JP2003214811A - Method for measuring high-temperature elongation and measuring sensor - Google Patents

Method for measuring high-temperature elongation and measuring sensor

Info

Publication number
JP2003214811A
JP2003214811A JP2002016954A JP2002016954A JP2003214811A JP 2003214811 A JP2003214811 A JP 2003214811A JP 2002016954 A JP2002016954 A JP 2002016954A JP 2002016954 A JP2002016954 A JP 2002016954A JP 2003214811 A JP2003214811 A JP 2003214811A
Authority
JP
Japan
Prior art keywords
thin film
elongation
measured
ceramic thin
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002016954A
Other languages
Japanese (ja)
Inventor
Hideo Ono
英夫 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2002016954A priority Critical patent/JP2003214811A/en
Publication of JP2003214811A publication Critical patent/JP2003214811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring a high-temperature elongation capable of easily carrying out a measurement of the high-temperature elongation for a constituting member or the like of an apparatus used at a high temperature, and to provide a measuring sensor. <P>SOLUTION: The method for measuring the high-temperature elongation comprises the steps of fixing a thin film 2 made of ceramics having a known elongation at breakage to a surface of a member 44 to be measured, and examining the presence or absence of a breakage of the film 2 after the high- temperature elongation occurs. Thus, the elongation of the member 44 to be measured is known. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】請求項の発明は、高温条件下で使
用される部材等に生じるクリープ伸びをはじめとする高
温伸びを測定するに好適な、高温伸びの測定方法および
測定用センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature elongation measuring method and a measuring sensor suitable for measuring high temperature elongation such as creep elongation occurring in members used under high temperature conditions. Is.

【0002】[0002]

【従来の技術】高温条件下で使用される機器について、
その構成部材の破断の防止や予測のためには、高温条件
下での当該部材の伸び(高温伸び)を測定することが重
要である。
2. Description of the Related Art Regarding equipment used under high temperature conditions,
In order to prevent or predict breakage of the constituent member, it is important to measure the elongation (high temperature elongation) of the member under high temperature conditions.

【0003】部材の伸びを測定するために従来行われて
いる方法としては、第1に、被測定部材にひずみゲージ
を貼付けて、その部材の伸びを電気抵抗の変化として測
定するものがある。第2には、被測定部材の結晶粒の変
形状態を直接あるいは間接的に顕微鏡で観察し、画像解
析を行うことにより変形を測定する方法が挙げられる。
第3の方法としては、特開平9−5175号公報に開示
されているワイヤ型応力測定センサを用いた方法があ
る。図11に示すように、その方法において使用する応
力測定センサ101は、既知の破断歪みを有する金属ワ
イヤ102の両端を固定台103を介して薄膜104上
に固着したものである。これを被測定部材(図示せず)
に貼り付け、高温下での使用後にワイヤ102が破断し
たか否かによって、被測定部材に作用した応力を知る。
As a conventional method for measuring the elongation of a member, firstly, a strain gauge is attached to a member to be measured and the elongation of the member is measured as a change in electric resistance. Secondly, there is a method of measuring the deformation by directly or indirectly observing the deformation state of the crystal grains of the member to be measured with a microscope and performing image analysis.
As a third method, there is a method using a wire type stress measuring sensor disclosed in Japanese Patent Laid-Open No. 9-5175. As shown in FIG. 11, the stress measurement sensor 101 used in the method is one in which both ends of a metal wire 102 having a known breaking strain are fixed on a thin film 104 via a fixing base 103. This is the member to be measured (not shown)
The stress applied to the member to be measured is known by whether or not the wire 102 is broken after being adhered to the substrate and used at high temperature.

【0004】[0004]

【発明が解決しようとする課題】上記した第1の方法の
場合、ひずみゲージのベースとなっている材料には、耐
熱温度が概ね600℃までのものが一般的に用いられて
いるため、600℃を超えるような高温条件の下では測
定値が大きく変化して高精度の測定ができない、という
課題がある。また、第2の方法の場合には、測定のため
に高額な顕微鏡や画像解析装置を要するうえ、解析に時
間がかかる。元々多様な形状を呈している結晶粒の変形
状態から統計的に変形量を求めることから、精度上の短
所もある。第3の方法に用いられるワイヤ型応力測定セ
ンサは、300℃程度の温度で使用する構造物を対象と
するには適しているが、それを超える温度条件下では精
度のよい測定ができない。金属は、高温になれば延性が
大きくなるうえ温度による延性の変化が大きいので、一
定の伸び量(歪み)で破断させるのが難しいからであ
る。また、実用性のある小さなセンサーにする場合、高
温下では金属ワイヤが短時間で酸化・腐食され、一定の
破断伸びを示し得なくなるからでもある。
In the case of the above-mentioned first method, the material used as the base of the strain gauge is generally one having a heat resistant temperature of up to about 600 ° C. There is a problem that under high temperature conditions of exceeding ° C, the measured values change greatly and high-precision measurement cannot be performed. Moreover, in the case of the second method, an expensive microscope and an image analysis device are required for the measurement, and the analysis takes time. Since the deformation amount is statistically obtained from the deformation state of the crystal grains that originally have various shapes, there is a disadvantage in accuracy. The wire-type stress measurement sensor used in the third method is suitable for a structure used at a temperature of about 300 ° C., but cannot measure accurately under a temperature condition exceeding that. This is because it is difficult to break a metal with a certain amount of elongation (strain) because the ductility of a metal becomes large at a high temperature and the ductility of the metal largely changes depending on the temperature. Also, in the case of a small sensor having practicality, the metal wire is oxidized and corroded in a short time at a high temperature, and it becomes impossible to show a constant elongation at break.

【0005】本願請求項の発明は、これらの点を考慮
し、高温下で使用される機器の構成部材等について、ク
リープ伸びをはじめとする高温伸びの測定を容易に実施
できる高温伸びの測定方法および測定用センサを提供し
ようとするものである。
In view of these points, the invention of the claim of the present application is a method for measuring high temperature elongation, which enables easy measurement of high temperature elongation such as creep elongation for components of equipment used at high temperature. And a sensor for measurement.

【0006】[0006]

【課題を解決するための手段】請求項1に記載した高温
伸びの測定方法は、既知の破断伸びを有するセラミック
製薄膜を被測定部材の表面に固定し、高温伸びの発生
後、当該セラミック製薄膜の破断の有無によって被測定
部材の伸びを知ることを特徴とする。セラミック製薄膜
の固定は、被測定部材の表面に対して直接または間接的
に行うものとし、一つの被測定部材に対して一または複
数のセラミック製薄膜を固定する。複数のセラミック製
薄膜を使用する場合、各薄膜として破断伸びの等しいも
のを使用してもよいが互いに異なる複数種類のものを使
用するのもよい。この測定方法は、他に適切な測定方法
がない600℃以上の高温下でのクリープ伸びなどの測
定にとくに好ましいが、300℃以上の条件下において
も実施され得て好ましい作用効果をもたらす。したがっ
て上記(および下記の各請求項)にいう「高温」とは3
00℃以上の温度をさす。そして言うまでもないが「高
温伸び」にはクリープ伸びを含む。なお「伸び」は、た
とえば、発生した増分としての長さを元の自然状態での
長さで除した比率(伸び率。歪み。%などで表示)にて
表す。また「破断伸び」とは、自然状態から破断すると
きまでに生じた伸びをいう。
According to a first aspect of the present invention, there is provided a method for measuring a high temperature elongation, wherein a ceramic thin film having a known elongation at break is fixed on a surface of a member to be measured, and after the high temperature elongation occurs, the ceramic thin film is made. The feature is that the elongation of the member to be measured is known by the presence or absence of breakage of the thin film. The ceramic thin film is fixed directly or indirectly to the surface of the measured member, and one or a plurality of ceramic thin films are fixed to one measured member. When a plurality of thin ceramic films are used, thin films having the same breaking elongation may be used, but a plurality of different thin films may be used. This measuring method is particularly preferable for the measurement of creep elongation at a high temperature of 600 ° C. or higher for which there is no other suitable measuring method, but it can be carried out under the condition of 300 ° C. or higher, and brings about a preferable action and effect. Therefore, "high temperature" referred to above (and each claim below) is 3
A temperature of 00 ° C or higher. Needless to say, "high temperature elongation" includes creep elongation. The "elongation" is represented by, for example, a ratio obtained by dividing the length as an increment that has occurred by the length in the original natural state (elongation rate. Strain.%, Etc.). The "elongation at break" refers to the elongation that occurs from the natural state to the time of breaking.

【0007】この請求項の方法によれば、セラミック製
薄膜の破断伸びがあらかじめ分かっているので、高温伸
びが発生したとき(つまり、たとえば被測定部材を含む
機器を高温条件の下で使用したとき)、結果としてセラ
ミック製薄膜が破断していれば、被測定部材の高温伸び
がそのセラミック製薄膜の破断伸びを超えたと知ること
ができ、もって被測定部材に生じた高温伸びを容易に測
定することができる。伸びの測定ができると、被測定部
材の特性(弾性係数等)から、発生した応力を知ること
も可能になる。また、互いに異なる破断伸びを有する複
数のセラミック製薄膜を同時に使用する場合には、被測
定部材の伸びをより精度よく測定することができる。被
測定部材の伸びは、複数のセラミック製薄膜の中で破断
したものの破断伸びのうち最大値より大きく、破断しな
かったセラミック製薄膜の破断伸びのうち最小値より小
さかったとして特定できるからである。セラミック製薄
膜の個数を増やして各薄膜の破断伸び間のきざみを細か
くすると、より狭い範囲に被測定部材の伸びを特定する
ことが可能になる。
According to the method of this claim, the elongation at break of the ceramic thin film is known in advance, so that when high temperature elongation occurs (that is, when the equipment including the member to be measured is used under high temperature conditions, for example). ), As a result, if the ceramic thin film is broken, it can be known that the high temperature elongation of the member to be measured exceeds the breaking elongation of the ceramic thin film, and thus the high temperature elongation generated in the member to be measured can be easily measured. be able to. If the elongation can be measured, it becomes possible to know the generated stress from the characteristics (elasticity coefficient etc.) of the member to be measured. Further, when a plurality of ceramic thin films having different breaking elongations are used at the same time, the elongation of the member to be measured can be measured more accurately. This is because the elongation of the member to be measured can be specified as being larger than the maximum value of the breaking elongations of the plurality of ceramic thin films that were broken and smaller than the minimum value of the breaking elongations of the ceramic thin films that were not broken. . If the number of ceramic thin films is increased and the crevices between fracture elongations of the respective thin films are made finer, the elongation of the member to be measured can be specified in a narrower range.

【0008】セラミック材は高温強度が高いため、60
0℃はもちろん、1000℃を超える温度(最高で18
00℃程度)においても安定的に使用できる。高温にお
いても延性が小さく、温度によって破断伸びの変化が大
きいわけでもないので、所定の(つまりその材質や形状
・寸法によって定まる固有の)伸び量で破断させること
ができ、高温下での伸びを精度よく測定するのに適して
いる。また、金属と異なり、セラミック材は、高温の酸
化雰囲気下においても酸化・腐食等しにくいため、上記
のセラミック製薄膜を実用性のある小さなサイズに加工
しても、それが短時間で損傷等する恐れがない。したが
って、この請求項の方法により、他に適切な測定方法が
ない600℃以上の高温条件下でも、被測定部材の伸び
を高精度に測定することができる。
Since the high temperature strength of ceramic materials is high, 60
Not only 0 ° C but also temperatures over 1000 ° C (up to 18 ° C)
It can be used stably even at about 00 ° C. Since ductility is small even at high temperatures and the change in elongation at break does not change significantly with temperature, it is possible to break with a predetermined amount of elongation (that is, an inherent amount determined by the material, shape, and dimensions), and the elongation at high temperature Suitable for accurate measurement. Also, unlike metals, ceramic materials do not easily oxidize or corrode even in a high temperature oxidizing atmosphere, so even if the above ceramic thin film is processed into a small size with practicality, it will be damaged in a short time. There is no fear of doing Therefore, according to the method of this claim, the elongation of the member to be measured can be measured with high accuracy even under a high temperature condition of 600 ° C. or higher for which there is no other suitable measuring method.

【0009】なお、上記のセラミック製薄膜として使用
するに適切なセラミック材料としては、アルミナ(Al
23)、ムライト(3Al23+2SiO2)、チタニ
ア(TiO2)、炭化ケイ素(SiC)、窒化ケイ素
(Si34)、ジルコニア(ZrO2)、サーメットな
どが挙げられる。線膨張率や破断伸びの異なる各種の材
料があるので、被測定部材を含む機器の使用条件に合わ
せて適宜に材料選択をするとよい。
A ceramic material suitable for use as the above-mentioned ceramic thin film is alumina (Al
2 O 3), mullite (3Al 2 O 3 + 2SiO 2 ), titania (TiO 2), silicon carbide (SiC), silicon nitride (Si 3 N 4), zirconia (ZrO 2), such as cermet and the like. Since there are various materials having different coefficients of linear expansion and elongation at break, it is advisable to select the material appropriately according to the usage conditions of the equipment including the member to be measured.

【0010】請求項2に記載した測定方法はとくに、セ
ラミック製薄膜の両端部を、それぞれ中間部材に固着
し、それら中間部材を介して被測定部材の表面に固定す
ることとし、その際、中間部材に対するセラミック製薄
膜の固着箇所、被測定部材に対する中間部材の固定箇
所、および中間部材の材質を、セラミック製薄膜と被測
定部材との間の熱膨張差を相殺できるように定めること
を特徴とする。中間部材は被測定部材に対して直接に固
定してもよいが、間接的に、つまり平板状の他の部材を
さらに介して被測定部材に固定するのもよい。中間部材
を平板状の他の部材を介して被測定部材に固定する場
合、上記した「被測定部材に対する中間部材の固定箇
所」は、当該他の部材に対する中間部材の固定箇所と読
み替える。また、この請求項の方法でも、前記と同様
に、一つの被測定部材に対して一または複数のセラミッ
ク製薄膜を使用する。この請求項の方法は、たとえば、
図9(a)または同(b)のようにセラミック製薄膜2
や中間部材6等を使用することにより実施できる。
In the measuring method according to the second aspect, in particular, both end portions of the ceramic thin film are fixed to intermediate members, respectively, and are fixed to the surface of the member to be measured through the intermediate members. The fixing point of the ceramic thin film to the member, the fixing point of the intermediate member to the member to be measured, and the material of the intermediate member are determined so as to cancel the difference in thermal expansion between the ceramic thin film and the member to be measured. To do. Although the intermediate member may be directly fixed to the member to be measured, it may be fixed to the member to be measured indirectly, that is, through another plate-shaped member. When the intermediate member is fixed to the member to be measured via another member having a flat plate shape, the above-mentioned "fixing position of the intermediate member to the member to be measured" is read as a fixing position of the intermediate member to the other member. Also in the method of this claim, one or a plurality of ceramic thin films are used for one member to be measured, similarly to the above. The method of this claim is, for example,
As shown in FIG. 9A or 9B, the ceramic thin film 2
It can be carried out by using the intermediate member 6 or the like.

【0011】この方法によれば、温度変化のみでセラミ
ック製薄膜に伸びが生じたり破断が起きたりすることが
避けられる。温度変化にともなってセラミック製薄膜と
被測定部材との間に熱膨張差が生じても、その差は、上
記のように使用する中間部材等の作用により相殺される
からである。熱膨張差が相殺されるなら、高温での被測
定部材の伸びを精密に測定することが可能になる。
According to this method, it is possible to prevent the ceramic thin film from being stretched or broken only by the temperature change. This is because even if a difference in thermal expansion occurs between the ceramic thin film and the member to be measured due to a temperature change, the difference is canceled by the action of the intermediate member or the like used as described above. If the difference in thermal expansion is canceled out, it becomes possible to precisely measure the elongation of the member to be measured at high temperature.

【0012】なお、熱膨張差が相殺されるようにするに
は、図9(a)の例において、 セラミック製薄膜2の線膨張率:α2 平板4(被測定部材と同一材質のものを用いる)の線膨
張率:α4 中間部材6の線膨張率:α6 平板4と中間部材6との2箇所の固定部間のスパン:L
1 セラミック製薄膜2と中間部材6との2箇所の固着部間
のスパン:L2 とするとき、 α6=(α41−α22)/(L1−L2) ……(A) を満たすようにする。スパンL1、L2に応じて中間部材
6の線膨張率α6を適切に選び、または線膨張率α6に応
じてスパンL1、L2を適切に定めることができる。
In order to cancel the difference in thermal expansion, in the example of FIG. 9A, the coefficient of linear expansion of the ceramic thin film 2 is α 2 flat plate 4 (made of the same material as the member to be measured. Linear expansion coefficient: α 4 Linear expansion coefficient of the intermediate member 6: α 6 Span between two fixed portions of the flat plate 4 and the intermediate member 6: L
1 When the span between the two fixing portions of the ceramic thin film 2 and the intermediate member 6 is L 2 , α 6 = (α 4 L 1 −α 2 L 2 ) / (L 1 −L 2 ) ... (A) is satisfied. The span L 1, L 2 can be appropriately determined according to the linear expansion coefficient alpha 6 appropriately select or linear expansion coefficient alpha 6, the intermediate member 6 in response to the span L 1, L 2.

【0013】請求項3に記載の測定方法は、とくに、セ
ラミック製薄膜の表面に事前に(つまり測定の開始前
に)導電性材料の皮膜を形成しておき、高温伸びの発生
後、導電性材料皮膜に通電が可能か否かによってセラミ
ック製薄膜の破断の有無を検出することを特徴とする。
導電性材料の皮膜は、たとえば、アルミニウムや耐熱合
金をセラミック製薄膜の表面上に蒸着させること等によ
り形成できる。
In the measuring method according to the third aspect, in particular, a film of a conductive material is formed in advance on the surface of the ceramic thin film (that is, before the start of the measurement), and after the high temperature elongation occurs, the conductivity is reduced. The feature is that whether or not the ceramic thin film is broken is detected depending on whether or not the material film can be energized.
The film of the conductive material can be formed by, for example, depositing aluminum or a heat-resistant alloy on the surface of the ceramic thin film.

【0014】この測定方法によれば、セラミック製薄膜
の破断の有無を、目視による場合よりも確実かつ短時間
で検出することができる。セラミック製薄膜が破断した
ときは同時に導電性材料の皮膜も途切れているので、通
電できるか否かが破断の有無を正確に示すうえ、通電の
テストはきわめて容易に実施できるからである。目視で
は確認しにくい小さな破断をも検出できるほか、目視さ
れにくい部分の測定を行う場合などに好都合である。
According to this measuring method, the presence or absence of breakage of the ceramic thin film can be detected more reliably and in a shorter time than by visual inspection. When the ceramic thin film is broken, the coating of the conductive material is also interrupted at the same time, so that whether or not the current can be passed is accurately indicated whether or not there is a break, and the current test can be performed very easily. In addition to being able to detect small breaks that are difficult to confirm by visual inspection, it is convenient when measuring parts that are difficult to see visually.

【0015】請求項4に記載した高温伸びの測定用セン
サは、被測定部材と同等の材質を有する平板上に、既知
の破断伸びを有するセラミック製薄膜の両端部を固着し
たものである。
According to a fourth aspect of the present invention, a sensor for measuring high temperature elongation is obtained by fixing both ends of a ceramic thin film having a known elongation at break on a flat plate made of the same material as the member to be measured.

【0016】上記平板の部分を被測定部材の表面に固定
するかたちでこのセンサを使用すれば、請求項1に記載
した測定方法を円滑に実施することができる。すなわ
ち、被測定部材とともに高温伸びを生じる平板上にセラ
ミック製薄膜を固着しているので、600℃を超える高
温条件においても測定を行うことが可能であり、被測定
部材の高温伸びを精度よく知ることができる。
If this sensor is used in such a manner that the flat plate portion is fixed to the surface of the member to be measured, the measuring method described in claim 1 can be carried out smoothly. That is, since the ceramic thin film is fixed on the flat plate that causes high temperature elongation together with the member to be measured, it is possible to perform the measurement even at a high temperature condition exceeding 600 ° C., and to know the high temperature elongation of the member to be measured accurately. be able to.

【0017】またこのセンサは、セラミック製薄膜を平
板上に固着しているので、当該薄膜が割れやすいにもか
かわらず、取扱いが容易である。とくに、平板の材質が
被測定部材と同等であるため、両者間、すなわち平板と
被測定部材との間の固定を行いやすく、また両者間では
機械的特性にも差がないことに基づいて高温伸びの追随
性が高い。このような点から、本請求項のセンサによれ
ば精度の高い測定が容易に行えることになる。
Further, in this sensor, since the ceramic thin film is fixed on the flat plate, it is easy to handle although the thin film is easily broken. In particular, since the material of the flat plate is the same as that of the member to be measured, it is easy to fix them between each other, that is, between the plate and the member to be measured. High followability of growth. From this point of view, the sensor according to the present invention facilitates highly accurate measurement.

【0018】請求項5に記載した測定用センサはさら
に、材質または形状が異なるために異なる既知の破断伸
びを有する複数のセラミック製薄膜を、長さ方向を同じ
にして配置(つまり上記の平板状に固着)したことを特
徴とする。
The measuring sensor according to a fifth aspect of the present invention further comprises a plurality of ceramic thin films having different known breaking elongations due to different materials or shapes arranged in the same length direction (that is, the above flat plate shape). Is fixed to).

【0019】こうしたセンサを使用すれば、被測定部材
の高温伸びをより狭い範囲に特定できて、精度の高い測
定を行うことができる。請求項1の方法について述べた
ように、互いに異なる破断伸びを有する複数のセラミッ
ク製薄膜を同時に使用する場合、被測定部材の伸びは、
当該複数の薄膜の中で破断したものの破断伸びのうち最
大値より大きく、破断しなかったものの破断伸びのうち
最小値より小さかったものと特定し得るからである。セ
ラミック製薄膜の個数を増やして各薄膜の破断伸び間の
きざみを細かくすると、測定精度は一層に高くなる。
By using such a sensor, the high temperature elongation of the member to be measured can be specified in a narrower range, and highly accurate measurement can be performed. As described in the method of claim 1, when a plurality of ceramic thin films having different breaking elongations are used at the same time, the elongation of the measured member is
This is because it can be specified that among the plurality of thin films, the fracture elongation of the fractured ones is larger than the maximum value, and the fracture elongation of the non-broken ones is less than the minimum value. When the number of ceramic thin films is increased and the step between break elongations of the respective thin films is made finer, the measurement accuracy is further enhanced.

【0020】請求項6に記載の測定用センサはとくに、
セラミック製薄膜として、両端部間に曲線状部分(曲線
状にたわんだ部分)を有するものを使用することを特徴
とする。たとえば、図6〜図8に示す各センサは、この
請求項の測定用センサを例示するものである。
In particular, the measuring sensor according to claim 6 is:
As the ceramic thin film, one having a curved portion (a curved portion) between both ends is used. For example, the sensors shown in FIGS. 6 to 8 exemplify the measurement sensor of this claim.

【0021】一般にセラミック材の破断伸びは1%以下
の範囲内にあるため、通常なら、金属製部材等のクリー
プ伸び等を十分には測定できないことがある。しかし、
上記にしたがって曲線状部分を有するセラミック製薄膜
を使用する場合には、当該薄膜が曲線状部分を変形(曲
率変化)させることによっても被測定部材の伸びに追従
できるので、本来の破断伸びが小さいセラミック材を素
材としながらも大きな(たとえば1%以上の)伸びの測
定が可能になる。したがって、この測定用センサは、伸
びが大きい場合(たとえば金属材料のクリープ伸びの測
定)を含む広範囲の高温伸び測定に使用できるものだと
いえる。
In general, the elongation at break of the ceramic material is in the range of 1% or less, so that the creep elongation and the like of the metal member or the like may not be sufficiently measured normally. But,
When a ceramic thin film having a curved portion is used according to the above, since the thin film can follow the elongation of the member to be measured by deforming the curved portion (changing the curvature), the original breaking elongation is small. It is possible to measure a large elongation (for example, 1% or more) while using a ceramic material. Therefore, it can be said that this measuring sensor can be used for a wide range of high temperature elongation measurement including a case where elongation is large (for example, measurement of creep elongation of a metal material).

【0022】請求項7に記載のセンサは、さらに、セラ
ミック製薄膜の両端部を、それぞれ中間部材を介して上
記の平板上に固着し、中間部材に対するセラミック製薄
膜の固着箇所、上記平板に対する中間部材の固着箇所、
および中間部材の材質を、セラミック製薄膜と被測定部
材との間の熱膨張差を相殺できるように定めたことを特
徴とする。図9(a)または同(b)のセンサは、この
請求項のセンサに該当する例である。
According to a seventh aspect of the present invention, further, both ends of the ceramic thin film are fixed to the flat plate through intermediate members, and the ceramic thin film is fixed to the intermediate member and the intermediate plate is fixed. Where parts are fixed,
And the material of the intermediate member is set so as to cancel the difference in thermal expansion between the ceramic thin film and the member to be measured. The sensor of FIG. 9A or 9B is an example corresponding to the sensor of this claim.

【0023】かかるセンサによれば、請求項2に記載し
た測定方法を容易に実施することができる。上記の各固
着箇所や材質は、請求項2の方法について記載したのと
同様に定める。セラミック製薄膜と被測定部材との間の
熱膨張差が相殺されるため、被測定部材の高温伸びを精
密に測定することが可能である。また、セラミック製薄
膜と中間部材とは上記の平板上に固着しているので、薄
膜等が割れやすいにもかかわらず、センサとして取扱い
が容易である。平板上へのセラミック製薄膜や中間部材
の固着は、高温伸びの測定現場でではなく専門の製造所
で行うことができるので、上記した固着箇所等の設定を
適切に行うことが可能で、その点によっても高精度な測
定が実施しやすくなる。
According to such a sensor, the measuring method described in claim 2 can be easily implemented. The respective fixing points and materials are defined in the same manner as described in the method of claim 2. Since the difference in thermal expansion between the ceramic thin film and the member to be measured is offset, the high temperature elongation of the member to be measured can be accurately measured. In addition, since the ceramic thin film and the intermediate member are fixed on the flat plate, the thin film is easy to handle as a sensor even though the thin film is easily broken. Since the ceramic thin film and the intermediate member can be fixed to the flat plate not at the measurement site of high temperature elongation but at a specialized manufacturing site, it is possible to appropriately set the above-mentioned fixing position, etc. The points also facilitate high-precision measurement.

【0024】請求項8のセンサは、請求項7に係るセン
サにおいて、たとえば、図9(b)のように、中間部材
6に対するセラミック製薄膜2(の両端部)の固着箇所
の間隔L2を、上記の平板4に対する中間部材6の固着
箇所の間隔L1よりも広くしたことを特徴とする。な
お、このようにする場合には、先の式(A)より、中間
部材6の線膨張率α6を、平板4(被測定部材と同一材
質)の線膨張率α4およびセラミック製薄膜2の線膨張
率α2のいずれよりも小さいものにする必要がある。し
たがって、中間部材としてたとえば、窒化ケイ素や炭化
ケイ素、ムライトなど線膨張率の小さいセラミック材を
使用するのが適している。
The sensor according to claim 8 is the sensor according to claim 7, wherein, for example, as shown in FIG. 9B, the interval L 2 between the fixing points of the ceramic thin film 2 (both ends thereof) to the intermediate member 6 is It is characterized in that it is made wider than the interval L 1 between the fixing points of the intermediate member 6 to the flat plate 4. In this case, according to the above formula (A), the linear expansion coefficient α 6 of the intermediate member 6 can be calculated from the linear expansion coefficient α 4 of the flat plate 4 (the same material as the member to be measured) and the ceramic thin film 2 Must be smaller than any of the linear expansion coefficients α 2 . Therefore, it is suitable to use a ceramic material having a small linear expansion coefficient such as silicon nitride, silicon carbide, or mullite as the intermediate member.

【0025】このセンサなら、セラミック製薄膜と被測
定部材との間の熱膨張差を相殺して高精度の測定を可能
にすること等に加え、被測定部材の伸びが大きい場合に
も測定を可能にするという効果をもたらす。中間部材に
対するセラミック製薄膜の固着箇所の間隔(図9(b)
のL2)を、平板に対する中間部材の固着箇所の間隔
(同L1)よりも広くしたので、セラミック製薄膜の伸
びの感度が増し、当該薄膜の小さな(低比率の)伸びに
よって被測定部材の大きな(高比率)の伸びが測定可能
になるからである。したがって、このセンサは、請求項
6のセンサと同様に、本来の破断伸びが小さいセラミッ
ク材を素材としながらも大きな伸びの測定が可能で、広
範囲の高温伸び測定に使用できる。
With this sensor, in addition to offsetting the difference in thermal expansion between the ceramic thin film and the member to be measured to enable highly accurate measurement, etc., measurement can be performed even when the member to be measured has a large elongation. Brings the effect of enabling. The space between the fixing points of the ceramic thin film to the intermediate member (Fig. 9 (b)).
L 2 ) of the intermediate member is made wider than the interval (the same L 1 ) of the fixing points of the intermediate member to the flat plate, the sensitivity of the elongation of the ceramic thin film increases, and the small (low ratio) elongation of the thin film causes the member to be measured. This is because a large (high ratio) elongation of can be measured. Therefore, this sensor, like the sensor of claim 6, can measure a large elongation while using a ceramic material, which originally has a small elongation at break, as a raw material, and can be used for a wide range of high temperature elongation measurement.

【0026】請求項9に記載の測定用センサは、とく
に、セラミック製薄膜として単結晶セラミック製のもの
を使用したことを特徴とする。単結晶セラミックは材料
的な欠陥が生じにくく、特性も均一であるため、被測定
部材の伸びを高い精度で測定できる。
The sensor for measurement according to claim 9 is characterized in that a ceramic thin film made of single crystal ceramic is used. Since the single crystal ceramic is less likely to cause material defects and has uniform characteristics, the elongation of the member to be measured can be measured with high accuracy.

【0027】請求項10に記載のセンサは、とくに、セ
ラミック製薄膜の表面に導電性材料の皮膜を形成し、そ
の皮膜の両端部にそれぞれリード線をつないだことを特
徴とする。このセンサを用いると、請求項3の方法を簡
単に実現することができ、セラミック製薄膜の破断の有
無を短時間で確実かつ容易に検出することができる。同
薄膜の破断の有無を容易に検出できることは、被測定部
材の高温伸びを容易に測定できることにほかならない。
The sensor according to claim 10 is characterized in that a film of a conductive material is formed on the surface of the ceramic thin film, and lead wires are connected to both ends of the film, respectively. By using this sensor, the method of claim 3 can be easily realized, and the presence or absence of breakage of the ceramic thin film can be detected reliably and easily in a short time. The fact that the thin film is fractured can be easily detected, which means that the high temperature elongation of the member to be measured can be easily measured.

【0028】[0028]

【発明の実施の形態】以下、高温伸びの測定に関する発
明の実施例を図面に基づいて説明する。図1〜10は、
それぞれ、高温伸びの測定方法または測定用センサを例
示する図面である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the invention relating to measurement of high temperature elongation will be described below with reference to the drawings. 1-10
3A and 3B are drawings respectively illustrating a high temperature elongation measuring method or a measuring sensor.

【0029】図1に示す第1の実施例では、長さ方向の
中央部において両脇に切欠き部3を有する矩形のセラミ
ック製薄膜2を使用する。この薄膜2の両端部2aを、
被測定部材44の表面上に直接に固定し、被測定部材4
4を高温で使用したのちに、セラミック製薄膜2の破断
の有無を目視で確認する。破断していれば、被測定部材
44の高温伸び(クリープ伸び等)が設定値(薄膜2の
破断伸び)を超えたことが分かる。
In the first embodiment shown in FIG. 1, a rectangular ceramic thin film 2 having notches 3 on both sides at the center in the length direction is used. Both ends 2a of this thin film 2 are
The member to be measured 4 is fixed directly on the surface of the member to be measured 44.
After using 4 at high temperature, the presence or absence of breakage of the ceramic thin film 2 is visually confirmed. If it is broken, it can be seen that the high temperature elongation (creep elongation etc.) of the member to be measured 44 exceeds the set value (break elongation of the thin film 2).

【0030】セラミック薄膜2の破断伸び(%)は、1
000℃を超える高温でも大きくは変化することがない
ので、精度の高い測定ができる。破断伸びはセラミック
材によって異なり、アルミナが0.09〜0.12%、
ムライトが約0.13%、チタニアが約0.12%、炭
化ケイ素が約0.13%、窒化ケイ素が0.2〜0.3
%、ジルコニアが0.35〜0.7%、サーメットが
0.35〜0.45%などである。たとえばこれらのう
ちから、被測定部材44の高温伸び設定限度値に対応し
た破断伸びを有するセラミック材を選択し、薄膜2とし
て使用する。単結晶のセラミック材を使用するなら、材
料的な欠陥が生じにくく特性が均一であるために破断伸
びのばらつきが小さい。
The breaking elongation (%) of the ceramic thin film 2 is 1
Since it does not change significantly even at high temperatures exceeding 000 ° C, highly accurate measurement can be performed. Elongation at break varies depending on the ceramic material, with 0.09 to 0.12% alumina,
Mullite about 0.13%, titania about 0.12%, silicon carbide about 0.13%, silicon nitride 0.2-0.3.
%, Zirconia is 0.35 to 0.7%, and cermet is 0.35 to 0.45%. For example, from these, a ceramic material having a breaking elongation corresponding to the high temperature elongation set limit value of the member to be measured 44 is selected and used as the thin film 2. If a single crystal ceramic material is used, material defects are less likely to occur and the characteristics are uniform, so that the variation in breaking elongation is small.

【0031】被測定部材44に対するセラミック薄膜2
の固定には、両者が高温になることを考慮し、両端部2
aにおいて、セラミックスを用いた溶射または接着によ
る方法をとるのが好ましい。図1(または以下の図)
中、両端部2a等として黒く表した箇所は固定または固
着した部分である。溶射による方法としては、たとえ
ば、高温ひずみゲージの固定に用いられているローカイ
ド方式溶射法がある。この方法では、棒状のセラミック
ス(アルミナなど)を酸素・アセチレン炎で溶融して、
アトマイズ空気(原子状に粉砕されたセラミックの混合
空気)によりセラミック製薄膜2の両端部2aに直接吹
き付ける。セラミック接着剤は、一般に、加熱によって
ガラス化する無機バインダーとセラミック充填材、およ
び溶媒としての水を、中温(90〜400℃)で焼成す
ることにより接着力を発揮するようにしたものである。
充填材にはアルミナ、ジルコニア、マグネシアなどを使
用する。耐熱温度は1600℃以上である。このような
接着剤を両端部2aの下面に塗布してセラミック製薄膜
2を被測定部材44に接着する。
Ceramic thin film 2 for the member to be measured 44
When fixing the two, both ends 2
In a, it is preferable to adopt a method by thermal spraying or adhesion using ceramics. Figure 1 (or the figure below)
Inside, the black portions such as the both end portions 2a are fixed or fixed portions. As a method by thermal spraying, there is, for example, a rocaide system thermal spraying method used for fixing a high temperature strain gauge. In this method, rod-shaped ceramics (such as alumina) are melted with oxygen / acetylene flame,
It is directly blown to both ends 2a of the ceramic thin film 2 by atomized air (mixed air of atomically ground ceramics). Generally, a ceramic adhesive is one in which an inorganic binder, which is vitrified by heating, a ceramic filler, and water as a solvent are baked at an intermediate temperature (90 to 400 ° C.) so as to exhibit an adhesive force.
Alumina, zirconia, magnesia, etc. are used as the filler. The heat resistant temperature is 1600 ° C. or higher. Such an adhesive is applied to the lower surface of both ends 2a to bond the ceramic thin film 2 to the member to be measured 44.

【0032】図2に示す第2の実施例は、セラミック製
薄膜2とは異なる破断伸びを有する第2のセラミック製
薄膜2’を、薄膜2とともに平行に被測定部材44に固
定するものである。2個の薄膜2・2’に同等のセラミ
ック材を使用して相互間に熱膨張差が生じないように
し、切欠き部3’の形状を切欠き部3とは異なるものに
することで、破断伸びに差を設ける。
In the second embodiment shown in FIG. 2, a second ceramic thin film 2'having a breaking elongation different from that of the ceramic thin film 2 is fixed in parallel with the thin film 2 to the member to be measured 44. . By using the same ceramic material for the two thin films 2 and 2'to prevent a difference in thermal expansion between them, and by making the shape of the notch 3'different from the notch 3, Make a difference in breaking elongation.

【0033】セラミック製薄膜2・2’を固定した被測
定部材44を高温で使用して、2個の薄膜2・2’が両
方とも破断すれば、測定部材44に生じた伸びは2個の
薄膜2・2’のいずれの破断伸びよりも大きかったこと
が分かり、一方のみが破断すれば、薄膜2・2’の各破
断伸びの中間の大きさの伸びが生じたことが分かる。
If the member 44 to be measured, to which the ceramic thin film 2.2 'is fixed, is used at a high temperature and both of the two thin films 2.2' rupture, the elongation generated in the measuring member 44 will be two. It can be seen that the elongation at break was greater than that of either of the thin films 2 and 2 ', and if only one of them was broken, it was found that an elongation of an intermediate size between the respective break elongations of the thin films 2.2 and 2 occurred.

【0034】図示の例では2個のセラミック製薄膜2・
2’を用いているが、個数を増やせは破断伸びのきざみ
も小さくできるので、被測定部材44の伸びが含まれる
範囲が狭くなって測定精度が向上する。同等のセラミッ
ク材を使用しながら各薄膜の破断伸びに差を設けるに
は、たとえば、図5(a)〜(f)に示すように、さま
ざまな形状・寸法の切欠き部を各薄膜2に形成するとよ
い。切欠き部の付近に生じる応力の集中度によって薄膜
2ごとに破断伸びが異なることになる。
In the illustrated example, two ceramic thin films 2.
Although 2'is used, the increase in the number can reduce the break elongation breakage, so that the range in which the elongation of the measured member 44 is included is narrowed and the measurement accuracy is improved. In order to provide a difference in breaking elongation of each thin film while using an equivalent ceramic material, for example, as shown in FIGS. 5A to 5F, notches of various shapes and dimensions are formed in each thin film 2. It is good to form. The breaking elongation differs for each thin film 2 depending on the degree of concentration of stress generated in the vicinity of the notch.

【0035】図3に示す第3の実施例では、被測定部材
44と同等の材質を有する平板4上にセラミック製薄膜
2を固着したうえ、それを測定用センサ1として被測定
部材44の表面に固定し、第1の実施例と同様に測定を
行う。平板4への薄膜2の固着は、上述した接着または
溶射などにより薄膜2の両端部2aにおいて行い、被測
定部材44への平板4の固定はスポット溶接などによっ
て行う。セラミック製の薄膜2は割れやすいが、あらか
じめ平板4に固定しておくために取り扱いやすくなる。
平板4と被測定部材44とが同等の材質であるため、セ
ンサ1を固定しやすいうえ測定精度上の不利もない。
In the third embodiment shown in FIG. 3, the ceramic thin film 2 is fixed on the flat plate 4 made of the same material as the member to be measured 44, and the surface of the member to be measured 44 is used as the measuring sensor 1. Then, the measurement is performed in the same manner as in the first embodiment. The thin film 2 is fixed to the flat plate 4 at both ends 2a of the thin film 2 by the above-mentioned adhesion or thermal spraying, and the flat plate 4 is fixed to the member to be measured 44 by spot welding or the like. Although the ceramic thin film 2 is easily broken, it is easy to handle because it is fixed to the flat plate 4 in advance.
Since the flat plate 4 and the member to be measured 44 are made of the same material, it is easy to fix the sensor 1 and there is no disadvantage in measurement accuracy.

【0036】図4に示す測定用センサ11は、異なる破
断伸びを有する2個のセラミック製薄膜2・2’を、被
測定部材44と同等の材質を有する平板4の表面上に固
着したものである。これを被測定部材44の表面上に固
定して使用する。各薄膜2・2’の平板4への固着は、
第3の実施例と同様に前記の接着または溶射などにより
行う。このようなセンサ11においても、図5(a)〜
(f)に例示したさまざまな形状の切欠き部を有する薄
膜2を適当数だけ使用することができる。
The measuring sensor 11 shown in FIG. 4 has two ceramic thin films 2 and 2'having different breaking elongations fixed to the surface of a flat plate 4 made of the same material as the member 44 to be measured. is there. This is used by fixing it on the surface of the member to be measured 44. The adhesion of each thin film 2 and 2'to the flat plate 4 is
Similar to the third embodiment, the above-mentioned adhesion or thermal spraying is performed. Also in such a sensor 11, FIG.
An appropriate number of thin films 2 having notches of various shapes illustrated in (f) can be used.

【0037】セラミック材の材料固有の破断伸びは一般
的には1%に満たないが、セラミック製薄膜2について
形状を工夫することにより、薄膜2としての破断伸びを
増すことができる。たとえば、図6に示す測定用センサ
31はセラミック製薄膜2をたわませて、平板4に固定
した両端部2a間に曲線状部分2b(両端部2a間の直
線を迂回する部分)を形成して長さに余裕をもたせるこ
とで、破断に至るまでの伸び量を増やしている。
The breaking elongation peculiar to the material of the ceramic material is generally less than 1%, but the breaking elongation as the thin film 2 can be increased by devising the shape of the ceramic thin film 2. For example, in the measurement sensor 31 shown in FIG. 6, the ceramic thin film 2 is bent to form a curved portion 2b (a portion that bypasses a straight line between both end portions 2a) between both end portions 2a fixed to the flat plate 4. By giving a margin to the length, the amount of elongation until rupture is increased.

【0038】図7(a)〜(d)に示す測定用センサ4
1は、いずれもセラミック製薄膜2をバネのように形成
してそれぞれ曲線状部分2bを設け、そのうえで両端部
2aを平板4に固定している。これらも、曲線状部分2
bを利用して破断伸びを増やしたものである。
The measuring sensor 4 shown in FIGS. 7 (a) to 7 (d).
In each of the examples 1, the ceramic thin film 2 is formed like a spring, and each has a curved portion 2b, and then both end portions 2a are fixed to the flat plate 4. These are also curved parts 2
The elongation at break is increased by utilizing b.

【0039】図8(a)〜(c)の測定用センサ51a
・51b・51cは、いずれも繊維状のセラミック製薄
膜22をたるませて(曲線状部分22bを設けて)両端
部を平板4に取り付けている。たるみ量を適当に調節す
ることにより、材料固有の破断伸びよりも大きい任意の
伸び量で破断させることができる。
The measuring sensor 51a shown in FIGS. 8 (a) to 8 (c).
51b and 51c each have both ends thereof attached to the flat plate 4 by slackening the fibrous ceramic thin film 22 (providing the curved portion 22b). By adjusting the amount of slack appropriately, it is possible to break at an arbitrary elongation amount larger than the elongation at break inherent to the material.

【0040】図8(a)の測定用センサ51aは、セラ
ミック製繊維(薄膜)22の両端部を、平板4の両端部
下面に設けた凹部4aにおいてセラミック接着剤で固定
している。図8(b)の測定用センサ51bは、少しだ
け長さの異なる複数のセラミック製繊維22の両端部を
平板4に固定し、どの長さのセラミック製繊維22が破
断しているかによって平板4の伸び(すなわちその平板
4を固定した被測定部材の伸び)を精度よく測定できる
ようにしたものである。また、図8(c)の測定用セン
サ51cは、セラミック製繊維22の両端部を平板4の
両端部に、平板4の一部を一たん溶かすことによって埋
め込んでいる。
In the measuring sensor 51a shown in FIG. 8A, both ends of the ceramic fiber (thin film) 22 are fixed with a ceramic adhesive in the recesses 4a provided on the lower surfaces of both ends of the flat plate 4. The measurement sensor 51b of FIG. 8B fixes the both ends of a plurality of ceramic fibers 22 having slightly different lengths to the flat plate 4, and determines the length of the flat plate 4 depending on which length of the ceramic fiber 22 is broken. (That is, the elongation of the member to be measured to which the flat plate 4 is fixed) can be accurately measured. Further, in the measurement sensor 51c of FIG. 8C, both ends of the ceramic fiber 22 are embedded in both ends of the flat plate 4 by melting a part of the flat plate 4 once.

【0041】つづく図9(a)・(b)には、セラミッ
ク製薄膜2の両端部2aと平板4(被測定部材44と同
等の材質のもの)との間に中間部材6を一体化したセン
サ21・21’を示す。各部材の線膨張率を、平板4に
ついて:α4、中間部材6:α6、セラミック製薄膜2:
α2とし、平板4上に固定した中間部材6の両端部6a
間のスパンをL1、中間部材6上に固着した薄膜2の両
端部2a間のスパンをL2とすると、 α6=(α41−α22)/(L1−L2) ……(A) またはこれを変形した L2/L1=(α4−α6)/(α2−α6) ……(B) が成り立つなら、セラミック製薄膜2と被測定部材44
(平板4と同等の材質)との間で生じがちな熱膨張差を
相殺できるので、クリープ伸び等の高温伸びを高い精度
で測定することができる。
9A and 9B, the intermediate member 6 is integrated between the both ends 2a of the ceramic thin film 2 and the flat plate 4 (of the same material as the member to be measured 44). The sensors 21 and 21 'are shown. Regarding the linear expansion coefficient of each member, the flat plate 4: α 4 , the intermediate member 6: α 6 , the ceramic thin film 2:
α 2 and both ends 6a of the intermediate member 6 fixed on the flat plate 4
If the span between them is L 1 and the span between both ends 2 a of the thin film 2 fixed on the intermediate member 6 is L 2 , then α 6 = (α 4 L 1 −α 2 L 2 ) / (L 1 −L 2 ) (A) or a modified version of L 2 / L 1 = (α 4 −α 6 ) / (α 2 −α 6 ) ... (B), the ceramic thin film 2 and the member to be measured 44 are satisfied.
Since the difference in thermal expansion that tends to occur with (the same material as the flat plate 4) can be offset, high temperature elongation such as creep elongation can be measured with high accuracy.

【0042】図9の例は、ステンレス鋼(SUS31
6)でできた被測定部材44の高温伸びを、同じステン
レス鋼製の平板4(線膨張率α4=18.5×10-5
℃)とジルコニア製の薄膜2(α2=11×10-5
℃)を含むセンサ21または21’にて測定するもので
ある。まず、図9(a)のセンサ21は、中間部材6と
して線膨張率α6の比較的大きい(20×10-5/℃前
後またはそれ以上の)金属材料を使用した例である。上
記の式(A)または(B)の条件から、スパンL1がス
パンL2を上回る長さになる。
In the example of FIG. 9, stainless steel (SUS31
The high temperature elongation of the member to be measured 44 made in 6) was measured using the same stainless steel flat plate 4 (coefficient of linear expansion α 4 = 18.5 × 10 −5 /
° C) and a zirconia thin film 2 (α 2 = 11 × 10 -5 /
The temperature is measured by the sensor 21 or 21 ′ including (° C.). First, the sensor 21 of FIG. 9A is an example in which a metal material having a relatively large linear expansion coefficient α 6 (about 20 × 10 −5 / ° C. or more) is used as the intermediate member 6. From the condition of the above formula (A) or (B), the span L 1 becomes longer than the span L 2 .

【0043】一方、図9(b)のセンサ21’は、中間
部材6として線膨張率α6の小さい窒化ケイ素(α6≒3
×10-5/℃)金属材料を使用したものである。やはり
上記の式(A)または(B)を満たすためには、 L2/L1=1.94 となり、図のようにスパンL2がスパンL1を上回ること
になる。
On the other hand, in the sensor 21 'shown in FIG. 9B, the intermediate member 6 is made of silicon nitride (α 6 ≈3) having a small linear expansion coefficient α 6.
(× 10 −5 / ° C.) A metal material is used. Again, in order to satisfy the above formula (A) or (B), L 2 / L 1 = 1.94, and the span L 2 exceeds the span L 1 as shown in the figure.

【0044】このようなスパンL1、L2を採用したセン
サ21’では、平板4と薄膜2との熱膨張差が相殺され
て高温伸びを高精度に測定できることに加え、測定でき
る高温伸びの範囲が拡大するという利点もある。すなわ
ち、被測定部材とともに平板4が1%伸びたとき、薄膜
2の伸びは 0.01×L1/L2 =0.01×L1/(1.94×L1) =0.0052 であって、0.5%程度の伸びにとどまるからである。
つまり、薄膜2の素材であるジルコニアの破断伸びは本
来0.6%前後であるが、スパンL1、L2を上記のよう
に設定することにより、薄膜2の伸びの感度が1.94
倍となり、被測定部材44に生じる1%程度の高温伸び
(クリープ伸びなど)を十分に測定できるのである。
In the sensor 21 'employing the spans L 1 and L 2 as described above, the difference in thermal expansion between the flat plate 4 and the thin film 2 is canceled out, and the high temperature elongation can be measured with high accuracy. There is also an advantage that the range is expanded. That is, when the flat plate 4 is stretched by 1% together with the member to be measured, the elongation of the thin film 2 is 0.01 × L 1 / L 2 = 0.01 × L 1 /(1.94×L 1 ) = 0.0052. This is because the growth is limited to about 0.5%.
That is, the elongation at break of zirconia, which is the material of the thin film 2, is originally around 0.6%, but the elongation sensitivity of the thin film 2 is 1.94 by setting the spans L 1 and L 2 as described above.
That is, the high temperature elongation (creep elongation etc.) of about 1% occurring in the member to be measured 44 can be sufficiently measured.

【0045】図10には、導電性材料の皮膜7が表面に
形成されたセラミック製薄膜12を示す。皮膜7は、た
とえばアルミニウムを真空蒸着することによって形成
し、その皮膜導電性皮膜7の両端部にリード線8を取り
付ける。この薄膜12を用いれば、高温伸びを受けて破
断したとき、導電性薄膜7に生じた亀裂により導通がな
くなることから、破断の有無、すなわち被測定部材に生
じた高温伸びの大きさを簡単かつ確実に知ることができ
る。
FIG. 10 shows a ceramic thin film 12 on the surface of which a conductive material film 7 is formed. The film 7 is formed by vacuum deposition of aluminum, for example, and lead wires 8 are attached to both ends of the film conductive film 7. When this thin film 12 is used, when it breaks due to high-temperature elongation, the conductive thin film 7 loses electrical continuity due to cracks. Therefore, the presence or absence of breakage, that is, the magnitude of high-temperature elongation generated in the member to be measured can be determined easily and easily. You can know for sure.

【0046】[0046]

【発明の効果】発明の高温伸びの測定方法によれば、6
00℃以上の場合を含む高温での被測定部材の伸びを簡
単に測定することができる。セラミック製薄膜を使用す
るために、イ)たとえば1000℃を超える温度において
も測定が可能である、ロ)当該薄膜の延性や破断伸びが温
度によってほとんど変化しないので測定精度が高い、ハ)
薄膜の酸化・腐食等が起こりにくいため薄膜を小型化し
ながらも測定精度を保てる、といった効果もある。請求
項2に記載した測定方法によればとくに、温度変化にと
もなってセラミック製薄膜と被測定部材との間に生じが
ちな熱膨張差が相殺され、したがって高温での被測定部
材の伸びを精密に測定することができる。請求項3に記
載の測定方法によればさらに、セラミック製薄膜の破断
の有無、したがって被測定部材に生じた高温伸びを、短
時間で確実に検出することが可能になる。
According to the high temperature elongation measuring method of the present invention, 6
It is possible to easily measure the elongation of the member to be measured at high temperature including the case of 00 ° C. or higher. Since a ceramic thin film is used, a) measurement can be performed even at a temperature of, for example, 1000 ° C., b) the ductility and elongation at break of the thin film hardly change with temperature, so the measurement accuracy is high.
Since the thin film is less likely to be oxidized or corroded, the thin film can be downsized while maintaining the measurement accuracy. According to the measuring method described in claim 2, the difference in thermal expansion, which tends to occur between the ceramic thin film and the member to be measured due to the temperature change, is canceled out, so that the elongation of the member to be measured at high temperature is accurately measured. Can be measured. According to the measuring method of the third aspect, the presence or absence of breakage of the ceramic thin film, and thus the high temperature elongation generated in the member to be measured can be reliably detected in a short time.

【0047】請求項4に記載した高温伸びの測定用セン
サによれば、請求項1に記載した測定方法を円滑に実施
することができ上記の効果がもたらされる。また、被測
定部材と同等の材質を有する平板上にセラミック製薄膜
を固着しているので、取扱いが容易であり、測定精度の
点でも申し分ない。請求項5に記載した測定用センサな
ら、被測定部材の高温伸びをより狭い範囲に特定でき、
したがって一層に精度の高い測定を行うことができる。
請求項6に記載の測定用センサなら、本来の破断伸びが
小さいセラミック材を素材としながらも、発生する伸び
が大きい場合を含む広範囲の高温伸び測定に使用でき
る。
According to the high temperature elongation measuring sensor described in claim 4, the measuring method described in claim 1 can be smoothly carried out, and the above-mentioned effects are brought about. Further, since the ceramic thin film is fixed on a flat plate having the same material as the member to be measured, it is easy to handle and satisfactory in terms of measurement accuracy. With the measuring sensor according to claim 5, the high temperature elongation of the member to be measured can be specified in a narrower range,
Therefore, the measurement can be performed with higher accuracy.
The measuring sensor according to the sixth aspect can be used for a wide range of high temperature elongation measurement including a case where a generated elongation is large, while using a ceramic material which originally has a small elongation at break.

【0048】請求項7に記載の測定用センサによれば、
請求項2に記載した測定方法を容易に実施できて上記の
効果を得ることができる。取扱いが容易であるほか、平
板上への中間部材やセラミック製薄膜の固着を適切かつ
正確に行える、またその点からも高精度な測定が可能で
ある、といった効果もある。請求項8に記載のセンサな
らさらに、本来の破断伸びが小さいセラミック材を素材
としながらも、発生する伸びが大きい場合を含む広範囲
の高温伸び測定を実施できる。
According to the measuring sensor of claim 7,
The measuring method described in claim 2 can be easily implemented and the above-mentioned effects can be obtained. In addition to being easy to handle, there is an effect that the intermediate member and the ceramic thin film can be properly and accurately fixed to the flat plate, and also from that point, highly accurate measurement is possible. With the sensor according to the eighth aspect, it is possible to perform a high temperature elongation measurement in a wide range including a case where a generated elongation is large, while using a ceramic material which originally has a small elongation at break.

【0049】請求項9に記載の測定用センサなら、とく
に高精度の測定に有利である。請求項10に記載のセン
サでは、請求項3に記載の方法を簡単に実現でき、セラ
ミック製薄膜の破断の有無、したがって被測定部材の高
温伸びを短時間で確実かつ容易に検出することができ
る。
The measuring sensor according to claim 9 is particularly advantageous for highly accurate measurement. With the sensor according to claim 10, the method according to claim 3 can be easily realized, and the presence or absence of breakage of the ceramic thin film, and therefore the high temperature elongation of the member to be measured can be detected reliably and easily in a short time. .

【図面の簡単な説明】[Brief description of drawings]

【図1】発明による高温伸びの測定に関する一実施例を
示す斜視図である。
FIG. 1 is a perspective view showing an embodiment relating to measurement of high temperature elongation according to the present invention.

【図2】発明による高温伸びの測定に関する一実施例を
示す斜視図である。
FIG. 2 is a perspective view showing an embodiment relating to measurement of high temperature elongation according to the present invention.

【図3】発明による高温伸びの測定に関する一実施例を
示す斜視図である。
FIG. 3 is a perspective view showing an example of measurement of high temperature elongation according to the present invention.

【図4】発明による高温伸びの測定に関する一実施例を
示す斜視図である。
FIG. 4 is a perspective view showing an embodiment relating to measurement of high temperature elongation according to the present invention.

【図5】図5(a)〜(f)は、それぞれセラミック製
薄膜2の一実施例を示す平面図である。
5 (a) to 5 (f) are plan views each showing an example of the ceramic thin film 2. FIG.

【図6】発明による高温伸びの測定に関する一実施例を
示す斜視図である。
FIG. 6 is a perspective view showing an embodiment relating to measurement of high temperature elongation according to the present invention.

【図7】図7(a)〜(d)は、それぞれ、発明による
高温伸びの測定に関する一実施例を示す斜視図または平
面図である。
7 (a) to 7 (d) are perspective views or plan views each showing an embodiment relating to measurement of high temperature elongation according to the present invention.

【図8】図8(a)〜(c)は、それぞれ、発明による
高温伸びの測定に関する一実施例を示す側面図または斜
視図である。
8 (a) to 8 (c) are side views or perspective views, respectively, showing an embodiment relating to the measurement of high temperature elongation according to the present invention.

【図9】図9(a)・(b)は、それぞれ、発明による
高温伸びの測定に関する一実施例を示す側面図である。
9 (a) and 9 (b) are side views each showing an embodiment relating to measurement of high temperature elongation according to the present invention.

【図10】発明による高温伸びの測定に関する一実施例
を示す斜視図である。
FIG. 10 is a perspective view showing an embodiment relating to measurement of high temperature elongation according to the present invention.

【図11】従来の応力測定センサを示す平面図(図11
(a))および側面図(同(b))である。
FIG. 11 is a plan view showing a conventional stress measurement sensor (see FIG.
It is (a)) and a side view (the same (b)).

【符号の説明】[Explanation of symbols]

1 測定用センサ 2 セラミック製薄膜 3 切欠き部 4 平板 6 中間部材 7 導電性皮膜 8 リード線 44 被測定部材 1 Measuring sensor 2 Ceramic thin film 3 notches 4 flat plate 6 Intermediate member 7 Conductive film 8 lead wires 44 Measured member

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 既知の破断伸びを有するセラミック製薄
膜を被測定部材の表面に固定し、高温伸びの発生後、当
該セラミック製薄膜の破断の有無によって被測定部材の
伸びを知ることを特徴とする高温伸びの測定方法。
1. A ceramic thin film having a known elongation at break is fixed on the surface of a member to be measured, and after the high temperature elongation occurs, the elongation of the member to be measured is known by the presence or absence of breakage of the ceramic thin film. Measuring method of high temperature elongation.
【請求項2】 セラミック製薄膜の両端部を、それぞれ
中間部材に固着し、それら中間部材を介して被測定部材
の表面に固定することとし、 その際、中間部材に対するセラミック製薄膜の固着箇
所、被測定部材に対する中間部材の固定箇所、および中
間部材の材質を、セラミック製薄膜と被測定部材との間
の熱膨張差を相殺できるように定めることを特徴とする
請求項1に記載の高温伸びの測定方法。
2. Both ends of the ceramic thin film are fixed to an intermediate member, respectively, and are fixed to the surface of the member to be measured through the intermediate member. At that time, the ceramic thin film is fixed to the intermediate member. The high temperature elongation according to claim 1, wherein a fixing point of the intermediate member to the member to be measured and a material of the intermediate member are set so as to cancel a difference in thermal expansion between the ceramic thin film and the member to be measured. Measuring method.
【請求項3】 セラミック製薄膜の表面に事前に導電性
材料の皮膜を形成しておき、高温伸びの発生後、当該皮
膜に通電が可能か否かによってセラミック製薄膜の破断
の有無を検出することを特徴とする請求項1または2に
記載の高温伸びの測定方法。
3. A ceramic thin film is previously formed with a film of a conductive material, and after the high temperature elongation occurs, the presence or absence of breakage of the ceramic thin film is detected depending on whether or not the film can be energized. The method for measuring high temperature elongation according to claim 1 or 2, characterized in that.
【請求項4】 被測定部材と同等の材質を有する平板上
に、既知の破断伸びを有するセラミック製薄膜の両端部
が固着されていることを特徴とする高温伸びの測定用セ
ンサ。
4. A sensor for measuring high-temperature elongation, characterized in that both ends of a ceramic thin film having a known breaking elongation are fixed on a flat plate made of the same material as the member to be measured.
【請求項5】 材質または形状が異なるために異なる既
知の破断伸びを有する複数のセラミック製薄膜が、長さ
方向を同じにして配置されていることを特徴とする請求
項4に記載の高温伸びの測定用センサ。
5. The high temperature elongation according to claim 4, wherein a plurality of ceramic thin films having different known breaking elongations due to different materials or shapes are arranged in the same length direction. Measuring sensor.
【請求項6】 セラミック製薄膜が、両端部間に曲線状
部分を有することを特徴とする請求項4または5に記載
の高温伸びの測定用センサ。
6. The high temperature elongation measuring sensor according to claim 4, wherein the ceramic thin film has curved portions between both ends.
【請求項7】 セラミック製薄膜の両端部が、それぞれ
中間部材を介して上記の平板上に固着されていて、 中間部材に対するセラミック製薄膜の固着箇所、上記平
板に対する中間部材の固着箇所、および中間部材の材質
が、セラミック製薄膜と被測定部材との間の熱膨張差を
相殺できるものであることを特徴とする請求項4〜6の
いずれかに記載の高温伸びの測定用センサ。
7. Both ends of the ceramic thin film are fixed to the flat plate through an intermediate member, respectively, and the ceramic thin film is fixed to the intermediate member, the intermediate member is fixed to the flat plate, and the intermediate portion is formed. 7. The high temperature elongation measuring sensor according to claim 4, wherein the material of the member is capable of canceling the difference in thermal expansion between the ceramic thin film and the member to be measured.
【請求項8】 中間部材に対するセラミック製薄膜の固
着箇所の間隔が、上記平板に対する中間部材の固着箇所
の間隔よりも広いことを特徴とする請求項7に記載の高
温伸びの測定用センサ。
8. The sensor for measuring high temperature elongation according to claim 7, wherein the distance between the fixing points of the ceramic thin film to the intermediate member is wider than the distance between the fixing points of the intermediate member to the flat plate.
【請求項9】 セラミック製薄膜が単結晶セラミック製
であることを特徴とする請求項4〜8のいずれかに記載
の高温伸びの測定用センサ。
9. The high temperature elongation measuring sensor according to claim 4, wherein the ceramic thin film is made of a single crystal ceramic.
【請求項10】 セラミック製薄膜の表面に導電性材料
の皮膜が形成され、その皮膜の両端部にそれぞれリード
線がつながっていることを特徴とする請求項4〜9のい
ずれかに記載の高温伸びの測定用センサ。
10. The high temperature according to claim 4, wherein a coating of a conductive material is formed on the surface of the ceramic thin film, and lead wires are connected to both ends of the coating. A sensor for measuring elongation.
JP2002016954A 2002-01-25 2002-01-25 Method for measuring high-temperature elongation and measuring sensor Pending JP2003214811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002016954A JP2003214811A (en) 2002-01-25 2002-01-25 Method for measuring high-temperature elongation and measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002016954A JP2003214811A (en) 2002-01-25 2002-01-25 Method for measuring high-temperature elongation and measuring sensor

Publications (1)

Publication Number Publication Date
JP2003214811A true JP2003214811A (en) 2003-07-30

Family

ID=27652821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002016954A Pending JP2003214811A (en) 2002-01-25 2002-01-25 Method for measuring high-temperature elongation and measuring sensor

Country Status (1)

Country Link
JP (1) JP2003214811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012161197A1 (en) * 2011-05-23 2014-07-31 東海ゴム工業株式会社 Destructive sensor
JP2018112430A (en) * 2017-01-10 2018-07-19 中国電力株式会社 Device and system for strain detection
JP6547994B1 (en) * 2018-12-11 2019-07-24 中国電力株式会社 Distortion detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012161197A1 (en) * 2011-05-23 2014-07-31 東海ゴム工業株式会社 Destructive sensor
JP2018112430A (en) * 2017-01-10 2018-07-19 中国電力株式会社 Device and system for strain detection
JP6547994B1 (en) * 2018-12-11 2019-07-24 中国電力株式会社 Distortion detection device
WO2020121420A1 (en) * 2018-12-11 2020-06-18 中国電力株式会社 Strain detection device

Similar Documents

Publication Publication Date Title
Tada et al. Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures
RU2468361C2 (en) Method of depositing aluminium oxide coating on silicon carbide-coated substrate
EP0818671A2 (en) A ceramic sheath type thermocouple
White et al. Fracture behavior of cyclically loaded PZT
RU2466116C2 (en) Method of coating silicon carbide-coated substrate
JP5896157B2 (en) Temperature sensor
Pezzotti et al. In situ measurement of bridging stresses in toughened silicon nitride using Raman microprobe spectroscopy
EP1150107A1 (en) Thermocouple-type temperature-detecting device
US6172511B1 (en) Measuring device
Shaw et al. Fatigue crack growth and stress redistribution at interfaces
JP2003214811A (en) Method for measuring high-temperature elongation and measuring sensor
JPH1068687A (en) Apparatus for measuring longitudinal elastic constant of fiber for composite material
JP2011089859A (en) Temperature sensor
CN109477763B (en) Thermocouple
JP3603614B2 (en) thermocouple
Read et al. Measurements of fracture strength and Young's modulus of surface-micromachined polysilicon
JP2020524290A (en) Sheet resistance and thin film sensor
Jakus et al. Mechanical behavior of a Sumitomo alumina fiber at room and high temperature
JP3355166B2 (en) Thermocouple for measuring molten metal temperature
Kohler et al. Assembly technologies for piezoelectric sensors up to 1000° C
JPH032603A (en) Heat resisting strain gage and strain measuring method
JP2003098013A (en) Thermocouple and temperature sensor
Namazu et al. Uniaxial tensile and shear deformation tests of gold–tin eutectic solder film
Lei et al. PdCr based high temperature static strain gage
Gyekenyesi et al. An evaluation of strain measuring devices for ceramic composites