JP2006077738A - 内燃機関の触媒劣化検出装置 - Google Patents

内燃機関の触媒劣化検出装置 Download PDF

Info

Publication number
JP2006077738A
JP2006077738A JP2004265784A JP2004265784A JP2006077738A JP 2006077738 A JP2006077738 A JP 2006077738A JP 2004265784 A JP2004265784 A JP 2004265784A JP 2004265784 A JP2004265784 A JP 2004265784A JP 2006077738 A JP2006077738 A JP 2006077738A
Authority
JP
Japan
Prior art keywords
temperature
exhaust purification
internal combustion
combustion engine
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004265784A
Other languages
English (en)
Inventor
Takahiko Fujiwara
孝彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004265784A priority Critical patent/JP2006077738A/ja
Publication of JP2006077738A publication Critical patent/JP2006077738A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】内燃機関の始動時において、より正確に排気浄化触媒の劣化検出を行うことが可能となる技術を提供する。
【解決手段】内燃機関の排気通路に設けられ、前記内燃機関の排気を浄化する排気浄化触媒と、前記排気浄化触媒の温度の変化を検出する温度変化検出手段と、を備え、前記内燃機関の始動開始後に、前記温度変化検出手段によって前記排気浄化触媒の温度変化を検出し(S105)検出された温度変化に基き、前記排気浄化触媒の劣化を判定する(S109)。
【選択図】図4

Description

本発明は内燃機関の触媒劣化検出装置に関する。
自動車の内燃機関から排出される排気中の有害成分(例えば、HC,CO,NOx)の規制が強化されるに伴い、排気中の有害成分を排気浄化触媒によって浄化する技術が提案されている。また、排気浄化触媒の浄化性能を担保するために、排気浄化触媒の劣化を検出する技術も種々提案されている。
ここで、排気浄化触媒としては、代表的なものにNOxの還元と、HC,COの酸化処理を同時に処理する三元触媒がある。また、排気浄化触媒の劣化を検出する技術としては、排気浄化触媒の前後における排気センサの出力と触媒温度とから前記排気浄化触媒の排気浄化率特性を求め、該排気浄化特性の立ち上がり特性を、予め記憶した基準の排気浄化率特性の立ち上がり特性と比較することにより、排気浄化触媒の劣化を判定する技術などが提案されている(例えば、特許文献1参照。)。
しかし、上記の従来技術においては、前記排気浄化触媒の排気浄化率特性の立ち上がり特性を求め、予め記憶した基準の排気浄化率特性の立ち上がり特性と比較するという複雑な処理を必要としていた。また、立ち上がり特性を求める際に外乱を受け易く、精度良い劣化検出が困難な場合があった。
特許第3316137号公報 特開平06−307233号公報 特許第3062710号公報 特許第3147632号公報
本発明の目的とするところは、内燃機関の始動時において、より正確に排気浄化触媒の劣化検出を行うことが可能となる技術を提供することである。
上記目的を達成するための本発明は、内燃機関の排気通路に設けられ、前記内燃機関の排気を浄化する排気浄化触媒と、前記排気浄化触媒の温度の変化を検出する温度変化検出手段と、を備え、前記温度変化検出手段によって検出された前記排気浄化触媒の温度の変化に基き、前記排気浄化触媒の劣化を検出することを特徴とする。
ここで、内燃機関の排気浄化触媒は、その劣化に伴い活性が得られる温度(以下、「活性温度」という。)が高温側に変化する。換言すると、排気浄化触媒における活性温度は、排気浄化触媒の劣化を検出する上で重要な要因となる。また、活性温度付近では、排気浄化触媒において触媒反応が始まるため、その反応熱によって触媒温度の変化が大きくなることが分かっている。そこで、本発明においては、触媒温度の変化に基いて、排気浄化触媒が活性温度に達したことを検出し、さらに、排気浄化触媒の劣化に伴いその活性温度が高温側に変化することを利用して、排気浄化触媒の劣化を検出することとした。
そうすれば、触媒温度の変化を検出するのみの簡単な処理によって、前記排気浄化触媒が活性温度に達したことをより正確に検出することができる。さらに、その際に、前記排気浄化触媒の活性温度が高温側に変化していることを検出することにより、前記排気浄化
触媒の劣化を、より正確に検出することができる。
本発明においては、具体的には、前記排気浄化触媒の温度の変化が最大となる時点における前記排気浄化触媒の温度が所定値より高いことをもって、前記排気浄化触媒の劣化を検出してもよい。
ここにおいて、前記排気浄化触媒の温度が活性温度に達した時点で、前記排気浄化触媒の温度の変化が最大になると考えられる。そのことを利用して、前記排気浄化触媒の温度の変化が最大となる時点における前記排気浄化触媒の温度を直接検出し、該前記排気浄化触媒の温度が所定値より高い場合に、前記排気浄化触媒が劣化していると判断してもよい。ここで所定値とは、前記排気浄化触媒の活性温度がこれより高い場合には、前記排気浄化触媒が劣化していると判定できる閾値としての温度である。
また、本発明においては、前記内燃機関の始動開始時から、前記排気浄化触媒の温度の変化が最大となるまでの時間が所定値より長いことをもって、前記排気浄化触媒の劣化を検出するようにしてもよい。ここにおいて、前記排気浄化触媒の劣化に伴い、前記排気浄化触媒が活性されづらくなるので、前記内燃機関の始動が開始してから、前記排気浄化触媒の温度が活性温度に達するまでにかかる時間が長くなることが分かっている。
そのことを利用して、本発明においては、前記内燃機関の始動開始時から、前記排気浄化触媒の温度の変化が最大となるまでの時間が所定値より長いことにより、前記排気浄化触媒の劣化を検出するようにした。ここで所定値とは、前記内燃機関の始動開始時から、前記排気浄化触媒が活性温度に達するまでにこれより長い時間がかかった場合には、前記排気浄化触媒が劣化していると判定される閾値としての時間である。
また、本発明においては、前記内燃機関の始動開始時から、前記排気浄化触媒の温度の変化が最大となるまでの期間における、前記内燃機関への吸入空気量の積算値が所定値より多いことをもって、前記排気浄化触媒の劣化を検出するようにしてもよい。
ここにおいて、前記排気浄化触媒の劣化に伴い、前記排気浄化触媒が活性されづらくなるので、前記内燃機関が始動開始してから、前記排気浄化触媒の温度が活性温度に達するまでの吸入空気量の積算値は多くなる傾向にあることが分かっている。これは、吸入空気量の積算値と、前記排気浄化触媒に与えられたガスエネルギーとの間に相関が高いことによる。
そのことを利用して、本発明においては、前記内燃機関の始動開始時から、前記排気浄化触媒の温度の変化が最大となるまでの期間における、吸入空気量の積算値が所定値より多いことにより、前記排気浄化触媒の劣化を検出するようにした。
また、本発明においては、触媒劣化検出の基準となる前記所定値を、前記内燃機関の始動開始後における運転状態に基いて補正するようにしてもよい。ここにおいて、前記内燃機関の始動開始後における運転状態によって、前記排気浄化触媒の温度は変化する。従って、内燃機関の始動開始後における運転状態によって、前記排気浄化触媒が活性温度に達するまでの時間や、前記排気浄化触媒が活性温度に達するまでの吸入空気量の積算値も変化する。そこで、内燃機関の始動開始後における運転状態に基いて触媒劣化判定の基準となる前記所定値を補正し、内燃機関の運転状態による影響をキャンセルすることとした。そうすることにより、触媒劣化検出をより正確に行うことができる。
ここで、前記内燃機関の運転状態とは、例えば、機関回転数、空燃比、アクセル踏み込み量、アクセル踏み込み量の履歴のうち少なくとも一つことをいう。また、前記所定値が
、前記内燃機関の始動開始時から前記排気浄化触媒の温度の変化が最大となるまでの時間と比較すべき基準時間である場合には、前記所定値を吸入空気量に基いて補正してもよい。
さらに具体的には、内燃機関の始動開始時から前記排気浄化触媒の温度の変化が最大となるまでの期間における、機関回転数、空燃比、アクセル踏み込み量、あるいは吸入空気量の平均値または積算値を算出し、該平均値または積算値と、前記所定値との関係を格納したマップから、算出された平均値または積算値に対応する前記所定値を読み出すことにより補正してもよい。ここで、前記平均値または積算値と、前記所定値との関係を格納したマップは、予め実験的に求めておくようにするとよい。
あるいは、前記平均値または積算値と、前記所定値に対して行う補正係数との関係を格納したマップから、前記算出された平均値または積算値に対応する補正係数を読み出し、読み出された補正係数を前記所定値に乗ずることにより補正してもよい。
また、本発明においては、触媒劣化検出の基準となる前記所定値を、内燃機関の始動開始時における冷却水温度、潤滑油温度、外気温度、触媒温度のうち少なくとも一つに基いて補正するようにしてもよい。
ここで、冷却水温度、潤滑油温度、外気温度によって前記排気浄化触媒の、内燃機関の始動開始時における温度を推定することができる。また、内燃機関の始動開始時における触媒温度を直接検出するようにしてもよい。この内燃機関の始動開始時における触媒温度が高い程、前記内燃機関の始動開始時から前記排気浄化触媒の温度の変化が最大となるまでの時間は短くなる。同様に、前記内燃機関の始動開始時から前記排気浄化触媒の温度の変化が最大となるまでの期間における吸入空気量の積算値は少なくなる。
従って、触媒劣化検出の基準となる前記所定値を、内燃機関の始動開始時における冷却水温度、潤滑油温度、外気温度、触媒温度のうち少なくとも一つに基いて補正することにより、より正確に、排気浄化触媒の劣化の検出をすることができる。
具体的には、内燃機関の始動開始時における冷却水温度、潤滑油温度、外気温度または触媒温度と、前記所定値との関係を格納したマップから、検出された冷却水温度、潤滑油温度、外気温度または触媒温度に対応する前記所定値を読み出すことにより補正してもよい。ここで、前記内燃機関の始動開始時における冷却水温度、潤滑油温度、外気温度または触媒温度と、前記所定値との関係を格納したマップは、予め実験的にもとめるようにするとよい。
あるいは、前記内燃機関の始動開始時における冷却水温度、潤滑油温度、外気温度または触媒温度と、前記所定値に対して行う補正係数との関係を格納したマップから、検出された冷却水温度、潤滑油温度、外気温度または触媒温度に対応する補正係数を読み出し、読み出された補正係数を前記所定値に乗ずることにより補正してもよい。
また、本発明においては、前記温度変化検出手段は、前記排気浄化触媒における上流側の端部から10mm〜50mmの部分における前記排気浄化触媒の温度の変化を検出するようにしてもよい。
ここで、前記内燃機関からの排気中のNOx、HCなどは、前記排気浄化触媒における上流側の端部付近においてより多く反応する。従って、測定点が前記排気浄化触媒における上流側の端部に近いほど、前記排気浄化触媒の温度の変化が大きくなり、検出性は向上する。しかし、測定点が前記排気浄化触媒における上流側の端部に過度に近い場合には、
内燃機関からの排気の温度の影響を受け、前記排気浄化触媒の温度の変化の検出性は悪化する。
従って、前記排気浄化触媒の上流側の端部から10〜50mmの部分において、前記排気浄化触媒の温度の変化を検出するようにすれば、検出性が高い部分において、前記排気浄化触媒の温度の変化を検出することができる。また、前記排気浄化触媒の温度の変化を検出する際に、検出値が、排気そのものの温度の影響を受けることを抑制できる。その結果、前記排気浄化触媒の温度の変化をより正確に検出することができ、より正確に前記排気浄化触媒の劣化の検出を行うことができる。
なお、本発明における課題を解決するための手段は、可能な限り組み合わせて使用することができる。
本発明にあっては、内燃機関の始動時において、より正確に排気浄化触媒の劣化検出を行うことができる。
以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。
図1は、本実施例に係る内燃機関と、その排気系及び制御系の概略構成を示す図である。図1に示す内燃機関1には、内燃機関1の内部を循環する冷却水の温度を検出する冷却水温センサ12が設けられている。なお、図1においては、内燃機関1の内部及びその吸気系は省略されている。
図1において、内燃機関1には、内燃機関1から排出される排気が流通する排気管5が接続され、この排気管5は下流にて図示しないマフラーに接続されている。また、排気管5の途中には、内燃機関1からの排気を浄化する排気浄化触媒10が配置されている。
本実施例における排気浄化触媒10は所謂三元触媒であり、内燃機関1からの排気中の一酸化炭素、炭化水素、窒素酸化物を浄化する。担体としては、アルミナ,シリカ,ジルコニア,チタニア,セリアなどの多孔質酸化物あるいはこれらから選ばれる複合酸化物を用いることができる。これらの担体に担持される貴金属としては、Pt、Rh、Pd、Ir、Ruなどから選択される少なくとも一種を用いることができる。
また、排気管5における、排気浄化触媒10の下流側には、排気浄化触媒10から排出される排気の温度を検出する触媒温度センサ17が備えられている。ここで、触媒温度センサ17により検出された、排気浄化触媒10から排出される排気の温度は、排気浄化触媒10の温度と略同一であるので、これをもって、排気浄化触媒10の温度とすることができる。
以上述べたように構成された内燃機関1及びその排気系には、該内燃機関1及び排気系を制御するための電子制御ユニット(ECU:Electronic Control Unit)20が併設されている。このECU20は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御する他、内燃機関1の排気浄化触媒10に係る制御を行うユニットである。
ECU20には、図示しないクランクポジションセンサや、アクセルポジションセンサ
、吸入空気量を検出するエアフローメータなどの内燃機関1の運転状態の制御に係るセンサ類の他、本実施例における冷却水温センサ12、触媒温度センサ17などが電気配線を介して接続され、出力信号がECU20に入力されるようになっている。一方、ECU20には、内燃機関1内の図示しない燃料噴射弁等が電気配線を介して接続され、ECU20によって制御されるようになっている。
また、ECU20には、CPU、ROM、RAM等が備えられており、ROMには、内燃機関1の種々の制御を行うためのプログラムや、データを格納したマップが記憶されている。後述する、本発明における触媒劣化検出ルーチンも、ECU20のROMに記憶されているプログラムの一つである。
ここで、上記の排気浄化触媒10は、過熱や長期の使用などにより排気中の一酸化炭素、炭化水素、窒素酸化物に対する浄化能力が劣化する場合がある。この排気浄化触媒10の浄化能力の低下がある程度以上になると、内燃機関1からの排気を充分に浄化することができず、エミッションの悪化を招くおそれがある。従って、排気浄化触媒10がある程度以上に劣化した場合には、運転者にそのことを報知する必要がある。
ここで、排気浄化触媒10の劣化検出の方法としては、排気浄化触媒10の前後における排気センサの出力と、触媒温度とから、排気浄化触媒10の排気浄化率特性を求め、この排気浄化率特性の立ち上がり特性を、予め記憶した基準の排気浄化率特性の立ち上がり特性と比較する方法などが考えられる。
しかし、上記の劣化検出方法においては、前記排気浄化触媒の排気浄化率特性の立ち上がり特性を求め、予め記憶した基準の排気浄化率特性の立ち上がり特性と比較するという複雑な処理を必要としていた。また、立ち上がり特性を求める際に外乱を受け易く、精度良い劣化検出が困難な場合があった。
さらに、内燃機関1の始動時においては、排気浄化触媒10が充分に活性化していないために、正確な劣化検出を行うことが困難な場合があった。
ここで、内燃機関1における排気浄化触媒10は、その浄化性能が劣化するに伴い活性されづらくなるため、活性温度が高温側にシフトすることが分かっている。また、内燃機関1の始動時においては、高温の排気が排気浄化触媒10に導入されるため、排気浄化触媒10の温度が上昇するが、活性温度付近においては、触媒反応が始まるため、その反応熱によって触媒温度の変化が大きくなることが分かっている。
図2には、内燃機関1の始動開始後において排気浄化触媒10に導入される排気の温度と、排気浄化触媒10の触媒温度及び、触媒温度の変化の関係を示す。ここでは、触媒温度の変化とは、触媒温度の微分値を意味している。また、横軸は内燃機関1の始動開始時からの経過時間を示している。
図2では、時点t1において内燃機関1が始動開始した場合、内燃機関1から排出され排気浄化触媒10に導入される排気の温度は急激に上昇し、その後アイドリング中は略一定の温度に収束する。また、排気浄化触媒10の温度は、内燃機関1からの排気が導入された際に、排気の熱により上昇する。そして、時点t2において活性化されることによりさらに温度上昇を続ける。
ここで、排気浄化触媒10が活性化された際には、排気浄化触媒10において触媒反応が開始することにより、排気浄化触媒10の温度の変化が最大になることが分かっている。従って、図2では、排気浄化触媒10の温度の変化は時点t2においてピークを迎える
。また図2において、排気浄化触媒10の活性温度は、時点t2における排気浄化触媒10の温度T1で示される。
次に、図3を用いて、排気浄化触媒10の温度上昇と、劣化との関係について説明する。図3中実線で示すのは正常な状態における、内燃機関1の始動開始以降の排気浄化触媒10の温度及び浄化率を示した曲線である。一方、一点鎖線で示すのは、劣化した状態における温度及び浄化率を示している。なお、図中の、正常な状態における排気浄化触媒10の温度曲線において変化が最大となる時点は、図2に示すt2であり、その際の排気浄化触媒10の温度は図2に示す活性温度T1である。そして、劣化した状態における温度曲線において変化が最大となる時点をt2´、その際の排気浄化触媒10の温度をT1´とする。
図3に示すように、劣化した状態における排気浄化触媒10の活性温度T1´は、正常な状態における排気浄化触媒10の活性温度T1より高くなっている。同様に劣化した状態における排気浄化触媒10が活性温度に達するまでの時間t2´は、正常な状態における排気浄化触媒10が活性温度に達するまでの時間t2より長くなっている。換言すると、劣化した状態においては、排気浄化触媒10の活性温度は、正常な状態と比較して高くなり、内燃機関1の始動開始後、活性化するまでにかかる時間は長くなることが分かる。
そこで、本実施例においては、上記のうち、排気浄化触媒10の活性温度が所定値よりも高いかどうかによって、排気浄化触媒10の劣化を検出することとした。
図4は、本実施例における触媒劣化検出ルーチンを示すフローチャートである。本ルーチンはECU20内のROMに記憶されたプログラムであり、内燃機関1が搭載された車両の電源投入後、所定期間毎に実行されるルーチンである。
本ルーチンが実行されると、まずS101において、イグニッションがONされたかどうか、換言すると内燃機関1の始動が開始されたかどうかが判定される。ここでイグニッションがONされていないと判定された場合には、排気浄化触媒10の温度上昇が始まらないので本ルーチンを一旦終了する。一方、イグニッションがONされたと判定された場合には、S102に進む。
S102においては、冷却水温センサ12の出力信号をECU20に読み込むことにより、内燃機関1における冷却水温を取得する。
次に、S103に進み、今回の内燃機関1の始動が再始動かどうかが判定される。具体的には、S102において取得された冷却水温が、所定の再始動基準温度より低いかどうかが判定される。ここで、再始動基準温度とは、冷却水温がこれ以上である場合には、内燃機関1の始動が再始動であり、排気浄化触媒10の初期温度が高いために、排気浄化触媒10の活性温度を正確に取得することが困難と判断される閾値としての冷却水温である。そして、S103において今回の内燃機関1の始動が再始動であると判定された場合には、排気浄化触媒10の活性温度を正確に取得することが困難と判断されるので本ルーチンを一旦終了する。一方、今回の内燃機関1の始動が再始動ではないと判定された場合には、S104に進む。
S104においては、触媒温度センサ17の出力をECU20に読み込むことにより、排気浄化触媒10の温度を取得する。S104の処理が終了するとS105に進む。
S105においては、排気浄化触媒10の温度の変化を算出する。すなわち、前回の本ルーチン実行時におけるS105の処理で取得された排気浄化触媒10の温度と、今回の
本ルーチン実行時におけるS105の処理で取得された排気浄化触媒10の温度との差分をECU20において計算する。なお、ここで、排気浄化触媒10の温度を取得する触媒温度センサ17と、排気浄化触媒10の温度の変化を算出するECU20は、本実施例における温度変化検出手段を構成する。S105の処理が終了するとS106に進む。
S106においては、S105において算出した触媒温度変化がピークを迎えたかどうかを判定する。具体的には、例えば、今回の本ルーチンの実行におけるS105の処理で算出された触媒温度変化ΔT0の値から、2n回前の本ルーチンの実行におけるS105で算出された触媒温度変化ΔT2nまでの値を比較し、ΔT0<ΔT1<・・<ΔTnが成立し、かつ、ΔT2n<ΔT2n−1<・・<ΔTn+1が成立する場合に、触媒温度変化がピークを迎えたと判断してもよい。なお、この場合の触媒温度変化のピークは、ΔTnとしてもよいし、ΔTn+1としてもよい。あるいは、ΔTnとΔTn+1の平均値としてもよい。S106において触媒温度変化がピークを迎えていないと判断された場合には、S104の処理の前に戻り、S104からS106までの処理を再度実行する。そして、S106において触媒温度変化がピークを迎えたと判断されるまで、S104からS106までの処理を続ける。一方、S106の処理において触媒温度変化がピークを迎えたと判定された場合には、S107に進む。
なお、ここで上記nの値はある程度以上大きな値とするとよい。そうすることにより、排気浄化触媒10の温度の変化において小さなピークが生じたことをもって、排気浄化触媒10の温度が活性温度に達したと誤って判定することを抑制できる。あるいは、S106において触媒温度変化のピークと判定されたΔTnなどの値が閾値より大きい場合にのみ、排気浄化触媒10の温度が活性温度に達したと判断することにより、誤判定を抑制するようにしてもよい。
次に、S107においては、触媒活性温度Tcを導出する。具体的には、S106において、ΔTnを触媒温度変化のピーク値とした場合には、ΔTnが取得された時、すなわちn回前の本ルーチンの実行時のS104の処理で取得された排気浄化触媒10の温度をTcとする。S107の処理が終了するとS108に進む。
S108においては、劣化基準活性温度Tsを導出する。ここで、劣化基準活性温度Tsは、排気浄化触媒10の触媒活性温度Tcが劣化基準活性温度Tsより高い場合には、排気浄化触媒10は劣化しており、排気浄化が充分に行われないおそれがあると判断される閾値としての触媒温度である。本実施例においては、予め実験的に求められた不変の値をTsとして設定した。S108の処理が終了するとS109に進む。
S109の処理においては、触媒活性温度Tcが劣化基準活性温度Tsより高いかどうかが判定される。ここで、触媒活性温度Tcが劣化基準活性温度Ts以下である場合には、排気浄化触媒10は劣化していないと判断できるので、そのまま本ルーチンを終了する。一方、触媒活性温度Tcが劣化基準活性温度Tsより高いと判定された場合には、排気浄化触媒10は劣化していると判断され、S110に進む。
S110においては、触媒劣化検出ランプを点灯し、運転者に排気浄化触媒10の劣化を報知する。そして、この処理の後に本ルーチンを終了する。
以上、説明したように、本実施例においては、排気浄化触媒10の温度の変化を検出し、排気浄化触媒10の温度の変化がピークを迎えた際の排気浄化触媒10の温度を、排気浄化触媒10の触媒活性温度Tcであるとした上で、劣化基準活性温度Tsと比較することによって排気浄化触媒10の劣化を検出している。従って、簡単な処理によってより正確に、排気浄化触媒10の劣化を検出することができる。
なお、本実施例におけるS102で冷却水温を取得することによって内燃機関1の始動が再始動かどうかが判定されたが、再始動の判定をする方法はこれに限られない。例えば、エンジンオイルの油温や、排気浄化触媒10の温度によって再始動かどうかを判定してもよい。
また、S106において触媒温度の変化がピークを迎えたかどうかを判定するために、S105で、前回の本ルーチン実行時におけるS105の処理で取得された排気浄化触媒10の温度と、今回の本ルーチン実行時におけるS105の処理で取得された排気浄化触媒10の温度との差分を計算することにより、排気浄化触媒10の温度の変化を算出したが、S105において排気浄化触媒10の温度の変化を算出する方法はこれに限られない。例えば、前回の本ルーチン実行時におけるS105の処理で取得された排気浄化触媒10の温度と、今回の本ルーチン実行時におけるS105の処理で取得された排気浄化触媒10の温度との差分を計算するだけでなく、それを、本ルーチンの実行間隔で除することにより、所謂変化率(微分係数)を求めるようにしてもよい。
さらに、S106において、排気浄化触媒10における温度の変化がピークを迎えたかどうかを判定する方法は、上記の説明における方法に限られるものではない。
次に、本発明における実施例2について説明する。本実施例における内燃機関1及びその排気系、制御系のハード構成は、実施例1で説明したものと同じであるので説明は省略する。本実施例における触媒劣化検出ルーチンは、内燃機関1の始動が開始してから、排気浄化触媒10の温度が活性温度に達するまでの時間によって排気浄化触媒10の劣化を検出するルーチンである。また、本実施例においては、内燃機関1の始動が開始してから排気浄化触媒10の温度が活性温度に達するまでの時間と比較されることにより劣化判定の基準となる劣化基準活性時間tsを、内燃機関1の始動開始時における内燃機関1の環境によって補正する。
図5は、本実施例における触媒劣化検出ルーチンについてのフローチャートである。本ルーチンはECU20内のROMに記憶されたプログラムであり、内燃機関1が搭載された車両の電源投入後、所定期間毎に実行されるルーチンである。
本ルーチンが実行されるとS101〜S106の処理が行われ、触媒温度変化がピークを迎えたかどうかが判定される。ここまでの処理は、実施例1において説明した処理と同じであるので説明を省略する。
S201においては、内燃機関1が始動を開始してから、排気浄化触媒10が活性温度に達するまでの時間である触媒活性時間tcを導出する。具体的には、S106において、ΔTnを触媒温度変化のピーク値とした場合には、内燃機関1の始動開始から、ΔTnが取得された時、すなわちn回前の本ルーチンの実行時までの時間を触媒活性時間tcとする。S201の処理が終了するとS202に進む。
S202においては、劣化基準活性時間tsを導出する。ここで、劣化基準活性時間tsは、内燃機関1の始動時における冷却水温と劣化基準活性時間tsとの関係を格納したマップから読み出すことによって導出される。ここで、内燃機関1の始動開始時における内燃機関1の環境によって、排気浄化触媒10が活性温度に達するまでの時間も変化することが分かっている。従って、内燃機関1の始動開始時における冷却水温と、劣化基準活性時間tsとの関係を予め実験的に求めてマップ化しておき、該マップから、S102において取得された、内燃機関1の始動開始時における冷却水温に対応した劣化基準活性時
間tsを読み出すこととしている。
そして、S203に進み、S201において導出された触媒活性時間tcが、S202において導出された劣化基準活性時間tsより長いかどうかが判定される。ここで、S201において導出された触媒活性時間tcが、S202において導出された劣化基準活性時間ts以下であると判定された場合には、排気浄化触媒10は充分早期に活性温度に達しており、劣化していないと判断されるので、本ルーチンを一旦終了する。
一方、S201において導出された触媒活性時間tcが、S202において導出された劣化基準活性時間tsより長いと判定された場合には、排気浄化触媒10は劣化していると判断され、S110に進み、触媒劣化検出ランプを点灯することにより、排気浄化触媒10の劣化を運転者に報知して本ルーチンを終了する。
以上、説明したように、本ルーチンにおいては、排気浄化触媒10の劣化の判定基準となる劣化基準活性時間tsを、内燃機関1の始動時における冷却水温度に応じて変更することによって補正している。従って、内燃機関1の始動時における暖機の程度や外気温などの環境に対応し、最適な劣化基準活性時間tsを選択することができ、内燃機関1の排気浄化触媒10の劣化検出をより正確に行うことができる。
なお、上記の説明においては、劣化基準活性時間tsを、内燃機関1の始動開始時における冷却水温度によって補正したが、補正するために用いるパラメータは冷却水温度に限られない。例えば、内燃機関1の始動開始時におけるエンジンオイルの油温や、外気温度、排気浄化触媒10の温度によって補正するようにしてもよい。
次に、本発明における実施例3について説明する。本実施例における内燃機関1及びその排気系、制御系のハード構成と、実施例1で説明したものとの相違点は、本実施例においては、排気系における排気浄化触媒10の上流側に図示しない空燃比センサを備えた点である。また、本実施例における触媒劣化検出ルーチンにおいては、内燃機関1の始動が開始してから、排気浄化触媒10の温度が活性温度に達するまでに吸入された吸入空気量の積算値Gacによって排気浄化触媒10の劣化を検出する。また、本実施例においては、内燃機関1の始動が開始してから排気浄化触媒10の温度が活性温度に達するまでの吸入空気量の積算値と比較されることにより劣化判定の基準となる劣化基準活性吸入空気量Gasを、内燃機関1の始動開始後における内燃機関1の運転状態によって補正する。
図6は、本実施例における触媒劣化検出ルーチンについてのフローチャートである。本ルーチンはECU20内のROMに記憶されたプログラムであり、内燃機関1が搭載された車両の電源投入後、所定期間毎に実行されるルーチンである。
本ルーチンが実行されるとS101〜S106の処理が行われ、触媒温度の変化がピークを迎えたかどうかが判定される。ここまでの処理は、実施例1において説明した処理と同じであるので説明を省略する。
次にS301においては、内燃機関1の始動が開始してから、排気浄化触媒10が活性温度に達するまでに内燃機関1に吸入された吸入空気量の積算値である触媒活性吸入空気量Gacを導出する。具体的には、S106において、ΔTnを触媒温度変化のピーク値とした場合には、内燃機関1の始動開始から、ΔTnが取得された時までの、図示しないエアフローメータの出力の積算値をECU20に読み込むことによって導出してもよい。S301の処理が終了するとS302に進む。
S302においては、上述の図示しない空燃比センサによって内燃機関1からの排気の空燃比が検出される。さらに、車両への電源投入後、最初にS101においてイグニッションONと判定されてから、今回の本ルーチンの実行時までにS302において検出された空燃比の平均値が算出される。すなわち、S302の処理においては、内燃機関1の始動が開始されてから本ルーチンの実施時までにおける空燃比の平均値が算出される。
そして、S303においては、劣化基準活性吸入空気量Gasを導出する。ここでは、劣化基準活性吸入空気量Gasは、内燃機関1の始動開始後における空燃比の平均値と、劣化基準活性吸入空気量Gasとの関係を格納したマップから、S302で算出された空燃比の平均値に対応する劣化基準活性吸入空気量Gasを読み出すことによって導出する。
ここで、内燃機関1の始動開始後における内燃機関1の空燃比の平均値が高いほど、排気浄化触媒10に流入する酸素量が多いので、排気浄化触媒10が活性温度に達するまでに必要な吸入空気量は少なくなることが分かっている。従って、本実施例においては、内燃機関1の始動開始後における空燃比の平均値と、劣化基準活性吸入空気量Gasとの関係を予め実験的に求めてマップ化しておき、当該マップから、S302で算出された空燃比の平均値に対応する劣化基準活性吸入空気量Gasを読み出すこととした。
そして、S304に進み、S301において導出された触媒活性吸入空気量Gacが、S303において導出された劣化基準活性吸入空気量Gasより多いかどうかが判定される。ここで、S301において導出された触媒活性吸入空気量Gacが、S303において導出された劣化基準活性吸入空気量Gas以下であると判定された場合には、排気浄化触媒10は充分少ない吸入空気量によって活性温度に達しており、劣化していないと判断されるので、本ルーチンを一旦終了する。
一方、S301において導出された触媒活性吸入空気量Gacが、S303において導出された劣化基準活性吸入空気量Gasより多いと判定された場合には、排気浄化触媒10は劣化していると判断され、S110に進み、触媒劣化検出ランプを点灯することにより、排気浄化触媒10の劣化を運転者に報知して本ルーチンを終了する。
以上、説明したように、本ルーチンにおいては、排気浄化触媒10の劣化の判定基準となる劣化基準活性吸入空気量Gasを、内燃機関1の始動開始後における空燃比の平均値に応じて変更することによって補正している。従って、内燃機関1の始動開始後における運転状態に対応して、最適な劣化基準活性吸入空気量Gasを選択することができ、排気浄化触媒10の劣化検出をより正確に行うことができる。
なお、上記の説明においては、劣化基準活性吸入空気量Gasを、内燃機関1の始動開始後における空燃比の平均値によって補正したが、補正するために用いるパラメータは空燃比の平均値に限られない。例えば、空燃比の積算値を用いても良いし、内燃機関1の始動開始後の所定時期における空燃比を代表値として用いても良い。さらに、空燃比の他に、内燃機関1の始動開始時における機関回転数、スロットル踏み込み量、あるいはスロットル踏み込み量の履歴などに基いて補正するようにしてもよい。
次に、本発明における実施例4について説明する。図7には、本実施例における内燃機関1及び、その排気系、制御系の概略構成を示す。図7における図1との相違点は、触媒温度センサ17が、排気浄化触媒10の内部であって、排気浄化触媒10の上流側端部から30mmの場所に備えられた点である。
図8には、本実施例における内燃機関1の始動が開始してからの、排気浄化触媒10の上流側端部から20mm、50mm、80mmの場所における温度及び、温度変化の値を示す。図8を見て分かるように、測定点が排気浄化触媒10の上流側端部から離れるに従って、触媒温度の温度変化がブロードになっている。換言すると、測定点が排気浄化触媒10の上流側端部に近づくにつれて、触媒温度の変化が急峻になり、触媒温度変化のピークを検出し易くなる。
一方、測定点があまりに排気浄化触媒10の上流側端部に近づくと排気浄化触媒10に導入される排気の温度を直接測定してしまい、逆に触媒温度の変化のピークを正確に検出することが困難となることが分かっている。
そこで、本実施例においては、触媒温度センサ17を、排気浄化触媒10の上流側端部から30mmの点に備え、この点において検出された触媒温度の変化に基いて排気浄化触媒10の温度変化のピークを検出することとした。そうすることにより、排気浄化触媒10の温度変化のピークの検出精度が向上し、結果として、排気浄化触媒10の劣化検出をより正確に行うことができる。
なお、本実施例においては、触媒温度センサ17を、排気浄化触媒10の上流側端部から30mmの点に備えることとしたが、触媒温度センサ17の位置はこれに限られるものではなく、排気浄化触媒10の上流側端部から10mm〜50mmの範囲に備えることにより、排気浄化触媒10の温度変化のピークの検出精度をより向上させることができる。
本発明の実施例に係る内燃機関と、その排気系及び制御系の概略構成を示す図である。 本発明の実施例に係る内燃機関の始動開始後において触媒に導入される排気の温度、触媒の温度及び、触媒の温度変化を示すグラフである。 本発明の実施例に係る正常な状態と劣化した状態とにおける排気浄化触媒の温度変化及び浄化率を示すグラフである。 本発明の実施例1に係る触媒劣化検出ルーチンを示すフローチャートである。 本発明の実施例2に係る触媒劣化検出ルーチンを示すフローチャートである。 本発明の実施例3に係る触媒劣化検出ルーチンを示すフローチャートである。 本発明の実施例4に係る内燃機関と、その排気系及び制御系の概略構成を示す図である。 本発明の実施例4に係る排気浄化触媒の各測定点における温度及び、温度変化を示すグラフである。
符号の説明
1・・・内燃機関
5・・・排気管
10・・・排気浄化触媒
12・・・冷却水温センサ
17・・・触媒温度センサ
20・・・ECU

Claims (7)

  1. 内燃機関の排気通路に設けられ、前記内燃機関の排気を浄化する排気浄化触媒と、
    前記排気浄化触媒の温度の変化を検出する温度変化検出手段と、
    を備え、
    前記温度変化検出手段によって検出された前記排気浄化触媒の温度の変化に基き、前記排気浄化触媒の劣化を検出することを特徴とする内燃機関の触媒劣化検出装置。
  2. 前記温度変化検出手段によって検出された排気浄化触媒の温度の変化が最大となる時点における前記排気浄化触媒の温度が所定値より高いことをもって、前記排気浄化触媒の劣化を検出することを特徴とする請求項1に記載の内燃機関の触媒劣化検出装置。
  3. 前記内燃機関の始動開始時から、前記排気浄化触媒の温度の変化が最大となるまでの時間が所定値より長いことをもって、前記排気浄化触媒の劣化を検出することを特徴とする請求項1に記載の内燃機関の触媒劣化検出装置。
  4. 前記内燃機関の始動開始時から、前記排気浄化触媒の温度の変化が最大となるまでの期間における、前記内燃機関への吸入空気量の積算値が所定値より多いことをもって、前記排気浄化触媒の劣化を検出することを特徴とする請求項1に記載の内燃機関の触媒劣化検出装置。
  5. 触媒劣化検出の基準となる前記所定値を、前記内燃機関の始動開始後における運転状態に基いて補正することを特徴とする請求項3または4に記載の内燃機関の触媒劣化検出装置。
  6. 触媒劣化検出の基準となる前記所定値を、前記内燃機関の始動開始時における冷却水温度、潤滑油温度、外気温度、触媒温度のうち少なくとも一つに基いて補正することを特徴とする請求項3または4に記載の内燃機関の触媒劣化検出装置。
  7. 前記温度変化検出手段は、前記排気浄化触媒における上流側の端部から10mm〜50mmの部分における前記排気浄化触媒の温度の変化を検出することを特徴とする請求項1から6のいずれかに記載の内燃機関の触媒劣化検出装置。
JP2004265784A 2004-09-13 2004-09-13 内燃機関の触媒劣化検出装置 Withdrawn JP2006077738A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265784A JP2006077738A (ja) 2004-09-13 2004-09-13 内燃機関の触媒劣化検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265784A JP2006077738A (ja) 2004-09-13 2004-09-13 内燃機関の触媒劣化検出装置

Publications (1)

Publication Number Publication Date
JP2006077738A true JP2006077738A (ja) 2006-03-23

Family

ID=36157382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265784A Withdrawn JP2006077738A (ja) 2004-09-13 2004-09-13 内燃機関の触媒劣化検出装置

Country Status (1)

Country Link
JP (1) JP2006077738A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048112A (ja) * 2008-08-19 2010-03-04 Isuzu Motors Ltd 排気ガス浄化システム及び排気ガス浄化方法
KR101558760B1 (ko) 2014-04-23 2015-10-07 현대자동차주식회사 선택적 환원 촉매의 열화진단장치 및 그 방법
JP7433713B2 (ja) 2020-03-05 2024-02-20 ダイハツ工業株式会社 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048112A (ja) * 2008-08-19 2010-03-04 Isuzu Motors Ltd 排気ガス浄化システム及び排気ガス浄化方法
KR101558760B1 (ko) 2014-04-23 2015-10-07 현대자동차주식회사 선택적 환원 촉매의 열화진단장치 및 그 방법
JP7433713B2 (ja) 2020-03-05 2024-02-20 ダイハツ工業株式会社 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
JP4475271B2 (ja) NOxセンサの異常診断装置及び異常診断方法
JP6123822B2 (ja) 排気浄化装置の劣化診断装置
JP2008057364A (ja) 内燃機関の排気浄化システム
JP2017025863A (ja) NOx吸蔵還元型触媒の異常診断装置
JP4218601B2 (ja) 圧縮着火内燃機関の空燃比センサ劣化判定システム
KR20210077433A (ko) 삼원 촉매를 이용한 배기 가스 정화 장치 및 그 제어 방법
JP2004069457A (ja) 空燃比検出装置の劣化検出装置
JP6729542B2 (ja) 排気浄化装置の異常診断システム
JP2008240577A (ja) 酸化触媒の劣化診断装置及び劣化診断方法
JP2008095603A (ja) 内燃機関の排気浄化装置
JP4419150B2 (ja) NOx触媒の異常診断装置及び異常診断方法
JP2000034946A (ja) 内燃機関の排ガス浄化装置
JP2007040130A (ja) 内燃機関の排気浄化装置
JP2008121428A (ja) 内燃機関の触媒劣化検出装置
JP2010180717A (ja) 触媒異常診断装置
JP2010159701A (ja) 触媒劣化診断装置
JP3978171B2 (ja) エンジン排気ガス温度予測方法
JP2006077738A (ja) 内燃機関の触媒劣化検出装置
JP4101133B2 (ja) 内燃機関の空燃比制御装置の自己診断装置
JP3855720B2 (ja) 内燃機関の触媒早期暖機制御システムの異常診断装置
JP2004060563A (ja) 内燃機関の燃料噴射量制御装置
JP2008038720A (ja) 排出ガス浄化システムの下流側酸素センサの異常診断装置
JP2010180735A (ja) 触媒の劣化診断装置
JP2009121414A (ja) 内燃機関の触媒劣化診断装置
JP2005171809A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204