JP2006084376A - Method and device for thermal shock test - Google Patents

Method and device for thermal shock test Download PDF

Info

Publication number
JP2006084376A
JP2006084376A JP2004270788A JP2004270788A JP2006084376A JP 2006084376 A JP2006084376 A JP 2006084376A JP 2004270788 A JP2004270788 A JP 2004270788A JP 2004270788 A JP2004270788 A JP 2004270788A JP 2006084376 A JP2006084376 A JP 2006084376A
Authority
JP
Japan
Prior art keywords
heating element
thermal shock
sample
rectangular parallelepiped
shock test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004270788A
Other languages
Japanese (ja)
Other versions
JP4454450B2 (en
Inventor
Mizuki Nishi
瑞樹 西
Shinichi Araya
眞一 荒谷
Yoshinori Akamatsu
佳則 赤松
Kentaro Tsutsumi
憲太郎 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2004270788A priority Critical patent/JP4454450B2/en
Publication of JP2006084376A publication Critical patent/JP2006084376A/en
Application granted granted Critical
Publication of JP4454450B2 publication Critical patent/JP4454450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device which can predefine release position of a destructive origin in thermal shock test to enhance the accuracy of the thermal shock test, as the utility of the test is increasingly grown. <P>SOLUTION: In these thermal shock test method and device, a tabular heating element is contact baked to a single sided face of a cuboid sample to generate thermal stress in the cuboid sample and then calculate thermal shock strength. By changing both the width W<SB>1</SB>of the heating element and the load stress for contacting the heating element, the release position of the destructive origin for the cuboid sample can be adjusted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガラス、セラミックス及び高分子体材料等の熱衝撃試験方法及び熱衝撃試験装置に関する。   The present invention relates to a thermal shock test method and a thermal shock test apparatus for glass, ceramics, polymer materials, and the like.

材料内に温度分布が生じて熱応力が発生し、破壊する現象を一般的に熱割れと称している。この熱割れは、多くの産業分野において、材料を安全に使用する一手法として検討されている。熱割れの検討事項の一つとして、熱応力を瞬時に負荷して行う熱衝撃試験がある。熱衝撃試験は、その急激な負荷条件を検討する手法として、あるいは熱割れ特性を短時間で検討する手法として広く用いられている。   A phenomenon in which a temperature distribution is generated in a material and a thermal stress is generated and breaks is generally referred to as thermal cracking. This thermal cracking has been studied as a technique for safely using materials in many industrial fields. One of the considerations for thermal cracking is a thermal shock test that is performed by instantaneously applying thermal stress. The thermal shock test is widely used as a method for examining the rapid load condition or as a method for examining the thermal cracking characteristics in a short time.

熱衝撃試験は、所定の温度T1まで加熱した試料を温度T2の水中に落下させた試料での破壊又はクラックの有無を確認する、いわゆる水中投下法が従来数多く行われてきた。水中投下法は、破壊又はクラック生成の頻度を考慮しながら試料温度T1と水の温度T2との温度差から熱衝撃強度を推定する。しかし、水中投下法においては、試料の表面温度により、試料から水への伝熱様式が大きく変化、例えば膜沸騰伝熱から核沸騰伝熱へ変化する。すなわち、試料表面の温度ととも、その熱伝達係数は急激にかつ非線形的に変化するので、試料内の温度分布を推定するのは非常に難しく、正確な熱衝撃強度を求めることは大変困難であった。このため、水中投下法で行った個々の熱衝撃試験結果についての信頼性はあまり高いとは言えず、信頼できる程度まで試料数を増やし、統計的に処理することで対応してきた。   In the thermal shock test, many so-called underwater dropping methods have been conventionally performed in which a sample heated to a predetermined temperature T1 is dropped into water at a temperature T2 to confirm the presence or absence of breakage or cracks. In the underwater dropping method, the thermal shock strength is estimated from the temperature difference between the sample temperature T1 and the water temperature T2 in consideration of the frequency of fracture or crack generation. However, in the submerged dropping method, the heat transfer mode from the sample to water greatly changes depending on the surface temperature of the sample, for example, from film boiling heat transfer to nucleate boiling heat transfer. In other words, the heat transfer coefficient changes rapidly and nonlinearly with the temperature of the sample surface, so it is very difficult to estimate the temperature distribution in the sample, and it is very difficult to obtain an accurate thermal shock strength. there were. For this reason, it cannot be said that the reliability of the individual thermal shock test results performed by the underwater dropping method is very high, and it has been dealt with by increasing the number of samples to a reliable level and processing them statistically.

水中投下法による熱衝撃試験の代用としては、例えばセラミックス材料に対して、幾つかの方法が提案されている。例えば、高温の熱風と低温の冷風を利用して、定常温度差等を伴う熱衝撃を周期的に受ける場合の熱衝撃試験方法及び衝撃試験装置が提案されている(例えば、特許文献1参照)。また、基板に実装された電子デバイスの基板との接合部を加熱と冷却制御を同時に行う熱衝撃試験方法及び衝撃試験装置が提案されている(例えば、特許文献2参照)。さらには、直方体形状のセラミックス材料の片面を急激に加熱して直方体試料内に熱応力を発生させ、該熱応力を反力として測定する熱衝撃試験方法が開発されている(例えば、特許文献3参照)。これらは、その測定対象がセラミックスのような光透過率が低い材料か、低い温度域での熱衝撃に限られていた。その試験方法がその材料内の伝導伝熱を利用しているためである。   As a substitute for the thermal shock test by the underwater dropping method, several methods have been proposed for ceramic materials, for example. For example, a thermal shock test method and an impact test apparatus have been proposed in which a thermal shock with a steady temperature difference or the like is periodically received using a hot hot air and a cold cold air (for example, see Patent Document 1). . In addition, a thermal shock test method and an impact test apparatus have been proposed in which heating and cooling control are simultaneously performed on a joint portion of an electronic device mounted on a substrate (see, for example, Patent Document 2). Furthermore, a thermal shock test method has been developed in which one side of a rectangular parallelepiped ceramic material is rapidly heated to generate a thermal stress in a rectangular parallelepiped sample, and the thermal stress is measured as a reaction force (for example, Patent Document 3). reference). These are limited to materials having a low light transmittance such as ceramics or thermal shock in a low temperature range. This is because the test method uses conduction heat transfer in the material.

これに対し、本発明者らは光透過率が高いガラスにおいても熱衝撃強度を測定できることを見いだし、ガラスの反力測定による熱衝撃試験方法に関する発明特許出願している(例えば、特許文献4及び5参照)。   On the other hand, the present inventors have found that the thermal shock strength can be measured even in a glass having a high light transmittance, and have applied for invention patents relating to a thermal shock test method by measuring the reaction force of the glass (for example, Patent Document 4 and 5).

特開平6−347390号公報JP-A-6-347390 特開2000−174577号公報JP 2000-174577 A 特開平11−218480号公報Japanese Patent Laid-Open No. 11-218480 特開2001−108591号公報JP 2001-108591 A 特開2002−22634号公報JP 2002-22634 A

熱衝撃試験において、破壊始点の発生位置を予め定めることができれば、熱衝撃試験の実験精度を上げることができ、熱衝撃試験の有用性は益々増加する。しかし、従来の方法では破壊始点の発生位置を予め定めることができなかった。また、破壊始点の発生位置を予め定めることができる測定装置もなかった。熱衝撃試験法に関する従来の知見の中でも、例えば特許文献1乃至5をみても、破壊始点の発生位置を予め定める技術は開示されていないし、その概念すら考慮されているとは言いがたい。   In the thermal shock test, if the occurrence position of the fracture start point can be determined in advance, the experimental accuracy of the thermal shock test can be increased, and the usefulness of the thermal shock test increases more and more. However, in the conventional method, the occurrence position of the fracture start point cannot be determined in advance. In addition, there is no measuring device that can predetermine the occurrence position of the fracture start point. Among the conventional knowledge about the thermal shock test method, for example, Patent Documents 1 to 5 do not disclose a technique for predetermining the occurrence position of the fracture start point, and it is difficult to say that the concept is considered.

図1は、特許文献4、5に一部開示した試験装置要部の概略図で、(A)は側面図、(B)は平面図である。直方体試料2は3点支持の下側部材4、5の上部に載せられている。直方体試料2の上方には発熱体1があり、発熱体1は3点支持の上側部材6により試料1に押し付けられる。この押し付け条件、すなわち発熱体1及び直方体試料2に対する負荷値は、ロードセル3によって制御され、かつ測定される。なお、反力の大きさについても、ロードセル3で発熱体1及び直方体試料2に対する負荷値と同様に測定できるようになっているタイプもあり、この場合、図1のように3点支持の上側部材6はロードセル3に連結されている。   1A and 1B are schematic views of a principal part of a test apparatus partially disclosed in Patent Documents 4 and 5, wherein FIG. 1A is a side view and FIG. 1B is a plan view. The rectangular parallelepiped sample 2 is placed on top of the lower members 4 and 5 that support three points. Above the rectangular parallelepiped sample 2 is a heating element 1, and the heating element 1 is pressed against the sample 1 by a three-point supported upper member 6. This pressing condition, that is, the load value for the heating element 1 and the rectangular parallelepiped sample 2 is controlled and measured by the load cell 3. Note that there is also a type in which the magnitude of the reaction force can be measured by the load cell 3 in the same manner as the load values for the heating element 1 and the rectangular parallelepiped sample 2, and in this case, as shown in FIG. The member 6 is connected to the load cell 3.

発熱体1を直方体試料2に密着させた状態で、直方体試料2と発熱体1を支持具4、5、6を用い、いわゆる3点支持を行う。発熱体1を通電して、直方体試料2の発熱体接触面(発熱体に接している面、図1での上面)を急激に加熱することにより、直方体試料2の発熱体非接触面(発熱体に接していない側の面、図1での下面)に反力が発生する。この反力をロードセル3で測定する。主に直方体試料2が破壊したときの反力を測定して、直方体試料の熱衝撃強度を求めるが、時間及び温度も同時に測定し、場合によりそれらも用いた補正を行う。   In a state in which the heating element 1 is in close contact with the rectangular parallelepiped sample 2, the rectangular parallelepiped sample 2 and the heating element 1 are supported by so-called three points using the support tools 4, 5, and 6. The heating element 1 is energized, and the heating element contact surface (the surface in contact with the heating element, the upper surface in FIG. 1) of the rectangular parallelepiped sample 2 is rapidly heated, whereby the heating element non-contact surface (heating) of the rectangular parallelepiped sample 2 is generated. A reaction force is generated on the surface not in contact with the body, the lower surface in FIG. This reaction force is measured by the load cell 3. The reaction force when the rectangular parallelepiped sample 2 is broken is mainly measured to determine the thermal shock strength of the rectangular parallelepiped sample, but the time and temperature are also measured at the same time, and corrections are also made in some cases.

反力測定を利用することにより、個々の試料に対しても、信頼性の高い熱衝撃強度の値を得ることができるようになった。しかし、熱衝撃試験を行う場合において、その破壊始点の発生位置が異なれば、反力の値から計算される熱衝撃強度も異なった値となる場合もある。従って、破壊始点の発生位置により得られる情報は変化し、その解析手法も違いが生じてくる。このため、破壊始点の発生位置を予め制御することができれば、測定試料を個別に確認することなく、より信頼性の高いデータを得ることができる。また、他の手法を併用することにより、熱衝撃強度の値をより高精度に求めることも可能となる。   By utilizing the reaction force measurement, a highly reliable value of thermal shock strength can be obtained even for individual samples. However, when the thermal shock test is performed, if the occurrence position of the fracture start point is different, the thermal shock strength calculated from the reaction force value may be different. Therefore, the information obtained by the occurrence position of the fracture start point changes, and the analysis method differs. For this reason, if the generation | occurrence | production position of a fracture | rupture start point can be controlled previously, more reliable data can be obtained, without confirming a measurement sample separately. Further, by using another method in combination, the value of thermal shock strength can be obtained with higher accuracy.

しかし、熱衝撃試験において、その破壊始点の発生位置を制御することは極めて難しく、破壊始点を予め定めることができる熱衝撃試験方法は提示されていないし、当然ながらそのための実験装置も開示されていない。   However, in the thermal shock test, it is extremely difficult to control the generation position of the fracture start point, and no thermal shock test method capable of predetermining the fracture start point has been presented, and of course, no experimental apparatus for that purpose has been disclosed. .

本発明は、上記の試験装置を用いて、直方体試料の片面に平板状発熱体を密着加熱し、直方体試料の中に熱応力を発生させることによって熱衝撃強度を求める熱衝撃試験方法において、発熱体の幅Wと平板状発熱体を密着するための負荷応力を変えることにより、直方体試料の破壊始点の発生位置を調整する熱衝撃試験方法である。 In the thermal shock test method for obtaining thermal shock strength by closely heating a flat heating element on one side of a rectangular parallelepiped sample and generating thermal stress in the rectangular parallelepiped sample using the above test apparatus, by changing the applied stress to the adhesion width W 1 and the flat plate-like heating element body, a thermal shock test method for adjusting the occurrence position of fracture start point of the rectangular parallelepiped sample.

また、発熱体の幅Wが直方体試料の幅Wの0.2〜3倍である発熱体を用いて加熱する上記の熱衝撃試験方法である。 It is also above the thermal shock test method for the width W 1 of the heating element is heated by using a heating element which is 0.2 to 3 times the width W 2 of the rectangular sample.

また、直方体試料の破壊始点の発生位置を発熱体接触面側とする場合は平板状発熱体を密着するための負荷応力を1〜10MPa、発熱体非接触面側とする場合は15〜50MPa、さらに発熱体接触面と発熱体非接触面との中間とする場合は10〜15MPaの負荷応力とする上記の熱衝撃試験方法である。   Moreover, when the generation | occurrence | production position of the fracture | rupture start point of a rectangular parallelepiped sample is made into a heat generating body contact surface side, the load stress for sticking a flat plate-shaped heat generating body is 1-10 MPa, when making it into a heat generating body non-contact surface side, 15-50 MPa, Furthermore, when it is set as the intermediate | middle of a heat generating body contact surface and a heat generating body non-contact surface, it is said thermal shock test method made into the load stress of 10-15 MPa.

また、発熱体の発熱量を0.07〜7.2kW・hとする上記の熱衝撃試験方法である。   Moreover, it is said thermal shock test method which makes the calorific value of a heat generating body 0.07-7.2kW * h.

また、直方体試料に発熱体を密着する直前に0.07〜3.6kW・hの発熱量で1〜5s予備加熱した後に、直方体試料の片面に平板状発熱体を密着加熱する上記の熱衝撃試験方法である。   In addition, the thermal shock described above, in which the plate-like heating element is heated in close contact with one side of the rectangular parallelepiped sample after preheating for 1 to 5 s with a heating value of 0.07 to 3.6 kW · h immediately before the heating element is brought into close contact with the rectangular parallelepiped sample. This is a test method.

また、直方体試料はガラス又はガラス状物質である上記の熱衝撃試験方法である。   The rectangular parallelepiped sample is the above-described thermal shock test method which is glass or a glassy substance.

さらに、直方体試料の片面に平板状発熱体を密着加熱し、該直方体試料の中に熱応力を発生させることによって熱衝撃強度を求める熱衝撃試験装置において、破壊始点の発生位置を調整するための発熱量調整設備と異なる幅の発熱体を保持できる設備を有する熱衝撃試験装置である。   Furthermore, in a thermal shock test apparatus that obtains thermal shock strength by closely heating a flat heating element on one side of a rectangular parallelepiped sample and generating thermal stress in the rectangular parallelepiped sample, for adjusting the occurrence position of the fracture start point It is a thermal shock test apparatus having equipment capable of holding a heating element having a different width from the calorific value adjustment equipment.

さらにまた、発熱体の幅Wが直方体試料の幅Wの0.2〜3倍である発熱体を用いる設備を有する上記の熱衝撃試験装置である。 Furthermore, the width W 1 of the heating element is the above described thermal shock testing device having a facility to use a heating element which is 0.2 to 3 times the width W 2 of the rectangular sample.

さらにまた、ガラス又はガラス状物質の熱衝撃強度を求めるための上記の熱衝撃試験装置である。   Furthermore, it is said thermal shock test apparatus for calculating | requiring the thermal shock strength of glass or a glass-like substance.

本発明の熱衝撃試験方法によれば、熱衝撃試験において、破壊始点の発生位置を予め定めることができる。また、本発明の熱衝撃試験装置を用いることにより、破壊始点の発生位置を予め定めることが可能となる。   According to the thermal shock test method of the present invention, the occurrence position of the fracture start point can be determined in advance in the thermal shock test. In addition, by using the thermal shock test apparatus of the present invention, it is possible to determine in advance the occurrence position of the fracture start point.

直方体試料の片面に平板状発熱体を密着加熱し、直方体試料の中に熱応力を発生させることによって熱衝撃強度を求める熱衝撃試験方法において、発熱体の幅Wと平板状発熱体を密着するための負荷応力を変えることにより、直方体試料の破壊始点の発生位置を調整する熱衝撃試験方法である。従来の方法では、反力測定による熱衝撃を行う場合には、破壊始点は直方体試料の発熱体非接触面のみとされていた。反力としての引張応力が発生するのは、直方体試料の発熱体非接触面側であるからである。しかし、平板状発熱体を密着するための負荷応力、発熱体の幅W及び発熱量等を適切に変化させることにより、直方体試料の破壊始点の発生位置を任意にとることも可能となる。直方体試料の破壊始点の発生位置を任意にとることができれば、従来とほぼ同様の手法による熱衝撃強度の他、種々の加熱条件下における熱衝撃強度も同一の装置で容易に行うことができる。 A plate-like heating element in close contact heated on one side of the rectangular sample, the adhesion in a thermal shock test method for determining the thermal shock strength by generating a thermal stress, the width W 1 and the flat plate-like heating element of the heating element into the rectangular sample This is a thermal shock test method in which the generation position of the fracture start point of a rectangular parallelepiped sample is adjusted by changing the load stress. In the conventional method, when performing thermal shock by reaction force measurement, the fracture start point is only the heating element non-contact surface of the rectangular parallelepiped sample. The reason why the tensile stress as the reaction force is generated is on the non-contact surface side of the heating element of the rectangular parallelepiped sample. However, by appropriately changing the load stress, the width W 1 of the heating element, the heat generation amount, and the like for bringing the flat plate-shaped heating element into close contact with each other, it is possible to arbitrarily take the generation position of the fracture start point of the rectangular parallelepiped sample. If the occurrence position of the fracture start point of the rectangular parallelepiped sample can be arbitrarily selected, the thermal shock strength under various heating conditions can be easily performed with the same apparatus, in addition to the thermal shock strength by the same method as the conventional method.

発熱体の幅Wが直方体試料の幅Wの0.2〜3倍である発熱体を用いて加熱する熱衝撃試験方法であることが望ましい。一般的に、用いる発熱体の幅Wが0.2倍よりも小さいと直方体試料の破壊始点を任意にとることができない。この場合、直方体試料の破壊始点の発生位置が発熱体接触面側となることが極めて多くなると同時にその発生位置は極めて不安定となり、その発生位置を予め決めることが難しくなる。一方、用いる発熱体の幅Wが3倍を越えた場合も直方体試料の破壊始点を任意にとることができない。この場合、直方体試料の破壊始点の発生位置が発熱体非接触面側となることが極めて多くなると同時にその発生位置は極めて不安定となり、その発生位置を予め決めることが難しくなるからである。発熱体の幅Wとしては、より好ましくは直方体試料の幅Wの0.3〜1.3倍、さらに好ましくは直方体試料の幅Wの0.4〜0.9倍である。 It is desirable to use a thermal shock test method in which heating is performed using a heating element whose width W 1 of the heating element is 0.2 to 3 times the width W 2 of the rectangular parallelepiped sample. Generally, the width W 1 of the heating element used can not take any small and destruction starting point of a rectangular parallelepiped sample than 0.2 times. In this case, the occurrence position of the fracture start point of the rectangular parallelepiped sample is very often on the heating element contact surface side, and at the same time, the occurrence position becomes extremely unstable, making it difficult to determine the occurrence position in advance. On the other hand, it is impossible to take the breakage starting point also rectangular sample when the width W 1 of the heating element used exceeds 3 times as desired. In this case, the generation position of the fracture start point of the rectangular parallelepiped sample is very often on the non-contact surface side of the heating element, and at the same time, the generation position becomes extremely unstable and it is difficult to determine the generation position in advance. The width W 1 of the heating element, and more preferably 0.3 to 1.3 times the width W 2 of the rectangular sample, even more preferably 0.4 to 0.9 times the width W 2 of the rectangular sample.

なお、発熱体の長さLについては、直方体試料の長さLよりも長い方が望ましい。発熱体の長さLが直方体試料の長さLよりも短いと、発熱体と直方体試料中央部での接触及び発熱体端部と直方体試料との接触のバランスが難しく、必要以上に後者の接触が強くなりすぎることが多いためである。発熱体の長さLについては、直方体試料の長さLよりも5〜30mm長い方がより適当である。この範囲にあると、発熱体と直方体試料中央部での接触をやや強くしても、発熱体端部での接触が結果として強くなりすぎないためである。 Note that the length L 1 of the heating element, the longer than the length L 2 of the rectangular sample is desirable. The length L 1 of the heating element is shorter than the length L 2 of the rectangular sample, the balance of the contact between the contact and the heating element ends in the heating element and the rectangular parallelepiped sample central portion a rectangular parallelepiped sample is difficult, the latter unnecessarily This is because the contact is often too strong. The length L 1 of the heating element, 5 to 30 mm longer is more suitable than the length L 2 of the rectangular parallelepiped sample. In this range, even if the contact between the heating element and the rectangular parallelepiped sample is slightly increased, the contact at the end of the heating element does not become too strong as a result.

本発明の直方体試料寸法については、上述の関係が重要であり、基本的にはその寸法には拘らない。しかし、直方体試料に負荷する熱量や温度バランス等を考えると、直方体試料の長さLは15〜300mm程度、直方体試料の幅Wは5〜100mm程度、さらには直方体試料の厚さdは1〜20mm程度が好ましい。 Regarding the dimensions of the rectangular parallelepiped sample of the present invention, the above relationship is important, and basically the dimensions are not concerned. However, considering the amount of heat applied to the cuboid sample, the temperature balance, etc., the length L 2 of the cuboid sample is about 15 to 300 mm, the width W 2 of the cuboid sample is about 5 to 100 mm, and further the thickness d 2 of the cuboid sample. Is preferably about 1 to 20 mm.

平板状発熱体を密着するための負荷応力を1〜50MPaとすることが望ましい。平板状発熱体を密着するための負荷応力を1MPaよりも小さくすると、密着性が悪くなり、得られる熱衝撃強度の信頼性が低下する。一方、平板状発熱体を密着するための負荷応力を50MPaよりも大きくすると、機械的な負荷がかかりすぎるため、得られる熱衝撃強度の信頼性が低下する。より好ましくは5〜25MPaである。   It is desirable that the load stress for adhering the flat heating element is 1 to 50 MPa. When the load stress for adhering the flat plate-shaped heating element is less than 1 MPa, the adhesion is deteriorated and the reliability of the obtained thermal shock strength is lowered. On the other hand, if the load stress for adhering the flat plate-shaped heating element is larger than 50 MPa, a mechanical load is excessively applied, so that the reliability of the obtained thermal shock strength is lowered. More preferably, it is 5-25 MPa.

直方体試料の破壊始点の発生位置を発熱体接触面側とする場合は平板状発熱体を密着するための負荷応力を1〜10MPa、発熱体非接触面側とする場合は15〜50MPa、さらに発熱体接触面と発熱体非接触面との中間とする場合は10〜15MPaの負荷応力とすることが望ましい。直方体試料の破壊始点の発生位置を発熱体接触面側とする場合は1〜10MPaの負荷応力とすることが望ましいとしたのは、1MPaよりも小さな負荷圧だと密着性が悪くなり、得られる熱衝撃強度の信頼性が低下するためである。5MPa以上がより好ましい。10MPaよりも大きな負荷圧力だと直方体試料の破壊始点の発生位置を発熱体接触面側とすることができなくなるからである。なお、この場合、該発熱体の幅Wを0.2〜0.6倍の幅とするとより効果的である。 When the position of the fracture start point of the rectangular parallelepiped sample is the heating element contact surface side, the load stress for adhering the flat plate heating element is 1 to 10 MPa, when it is the heating element non-contact surface side, 15 to 50 MPa, and further heat generation In the case of an intermediate between the body contact surface and the heating element non-contact surface, a load stress of 10 to 15 MPa is desirable. In the case where the fracture start point of the rectangular parallelepiped sample is set to the heating element contact surface side, it is desirable to set the load stress to 1 to 10 MPa. If the load pressure is less than 1 MPa, the adhesion is deteriorated and obtained. This is because the reliability of the thermal shock strength is lowered. 5 MPa or more is more preferable. This is because if the load pressure is greater than 10 MPa, the generation position of the fracture start point of the rectangular parallelepiped sample cannot be the heating element contact surface side. In this case, it is more effective if the width W 1 of the heat generating member is 0.2 to 0.6 times the width.

また、直方体試料の破壊始点の発生位置を発熱体非接触面側とする場合は15〜50MPaの負荷応力とすることが望ましいとしたのは、この範囲以外とすると、直方体試料の破壊始点の発生位置を発熱体非接触面側とすることができなくなるからである。また、平板状発熱体を密着するための負荷応力を50MPaよりも大きくすると、機械的な負荷がかかりすぎるため、得られる熱衝撃強度の信頼性が低下する。より好ましくは15〜25MPaである。なお、この場合、該発熱体の幅Wを直方体試料の0.5〜3倍とすると、より効果的である。 In addition, when the occurrence position of the fracture start point of the rectangular parallelepiped sample is the heating element non-contact surface side, the load stress of 15 to 50 MPa is preferable. This is because the position cannot be the non-contact surface side of the heating element. On the other hand, if the load stress for adhering the flat plate-shaped heating element is larger than 50 MPa, the mechanical load is excessively applied, so that the reliability of the obtained thermal shock strength is lowered. More preferably, it is 15-25 MPa. In this case, when the width W 1 of the heat generating member and 0.5-3 times the rectangular sample is more effective.

さらに、直方体試料の破壊始点の発生位置を発熱体接触面と発熱体非接触面との中間とする場合に10〜15MPaのの負荷応力とすることが望ましいとしたのは、10MPaよりも小さな負荷応力だと直方体試料の破壊始点の発生位置が発熱体非接触面側となるためであり、15MPaよりも大きな負荷応力だと直方体試料の破壊始点の発生位置が発熱体接触面側となり、発熱体接触面と発熱体非接触面との中間とすることができなくなるからである。なお、この場合、該発熱体の幅Wは0.4〜0.8倍の幅が好ましい。 Furthermore, it is desirable that the load stress is 10 to 15 MPa when the fracture start point of the rectangular parallelepiped sample is intermediate between the heating element contact surface and the heating element non-contact surface. This is because when the stress is applied, the fracture start point of the cuboid sample is on the non-contact surface side of the heating element, and when the load stress is greater than 15 MPa, the generation position of the fracture start point of the cuboid sample is on the heating element contact surface side. This is because the contact surface and the heating element non-contact surface cannot be set in the middle. In this case, the width W 1 of the heat generating member is preferably a width of 0.4 to 0.8 times.

発熱体の発熱量を0.07〜7.2kW・hとすることが望ましい。0.07kW・hよりも小さな発熱量では熱的負荷が小さく、熱破壊しないことがある。一方、7.2kW・hを越える発熱量ではその発熱により直方体試料の温度が上がりすぎること及びその過激性から、得られる熱衝撃強度の信頼性が下がる。より好ましくは0.2〜5.2kW・h、さらに好ましくは0.4〜3.6kW・hである。   It is desirable that the heat generation amount of the heating element is 0.07 to 7.2 kW · h. If the calorific value is smaller than 0.07 kW · h, the thermal load is small and thermal destruction may not occur. On the other hand, when the calorific value exceeds 7.2 kW · h, the temperature of the rectangular parallelepiped sample is excessively increased due to the heat generation, and the reliability of the obtained thermal shock strength is lowered due to its extreme nature. More preferably, it is 0.2-5.2 kW * h, More preferably, it is 0.4-3.6 kW * h.

ここで述べる発熱量とは、直方体試料に発熱体を接触させた直後から一般的には7秒以内、好ましくは5秒以内での発熱量を1時間あたりの発熱量に換算したものである。発熱体はニッケル、クロム、タングステン及び白金等の金属材料、もしくは窒化物、炭化物及びホウ化物等の導電性セラミックス材料等を平板の形に成型して使用することが好ましい。また、発熱体に電気を流して発熱体を発熱させるが、発熱温度の制御は電圧あるいは電流で行うのが標準的であり、実施しやすい。   The calorific value described here is a value obtained by converting the calorific value within 7 seconds, preferably within 5 seconds, immediately after the heating element is brought into contact with the rectangular parallelepiped sample into the calorific value per hour. The heating element is preferably used by molding a metal material such as nickel, chromium, tungsten and platinum or a conductive ceramic material such as nitride, carbide and boride into a flat plate shape. In addition, electricity is supplied to the heating element to cause the heating element to generate heat. However, the control of the heating temperature is normally performed by voltage or current and is easy to implement.

ここで、熱衝撃強度を反力測定から求める場合には発熱体を平板状とすることが好ましい。平板状の方が直方体試料の破壊始点の発生位置が発熱体非接触面側となりやすいからである。熱衝撃強度を反力測定から求めず、破壊させることに重点をおく場合は平板状発熱体には必ずしも拘らない。熱破壊を発生させることのみを目的とする場合は、種々の形状の熱源であまり問題とはならないからである。   Here, when the thermal shock strength is obtained from reaction force measurement, it is preferable that the heating element has a flat plate shape. This is because in the flat plate shape, the fracture start point of the rectangular parallelepiped sample tends to be on the non-contact surface side of the heating element. When the thermal shock strength is not obtained from the reaction force measurement and the emphasis is on destruction, the flat plate-like heating element is not necessarily concerned. This is because when the purpose is only to cause thermal destruction, various types of heat sources are not a problem.

直方体試料に発熱体を密着する直前に0.07〜3.6kW・hの発熱量で1〜5s予備加熱した後に、直方体試料の片面に平板状発熱体を密着加熱することが望ましい。この予備加熱は、直方体試料に接触させたときに、発熱体の温度が大きく下がる場合に特に有効である。発熱体そのものの温度が高くなっていることに加え、発熱体に電流を流したときの温度上昇が著しくなるからである。ここで、直方体試料に発熱体を密着する直前の予備加熱を0.07kW・hの発熱量では予備加熱の効果があまり認められない。一方、直方体試料に発熱体を密着する直前の予備加熱を3.6kW・hの発熱量ではその発熱により直方体試料の温度が上がりすぎるので、熱衝撃強度の信頼性が下がる。1sよりも小さくすると、予備加熱の効果があまり認められない。5sよりも大きくすると、直方体試料の温度が上がりすぎるので、熱衝撃強度の信頼性が下がる。なお、予備加熱時と熱衝撃測定時の発熱量については、予備加熱は小さ目に取り、熱衝撃測定用の加熱はそれよりも大きい値とする方が一般的であるが、それらの発熱量を同じとしても問題がない場合も多い。   It is desirable to heat the flat plate-shaped heating element in close contact with one surface of the rectangular parallelepiped sample after preheating for 1 to 5 s with a heating value of 0.07 to 3.6 kW · h immediately before the heating element adheres to the rectangular parallelepiped sample. This preheating is particularly effective when the temperature of the heating element is greatly lowered when it is brought into contact with a rectangular parallelepiped sample. This is because, in addition to the temperature of the heating element itself being increased, the temperature rise becomes significant when a current is passed through the heating element. Here, the effect of the preheating is not recognized so much when the preheating immediately before the heating element is brought into close contact with the rectangular parallelepiped sample is 0.07 kW · h. On the other hand, if the preheating immediately before the heating element is brought into close contact with the rectangular parallelepiped sample is 3.6 kW · h, the temperature of the rectangular parallelepiped sample is excessively increased due to the heat generation, so that the reliability of the thermal shock strength is lowered. If it is smaller than 1 s, the effect of the preheating is not recognized so much. If it is longer than 5 s, the temperature of the rectangular parallelepiped sample is too high, and the reliability of the thermal shock strength is lowered. In general, regarding the amount of heat generated during preheating and thermal shock measurement, preheating should be small, and heating for thermal shock measurement should generally be a larger value. In many cases, there is no problem even if the same.

直方体試料がガラス又はガラス状物質である場合においても測定可能な熱衝撃試験方法である。ここで、ガラス又はガラス状物質とは、建築用及び車両用の板ガラス、電子材料用のガラス、さらには食器などに用いられるガラス材料であり、一般的に輻射熱の透過性を有する、いわゆる光学的に透明な材料を意味している。   This is a thermal shock test method that can be measured even when the rectangular parallelepiped sample is glass or a glassy substance. Here, the glass or glass-like substance is a glass material used for building and vehicle plate glass, glass for electronic materials, and tableware, and generally has so-called optical heat transmission properties. It means a transparent material.

直方体試料の片面に平板状発熱体を密着加熱し、該直方体試料の中に熱応力を発生させることによって熱衝撃強度を求める熱衝撃試験装置において、破壊始点の発生位置を調整するための発熱量調整設備と異なる幅の発熱体を保持できる設備を有する熱衝撃試験装置である。破壊始点の発生位置を調整するための発熱量調整設備としては、電圧又は電流で制御する機構を有することが好ましい。直方体試料に発熱体が密着すると、一般的に発熱体の温度は急激に下がるので、それをもカバーする急激な発熱を発熱体に与える必要があるからであり、電圧又は電流で制御するのが容易であり、かつ効果がある。さらに、温度センサを併用し、発熱体の温度低下を考慮して、発熱量制御とすることにより信頼性の高い熱衝撃強度とすることができる。また、破壊始点の発生位置を調整するための異なる幅の発熱体を保持できる設備を有することが好ましい。発熱体の幅Wは、破壊始点の位置を決定する上で極めて重要であるが、異なる幅の発熱体を保持できる設備を有していないと、発熱体を変更させた場合にその加熱条件が変わるため、熱衝撃強度の信頼性が下がる可能性があるからである。 In a thermal shock tester that determines the thermal shock strength by closely heating a flat heating element on one side of a rectangular parallelepiped sample and generating thermal stress in the rectangular parallelepiped sample, the calorific value for adjusting the occurrence position of the fracture start point It is a thermal shock test apparatus having equipment capable of holding a heating element having a width different from that of the adjustment equipment. As the calorific value adjustment equipment for adjusting the generation position of the destruction start point, it is preferable to have a mechanism controlled by voltage or current. When a heating element is in close contact with a rectangular parallelepiped sample, the temperature of the heating element generally decreases rapidly, so it is necessary to give the heating element a sudden heat generation that covers it, and it is controlled by voltage or current. Easy and effective. Furthermore, by using a temperature sensor in combination and considering the temperature drop of the heating element and controlling the amount of generated heat, a highly reliable thermal shock strength can be obtained. Moreover, it is preferable to have equipment that can hold heating elements of different widths for adjusting the occurrence position of the fracture start point. The width W 1 of the heating element is a very important in determining the position of the fracture starting point, if does not have the facilities to hold a heating element with different widths, the heating condition when was changed heating element This is because there is a possibility that the reliability of the thermal shock strength is lowered.

発熱体の幅Wが直方体試料の幅Wの0.2〜3倍である発熱体を用いて加熱する設備を有することが望ましい。発熱体の幅Wを変えることにより、破壊始点の発生位置を調整することが可能となるためである。 It is desirable to have equipment for heating using a heating element whose width W 1 of the heating element is 0.2 to 3 times the width W 2 of the rectangular parallelepiped sample. By changing the width W 1 of the heating element, it is because it is possible to adjust the occurrence position of fracture starting point.

発熱体の発熱量が0.07〜7.2kW・hとする設備を有することが望ましい。ここで述べる発熱量とは、直方体試料に発熱体を接触させた直後から一般的には7秒以内、好ましくは5秒以内での発熱量を1時間あたりの発熱量に換算したものである。発熱体はニッケル、クロム、タングステン及び白金などの金属材料、もしくは窒化物、炭化物及びホウ化物等の導電性セラミックス材料などを平板の形に成型して使用することが好ましい。発熱量を0.07〜7.2kW・hとするため、発熱体に電気を流して発熱体を発熱させるが、発熱温度の制御は電圧あるいは電流で行うのが標準的であり、実施しやすい。   It is desirable to have a facility in which the heat generation amount of the heating element is 0.07 to 7.2 kW · h. The calorific value described here is a value obtained by converting the calorific value within 7 seconds, preferably within 5 seconds, immediately after the heating element is brought into contact with the rectangular parallelepiped sample into the calorific value per hour. The heating element is preferably used by molding a metal material such as nickel, chromium, tungsten and platinum, or a conductive ceramic material such as nitride, carbide and boride into a flat plate shape. In order to set the heat generation amount to 0.07 to 7.2 kW · h, electricity is supplied to the heating element to generate heat, but the heating temperature is typically controlled by voltage or current and is easy to implement. .

平板状発熱体を密着するための負荷圧を1〜50MPaとする負荷機構を有することが好ましい。この負荷機構としては、材料の強度試験に用いられている引張試験機や圧縮試験機等に用いられている250N〜5kN負荷用のロードセルがその信頼性から好ましい。反力測定装置としても同様にロードセル方式が好ましい。さらに、負荷機構と同時に反力測定も行うことができるタイプがさらに好ましい。しかし、負荷設備、あるいは反力測定設備については、これに限定される訳ではない。また、直方体試料の支持及びロードセルによる反力の測定は、材料の強度試験に用いられている引張試験機もしくは圧縮試験機などを用いてもよい。   It is preferable to have a load mechanism in which the load pressure for closely attaching the flat plate-like heating element is 1 to 50 MPa. As the load mechanism, a load cell for a load of 250 N to 5 kN used in a tensile tester or a compression tester used for a material strength test is preferable because of its reliability. Similarly, the reaction cell measuring device is preferably a load cell system. Further, a type that can measure the reaction force simultaneously with the load mechanism is more preferable. However, the load facility or the reaction force measuring facility is not limited to this. In addition, the support of the rectangular parallelepiped sample and the measurement of the reaction force by the load cell may be performed using a tensile tester or a compression tester used for a material strength test.

直方体試料の片面に平板状発熱体を密着加熱する前に0.07〜3.6kW・hの発熱量で1〜5s予備加熱する設備を有することが好ましい。ここで述べる発熱量とは、特に何にも接触していない状態での発熱量であり、発熱体に電気を流して発熱体を発熱させるが、その発熱の制御は電圧あるいは電流で行うのが標準的であり、実施しやすい。なお、予備加熱後できるだけ早く熱衝撃試験に入った方がその値への信頼性が向上するため、この予備加熱する設備については試料又は発熱体の昇降設備と連動することが好ましい。また、予備加熱時の発熱量と熱衝撃試験時の発熱量が別々の制御できる設備を有しておれば、さらに好ましい。   It is preferable to have equipment for preheating for 1 to 5 s with a calorific value of 0.07 to 3.6 kW · h before the flat heating element is adhered and heated to one side of the rectangular parallelepiped sample. The calorific value described here is the calorific value in a state where nothing is in contact. Electricity is supplied to the heat generating element to cause the heat generating element to generate heat. The heat generation is controlled by voltage or current. Standard and easy to implement. In addition, since the reliability to the value improves when the thermal shock test is started as soon as possible after preheating, it is preferable to link the preheating equipment with the elevating equipment of the sample or the heating element. Further, it is more preferable to have equipment capable of separately controlling the heat generation amount during the preheating and the heat generation amount during the thermal shock test.

直方体試料がガラス又はガラス状物質である場合においても測定可能な熱衝撃試験装置である。ここで、ガラス又はガラス状物質とは、建築用及び車両用の板ガラス、電子材料用のガラス、さらには食器などに用いられるガラス材料であり、一般的に輻射熱の透過性を有する、いわゆる光学的に透明な材料を意味している。できるだけ、輻射熱の透過によるガラス試料又はガラス状物質試料の温度上昇を防ぐため、発熱体による加熱が極めて短時間、例えば7秒以内、できれば5秒以内で試料が破壊するように、その発熱量を大きくとることができる設備となっていることが重要である。   This is a thermal shock test apparatus capable of measuring even when the rectangular parallelepiped sample is glass or a glassy substance. Here, the glass or glass-like substance is a glass material used for building and vehicle plate glass, glass for electronic materials, and tableware, and generally has so-called optical heat transmission properties. It means a transparent material. In order to prevent the temperature rise of the glass sample or glassy material sample due to the transmission of radiant heat as much as possible, the heating value is set so that the heating by the heating element is destroyed in a very short time, for example, within 7 seconds, preferably within 5 seconds. It is important that the equipment is large enough.

直方体試料は、一般的な機械的強度の他、熱伝導率や熱膨張率も加味して寸法が決められる。直方体試料が、ガラス材料など、熱伝導率が大きく、また熱輻射も透過する場合は、ガラス試料に大きな温度差を発生させるために発熱体を短時間に高温にし、直方体試料に短時間で温度差を発生させて、熱伝導や熱輻射の透過による誤差を小さくする。直方体試料の加熱後、熱応力によって直方体試料が割れるまでの時間を短くするには、発熱体の材質、厚さを適宜選び適切な抵抗値とすればよい。直方体試料の破壊は、直方体試料に与えている機械的負荷の急激な減少を検知することにより知ることができる。   The size of the rectangular parallelepiped sample is determined in consideration of general mechanical strength, thermal conductivity and thermal expansion coefficient. When the rectangular parallelepiped sample has a high thermal conductivity and also transmits heat radiation, such as a glass material, the heating element is heated to a high temperature in a short time to generate a large temperature difference in the glass sample, and the rectangular parallelepiped sample is heated to a short time. Differences are generated to reduce errors due to heat conduction and transmission of heat radiation. In order to shorten the time until the cuboid sample is cracked by the thermal stress after heating the cuboid sample, the material and thickness of the heating element may be appropriately selected to have an appropriate resistance value. The destruction of the rectangular parallelepiped sample can be detected by detecting a sudden decrease in the mechanical load applied to the rectangular parallelepiped sample.

熱衝撃強度は、ミラー半径からも推定することができる。しかし、反力測定による熱衝撃強度とは厳密には異なるので、ミラー半径からの推定値は熱破壊応力と表現した。なお、反力測定による熱衝撃強度は、その破壊始点が発熱体非接触面に発生したときに有効であり、他のところが破壊始点となった場合には補正の必要がでてくる。しかし、この場合でもミラー半径から求めた熱破壊応力の値については信頼できるので、破壊始点の発生場所を制御できるメリットは大きい。   The thermal shock strength can also be estimated from the mirror radius. However, since it is strictly different from the thermal shock strength by reaction force measurement, the estimated value from the mirror radius is expressed as thermal fracture stress. It should be noted that the thermal shock strength by reaction force measurement is effective when the fracture start point occurs on the non-contact surface of the heating element, and correction is required when the other part becomes the fracture start point. However, even in this case, since the value of the thermal fracture stress obtained from the mirror radius is reliable, the merit of controlling the location where the fracture start point occurs is great.

円柱状でもあるいは複雑な3次元形状でも理論的には熱衝撃強度を算出することは可能であるが、実験のし易さや解析の平易さから直方体形状が好ましい。また、伝導伝熱のみならず、輻射伝熱も考慮しているので、当然ながら輻射伝熱要素の小さな不透明な材料、例えば機械装置や建物に用いられるセラミックス材料や高分子体材料でも測定は可能である。   Although it is theoretically possible to calculate the thermal shock strength even in a cylindrical shape or a complicated three-dimensional shape, a rectangular parallelepiped shape is preferable from the viewpoint of ease of experimentation and ease of analysis. In addition, not only conduction heat transfer but also radiant heat transfer is taken into account, so of course it is possible to measure even opaque materials with small radiant heat transfer elements, such as ceramic materials and polymer materials used in machinery and buildings. It is.

発熱体によって加熱される直方体試料の、発熱体を密着させた面と発熱体を密着させない面の温度は、熱電対温度計、抵抗線温度計もしくはサーミスタ温度計などで測定する。直方体試料が輻射熱を透過する場合は、発熱体を密着させない面の温度はなるべく熱輻射を吸収しない温度センサを用いることが好ましい。   The temperature of the cuboid sample heated by the heating element is measured with a thermocouple thermometer, resistance wire thermometer, thermistor thermometer or the like on the surface where the heating element is in close contact and the surface where the heating element is not in close contact. When the rectangular parallelepiped sample transmits radiant heat, it is preferable to use a temperature sensor that does not absorb heat radiation as much as possible for the temperature of the surface to which the heating element does not adhere.

以下、上述した図1により、実施例に基づいて説明する。   Hereinafter, description will be made based on the embodiment with reference to FIG. 1 described above.

直方体試料2としてL50mm×W10mm×d3mmのフロート板ガラス、発熱体1としてL60mm×W9mm×d0.2mmの窒化珪素製の発熱体を準備した。熱衝撃強度はガラス試料の端面処理の影響を大きく受けるので、ガラス試料の端面を#600で研磨処理してある。支持具4、5、6としてはφ3mmのジルコニア製円柱を用い、支持部材4、5間の距離は30mmとした。直方体試料の温度は熱電対温度計で測定した。 L 2 50mm × W 2 10mm × d 2 3mm of float glass as rectangular sample 2 was prepared L 1 60mm × W 1 9mm × d 1 0.2mm heating element made of silicon nitride as a heating element 1. Since the thermal shock strength is greatly affected by the end face treatment of the glass sample, the end face of the glass sample is polished with # 600. A zirconia cylinder having a diameter of 3 mm was used as the support tools 4, 5, and 6, and the distance between the support members 4 and 5 was set to 30 mm. The temperature of the rectangular parallelepiped sample was measured with a thermocouple thermometer.

先ず、ガラス試料2を3点支持の下側部材4、5の上部に、さらにその上に窒化珪素製発熱体1を載せ、3点支持の上側部材6で押し付けが可能となるようにセットした。このとき、直方体試料の長手方向におけるセンターラインと3点支持の上側部材6における中央の位置が一致するようにした。その後、ガラス試料が載ったステージ(図面には明記せず)が上昇して、3点支持の上側部材6と窒化珪素製発熱体1が接触する直前まできたとき、予備加熱を0.9kW・hの発熱量で2秒間行った。この後、ガラス試料が載ったステージを急いで上げて、窒化珪素製発熱体1とガラス試料2が接触するように、3点支持の上側部材6を押し付けた。さらに、窒化珪素製発熱体1とガラス試料2を密着するための負荷圧を徐々に上げていき、その負荷応力が22MPaに到達したところで、窒化珪素製発熱体1を2.2kW・hの発熱量で加熱し、ガラス試料に熱応力を発生させた。加熱開始からガラス試料は2.1秒後に破壊したので、そのときのロードセルの値から反力を読み取った。また、破壊したガラス試料を回収し、その破壊始点とミラー半径からその破壊応力値を推定した。この結果、本装置を使い、本方法で測定した測定結果は妥当な値と推察することができた。このときの破壊始点は発熱体非接触面側にあり、ミラー半径から推定された破壊応力値は97MPaであった。なお、妥当性の判断については、ミラー半径の他、破壊状況やクラックの生成等の情報も参考にした。   First, the glass sample 2 was placed on top of the lower members 4 and 5 supporting the three points, and the silicon nitride heating element 1 was placed thereon so that the upper member 6 supported by the three points could be pressed. . At this time, the center line in the longitudinal direction of the rectangular parallelepiped sample and the center position of the three-point supported upper member 6 were matched. Thereafter, when the stage (not shown in the drawing) on which the glass sample is placed rises and comes to the point just before the upper member 6 of the three-point support and the silicon nitride heating element 1 come into contact, preheating is performed at 0.9 kW · The heat generation was performed for 2 seconds with a heating value of h. Thereafter, the stage on which the glass sample was placed was quickly raised, and the upper member 6 supported at three points was pressed so that the silicon nitride heating element 1 and the glass sample 2 were in contact with each other. Further, the load pressure for closely adhering the silicon nitride heating element 1 and the glass sample 2 is gradually increased, and when the load stress reaches 22 MPa, the silicon nitride heating element 1 is heated to 2.2 kW · h. The glass sample was heated by an amount to generate thermal stress. Since the glass sample broke after 2.1 seconds from the start of heating, the reaction force was read from the value of the load cell at that time. Moreover, the broken glass sample was collect | recovered and the fracture stress value was estimated from the fracture start point and the mirror radius. As a result, it was possible to infer that the measurement result measured by this method using this apparatus was an appropriate value. The fracture start point at this time was on the non-contact surface side of the heating element, and the fracture stress value estimated from the mirror radius was 97 MPa. In addition, for the judgment of validity, in addition to the mirror radius, information such as the breakage status and generation of cracks was also referred to.

(実施例2)
発熱体1の幅Wを5mm、予備加熱を0.4kW・hで3秒間、負荷応力を13.0MPa、発熱体1の発熱量を0.4kW・hとした以外は、実施例1に準じて行い、破壊始点がガラス試料の中央部になるように設定した。
(Example 2)
The width W 1 of the heating element 1 5 mm, 3 seconds pre-heating at 0.4kW · h, the applied stress 13.0 MPa, the heating value of the heating element 1 except for using 0.4kW · h, in Example 1 It carried out according to this, and it set so that the fracture start point might become the center part of a glass sample.

その結果、当初の予定とおり、破壊始点はガラス試料の加熱面側と非加熱面側の中間部のガラス試料端部であった。なお、そのときの破壊応力は87MPaであり、これまでの実験結果から妥当性のある値と判断した。   As a result, as originally planned, the fracture start point was the glass sample end portion between the heated surface side and the non-heated surface side of the glass sample. The fracture stress at that time was 87 MPa, which was judged to be a reasonable value from the experimental results so far.

(実施例3)
発熱体1の幅Wを3mm、負荷応力を7.0MPa、発熱体1の発熱量を1.1kW・hとした以外は、実施例1に準じて行い、破壊始点がガラス試料の発熱体接触面側になるように設定した。
(Example 3)
3mm width W 1 of the heating element 1, the load stress 7.0 MPa, except that the heating value of the heating element 1 was 1.1 kW · h, carried out according to Example 1, the heating element fracture starting point glass sample The contact side was set.

その結果、当初の予定とおり、破壊始点はガラス試料の発熱体接触面側であった。なお、そのときの破壊応力は89MPaであり、これまでの実験結果から妥当性のある値と判断した。   As a result, as originally planned, the fracture start point was the heating element contact surface side of the glass sample. The fracture stress at that time was 89 MPa, which was judged to be a reasonable value from the experimental results so far.

(比較例1)
発熱体1の幅Wを1.5mm、発熱体1の発熱量を8kW・hとし、特別な負荷は行わなかった(負荷応力は0MPa)以外は、実施例1と同様にした。このとき、30秒間加熱を続けたが、熱破壊には至らなかった。
(Comparative Example 1)
Except that the width W1 of the heating element 1 was 1.5 mm, the heating value of the heating element 1 was 8 kW · h, and no special load was applied (load stress was 0 MPa), it was the same as in Example 1. At this time, heating was continued for 30 seconds, but thermal destruction was not achieved.

(比較例2)
発熱体1の幅Wを33mm、予備加熱時間を0.05秒間、負荷応力を0.5MPa、発熱体1の発熱量を0.05kW・hとした以外は、実施例1と同様にした。このとき、30秒間加熱を続けたが、熱破壊には至らなかった。
(Comparative Example 2)
The width W 1 of the heating element 1 33 mm, preheating time 0.05 seconds, the applied stress 0.5 MPa, except that the heating value of the heating element 1 was 0.05 kW · h, were the same as in Example 1 . At this time, heating was continued for 30 seconds, but thermal destruction was not achieved.

(比較例3)
発熱体1の幅Wを33mm、予備加熱時間を6秒間、発熱体1の発熱量を8W・hとした以外は、実施例2に準じて行い、破壊始点がガラス試料の中央部になるかどうかの実験を行った。
(Comparative Example 3)
The width W 1 of the heating element 1 33 mm, preheating time of 6 seconds, except that the heating value of the heating element 1 was 8W · h is carried out according to Example 2, fracture starting point is the center of the glass sample An experiment was conducted.

しかし、破壊始点はガラス試料の発熱体接触面側であり、希望した破壊始点とすることはできなかった。   However, the fracture start point was the heating element contact surface side of the glass sample, and could not be the desired fracture start point.

実施例1から実施例3および比較例1から比較例3までの方法で得られた結果をまとめて表1に示す。   The results obtained by the methods of Examples 1 to 3 and Comparative Examples 1 to 3 are summarized in Table 1.

建築用及び車両用の板ガラス、電子材料用のガラス、食器等に用いられるガラス材料、さらには機械装置や建物に用いられるセラミックス材料や高分子体材料の熱衝撃測定に有用である。また、本発明の方法及び装置を使うことにより、一般的な材料の応力発生方法として、特に機械的な衝撃研究の解析にも利用することができる。さらには、応力発生の試験装置としても利用可能である。   It is useful for thermal shock measurement of glass materials used for glass plates for buildings and vehicles, glass for electronic materials, tableware, etc., as well as ceramic materials and polymer materials used in machinery and buildings. Further, by using the method and apparatus of the present invention, it can be used as a general material stress generation method, particularly for analysis of mechanical impact research. Furthermore, it can be used as a test apparatus for stress generation.

本発明の熱衝撃試験装置の概要を示す概略図。Schematic which shows the outline | summary of the thermal shock test apparatus of this invention.

符号の説明Explanation of symbols

1 発熱体
2 直方体試料、試料
3 ロードセル
4、5 3点支持の下部(支持)部材
6 3点支持の上部(負荷)部材
発熱体の長さ
発熱体の幅
発熱体の厚さ(高さ)
直方体試料の長さ
直方体試料の幅
直方体試料の厚さ(高さ)
DESCRIPTION OF SYMBOLS 1 Heat generating body 2 Cuboid sample, Sample 3 Load cell 4, 5 Lower support member (support) 6 of 3 points Support upper part (load) member L of 3 points support 1 Length of heating element W 1 Width of heating element d 1 Heat generating element Thickness (height)
L 2 cuboid sample length W 2 cuboid sample width d 2 cuboid sample thickness (height)

Claims (9)

直方体試料の片面に平板状発熱体を密着加熱し、直方体試料の中に熱応力を発生させることによって熱衝撃強度を求める熱衝撃試験方法において、発熱体の幅Wと発熱体を密着するための負荷応力を変えることにより、直方体試料の破壊始点の発生位置を調整することを特徴とする熱衝撃試験方法。 A plate-like heating element in close contact heated on one side of the rectangular sample, the thermal shock test method for determining the thermal shock strength by generating thermal stress in the rectangular parallelepiped sample, to contact a width W 1 and the heating element of the heating element A thermal shock test method comprising adjusting a generation position of a fracture start point of a rectangular parallelepiped sample by changing a load stress of a rectangular parallelepiped. 発熱体の幅Wが直方体試料の幅Wの0.2〜3倍である発熱体を用いて加熱することを特徴とする請求項1に記載の熱衝撃試験方法。 Thermal shock test method according to claim 1, characterized in that the width W 1 of the heating element is heated by using a heating element which is 0.2 to 3 times the width W 2 of the rectangular sample. 直方体試料の破壊始点の発生位置を発熱体接触面側とする場合は平板状発熱体を密着するための負荷応力を1〜10MPa、発熱体非接触面側とする場合は15〜50MPa、さらに発熱体接触面と発熱体非接触面との中間とする場合は10〜15MPaの負荷応力とすることを特徴とする請求項1又は請求項2に記載の熱衝撃試験方法。 When the position of the fracture start point of the rectangular parallelepiped sample is the heating element contact surface side, the load stress for adhering the flat plate heating element is 1 to 10 MPa, when it is the heating element non-contact surface side, 15 to 50 MPa, and further heat generation The thermal shock test method according to claim 1 or 2, wherein a load stress of 10 to 15 MPa is applied between the body contact surface and the heating element non-contact surface. 発熱体の発熱量を0.07〜7.2kW・hとすることを特徴とする請求項1乃至3のいずれかに記載の熱衝撃試験方法。 The thermal shock test method according to any one of claims 1 to 3, wherein the heat generation amount of the heating element is 0.07 to 7.2 kW · h. 直方体試料の破壊始点の発生位置を発熱体非接触面側とする場合は、密着する直前に0.07〜3.6kW・hの発熱量で1〜5s予備加熱した後に、直方体試料の片面に平板状発熱体を密着加熱することを特徴とする請求項1乃至4のいずれかに記載の熱衝撃試験方法。 In the case where the fracture start point of the rectangular parallelepiped sample is the heating element non-contact surface side, it is preheated for 1 to 5 s with a heat generation amount of 0.07 to 3.6 kW · h immediately before adhering, and then applied to one side of the rectangular solid sample. The thermal shock test method according to claim 1, wherein the flat heating element is heated in close contact. 直方体試料はガラス又はガラス状物質であることを特徴とする請求項1乃至5のいずれかに記載の熱衝撃試験方法。 The thermal shock test method according to claim 1, wherein the rectangular parallelepiped sample is glass or a glassy substance. 直方体試料の片面に平板状発熱体を密着加熱し、該直方体試料の中に熱応力を発生させることによって熱衝撃強度を求める熱衝撃試験装置において、破壊始点の発生位置を調整するための負荷応力調整設備を有する熱衝撃試験装置。 Load stress for adjusting the position where the fracture start point is generated in a thermal shock tester that obtains thermal shock strength by closely heating a flat heating element on one side of a rectangular parallelepiped sample and generating thermal stress in the rectangular parallelepiped sample Thermal shock test equipment with adjustment equipment. 発熱体の幅Wが直方体試料の幅Wの0.2〜3倍である発熱体を用いる設備を有する請求項7に記載の熱衝撃試験装置。 Heating element thermal shock test apparatus of claim 7, the width W 1 has the facility to use a heating element which is 0.2 to 3 times the width W 2 of the rectangular sample. ガラス又はガラス状物質の熱衝撃強度を求めるための請求項7又は請求項8に記載の熱衝撃試験装置。 The thermal shock test apparatus according to claim 7 or claim 8 for determining the thermal shock strength of glass or a glassy substance.
JP2004270788A 2004-09-17 2004-09-17 Thermal shock test method Expired - Fee Related JP4454450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270788A JP4454450B2 (en) 2004-09-17 2004-09-17 Thermal shock test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270788A JP4454450B2 (en) 2004-09-17 2004-09-17 Thermal shock test method

Publications (2)

Publication Number Publication Date
JP2006084376A true JP2006084376A (en) 2006-03-30
JP4454450B2 JP4454450B2 (en) 2010-04-21

Family

ID=36162996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270788A Expired - Fee Related JP4454450B2 (en) 2004-09-17 2004-09-17 Thermal shock test method

Country Status (1)

Country Link
JP (1) JP4454450B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8308352B1 (en) * 2009-05-12 2012-11-13 The Boeing Company Thermal shock apparatus for simulating one-sided operational thermal gradients
KR101224363B1 (en) 2009-12-22 2013-01-21 주식회사 포스코 Apparatus for evaluating composite fatigue characteristics
CN106442194A (en) * 2016-11-02 2017-02-22 湘潭大学 Coating failure testing device considering mechanical-heat-impact cyclic load effect

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8308352B1 (en) * 2009-05-12 2012-11-13 The Boeing Company Thermal shock apparatus for simulating one-sided operational thermal gradients
KR101224363B1 (en) 2009-12-22 2013-01-21 주식회사 포스코 Apparatus for evaluating composite fatigue characteristics
CN106442194A (en) * 2016-11-02 2017-02-22 湘潭大学 Coating failure testing device considering mechanical-heat-impact cyclic load effect
CN106442194B (en) * 2016-11-02 2023-06-30 湘潭大学 Coating failure test device considering mechanical-thermal shock cyclic loading effect

Also Published As

Publication number Publication date
JP4454450B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
US9140612B2 (en) Measuring seebeck coefficient
TW200832583A (en) In-situ wafer temperature measurement and control
Gan et al. Role of length scale and temperature in indentation induced creep behavior of polymer derived Si–C–O ceramics
JP2008309729A (en) Device and method for measuring thermal conductivity
JP4454450B2 (en) Thermal shock test method
JP2016075496A (en) Strength measuring device
JP3939334B2 (en) Thermal shock test equipment
KR102164075B1 (en) Warm test apparatus
JP3604601B2 (en) Glass thermal shock test method and thermal shock test equipment
JP3794906B2 (en) Thermal shock test equipment
JP2007218591A (en) Hybrid-type surface thermometer, apparatus, and method for measuring temperature distribution
JP3508991B2 (en) Method and apparatus for testing thermal fatigue resistance of sintered ceramics
JPH11218480A (en) Method and apparatus for thermal shock test of ceramic sintered compact
JP5160816B2 (en) Infrared detector temperature calibration method and specific heat capacity measurement method
US20200212288A1 (en) Method for producing piezoelectric element
JP5176848B2 (en) Measuring method of elastic modulus of refractory and selecting method of refractory
CN109416269B (en) Sensor, heat flow measuring device and method for producing a sensor
JP2016075497A (en) Strength measuring device
RU2786793C1 (en) Method for determining and evaluating the thermal strength of core or molding sands and a complex for its implementation
Zhou et al. Direct glass-to-glass bonding obtained via simplified ammonia-based low-temperature procedure resists high shear stress and powerful CW fiber laser irradiation
JP4243216B2 (en) Wafer support member
JPH03237345A (en) Method for measuring thermal conductivity
JP2022099456A (en) Testing method of dynamic characteristic of cement hardened body
Phero et al. Strain gauge for testing microreactor hexagonal core blocks in the Single Primary Heat Extraction and Removal Emulator
JP2003214811A (en) Method for measuring high-temperature elongation and measuring sensor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees