JP2006088097A - Production method of catalyst for producing methacrylic acid - Google Patents

Production method of catalyst for producing methacrylic acid Download PDF

Info

Publication number
JP2006088097A
JP2006088097A JP2004279630A JP2004279630A JP2006088097A JP 2006088097 A JP2006088097 A JP 2006088097A JP 2004279630 A JP2004279630 A JP 2004279630A JP 2004279630 A JP2004279630 A JP 2004279630A JP 2006088097 A JP2006088097 A JP 2006088097A
Authority
JP
Japan
Prior art keywords
catalyst
liquid
methacrylic acid
raw material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004279630A
Other languages
Japanese (ja)
Other versions
JP4564317B2 (en
Inventor
Daisuke Sawaoka
大輔 澤岡
Tomomichi Hino
智道 日野
Hiroyuki Naito
啓幸 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004279630A priority Critical patent/JP4564317B2/en
Publication of JP2006088097A publication Critical patent/JP2006088097A/en
Application granted granted Critical
Publication of JP4564317B2 publication Critical patent/JP4564317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst to be used for producing metacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation with molecular oxygen, producing a catalyst precursor dried matter of an excellent fluidity obtained in the above production process and capable of producing methacrylic acid at high yield, and its production method. <P>SOLUTION: The production method of the catalyst to be used for producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation with molecular oxygen and containing at least molybdenum and phosphorus includes the steps of preparing a solution or slurry (precursor mixed solution) containing at least raw material molybdenum and phosphorus, concentrating the precursor mixed solution by a heating device to produce a concentrate and drying and firing the concentrate. In the method, temperature of a heat transfer face of the heating device for the above concentration is 100-150°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用する触媒(以下、メタクリル酸製造用触媒という。)の製造方法、この方法により製造される触媒、および、この触媒を用いたメタクリル酸の製造方法に関する。   The present invention relates to a method for producing a catalyst (hereinafter referred to as a catalyst for producing methacrylic acid) used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, a catalyst produced by this method, The present invention also relates to a method for producing methacrylic acid using this catalyst.

触媒成分元素を含む2種類以上の混合溶液を混合してメタクリル酸製造用触媒を製造する方法としては、例えば、特許文献1〜5等に記載されている方法が挙げられる。このうち、特許文献2には、モリブデン、バナジウム、リン、およびアンチモン等の第4成分Xを含む均一溶液と、アンモニア水と、セシウム等のその他の触媒成分元素を含む均一溶液とを混合し、この混合溶液を乾燥することによってメタクリル酸製造用触媒を製造する方法が開示されている。これにより、第4成分X(特に、アンチモン)の溶解性が向上し、触媒性能の再現性、安定性に優れ、長寿命の触媒が得られるとしている。   Examples of a method for producing a methacrylic acid production catalyst by mixing two or more kinds of mixed solutions containing catalyst component elements include methods described in Patent Documents 1 to 5 and the like. Among these, Patent Document 2 mixes a homogeneous solution containing the fourth component X such as molybdenum, vanadium, phosphorus, and antimony, ammonia water, and a homogeneous solution containing other catalyst component elements such as cesium, A method for producing a catalyst for producing methacrylic acid by drying the mixed solution is disclosed. Thereby, the solubility of the fourth component X (especially antimony) is improved, and the catalyst performance is excellent in reproducibility and stability, and a long-life catalyst is obtained.

また、特許文献6には、全ての触媒原料を水に溶解あるいは懸濁させた溶液について、アンモニウム根の含有量をモリブデン12原子に対し17〜100モルの範囲、かつ、そのpHを6.5〜13の範囲とする酸化触媒の製造方法が開示されている。pHの調整は、硝酸またはアンモニア水等の添加により行われている。
特開平4−182450号公報 特開平5−31368号公報 特開平7−185354号公報 特開平8−157414号公報 特開平8−196908号公報 特開平9−290162号公報
Patent Document 6 discloses that a solution in which all catalyst raw materials are dissolved or suspended in water has an ammonium root content in the range of 17 to 100 mol with respect to 12 atoms of molybdenum and a pH of 6.5. A method for producing an oxidation catalyst in the range of ˜13 is disclosed. The pH is adjusted by adding nitric acid or aqueous ammonia.
JP-A-4-182450 JP-A-5-31368 JP-A-7-185354 JP-A-8-157414 JP-A-8-196908 JP-A-9-290162

しかしながら、このような従来の触媒原料の混合方法やpH調整方法を用いて製造された触媒は、反応成績の面で工業触媒としては必ずしも十分でなく、さらなる触媒性能の向上が望まれている。   However, a catalyst produced by using such a conventional catalyst raw material mixing method or pH adjusting method is not necessarily sufficient as an industrial catalyst in terms of reaction results, and further improvement in catalyst performance is desired.

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる触媒であって、メタクリル酸を高収率で製造できるメタクリル酸製造用触媒、その製造方法、および、この触媒を用いたメタクリル酸の製造方法を提供することを目的とする。   The present invention is a catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, a catalyst for producing methacrylic acid capable of producing methacrylic acid in high yield, a production method thereof, And it aims at providing the manufacturing method of methacrylic acid using this catalyst.

上記課題は、以下の本発明により解決できる。   The above problems can be solved by the present invention described below.

すなわち、本発明は、
メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデンおよびリンを含有するメタクリル酸製造用触媒の製造方法において、
(a)少なくともモリブデン原料およびリン原料を含む溶液またはスラリー(前駆体混合液)を調製する工程と、
(b)前記前駆体混合液を加熱装置により濃縮して、濃縮物とする工程と、
(c)前記濃縮物を乾燥し、焼成する工程と、
を有し、前記濃縮を行う際の前記加熱装置の加熱伝熱面温度が100〜150℃であることを特徴とするメタクリル酸製造用触媒の製造方法である。
That is, the present invention
In a method for producing a methacrylic acid production catalyst containing at least molybdenum and phosphorus, which is used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen,
(A) preparing a solution or slurry (precursor mixture) containing at least a molybdenum raw material and a phosphorus raw material;
(B) concentrating the precursor mixture with a heating device to obtain a concentrate;
(C) drying and baking the concentrate;
And a heating heat transfer surface temperature of the heating device when the concentration is performed is 100 to 150 ° C., a method for producing a catalyst for methacrylic acid production.

また、本発明は、
前記の製造方法により製造されるメタクリル酸製造用触媒である。
The present invention also provides:
A catalyst for producing methacrylic acid produced by the production method described above.

さらに、本発明は、
前記のメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法である。
Furthermore, the present invention provides
This is a method for producing methacrylic acid, in which methacrolein is vapor-phase contact oxidized with molecular oxygen in the presence of the catalyst for producing methacrylic acid.

本発明によれば、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる触媒であって、製造過程で得られる触媒前駆体乾燥物の流動性に優れ、かつ、メタクリル酸を高収率で製造できる触媒、その製造方法、および、この触媒を用いたメタクリル酸の製造方法を提供できる。   According to the present invention, a catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, which is excellent in fluidity of a dried catalyst precursor obtained in the production process, and The catalyst which can manufacture methacrylic acid with a high yield, its manufacturing method, and the manufacturing method of methacrylic acid using this catalyst can be provided.

本発明の触媒は、メタクロレインを気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデンおよびリンを含有するメタクリル酸製造用触媒であって、
(a)少なくともモリブデン原料およびリン原料を含む溶液またはスラリー(前駆体混合液)を調製する工程と、
(b)前記前駆体混合液を加熱装置により濃縮して、濃縮物とする工程と、
(c)前記濃縮物を乾燥し、焼成する工程と、
を有し、前記濃縮を行う際の前記加熱装置の加熱伝熱面温度が100〜150℃であることを特徴とする方法によって製造されたものである。特に、下記式(1)で表される組成を有する触媒である。
The catalyst of the present invention is a catalyst for producing methacrylic acid containing at least molybdenum and phosphorus, which is used in producing methacrylic acid by vapor phase catalytic oxidation of methacrolein,
(A) preparing a solution or slurry (precursor mixture) containing at least a molybdenum raw material and a phosphorus raw material;
(B) concentrating the precursor mixture with a heating device to obtain a concentrate;
(C) drying and baking the concentrate,
It is manufactured by the method characterized by the heating-heat-transfer surface temperature of the said heating apparatus at the time of performing the said concentration being 100-150 degreeC. In particular, the catalyst has a composition represented by the following formula (1).

aMobcCudefgh (1)
(式(1)および明細書中、P、Mo、V、CuおよびOは、それぞれリン、モリブデン、バナジウム、銅および酸素を示し、Xはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウムおよびセシウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
上記触媒成分は、リン、モリブデン、バナジウム、銅、Z元素および酸素を必須成分として構成されるものであり、X元素およびY元素は任意成分である。aは0.5〜2が好ましい。cは0.01〜1が好ましい。gは0.5〜2が好ましい。Z元素はセシウムが好ましい。後述する各原料の配合比を適宜調整することで、目的とするメタクリル酸製造用触媒における各元素の原子比率(aおよびc〜g)を上記範囲で任意に設定することができる。製造されたメタクリル酸製造用触媒の組成は、例えばアンモニア水に溶解した触媒をICP発光分析法と原子吸光分析法で分析することによって酸素以外の組成を分析できる。
P a Mo b V c Cu d X e Y f Z g O h (1)
(In the formula (1) and the specification, P, Mo, V, Cu and O respectively represent phosphorus, molybdenum, vanadium, copper and oxygen, and X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, Represents at least one element selected from the group consisting of selenium, silicon, tungsten and boron, and Y is selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium, and cesium, and a, b, c, d, e, f, g, and h represent each element. And when b = 12, a = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0-3, = 0-3, a g = 0.01 to 3, h is an atomic ratio of oxygen required to satisfy the valence of each component.)
The catalyst component is composed of phosphorus, molybdenum, vanadium, copper, Z element and oxygen as essential components, and the X element and Y element are optional components. a is preferably from 0.5 to 2. c is preferably from 0.01 to 1. As for g, 0.5-2 are preferred. The element Z is preferably cesium. The atomic ratio (a and c to g) of each element in the target catalyst for methacrylic acid production can be arbitrarily set within the above range by appropriately adjusting the blending ratio of each raw material to be described later. The composition of the produced catalyst for producing methacrylic acid can be analyzed for a composition other than oxygen, for example, by analyzing a catalyst dissolved in aqueous ammonia by ICP emission spectrometry and atomic absorption spectrometry.

本発明の製造方法により得られる触媒前駆体乾燥物の流動性および触媒性能が向上するメカニズムについては明らかではないが、前駆体混合液を特定の条件で濃縮することにより、ホッパーのブリッジ抑制など粉体輸送上の問題、および打錠成型、プレス成型用などの型への粉体混入が短時間で容易に可能となるなど触媒の安定製造に寄与し、流動性に優れた触媒前駆体乾燥物が得られ、かつメタクリル酸が高収率で得られる触媒の結晶構造が形成されるためと推定される。   The mechanism of improving the fluidity and catalyst performance of the dried catalyst precursor obtained by the production method of the present invention is not clear, but by concentrating the precursor mixed solution under specific conditions, it is possible to prevent hopper bridging and the like. Catalyst precursor dry matter with excellent fluidity that contributes to stable production of the catalyst, such as problems in body transportation, and powder mixing into molds such as tableting and press molding can be easily performed in a short time. And a crystal structure of the catalyst from which methacrylic acid is obtained in high yield is presumed.

以下、本発明のメタクリル酸製造用触媒の製造方法について、さらに詳しく説明する。   Hereinafter, the method for producing the catalyst for producing methacrylic acid of the present invention will be described in more detail.

[(a)前駆体混合液の調製]
まず、少なくともモリブデン原料およびリン原料を含む溶液またはスラリー(前駆体混合液)を調製する。調製方法としては特に限定されず、必要な原料を溶媒に溶解または分散させる方法で行うことができる。また、調製段階でアンモニウムが関与する系が一般的である。調製法の例として、共沈法、酸化物混合法といったものがあるが、その中でも特に、
(i)モリブデン原料、リン原料およびバナジウム原料を含む溶液またはスラリー(A液)を調製する工程と、
(ii)アンモニアまたはアンモニア化合物を含む溶液またはスラリー(B液)を調製する工程と、
(iii)Z元素の原料を含む溶液またはスラリー(C液)を調製する工程と、
(iv)前記A液と前記C液とを混合して、A−C混合液とする工程と、
(v)前記A−C混合液と前記B液とを混合して、A−C−B混合液とする工程と、
(vi)A−C−B混合液と、必要な他の原料と、を混合して、前駆体混合液とする工程と、
を有する方法で行うことによって、前記式(1)で表される組成を有する触媒を製造することができる。以下、この方法について詳しく説明する。
[(A) Preparation of precursor mixture]
First, a solution or slurry (precursor mixture) containing at least a molybdenum raw material and a phosphorus raw material is prepared. It does not specifically limit as a preparation method, It can carry out by the method of dissolving or disperse | distributing a required raw material in a solvent. A system involving ammonium in the preparation stage is common. Examples of preparation methods include the coprecipitation method and the oxide mixing method.
(I) preparing a solution or slurry (liquid A) containing a molybdenum raw material, a phosphorus raw material and a vanadium raw material;
(Ii) preparing a solution or slurry (liquid B) containing ammonia or an ammonia compound;
(Iii) preparing a solution or slurry (solution C) containing a raw material for the Z element;
(Iv) mixing the liquid A and the liquid C to obtain an AC mixed liquid;
(V) mixing the A-C mixture and the B solution to obtain an A-C-B mixture;
(Vi) a step of mixing the A-C-B mixed liquid and other necessary raw materials to obtain a precursor mixed liquid;
By performing by the method which has this, the catalyst which has a composition represented by said Formula (1) can be manufactured. Hereinafter, this method will be described in detail.

<(i)A液の調製>
A液は、モリブデン原料、リン原料およびバナジウム原料を含む溶液またはスラリーであり、モリブデン原料、リン原料およびバナジウム原料を溶媒に溶解または懸濁させて調製することができる。A液の調製に使用するモリブデン原料は、アンモニウムを含まないことが好ましい。また、A液には、他の原料、すなわち、銅、X元素、Y元素、及びZ元素の原料が含まないことが好ましい。A液中に含まれるアンモニウムの量は、A液中に含まれるモリブデン原子12モルに対して1.5モル以下が好ましい。
<(I) Preparation of solution A>
The liquid A is a solution or slurry containing a molybdenum raw material, a phosphorus raw material, and a vanadium raw material, and can be prepared by dissolving or suspending a molybdenum raw material, a phosphorus raw material, and a vanadium raw material in a solvent. It is preferable that the molybdenum raw material used for preparation of A liquid does not contain ammonium. Further, it is preferable that the liquid A does not contain other raw materials, that is, raw materials of copper, X element, Y element, and Z element. The amount of ammonium contained in the A liquid is preferably 1.5 mol or less with respect to 12 mol of molybdenum atoms contained in the A liquid.

ここで、「アンモニウム」とはNH4 +だけではなくNH3も含むものを指し、「アンモニウムを含まない」とは、一般的な分析手法(例えばキェールダール法)においてNH4 +及びNH3の合計が定量限界以下であることを意味し、原料に含まれるモリブデン、リンおよびバナジウムのそれぞれ100質量部に対して、0.01質量部以下のごくわずかのアンモニウムを含んでいてもかまわない(後述するC液においても同様)。 Here, “ammonium” means not only NH 4 + but also NH 3 , and “ammonium-free” means the sum of NH 4 + and NH 3 in a general analytical method (eg, Kjeldahl method). Is less than the limit of quantification, and may contain 0.01 part by mass or less of ammonium with respect to 100 parts by mass of molybdenum, phosphorus and vanadium contained in the raw material (described later). The same applies to liquid C).

用いるモリブデン原料としては特に限定されず、例えば、三酸化モリブデン、モリブデン酸等が挙げられる。モリブデン原料は1種を用いても、2種以上を併用してもよい。用いるリン原料としては特に限定されず、例えば、正リン酸、五酸化リン、リン酸アンモニウム等が挙げられる。リン原料は1種を用いても、2種以上を併用してもよい。用いるバナジウム原料としては特に限定されず、例えば、バナジウムの原料としては、五酸化バナジウム、メタバナジン酸アンモニウム等が挙げられる。バナジウム原料は1種を用いても、2種以上を併用してもよい。これらの原料の配合比は目的とする触媒の組成となるように適宜設定すれば良い。   It does not specifically limit as a molybdenum raw material to be used, For example, a molybdenum trioxide, molybdic acid etc. are mentioned. The molybdenum raw material may be used alone or in combination of two or more. It does not specifically limit as a phosphorus raw material to be used, For example, normal phosphoric acid, phosphorus pentoxide, ammonium phosphate, etc. are mentioned. A phosphorus raw material may use 1 type, or may use 2 or more types together. The vanadium raw material to be used is not particularly limited. Examples of the vanadium raw material include vanadium pentoxide and ammonium metavanadate. The vanadium raw material may be used alone or in combination of two or more. What is necessary is just to set suitably the compounding ratio of these raw materials so that it may become the composition of the target catalyst.

なお、モリブデン原料、リン原料およびバナジウム原料は、全量をA液に含めても良く、一部のみをA液に含めて、残りはB液またはC液に含めても良く、またA−C−B混合液に混合しても良い。容易に調製可能であることから、これらの原料は全量A液に含めることが好ましい。   In addition, molybdenum raw material, phosphorus raw material, and vanadium raw material may be included in the liquid A, only a part may be included in the liquid A, and the remainder may be included in the liquid B or liquid C. You may mix with B liquid mixture. Since these can be easily prepared, it is preferable to include these raw materials in the total amount of the liquid A.

溶媒としては、水を用いることが好ましい。A液中の溶媒の量は特に限定されないが、A液の製造に用いたモリブデン化合物と溶媒との比(質量比)は1:0.1〜1:100であることが好ましい。   As the solvent, water is preferably used. Although the quantity of the solvent in A liquid is not specifically limited, It is preferable that the ratio (mass ratio) of the molybdenum compound used for manufacture of A liquid and a solvent is 1: 0.1-1: 100.

A液の状態は特に制限されず、原料が完全に溶媒に溶解した溶液であっても、原料の一部または全量が溶媒に懸濁したスラリーであってもよい。   The state of the liquid A is not particularly limited, and may be a solution in which the raw material is completely dissolved in a solvent, or a slurry in which a part or all of the raw material is suspended in the solvent.

なお、A液は、常温で攪拌することで調製できるが、必要に応じて100℃程度まで加熱して調製してもかまわない。   In addition, although A liquid can be prepared by stirring at normal temperature, you may heat and prepare to about 100 degreeC as needed.

<(ii)B液の調製>
B液は、アンモニアまたはアンモニア化合物を含む溶液またはスラリーであり、アンモニアおよび/またはアンモニア化合物を溶媒に溶解または懸濁させて調製することができる。B液には、モリブデン原料が含まれないようにすることが好ましい。また、他の触媒原料、すなわち、リン、バナジウム、銅、X元素、Y元素、及びZ元素の原料は、全量でなければ含んでいてもかまわないが、これらを含まないことがより好ましい。
<(Ii) Preparation of solution B>
Liquid B is a solution or slurry containing ammonia or an ammonia compound, and can be prepared by dissolving or suspending ammonia and / or an ammonia compound in a solvent. It is preferable that the B liquid does not contain a molybdenum raw material. In addition, other catalyst raw materials, that is, phosphorus, vanadium, copper, X element, Y element, and Z element raw materials may be included unless the total amount, but it is more preferable that these are not included.

用いるアンモニアおよびアンモニア化合物としては特に限定されず、例えば、アンモニア(アンモニア水)、炭酸アンモニウム、炭酸水素アンモニウム、硝酸アンモニウム等が挙げられる。アンモニアおよび/またはアンモニア化合物は1種を用いても、2種以上を併用してもよい。   The ammonia and the ammonia compound to be used are not particularly limited, and examples thereof include ammonia (ammonia water), ammonium carbonate, ammonium hydrogen carbonate, ammonium nitrate and the like. Ammonia and / or ammonia compounds may be used alone or in combination of two or more.

B液の溶媒としては、水を用いることが好ましい。B液中の溶媒の量は特に限定されないが、B液の製造に用いたアンモニアおよびアンモニア化合物と溶媒との比(質量比)は1:0.1〜1:100であることが好ましい。   It is preferable to use water as the solvent for the liquid B. The amount of the solvent in the B liquid is not particularly limited, but the ratio (mass ratio) of ammonia and the ammonia compound used in the manufacture of the B liquid to the solvent is preferably 1: 0.1 to 1: 100.

B液の状態は特に制限されず、アンモニアおよび/またはアンモニア化合物が完全に溶媒に溶解した溶液であっても、一部または全量が溶媒に懸濁したスラリーであってもよい。   The state of the B liquid is not particularly limited, and may be a solution in which ammonia and / or an ammonia compound is completely dissolved in a solvent, or a slurry in which a part or all of the suspension is suspended in a solvent.

なお、B液は、通常、常温で攪拌することで調製できるが、必要に応じてアンモニアとなって蒸散しない範囲の温度領域まで加熱して調製してもかまわない。   In addition, although B liquid can be normally prepared by stirring at normal temperature, you may heat and prepare to the temperature range of the range which does not evaporate as ammonia as needed.

<(iii)C液の調製>
C液は、Z元素の原料を含む溶液またはスラリーであり、Z元素の原料を溶媒に溶解または懸濁させて調製することができる。ここで、Z元素とは、カリウム、ルビジウム、および、セシウムからなる群より選ばれた少なくとも1種類の元素である。C液には、他の原料、すなわち、リン、モリブデン、バナジウム、銅、X元素、及びY元素の原料は、全量でなければ含んでいてもかまわないが、これらを含まないことがより好ましい。また、C液には、アンモニウムを含まないことが好ましい。本発明においては、Z元素がセシウムの場合、特に優れた効果が得られる。
<(Iii) Preparation of solution C>
The liquid C is a solution or slurry containing a Z element raw material, and can be prepared by dissolving or suspending the Z element raw material in a solvent. Here, the Z element is at least one element selected from the group consisting of potassium, rubidium, and cesium. The liquid C may contain other raw materials, that is, raw materials of phosphorus, molybdenum, vanadium, copper, X element, and Y element, if they are not in total amount, but it is more preferable not to contain them. Moreover, it is preferable that C liquid does not contain ammonium. In the present invention, when the Z element is cesium, a particularly excellent effect is obtained.

用いるZ元素の原料としては、各元素の硝酸塩、炭酸塩、水酸化物等を適宜選択して使用することができる。例えば、セシウムの原料としては、硝酸セシウム、炭酸セシウム、水酸化セシウム等が使用できる。各原料は、各元素に対して1種を用いても、2種以上を併用してもよい。   As a raw material for the Z element to be used, nitrates, carbonates, hydroxides and the like of each element can be appropriately selected and used. For example, as a cesium raw material, cesium nitrate, cesium carbonate, cesium hydroxide and the like can be used. Each raw material may use 1 type with respect to each element, or may use 2 or more types together.

なお、Z元素の原料は、全量をC液に含めても良く、一部のみをC液に含めて、残りはA液またはB液に含めても良く、またA−C−B混合液に混合しても良い。容易に調製可能であることから、これらの原料は全量C液に含めることが好ましい。   The total amount of the Z element raw material may be included in the C liquid, only a part may be included in the C liquid, and the rest may be included in the A liquid or the B liquid. You may mix. These raw materials are preferably included in the total amount C solution because they can be easily prepared.

溶媒としては、水を用いることが好ましい。C液中の溶媒の量は特に限定されないが、C液に含まれる全ての原料と溶媒との比(質量比)は、1:0.1〜1:100であることが好ましい。   As the solvent, water is preferably used. The amount of the solvent in the liquid C is not particularly limited, but the ratio (mass ratio) of all the raw materials and the solvent contained in the liquid C is preferably 1: 0.1 to 1: 100.

なお、C液は、常温で攪拌することで調製できるが、必要に応じて80℃程度まで加熱して調製してもかまわない。   In addition, although C liquid can be prepared by stirring at normal temperature, you may heat and prepare to about 80 degreeC as needed.

<(iv)A−C混合液の調製>
次いで、上記のようにして調製したA液とC液とを混合し、A−C混合液を調製する。
<(Iv) Preparation of AC mixture>
Next, the A liquid and the C liquid prepared as described above are mixed to prepare an AC mixed liquid.

A液とC液の混合方法は特に限定されず、例えば、A液が入った容器にC液を加える方法、C液が入った容器にA液を加える方法、別途準備した容器にA液とC液とを同時に流し込む方法等の任意の方法が利用できる。混合は、通常、攪拌しながら行い、A−C混合液はできるだけ均一であることが好ましい。A液とC液の混合比は、目的とする触媒の組成となるように適宜設定すれば良い。   The mixing method of A liquid and C liquid is not specifically limited, For example, the method of adding C liquid to the container containing A liquid, the method of adding A liquid to the container containing C liquid, Arbitrary methods, such as the method of pouring C liquid simultaneously, can be used. Mixing is usually performed with stirring, and the AC mixture is preferably as uniform as possible. What is necessary is just to set suitably the mixing ratio of A liquid and C liquid so that it may become the composition of the target catalyst.

A−C混合液の状態は特に制限されず、溶液であってもスラリー(懸濁液)であってもよい。   The state of the AC mixed solution is not particularly limited, and may be a solution or a slurry (suspension).

A−C混合液は、通常、常温で調製すればよいが、必要に応じて100℃程度まで加熱して調製してもかまわない。また、得られたA−C混合液に対して、適宜、加熱処理等の操作を施してもよい。加熱処理の温度は100℃までが好ましいが、必要に応じてオートクレーブ等を用いて100℃以上にすることもできる。なお、加熱時間は適宜決めればよい。   The A-C mixed solution may be prepared usually at room temperature, but it may be prepared by heating to about 100 ° C. if necessary. Moreover, you may perform operation, such as heat processing, with respect to the obtained AC mixed liquid suitably. The temperature of the heat treatment is preferably up to 100 ° C., but can be raised to 100 ° C. or higher by using an autoclave or the like as necessary. Note that the heating time may be determined as appropriate.

<(v)A−C−B混合液の調製>
次いで、上記のようにして調製したA−C液とB液とを混合し、A−C−B混合液を調製する。
<(V) Preparation of A-C-B mixture>
Next, the A-C liquid and B liquid prepared as described above are mixed to prepare an A-C-B mixed liquid.

A−C液とB液の混合方法は特に限定されず、例えば、A−C液が入った容器にB液を加える方法、B液が入った容器にA−C液を加える方法、別途準備した容器にA−C液とB液とを同時に流し込む方法等の任意の方法が利用できる。混合は、通常、攪拌しながら行い、A−C−B混合液はできるだけ均一であることが好ましい。   The mixing method of the A-C liquid and the B liquid is not particularly limited. For example, a method of adding the B liquid to the container containing the A-C liquid, a method of adding the A-C liquid to the container containing the B liquid, separately prepared Arbitrary methods, such as the method of pouring A-C liquid and B liquid simultaneously in the container which carried out, can be utilized. Mixing is usually carried out with stirring, and the A-C-B mixture is preferably as uniform as possible.

A−C液とB液の混合比は、高いメタクリル酸収率の触媒が得られるので、B液中のアンモニウムの量が、A液中のモリブデン原子12モルに対して、6モル以上、特に7モル以上であることが好ましく、また、17モル以下、特に15モル以下であることが好ましい。   The mixing ratio of the AC liquid and the B liquid is such that a catalyst with a high methacrylic acid yield is obtained, so that the amount of ammonium in the B liquid is 6 moles or more, particularly 12 moles of molybdenum atoms in the A liquid. The amount is preferably 7 mol or more, more preferably 17 mol or less, and particularly preferably 15 mol or less.

なお、A−C−B混合液の状態は特に制限されず、溶液であってもスラリー(懸濁液)であってもよい。   The state of the A-C-B mixed liquid is not particularly limited, and may be a solution or a slurry (suspension).

A−C−B混合液は、通常、常温で調製すればよいが、必要に応じて100℃程度まで加熱して調製してもかまわない。また、得られたA−C−B混合液に対して、適宜、加熱処理等の操作を施してもよい。加熱処理の温度は100℃までが好ましいが、必要に応じてオートクレーブ等を用いて100℃以上にすることもできる。なお、加熱時間は適宜決めればよい。   The A-C-B mixed solution may be usually prepared at room temperature, but may be prepared by heating to about 100 ° C. as necessary. Moreover, you may perform operations, such as heat processing, suitably with respect to the obtained ACB mixed liquid. The temperature of the heat treatment is preferably up to 100 ° C., but can be raised to 100 ° C. or higher by using an autoclave or the like as necessary. Note that the heating time may be determined as appropriate.

<(vi)A−C−B混合液と、必要な他の原料と、の混合>
次いで、調製したA−C−B混合液と、目的とする触媒の組成となるために必要な他の原料と、を混合して、触媒前駆体を含む溶液またはスラリー(前駆体混合液)を調製する。
<(Vi) Mixing of A-C-B mixture and other necessary raw materials>
Next, the prepared A-C-B mixture is mixed with other raw materials necessary for achieving the target catalyst composition, and a solution or slurry containing the catalyst precursor (precursor mixture) is obtained. Prepare.

用いる原料としては特に限定されず、各元素の硝酸塩、炭酸塩、水酸化物等を適宜選択して使用することができる。例えば、銅原料としては、硝酸銅、炭酸銅等を用いることができる。原料は各元素に対して1種を用いても、2種以上を併用してもよい。   It does not specifically limit as a raw material to be used, Nitrate, carbonate, a hydroxide, etc. of each element can be selected suitably and can be used. For example, copper nitrate, copper carbonate, or the like can be used as the copper raw material. A raw material may use 1 type with respect to each element, or may use 2 or more types together.

これらの原料は、そのまま混合してもよいし、あらかじめ溶媒と混合した溶液や懸濁液の状態で混合してもよい。溶液や懸濁液の溶媒としては、水を用いることが好ましい。溶媒の量は特に制限されず、適宜決めればよい。原料の混合量は、目的とする触媒の組成となるように適宜設定すれば良い。   These raw materials may be mixed as they are, or may be mixed in the form of a solution or suspension previously mixed with a solvent. As a solvent for the solution or suspension, water is preferably used. The amount of the solvent is not particularly limited and may be determined as appropriate. What is necessary is just to set the mixing amount of a raw material suitably so that it may become the composition of the target catalyst.

混合方法は特に限定されず、例えば、A−C−B混合液が入った容器に必要な他の原料を順次加えていく方法、必要な他の原料が入った容器にA−C−B混合液を加える方法、別途準備した容器にA−C−B混合液と必要な他の原料とを同時に流し込む方法等の任意の方法が利用できる。混合は、通常、攪拌しながら行う。   The mixing method is not particularly limited. For example, a method of sequentially adding other raw materials necessary to a container containing an A-C-B mixed solution, or A-C-B mixing to a container containing other necessary raw materials. Arbitrary methods such as a method of adding a liquid and a method of simultaneously pouring the A-C-B mixed solution and other necessary raw materials into a separately prepared container can be used. Mixing is usually carried out with stirring.

A−C−B混合液と、必要な他の原料と、を混合する際の溶液の温度は特に限定されないが、100℃以下であることが好ましい。また、得られた触媒前駆体を含む溶液またはスラリー(前駆体混合液)に対して、適宜、加熱処理等の操作を施してもよい。加熱処理の温度100℃までが好ましいが、必要に応じてオートクレーブ等を用いて100℃以上にすることもできる。なお、加熱時間は適宜決めればよい。   Although the temperature of the solution at the time of mixing an ACB liquid mixture and other required raw materials is not specifically limited, It is preferable that it is 100 degrees C or less. Moreover, you may perform operation, such as heat processing, suitably with respect to the solution or slurry (precursor mixed solution) containing the obtained catalyst precursor. Although the temperature of the heat treatment is preferably up to 100 ° C., it can be raised to 100 ° C. or higher using an autoclave or the like as necessary. Note that the heating time may be determined as appropriate.

[(b)前駆体混合液の濃縮]
次に、このようにして得られたすべての触媒原料を含む溶液またはスラリー(前駆体混合液)を加熱装置により濃縮して、濃縮物とする。
[(B) Concentration of precursor mixture]
Next, the solution or slurry (precursor mixture) containing all the catalyst raw materials thus obtained is concentrated by a heating device to obtain a concentrate.

濃縮時における圧力は減圧、常圧、加圧いずれも可能であるが、経済的観点を考慮すると常圧が好ましい。濃縮を行う加熱装置の形状は特に限定されないが、ジャケット式および内部コイル式などで行なうのが望ましい。このとき、濃縮時における加熱装置との加熱伝熱面温度を100℃〜150℃とする。120℃以上とすることが望ましく、また130℃以下とすることが望ましい。濃縮時間は前駆体混合液の温度が当該混合液の沸点−30℃以上である時間として、0.5〜10時間が好ましく、2時間以上がより好ましく、5時間以下がより好ましい。濃縮時の温度制御を容易にするために、加熱媒体として150〜700kPa(絶対圧;以下圧力は絶対圧表記とする)の飽和水蒸気を用いることが好ましい。200kPa以上の飽和水蒸気を使用するのがより好ましく、400kPa以下の飽和水蒸気を使用することがより好ましい。厚さ5mm程度のステンレス製の加熱伝熱面の場合、加熱媒体の温度と加熱伝熱面の温度はほぼ等しい。ここで、濃縮とは前駆体混合液の溶液またはスラリーを加熱して液体の含有率を下げることを意味し、得られる濃縮物の液体含有率は20質量%以上とする。   The pressure during concentration can be any of reduced pressure, normal pressure, and increased pressure, but normal pressure is preferred from the economic viewpoint. The shape of the heating device for concentrating is not particularly limited, but it is desirable to perform the heating using a jacket type or an internal coil type. At this time, the heat transfer surface temperature with the heating device during concentration is set to 100 ° C to 150 ° C. It is desirable that the temperature be 120 ° C or higher, and it is desirable that the temperature be 130 ° C or lower. The concentration time is preferably 0.5 to 10 hours, more preferably 2 hours or more, and more preferably 5 hours or less, as the time during which the temperature of the precursor mixture is equal to or higher than the boiling point of the mixture −30 ° C. In order to facilitate temperature control during concentration, it is preferable to use saturated steam of 150 to 700 kPa (absolute pressure; hereinafter, pressure is expressed as absolute pressure) as a heating medium. It is more preferable to use saturated steam of 200 kPa or more, and it is more preferable to use saturated steam of 400 kPa or less. In the case of a stainless steel heating heat transfer surface having a thickness of about 5 mm, the temperature of the heating medium and the temperature of the heating heat transfer surface are substantially equal. Here, the concentration means that the solution or slurry of the precursor mixed solution is heated to lower the liquid content, and the liquid content of the obtained concentrate is 20% by mass or more.

なお、共沈法など他の公知技術を用いても、先に述べた濃縮条件内で調製を行なうことで、後述する前駆体乾燥物の流動性に優れ、かつメタクリル酸が高収率で得られる触媒が得られるが、特に本発明の触媒において良い結果が得られる。   Even if other known techniques such as a coprecipitation method are used, the flowability of the precursor dried product described later is excellent and methacrylic acid can be obtained in a high yield by carrying out the preparation within the concentration conditions described above. However, good results are obtained particularly with the catalyst of the present invention.

[(c)濃縮物の乾燥・焼成]
次いで、このようにして得られた濃縮物を乾燥し、触媒前駆体の乾燥物を得る。
[(C) Drying and baking of concentrate]
Subsequently, the concentrate thus obtained is dried to obtain a dried catalyst precursor.

乾燥方法としては種々の方法を用いることが可能であり、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等を用いることができる。乾燥に使用する乾燥機の機種や乾燥時の温度、時間等は特に限定されず、乾燥条件を適宜変えることによって目的に応じた触媒前駆体の乾燥物を得ることができる。   As the drying method, various methods can be used, and for example, an evaporating and drying method, a spray drying method, a drum drying method, an air current drying method, and the like can be used. The model of the dryer used for drying, the temperature and time during drying, etc. are not particularly limited, and a dried catalyst precursor according to the purpose can be obtained by appropriately changing the drying conditions.

触媒前駆体の乾燥物の流動性を評価する手法には、流動性指数を用いた。[Carr,R.L.,Chem.Eng.72.Jan.18(1965)]
このようにして得られた触媒前駆体の乾燥物は、必要により粉砕した後、成形せずにそのまま次の焼成を行ってもよいが、通常は成形品を焼成する。
A fluidity index was used as a method for evaluating the fluidity of the dried catalyst precursor. [Carr, R .; L. , Chem. Eng. 72. Jan. 18 (1965)]
The dried catalyst precursor obtained in this manner may be pulverized if necessary, and then subjected to subsequent firing without molding, but usually the molded product is fired.

成形方法は特に限定されず、公知の乾式および湿式の種々の成形法が適用できるが、シリカ等の担体などを含めずに成形することが好ましい。具体的な成形方法としては、例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状についても特に限定されず、例えば、円柱状、リング状、球状等の所望の形状を選択することができる。なお、成形に際しては、公知の添加剤、例えば、グラファイト、タルク等を少量添加してもよい。   The molding method is not particularly limited, and various known dry and wet molding methods can be applied, but it is preferable to mold without including a carrier such as silica. Specific examples of the molding method include tableting molding, press molding, extrusion molding, and granulation molding. The shape of the molded product is not particularly limited, and for example, a desired shape such as a columnar shape, a ring shape, or a spherical shape can be selected. In molding, a small amount of known additives such as graphite and talc may be added.

そして、このようにして得られた触媒前駆体の乾燥物またはその成形品を焼成し、メタクリル酸製造用触媒を得る。   And the dried catalyst precursor obtained in this way or its molded product is fired to obtain a catalyst for producing methacrylic acid.

焼成方法や焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。焼成の最適条件は、用いる触媒原料、触媒組成、調製法等によって異なるが、通常、空気等の酸素含有ガス流通下および/または不活性ガス流通下で、200〜500℃、好ましくは300〜450℃で、0.5時間以上、好ましくは1〜40時間で行う。ここで、不活性ガスとは、触媒の反応活性を低下させないような気体のことをいい、具体的には、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。   The firing method and firing conditions are not particularly limited, and known treatment methods and conditions can be applied. Optimum conditions for calcination vary depending on the catalyst raw material, catalyst composition, preparation method, and the like, but are usually 200 to 500 ° C., preferably 300 to 450 under an oxygen-containing gas flow such as air and / or an inert gas flow. It is carried out at 0 ° C. for 0.5 hour or longer, preferably 1 to 40 hours. Here, the inert gas refers to a gas that does not decrease the reaction activity of the catalyst, and specifically includes nitrogen, carbon dioxide, helium, argon, and the like.

<メタクリル酸の製造方法>
次に、本発明のメタクリル酸の製造方法について説明する。本発明のメタクリル酸の製造方法は、上記のようにして得られる本発明のメタクリル酸製造用触媒の存在下でメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するものである。
<Method for producing methacrylic acid>
Next, the manufacturing method of methacrylic acid of this invention is demonstrated. The method for producing methacrylic acid of the present invention is a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen in the presence of the catalyst for producing methacrylic acid of the present invention obtained as described above. .

気相接触酸化反応は、通常、固定床で行なう。また、触媒層は1層でも2層以上でもよく、触媒のみの層でも、触媒を担体に担持させたものの層でも、その他の添加成分を混合したものの層でもよい。   The gas phase catalytic oxidation reaction is usually performed in a fixed bed. The catalyst layer may be one layer or two or more layers, and may be a catalyst-only layer, a layer in which a catalyst is supported on a carrier, or a layer in which other additive components are mixed.

上記のような本発明のメタクリル酸製造用触媒を用いてメタクリル酸を製造する際には、メタクロレインと分子状酸素とを含む原料ガスを触媒と接触させる。   When producing methacrylic acid using the above-described catalyst for producing methacrylic acid of the present invention, a raw material gas containing methacrolein and molecular oxygen is brought into contact with the catalyst.

原料ガス中のメタクロレイン濃度は広い範囲で変えることができるが、1容量%以上が好ましく、3容量%以上がより好ましい。また、20容量%以下が好ましく、10容量%以下がより好ましい。   The concentration of methacrolein in the raw material gas can be varied within a wide range, but is preferably 1% by volume or more, and more preferably 3% by volume or more. Moreover, 20 volume% or less is preferable and 10 volume% or less is more preferable.

分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気等も用いることができる。原料ガス中の分子状酸素濃度はメタクロレイン1モルに対して0.4モル以上が好ましく、0.5モル以上がより好ましい。また、メタクロレイン1モルに対して4モル以下が好ましく、3モル以下がより好ましい。   Although it is economical to use air as the molecular oxygen source, air or the like enriched with pure oxygen can also be used if necessary. The molecular oxygen concentration in the raw material gas is preferably 0.4 mol or more, more preferably 0.5 mol or more with respect to 1 mol of methacrolein. Moreover, 4 mol or less is preferable with respect to 1 mol of methacrolein, and 3 mol or less is more preferable.

また、原料ガスは水蒸気を含んでいることが好ましい。水の存在下で反応を行なうと、より高収率でメタクリル酸が得られる。原料ガス中の水蒸気の濃度は、0.1容量%以上が好ましく、1容量%以上がより好ましい。また、50容量%以下が好ましく、40容量%以下がより好ましい。   Moreover, it is preferable that source gas contains water vapor | steam. When the reaction is carried out in the presence of water, methacrylic acid is obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably 0.1% by volume or more, and more preferably 1% by volume or more. Moreover, 50 volume% or less is preferable and 40 volume% or less is more preferable.

原料ガスは、低級飽和アルデヒド等の不純物を少量含んでいてもよいが、その量はできるだけ少ないことが好ましい。また、窒素、炭酸ガス等の不活性ガスを含んでいても良い。   The source gas may contain a small amount of impurities such as a lower saturated aldehyde, but the amount is preferably as small as possible. Moreover, inert gas, such as nitrogen and a carbon dioxide gas, may be included.

原料ガスの流量は特に限定されず、適切な接触時間になるように適宜設定することができる。接触時間は1.5秒以上が好ましく、2秒以上がより好ましい。また、15秒以下が好ましく、5秒以下がより好ましい。   The flow rate of the raw material gas is not particularly limited, and can be appropriately set so as to have an appropriate contact time. The contact time is preferably 1.5 seconds or longer, and more preferably 2 seconds or longer. Moreover, 15 seconds or less are preferable and 5 seconds or less are more preferable.

メタクリル酸製造反応の反応圧力は常圧(大気圧)から607.8kPa(絶対圧)まで用いられる。反応温度は230℃以上が好ましく、250℃以上がより好ましい。また、450℃以下が好ましく、400℃以下がより好ましい。   The reaction pressure of the methacrylic acid production reaction is from normal pressure (atmospheric pressure) to 607.8 kPa (absolute pressure). The reaction temperature is preferably 230 ° C or higher, more preferably 250 ° C or higher. Moreover, 450 degrees C or less is preferable and 400 degrees C or less is more preferable.

以下、実施例および比較例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

なお、メタクロレインの反応率、生成したメタクリル酸の選択率、メタクリル酸の単流収率は以下のように定義される。
メタクロレイン(MAL)の反応率(%)=(B/A)×100
メタクリル酸(MAA)の選択率(%) =(C/B)×100
メタクリル酸(MAA)の単流収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
In addition, the reaction rate of methacrolein, the selectivity of the produced methacrylic acid, and the single flow yield of methacrylic acid are defined as follows.
Reaction rate (%) of methacrolein (MAL) = (B / A) × 100
Methacrylic acid (MAA) selectivity (%) = (C / B) × 100
Single flow yield (%) of methacrylic acid (MAA) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

[実施例1]
(A液の調製)
純水200質量部に、三酸化モリブデン100質量部、85質量%リン酸水溶液6.66質量部およびメタバナジン酸アンモニウム2.70質量部を加え、還流下で2時間攪拌してA液を調製した(モリブデン化合物と溶媒である水との質量比は1:2.01)。
[Example 1]
(Preparation of solution A)
To 200 parts by mass of pure water, 100 parts by mass of molybdenum trioxide, 6.66 parts by mass of 85 mass% phosphoric acid aqueous solution and 2.70 parts by mass of ammonium metavanadate were added and stirred for 2 hours under reflux to prepare solution A. (The mass ratio of the molybdenum compound to water as the solvent is 1: 2.01).

(B液の調製)
29質量%アンモニア水36質量部をB液とした。B液中に含まれるアンモニウムの量は、A液中に含まれるモリブデン原子12モルに対して10モルであった(アンモニアおよびアンモニア化合物と溶媒である水との質量比は1:2.45)。
(Preparation of liquid B)
The liquid B was 36 parts by mass of 29% by mass ammonia water. The amount of ammonium contained in the liquid B was 10 moles with respect to 12 moles of molybdenum atoms contained in the liquid A (the mass ratio of ammonia and the ammonia compound to water as the solvent was 1: 2.45). .

(C液の調製)
純水23.6質量部に硝酸セシウム11.28質量部を溶解させ、C液を調製した(C液に含まれる全ての原料と溶媒である水との質量比は、1:2.09)。
(Preparation of liquid C)
Cesium nitrate 11.28 parts by mass was dissolved in 23.6 parts by mass of pure water to prepare liquid C (the mass ratio of all raw materials contained in liquid C and water as the solvent was 1: 2.09). .

(前駆体混合液の調製)
A液を50℃まで冷却した後、攪拌しながらA液にC液を滴下し、さらに15分間攪拌してA−C混合液を調製した。次いで、攪拌しながらこのA−C混合液にB液を混合し、A−C−B混合液を調製した。なお、このとき液温は70℃に保った。
(Preparation of precursor mixture)
After cooling A liquid to 50 degreeC, C liquid was dripped at A liquid, stirring, and also it stirred for 15 minutes, and prepared AC mixed liquid. Next, the B liquid was mixed with the A-C mixed liquid while stirring to prepare an A-C-B mixed liquid. At this time, the liquid temperature was kept at 70 ° C.

このようにして得られたA−C−B混合液を液温50℃で攪拌しながら硝酸第二銅2.10部、硝酸第二鉄2.34部を加えて触媒前駆体を含むスラリー(前駆体混合液)を得た。   A slurry containing catalyst precursor by adding 2.10 parts of cupric nitrate and 2.34 parts of ferric nitrate while stirring the A-C-B mixed solution thus obtained at a liquid temperature of 50 ° C. A precursor mixed solution) was obtained.

(前駆体混合液の濃縮、乾燥、焼成)
この前駆体混合液を、加熱用ジャケット付攪拌槽(槽は内径0.35m、深さ0.45mであり、加熱伝熱面は厚さ5mmのSUS316製である)において加熱伝熱面温度120℃で3時間、加熱濃縮した。加熱媒体には、300kPa(絶対圧)の飽和水蒸気を用いた。またこのときの前駆体混合液の液温100℃であった。そして、得られたスラリー(濃縮物、水分含有率50質量%)を130℃の乾燥ドラムに滴下して乾燥し、得られた乾燥粉を外径4mm、内径1mm、高さ4mmに打錠リング成形した後、空気流通下、375℃にて10時間焼成して、メタクリル酸製造用触媒を得た。得られた触媒の組成(酸素原子以外)は、P1.0Mo120.65Cu0.15Fe0.1Cs0.1であった。
(Concentration, drying, firing of precursor mixture)
This precursor mixed liquid was heated in a stirring jacket with a heating jacket (the tank has an inner diameter of 0.35 m, a depth of 0.45 m, and the heating heat transfer surface is made of SUS316 having a thickness of 5 mm). The mixture was concentrated by heating at 0 ° C. for 3 hours. A saturated water vapor of 300 kPa (absolute pressure) was used as the heating medium. The liquid temperature of the precursor mixture at this time was 100 ° C. The obtained slurry (concentrate, moisture content 50 mass%) is dropped onto a drying drum at 130 ° C. and dried, and the resulting dry powder is compressed into a tableting ring with an outer diameter of 4 mm, an inner diameter of 1 mm, and a height of 4 mm. After molding, it was calcined at 375 ° C. for 10 hours under air flow to obtain a catalyst for producing methacrylic acid. The composition of the obtained catalyst (other than oxygen atoms) was P 1.0 Mo 12 V 0.65 Cu 0.15 Fe 0.1 Cs 0.1 .

(メタクリル酸の合成反応(連続反応テスト))
この触媒を反応管に充填し、メタクロレイン5%、酸素10%、水蒸気30%、窒素55%(いずれも容量%)の混合ガスを、常圧下、反応温度285℃、接触時間3.6秒で通じて連続反応テストを行った。その結果を表1に示す。
(Synthetic reaction of methacrylic acid (continuous reaction test))
This catalyst was charged into a reaction tube, and a mixed gas of 5% methacrolein, 10% oxygen, 30% water vapor, and 55% nitrogen (both volume%) was used under normal pressure, reaction temperature of 285 ° C., and contact time of 3.6 seconds. A continuous reaction test was conducted. The results are shown in Table 1.

(触媒前駆体乾燥物の流動性指数)
濃縮物を乾燥して得られた乾燥粉に対して、流動性指数[Carr,R.L.,Chem.Eng.72.Jan.18(1965)]を評価した。結果を表1に示す。
(Flowability index of dried catalyst precursor)
For the dry powder obtained by drying the concentrate, the flowability index [Carr, R .; L. , Chem. Eng. 72. Jan. 18 (1965)]. The results are shown in Table 1.

[実施例2]
加熱媒体として650kPa(絶対圧)の飽和水蒸気を用い、加熱伝熱面温度を150℃(前駆体混合液の液温100℃)、加熱濃縮時間を2時間とした以外は、実施例1と同様にしてメタクリル酸製造用触媒を得、実施例1と同様に連続反応テスト及び触媒前駆体乾燥物の流動性指数の評価を行った。その結果を表1に示す。なお、濃縮物の水分含有率は50質量%であった。
[Example 2]
Similar to Example 1 except that saturated water vapor of 650 kPa (absolute pressure) is used as the heating medium, the heat transfer surface temperature is 150 ° C. (the liquid temperature of the precursor mixture is 100 ° C.), and the heating concentration time is 2 hours. Thus, a catalyst for methacrylic acid production was obtained, and the continuous reaction test and evaluation of the fluidity index of the dried catalyst precursor were performed in the same manner as in Example 1. The results are shown in Table 1. The water content of the concentrate was 50% by mass.

[実施例3]
加熱媒体として180kPa(絶対圧)の飽和水蒸気を用い、加熱伝熱面温度を100℃(前駆体混合液の液温90℃)、加熱濃縮時間を5時間とした以外は、実施例1と同様にしてメタクリル酸製造用触媒を得、実施例1と同様に連続反応テスト及び触媒前駆体乾燥物の流動性指数の評価を行った。その結果を表1に示す。なお、濃縮物の水分含有率は50質量%であった。
[Example 3]
Example 1 except that saturated water vapor of 180 kPa (absolute pressure) is used as the heating medium, the heating heat transfer surface temperature is 100 ° C. (the liquid temperature of the precursor mixture is 90 ° C.), and the heating concentration time is 5 hours. Thus, a catalyst for methacrylic acid production was obtained, and the continuous reaction test and evaluation of the fluidity index of the dried catalyst precursor were performed in the same manner as in Example 1. The results are shown in Table 1. The water content of the concentrate was 50% by mass.

[実施例4]
濃縮を行う前駆体混合液の量を38質量部(混合液中の各元素の成分比は実施例1と同様)に減らし、加熱濃縮時間を0.25時間(前駆体混合液の液温100℃)とした以外は、実施例1と同様にしてメタクリル酸製造用触媒を得、実施例1と同様に連続反応テスト及び触媒前駆体乾燥物の流動性指数の評価を行った。その結果を表1に示す。なお、濃縮物の水分含有率は50質量%であった。
[Example 4]
The amount of the precursor mixture to be concentrated is reduced to 38 parts by mass (the component ratio of each element in the mixture is the same as in Example 1), and the heat concentration time is 0.25 hours (the liquid temperature of the precursor mixture is 100). The catalyst for methacrylic acid production was obtained in the same manner as in Example 1 except that the temperature was changed to 0 ° C.), and the flowability index of the continuous reaction test and the dried catalyst precursor was evaluated in the same manner as in Example 1. The results are shown in Table 1. The water content of the concentrate was 50% by mass.

[比較例1]
濃縮を行う前駆体混合液の量を800質量部(混合液中の各元素の成分比は実施例1と同様)に増やし、加熱媒体として1500kPa(絶対圧)の飽和水蒸気を用い、加熱伝熱面温度を200℃(前駆体混合液の液温100℃)、加熱濃縮時間を3時間とした以外は、実施例1と同様にしてメタクリル酸製造用触媒を得、実施例1と同様に連続反応テスト及び触媒前駆体乾燥物の流動性指数の評価を行った。その結果を表1に示す。なお、濃縮物の水分含有率は50質量%であった。
[Comparative Example 1]
The amount of the precursor mixture to be concentrated is increased to 800 parts by mass (the component ratio of each element in the mixture is the same as in Example 1), 1500 kPa (absolute pressure) saturated steam is used as a heating medium, and heat transfer A catalyst for methacrylic acid production was obtained in the same manner as in Example 1 except that the surface temperature was 200 ° C. (the liquid temperature of the precursor mixture was 100 ° C.) and the heating concentration time was 3 hours. The fluidity index of the reaction test and the dried catalyst precursor was evaluated. The results are shown in Table 1. The water content of the concentrate was 50% by mass.

[比較例2]
加熱媒体として1500kPa(絶対圧)の飽和水蒸気を用い、加熱伝熱面温度を200℃(前駆体混合液の液温100℃)、加熱濃縮時間を30分とした以外は、実施例1と同様にしてメタクリル酸製造用触媒を得、実施例1と同様に連続反応テスト及び触媒前駆体乾燥物の流動性指数の評価を行った。その結果を表1に示す。なお、濃縮物の水分含有率は50質量%であった。
[Comparative Example 2]
Similar to Example 1 except that saturated water vapor of 1500 kPa (absolute pressure) is used as the heating medium, the heating heat transfer surface temperature is 200 ° C. (the liquid temperature of the precursor mixture is 100 ° C.), and the heating concentration time is 30 minutes. Thus, a catalyst for methacrylic acid production was obtained, and the continuous reaction test and evaluation of the fluidity index of the dried catalyst precursor were performed in the same manner as in Example 1. The results are shown in Table 1. The water content of the concentrate was 50% by mass.

[比較例3]
加熱媒体として80kPa(絶対圧)の飽和水蒸気を用い、加熱伝熱面温度を85℃(前駆体混合液の液温70℃)、加熱濃縮時間を12時間とした以外は、実施例1と同様にしてメタクリル酸製造用触媒を得、実施例1と同様に連続反応テスト及び触媒前駆体乾燥物の流動性指数の評価を行った。その結果を表1に示す。なお、濃縮物の水分含有率は50質量%であった。
[Comparative Example 3]
Example 1 except that saturated water vapor of 80 kPa (absolute pressure) is used as the heating medium, the heat transfer surface temperature is 85 ° C. (the liquid temperature of the precursor mixture is 70 ° C.), and the heating concentration time is 12 hours. Thus, a catalyst for methacrylic acid production was obtained, and the continuous reaction test and evaluation of the fluidity index of the dried catalyst precursor were performed in the same manner as in Example 1. The results are shown in Table 1. The water content of the concentrate was 50% by mass.

Figure 2006088097
Figure 2006088097

Claims (3)

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデンおよびリンを含有するメタクリル酸製造用触媒の製造方法において、
(a)少なくともモリブデン原料およびリン原料を含む溶液またはスラリー(前駆体混合液)を調製する工程と、
(b)前記前駆体混合液を加熱装置により濃縮して、濃縮物とする工程と、
(c)前記濃縮物を乾燥し、焼成する工程と、
を有し、前記濃縮を行う際の前記加熱装置の加熱伝熱面温度が100〜150℃であることを特徴とするメタクリル酸製造用触媒の製造方法。
In a method for producing a methacrylic acid production catalyst containing at least molybdenum and phosphorus, which is used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen,
(A) preparing a solution or slurry (precursor mixture) containing at least a molybdenum raw material and a phosphorus raw material;
(B) concentrating the precursor mixture with a heating device to obtain a concentrate;
(C) drying and baking the concentrate;
And a heating heat transfer surface temperature of the heating device when performing the concentration is 100 to 150 ° C., a method for producing a catalyst for methacrylic acid production.
請求項1に記載の方法により製造されるメタクリル酸製造用触媒。   A catalyst for producing methacrylic acid produced by the method according to claim 1. 請求項2に記載のメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。
A method for producing methacrylic acid, comprising subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst for producing methacrylic acid according to claim 2.
JP2004279630A 2004-09-27 2004-09-27 Method for producing a catalyst for methacrylic acid production Active JP4564317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279630A JP4564317B2 (en) 2004-09-27 2004-09-27 Method for producing a catalyst for methacrylic acid production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279630A JP4564317B2 (en) 2004-09-27 2004-09-27 Method for producing a catalyst for methacrylic acid production

Publications (2)

Publication Number Publication Date
JP2006088097A true JP2006088097A (en) 2006-04-06
JP4564317B2 JP4564317B2 (en) 2010-10-20

Family

ID=36229572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279630A Active JP4564317B2 (en) 2004-09-27 2004-09-27 Method for producing a catalyst for methacrylic acid production

Country Status (1)

Country Link
JP (1) JP4564317B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302313A (en) * 2007-06-08 2008-12-18 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid, method for manufacturing the same, and method for manufacturing methacrylic acid
JP2010162460A (en) * 2009-01-14 2010-07-29 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing methacrylic acid
KR100982831B1 (en) 2007-03-26 2010-09-16 주식회사 엘지화학 Method for preparing heteropoly acid catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070318A (en) * 1973-10-31 1975-06-11
JPS50135020A (en) * 1974-04-20 1975-10-25
JPS5291820A (en) * 1976-01-26 1977-08-02 Rikagaku Kenkyusho Preparation of methacrylic acid
JPS5331615A (en) * 1976-09-06 1978-03-25 Nippon Kayaku Co Ltd Production of methacrylic acid and catalyst used thereof
JPH1133404A (en) * 1997-07-16 1999-02-09 Mitsubishi Rayon Co Ltd Preparation of catalyst for production of methacrylic acid and production of methacrylic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070318A (en) * 1973-10-31 1975-06-11
JPS50135020A (en) * 1974-04-20 1975-10-25
JPS5291820A (en) * 1976-01-26 1977-08-02 Rikagaku Kenkyusho Preparation of methacrylic acid
JPS5331615A (en) * 1976-09-06 1978-03-25 Nippon Kayaku Co Ltd Production of methacrylic acid and catalyst used thereof
JPH1133404A (en) * 1997-07-16 1999-02-09 Mitsubishi Rayon Co Ltd Preparation of catalyst for production of methacrylic acid and production of methacrylic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982831B1 (en) 2007-03-26 2010-09-16 주식회사 엘지화학 Method for preparing heteropoly acid catalyst
JP2008302313A (en) * 2007-06-08 2008-12-18 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid, method for manufacturing the same, and method for manufacturing methacrylic acid
JP2010162460A (en) * 2009-01-14 2010-07-29 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing methacrylic acid

Also Published As

Publication number Publication date
JP4564317B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4691359B2 (en) Method for producing a catalyst for methacrylic acid production
JP4922614B2 (en) Method for producing a catalyst for methacrylic acid production
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
JP4564317B2 (en) Method for producing a catalyst for methacrylic acid production
JP2004008834A (en) Method for producing catalyst for use in manufacturing methacrylic acid
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4766610B2 (en) Method for producing a catalyst for methacrylic acid production
JP5261231B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP2005169311A (en) Production method for complex oxide catalyst
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2009297593A (en) METHOD OF PREPARING CATALYST FOR SYNTHESIS OF alpha,beta-UNSATURATED CARBOXYLIC ACID
JP5560596B2 (en) Method for producing a catalyst for methacrylic acid production
JP2004188231A (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3710944B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4372573B2 (en) Method for producing a catalyst for methacrylic acid production
JP4017864B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4601420B2 (en) Method for producing a catalyst for methacrylic acid production
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP4951230B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst
JP4933736B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2003154273A (en) Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same
JP2009213969A (en) Catalyst for unsaturated carboxylic acid synthesis, method for manufacturing the same, and method for manufacturing unsaturated carboxylic acid using this catalyst
JP2008149262A (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP5149138B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4564317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250