-01 3M Innovative Properties Company Functional abrasive particles, abrasive articles, and methods of making the same
WO2018080756A1 (en) * 2016-10-25 2018-05-03 3M Innovative Properties Company Functional abrasive particles, abrasive articles, and methods of making the same
US10655038B2 (en) 2016-10-25 2020-05-19 3M Innovative Properties Company Method of making magnetizable abrasive particles
WO2018080799A1 (en) * 2016-10-25 2018-05-03 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
US10774251B2 (en) 2016-10-25 2020-09-15 3M Innovative Properties Company Functional abrasive particles, abrasive articles, and methods of making the same
US11253972B2 (en) 2016-10-25 2022-02-22 3M Innovative Properties Company Structured abrasive articles and methods of making the same
CN109890930B (en) * 2016-10-25 2021-03-16 3M创新有限公司 Magnetizable abrasive particles and method of making same
US10947432B2 (en) 2016-10-25 2021-03-16 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
CN109863220B (en) * 2016-10-25 2021-04-13 3M创新有限公司 Functional abrasive particles, abrasive articles, and methods of making the same
US11072732B2 (en) 2016-10-25 2021-07-27 3M Innovative Properties Company Magnetizable abrasive particles and abrasive articles including them
WO2019197948A1 (en) * 2018-04-12 2019-10-17 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
CN111971363A (en) * 2018-04-12 2020-11-20 3M创新有限公司 Magnetizable abrasive particles and method of making same
KR102150161B1 (en) 2018-09-27 2020-08-31 주식회사 씨앤씨머티리얼즈 Nickel-coated super-abrasive particles with excellent magnetic properties and wire saw using the same
KR20200035633A (en) * 2018-09-27 2020-04-06 주식회사 씨앤씨머티리얼즈 Nickel-coated super-abrasive particles with excellent magnetic properties and wire saw using the same

Similar Documents

Publication Publication Date Title
JP2006089586A (en) Magnetic abrasive grain and method for producing the same
JP4982742B2 (en) Catalytic chemical processing method and apparatus using magnetic fine particles
CN101905447A (en) Method and jig assembly for manufacturing outer blade cutting wheel
KR100374398B1 (en) HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JP2004315946A (en) Method of producing conductive particulate
JP2504418B2 (en) Grinding stone manufacturing method
JP2007021661A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
JP2006176698A (en) Magnetic abrasive grain, its manufacturing method, electroless plating method and electroless plating activator for activated carbon
JP2007045878A (en) Magnetic abrasive grain
JP4143726B2 (en) Magnetic abrasive and magnetic abrasive liquid
JP2018178207A (en) Method for manufacturing metal member
JPH07136925A (en) Grinding method and grinding device
JP6559544B2 (en) Super abrasive tool manufacturing method
JP2013206499A (en) Base plate, spindle motor and disk drive
JP2007203443A (en) Method of producing electro-deposited grindstone, and electro-deposited grindstone produced by the method
JP2006272520A (en) Magnetism-assisted processing method and magnetic tool for use in it
JP5072749B2 (en) Electrodeposition tool production equipment
JP4263673B2 (en) Magnetic inner surface polishing method and apparatus
JP4831494B2 (en) Magnetic filter
JP2006272533A (en) Magnetic deburring method
RU2764538C1 (en) Method for combined processing of complex channels and apparatus for implementation thereof
JP4185985B2 (en) Magnetically assisted processing
JP2007098490A (en) Combined electric and magnetic machining method and apparatus and tool used in the method
JP4189446B2 (en) Magnetic abrasive grain, manufacturing method thereof, and magnetic polishing method
JP4831496B2 (en) Magnetic filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701