JP2006077278A - Aluminum alloy sheet for bottle type can - Google Patents

Aluminum alloy sheet for bottle type can Download PDF

Info

Publication number
JP2006077278A
JP2006077278A JP2004260773A JP2004260773A JP2006077278A JP 2006077278 A JP2006077278 A JP 2006077278A JP 2004260773 A JP2004260773 A JP 2004260773A JP 2004260773 A JP2004260773 A JP 2004260773A JP 2006077278 A JP2006077278 A JP 2006077278A
Authority
JP
Japan
Prior art keywords
strength
necking
moldability
phase particles
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004260773A
Other languages
Japanese (ja)
Other versions
JP4750392B2 (en
Inventor
Kazuhiko Matsuzaki
松崎和彦
Yasufumi Shimizu
清水保史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2004260773A priority Critical patent/JP4750392B2/en
Publication of JP2006077278A publication Critical patent/JP2006077278A/en
Application granted granted Critical
Publication of JP4750392B2 publication Critical patent/JP4750392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent wrinkling and cracking at necking for a mouth part and subsequent threading and curl forming while satisfactorily securing the strength after baking (pressure resistance of cans) of bottle type cans. <P>SOLUTION: The aluminum-base alloy has a composition containing 0.1 to 0.5% Si, 0.8 to 1.5% Mg, 0.7 to 1.5% Mn, 0.05 to 0.5% Cu and 0.2 to 0.7% Fe and further containing either or both of 0.01 to 0.3% Cr and 0.01 to 0.3% Ti. Moreover, the number of secondary-phase particles with ≥15μm diameter is ≤3 pieces/mm<SP>2</SP>and the number of secondary-phase particles with 0.75 to 2μm diameter is ≥10,000 pieces/mm<SP>2</SP>, and tensile proof stress after treatment at 210°C for 10 min ranges from 230 to 260 N/mm<SP>2</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はリシール可能な缶底部、胴部、飲み口部が一体成形されているボトル形状の飲料缶用のアルミニウム合金板に係り、特に口部のネッキング成形とカール成形およびねじ切り成形に優れたアルミニウム合金板に係わるものである。     TECHNICAL FIELD The present invention relates to an aluminum alloy plate for a bottle-shaped beverage can in which a resealable bottom, body, and mouth part are integrally formed, and in particular, aluminum excellent in necking, curl and threading of the mouth. It relates to alloy plates.

従来の飲料缶は缶蓋と缶胴よりなるいわゆる2ピース缶が主流であったが、近年リシールが可能なボトル型の飲料缶が開発されている。このボトル缶は通常の2ピース缶胴と同様に素板を円形にブランキングし、これを一次絞りカップとした後、再絞り加工、しごき加工により胴体部と底部を有する形状とする。これをトリミングして缶高さをそろえた後開口部を縮径化し、さらにこの部分にねじ部の加工を施してさらに飲み口部にカール加工をほどこす。   Conventional beverage cans are mainly so-called two-piece cans composed of a can lid and a can body, but recently, bottle-type beverage cans that can be resealed have been developed. This bottle can is shaped like a normal two-piece can body by blanking a base plate into a circular shape, making it a primary squeeze cup, then having a body part and a bottom part by redrawing and ironing. After trimming this and aligning the can height, the diameter of the opening is reduced, and the threaded portion is further processed at this portion to further curl the drinking mouth.

このようなネジ付きのボトル型缶では、口部のネッキング成形の絞り比が従来のDI缶より大きいため、高絞り成形性が要求される。さらに、より強加工であるためネッキング後強度が高くなるが、後工程には従来のDI缶では無いねじ切り加工とフランジ部をカール状に曲げるというこれまでより厳しい成形が存在し、高強度化していると割れが発生しやすい問題がある。その対策として成形前強度を下げれば、口部の強度も低下し成形性も改善されるが、耐圧確保のためある以上の強度は必要であり、強度と成形性の両立は困難である。 Such a bottle-type can with a screw is required to have a high drawability since the drawing ratio of necking molding at the mouth is larger than that of a conventional DI can. In addition, the strength after necking is higher because it is stronger, but in the subsequent process, there is a more stringent molding than the conventional DI can, such as threading and bending the flange part in a curled shape, and the strength is increased. There is a problem that cracks are likely to occur. If the pre-molding strength is lowered as a countermeasure, the strength of the mouth portion is lowered and the moldability is improved, but a strength higher than a certain level is necessary for ensuring the pressure resistance, and it is difficult to achieve both strength and moldability.

このようなボトル型缶用のアルミニウム合金材として下記のような技術が提案されている。
特開2002−256366号公報 特開2003−82429号公報 特開2003−306750号公報
The following techniques have been proposed as aluminum alloy materials for such bottle-shaped cans.
JP 2002-256366 A JP 2003-82429 A JP 2003-306750 A

特許文献1(特開2002−256366)および特許文献2(特開2003−82429)にはネッキング性が優れたボトル缶用アルミニウム板が開示されているが、素板のベーク処理後の材料強度が低くても、DI成形もしくはネッキング成形時に加工硬化が大きな材料では、十分なネッキング成形性が得られない。   Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-256366) and Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-82429) disclose aluminum plates for bottle cans having excellent necking properties. Even if it is low, sufficient necking moldability cannot be obtained with a material that has a large work hardening during DI molding or necking molding.

また、特許文献3(特開2003−306750)にはネッキングした口頸部の強度が高く、カール加工性に優れたボトル型飲料缶用アルミニウム合金板の製造方法が開示されているが、この場合冷間圧延中に2回の中間焼鈍が必要となりコスト的に不利である。   Further, Patent Document 3 (Japanese Patent Laid-Open No. 2003-306750) discloses a method for producing an aluminum alloy plate for a bottle-type beverage can having a high necked neck and neck strength and excellent curl processability. This is disadvantageous in cost because it requires two intermediate annealings during cold rolling.

本発明は、これら従来の技術では不十分だった点、ベーク後強度(缶耐圧)を十分確保しつつ、口部のネック成形やその後のねじ切り加工およびカール成形で、しわ及び割れを発生させないことを課題とする。   In the present invention, these conventional techniques are insufficient, and sufficient strength after baking (can pressure resistance) is ensured, while the neck formation of the mouth and subsequent threading and curling do not cause wrinkles and cracks. Is an issue.

本発明者らは合金組成を特定の範囲内にしベーク後耐力及び板表面の第2相粒子の分布密度を規定することによって上記特性を満たすアルミニウム合金板を得ることが可能であることを見出し、さらに研究を重ねて本発明を完成させるに至った。   The inventors have found that it is possible to obtain an aluminum alloy sheet satisfying the above characteristics by setting the alloy composition within a specific range and specifying the post-baking proof stress and the distribution density of the second phase particles on the sheet surface, Further studies have been made to complete the present invention.

すなわち請求項1記載の発明は、必須元素として、Si:0.1〜0.5%(mass%、以下同じ)、Mg:0.8〜1.5%、Mn:0.7〜1.5%、Cu:0.05〜0.5%、Fe:0.2〜0.7%を含み、さらにCr:0.01〜0.3%、Ti:0.01〜0.3%のうち1種または2種を含有したアルミニウム基合金であり、15μm以上の径の第2相粒子が3個/mm以下で、0.75〜2μmの第2相粒子が10000個/mm以上存在し、210℃×10分処理後の引張り耐力が230〜260N/mm の範囲にあることを特徴とする、胴部に対する口部の絞り比が30%以上であるボトル型缶用のアルミニウム合金板である。 That is, according to the first aspect of the present invention, Si: 0.1 to 0.5% (mass%, the same shall apply hereinafter), Mg: 0.8 to 1.5%, Mn: 0.7 to 1. as essential elements. 5%, Cu: 0.05-0.5%, Fe: 0.2-0.7%, Cr: 0.01-0.3%, Ti: 0.01-0.3% It is an aluminum-based alloy containing one or two of them, the second phase particles having a diameter of 15 μm or more are 3 / mm 2 or less, and the second phase particles of 0.75 to 2 μm are 10,000 / mm 2 or more. Aluminum for bottle-type cans having a draw ratio of 30% or more with respect to the body, characterized by being present and having a tensile strength after treatment at 210 ° C. × 10 minutes in the range of 230 to 260 N / mm 2 Alloy plate.

本発明のボトル缶用材は、アルミニウム合金成分の規定により、その強度、延性を十分に確保し要求される突き刺し強度を満足するので、ボトル缶体用板として好適に使用される。   The bottle can material of the present invention is suitably used as a plate for a bottle can body, because the strength and ductility are sufficiently secured and the required piercing strength is satisfied by the definition of the aluminum alloy component.

まず、本発明における、アルミニウム合金の成分を限定した理由について説明する。   First, the reason for limiting the components of the aluminum alloy in the present invention will be described.

Siは、焼き付け防止に効果のあるα相を生成するのに必要な元素である。0.1%未満では焼き付け防止に十分なα相の量を得られない。また、Siが少ないとMn固溶量の増加を招き、ネッキング後強度も大きくなり口部の成形性が低下する。0.5%を超える場合はMgSi析出量が増加し、高強度化や脆化により成形性が低下してしまう。 Si is an element necessary for generating an α phase effective in preventing baking. If it is less than 0.1%, the amount of α phase sufficient to prevent baking cannot be obtained. Moreover, when there is little Si, the amount of Mn solid solution will increase, strength after necking will also become large, and the moldability of a mouth part will fall. When it exceeds 0.5%, the amount of precipitated Mg 2 Si increases, and the formability deteriorates due to high strength and embrittlement.

Mgは固溶強化に寄与するとともに、塗装焼付け時の強度向上に寄与する析出物の構成元素である。0.8%未満ではその効果が不十分で、1.5%を超えると圧延時の割れや固溶量増加によりネッキング成形後の強度が増加し、口部の成形性が低下してしまう。   Mg is a constituent element of precipitates that contributes to solid solution strengthening and contributes to improvement in strength during paint baking. If it is less than 0.8%, the effect is insufficient, and if it exceeds 1.5%, the strength after necking molding increases due to cracking during rolling and an increase in the amount of solid solution, and the moldability of the mouth part decreases.

Mnは、強度を向上させるとともに、均質化処理時にα-Al(Fe,Mn)Si相を形成して、しごき成形時の潤滑性を確保し、金型への焼き付きを防止するのに不可欠な元素である。Mnが0.7%未満では前述の潤滑性が確保できない。また、第2相粒子の数が少なくなり成形性が低下する。また、1.5%を超えると第2相粒子の増大により成形性が低下する。さらに、固溶量増加によりネッキング後の強度が高くなり、その後の口部の成形性が低下する。   Mn is essential for improving strength and forming α-Al (Fe, Mn) Si phase during homogenization to ensure lubricity during ironing and prevent seizure to the mold. It is an element. If Mn is less than 0.7%, the above-mentioned lubricity cannot be ensured. In addition, the number of second phase particles is reduced and moldability is lowered. On the other hand, if it exceeds 1.5%, the moldability deteriorates due to the increase of the second phase particles. Furthermore, the strength after necking increases due to the increase in the amount of solid solution, and the moldability of the subsequent mouth portion decreases.

Cuは、塗装焼付け時のAl−Mg−Cu系析出による強度向上に必要な元素である。0.05%未満ではその効果が無く、0.5%を超えると耐食性低下と固溶量増加による口部の成形性低下を招いてしまう。   Cu is an element necessary for strength improvement by Al—Mg—Cu-based precipitation during coating baking. If it is less than 0.05%, the effect is not obtained, and if it exceeds 0.5%, the corrosion resistance is lowered and the moldability of the mouth is lowered due to the increase in the amount of solid solution.

Feはα相の形成および分布密度制御に必要な元素である。0.2%未満では、焼き付き防止効果や必要な第2相粒子の分布が得られない。0.7%を超えると、Al−Fe−Mn系の巨大金属間化合物が生成し成形性が低下する。   Fe is an element necessary for α-phase formation and distribution density control. If it is less than 0.2%, the seizure prevention effect and the necessary distribution of the second phase particles cannot be obtained. If it exceeds 0.7%, an Al—Fe—Mn-based giant intermetallic compound is produced, and the moldability is lowered.

Tiは結晶粒の微細化を通じて成形性を向上させる。0.01%未満ではその効果は得られない。また、0.3%を超えると、粗大金属間化合物が生じて成形性が低下する。 Ti improves formability through refinement of crystal grains. If it is less than 0.01%, the effect cannot be obtained. Moreover, when it exceeds 0.3%, a coarse intermetallic compound will arise and a moldability will fall.

Crも結晶粒の微細化を通じて成形性を向上させる。0.01%未満ではその効果は得られない。また、0.3%を超えると、粗大金属間化合物が生じて成形性が低下する。 Cr also improves formability through crystal grain refinement. If it is less than 0.01%, the effect cannot be obtained. Moreover, when it exceeds 0.3%, a coarse intermetallic compound will arise and a moldability will fall.

ただし、上記のような合金組成の限定だけでは優れた成形性は得られず、以下の2つ金属組織制御が不可欠である。   However, excellent formability cannot be obtained only by limiting the alloy composition as described above, and the following two metal structure controls are indispensable.

ひとつは、15μm以上の径のAl−Mn系第2相粒子を、3個/mm2以下とすることである。 One is to make the Al—Mn second phase particles having a diameter of 15 μm or more 3 particles / mm 2 or less.

Al−Mn系晶出物は、DI成形時の焼付防止に必要であるが、15μmを超えると、DI加工時、ネッキング、ねじ切り、カール曲げ成形時に歪みが集中し、破断の起点となりやすい。その分布密度が3個/mm2を超えると成形割れが顕著となる。 The Al—Mn crystallized product is necessary for preventing seizure during DI molding. However, if it exceeds 15 μm, strain concentrates during DI processing, necking, threading, and curl bending molding, and tends to be the starting point of fracture. If the distribution density exceeds 3 pieces / mm 2 , molding cracks become prominent.

もうひとつは,0.75〜2μm径のAl-Mn系第2相粒子を、10000個/mm2以上とすることである。 The other is to make the Al-Mn type second phase particles having a diameter of 0.75 to 2 μm 10000 particles / mm 2 or more.

ネジ付き缶用の胴体部成形では、通常のDI缶よりネッキングの口絞り比が大きいうえに、それに続いて、ねじ切り加工と開口部のカール曲げと強加工が行われるため、DI缶より高い成形性が要求される。ねじ切り加工とカール曲げを行うには、ネック時やそれに続く強加工時に転位が整理されやすいことにより強度増加が少ない材料が良い。   The body part for threaded cans has a higher necking ratio than normal DI cans, and is followed by threading, curl bending of the openings, and strong processing, making it higher than DI cans. Sex is required. For threading and curl bending, a material with little increase in strength is preferred because dislocations are easily arranged during necking and subsequent strong processing.

0.5〜3μm径程度の粒子近傍では、DI時やネッキング加工初期に転位が集中するため、さらに加工が進むと、転位の整理が起こりやすく強度増加が少ない。発明者らは、粒子分布密度と口部の成形性の関係を調査し、特に上記効果が大きい0.75〜2μm径の第2相粒子が10000個/mm2以上あれば広範囲で転位の整理が進み、十分な成形性が得られることが分かった。粒子数がそれ未満だと、転位の整理が促進されない径の粒子が増えること、あるいは、固溶量が増加することに繋がり成形性が低下する。固溶原子は転位の整理を阻害するのでネッキング後強度が高くなりカール成形やねじ切り加工時に割れが発生しやすいためである。 In the vicinity of particles having a diameter of about 0.5 to 3 μm, dislocations concentrate at the time of DI or at the initial stage of necking. Therefore, as the processing proceeds further, dislocations are easily organized and the increase in strength is small. The inventors investigated the relationship between the particle distribution density and the formability of the mouth part, and in particular, the arrangement of dislocations in a wide range if the number of second phase particles having a diameter of 0.75 to 2 μm, which has a large effect, is 10000 particles / mm 2 or more. It has been found that sufficient formability can be obtained. If the number of particles is less than that, the number of particles having a diameter that does not promote dislocation rearrangement increases, or the amount of solid solution increases, and the formability decreases. This is because solid solution atoms hinder the rearrangement of dislocations, so that the strength is increased after necking, and cracking is likely to occur during curl forming and threading.

さらに、材料特性として以下が必要となる。
・210℃×10分処理後の引張り耐力(ABYS)が230〜260N/mm
230N/mm未満では、十分な耐圧が得られず、260N/mm超では口部成形性が困難になるためである。
Furthermore, the following are required as material characteristics.
-Tensile strength (ABYS) after treatment at 210 ° C for 10 minutes is 230 to 260 N / mm 2
If it is less than 230 N / mm 2 , sufficient pressure resistance cannot be obtained, and if it exceeds 260 N / mm 2 , the mouth moldability becomes difficult.

上記特性を達するには、鋳造、均質化処理、熱間圧延、冷延という通常の工程のうち、特に均質化処理条件が重要となる。   In order to achieve the above characteristics, homogenization treatment conditions are particularly important among the normal steps of casting, homogenization treatment, hot rolling, and cold rolling.

均質化処理条件
鋳塊の均質化処理は成分の均質化の他に、良好なしごき性を得るためのAl−Fe−Mn系金属間化合物のα化にも必要である。そのためには、一般に500℃以上での処理が必要であるが、その昇温中に、0.2μm程度以下の微細析出物が大量に生成する。この第2相粒子の分布状態を、0.75〜2μm径のものが10000個/mm以上とするには、微細析出物を一度固溶させ、より大きい0.5μm以上の析出物への成長や生成が必要となる。
Homogenization treatment conditions The ingot homogenization treatment is necessary not only for the homogenization of the components but also for the alpha conversion of the Al-Fe-Mn intermetallic compound in order to obtain good ironing properties. For this purpose, treatment at 500 ° C. or higher is generally required, but a large amount of fine precipitates of about 0.2 μm or less are generated during the temperature rise. In order to set the distribution state of the second phase particles to 10000 / mm 2 or more for particles having a diameter of 0.75 to 2 μm, the fine precipitates are once solid-dissolved to obtain a larger precipitate of 0.5 μm or more. Growth and generation are required.

そのためには、
A 580〜615℃で2時間以上の処理が必要となる。この温度域では上記微細析出物の固溶が進み、昇温過程も含み4時間以上の滞留が必要となる。580℃未満での処理では、α化が十分に進まないか工業的に非現実的な長時間の処理が必要となる。また、615℃以上ではバーニングの可能性がある。
ただし、Aの状態のままでは、0.75〜2μmの金属間化合物が10000個/mmには足りない。また、固溶量が多い状態のため成形中の加工硬化性上昇が大きく、成形性が低下する。
for that purpose,
A Treatment at 580 to 615 ° C. for 2 hours or longer is required. In this temperature range, solid precipitates are dissolved, and a residence time of 4 hours or more is required including the temperature rising process. In the treatment at a temperature lower than 580 ° C., it is necessary to carry out a long-time treatment that is not practically industrialized or is not practical. Further, there is a possibility of burning at 615 ° C. or higher.
However, in the state of A, the number of intermetallic compounds of 0.75 to 2 μm is insufficient at 10,000 pieces / mm 2 . Further, since the amount of the solid solution is large, the work hardenability is greatly increased during molding, and the moldability is lowered.

そこで、
B 400〜550℃に2時間以上滞留させる析出処理が必要となる。この処理は、Aの処理後であって次工程の熱延までに実施されればよい。たとえば、Aの処理から熱延開始や室温までの冷却中の保持でも連続的な冷却でも良いし、室温まで冷却後に熱延開始温度までの昇温中でも構わない。
Therefore,
B Precipitation treatment for retaining at 400 to 550 ° C. for 2 hours or more is required. This process may be performed after the process A and before hot rolling of the next process. For example, the heat treatment may be started from the process A to the start of hot rolling, the cooling during cooling to room temperature, or the continuous cooling, or the temperature may be raised to the hot rolling start temperature after cooling to room temperature.

以下、熱間圧延、冷間圧延の工程は通常の広く行われている方法で構わない。
なお、熱間圧延後や冷間圧延の途中、冷間圧延の最後に焼鈍を施しても所望の金属組織を得る妨げとはならない。
Hereafter, the process of hot rolling and cold rolling may be a normal and widely performed method.
In addition, even if it anneals after hot rolling, in the middle of cold rolling, and at the end of cold rolling, it does not prevent obtaining a desired metal structure.

以下に、本発明を実施例により詳細に説明する。
表1に示す合金組成のアルミニウム合金を厚さ500mmの鋳塊に溶解鋳造し、590〜630℃で6時間の均質化処理を施し、常温まで冷却した鋳塊表面を片側5〜8mm程度面削した。面削後の鋳塊を400〜550℃まで再加熱し、リバース式熱間粗圧延機を用い、1パス当たり圧延率10〜30%で10〜30パスの熱間粗圧延を施し、終了板厚20〜30mmの熱間粗圧延板とする。続いて、4段タンデム式熱間仕上圧延機を用いて、終了板厚2〜4mmかつ終了温度330〜350℃になるように、熱間仕上圧延を行った。熱間圧延終了後、圧延率40〜60%で、総パス数を3パスで冷間圧延を施し、板厚0.4mmまで最終冷間圧延(トータル圧延率85〜90%)を行い、アルミニウム合金板を得た。
Hereinafter, the present invention will be described in detail with reference to examples.
Aluminum alloy having the alloy composition shown in Table 1 is melt-cast into a 500 mm thick ingot, homogenized at 590 to 630 ° C. for 6 hours, and the ingot surface cooled to room temperature is chamfered about 5 to 8 mm on one side. did. The ingot after chamfering is reheated to 400 to 550 ° C. and subjected to hot rough rolling of 10 to 30 passes at a rolling rate of 10 to 30% per pass using a reverse hot rough rolling machine, and finished plate A hot rough rolled plate having a thickness of 20 to 30 mm is used. Subsequently, hot finish rolling was performed using a four-stage tandem hot finish rolling mill so that the end plate thickness was 2 to 4 mm and the end temperature was 330 to 350 ° C. After hot rolling is completed, cold rolling is performed at a rolling rate of 40 to 60% and a total number of passes of 3 passes, and final cold rolling (total rolling rate of 85 to 90%) is performed to a plate thickness of 0.4 mm. An alloy plate was obtained.

上記のようにして製造したアルミニウム合金板に対して下記の測定を行った。
・ベーク後の0.2%耐力:インストロン型引張り試験機で、JIS5号試験片を用い、引張り速度10mm/min.で行い、210℃×10分ベーク後の0.2%耐力を求めた。
・第2相粒子分布測定: 画像解析装置により、冷延後の最終板表面の第2相粒子の円相当径分布を計測し、評価した。
The following measurements were performed on the aluminum alloy plate produced as described above.
0.2% proof stress after baking: Instron type tensile tester, using JIS No. 5 test piece, tensile speed 10 mm / min. The 0.2% yield strength after baking at 210 ° C. for 10 minutes was determined.
Second-phase particle distribution measurement: The equivalent-circle diameter distribution of the second-phase particles on the surface of the final plate after cold rolling was measured and evaluated using an image analyzer.

また、以下のように缶成形性評価を行った。
内径66mmφのDI缶を多数製缶し、トリミングと210℃×10分間の乾燥工程相当のベーク処理を施した。その後、ネッキング成形とカール成形を行い、評価した。
・DI性:DI時に、破胴やゴーリング(キズ)が発生した場合×を、発生が無いものを○とした。
・ネッキング成形性:口部径が40mmφになるようネッキング加工した。評価は目視により、しわ無しを○、若干発生したものを△および多数しわ発生したものを×とした。
・カール成形性:ネッキング後、カール加工を行い、目視によりカール部のしわ及び割れを確認した。評価は割れ無しを○、割れが発生したものを×とした。
Moreover, can moldability evaluation was performed as follows.
A large number of DI cans having an inner diameter of 66 mmφ were manufactured, and subjected to trimming and baking treatment corresponding to a drying step of 210 ° C. × 10 minutes. Then, necking molding and curl molding were performed and evaluated.
-DI property: In case of breaking and goling (scratches) during DI, X was marked with no occurrence.
-Necking moldability: Necking was performed so that the diameter of the mouth portion was 40 mmφ. Evaluation was made by visually observing the absence of wrinkles as ◯, a slight occurrence as Δ, and a large number of wrinkles as x.
-Curl moldability: After necking, curling was performed, and the wrinkles and cracks of the curled portion were visually confirmed. In the evaluation, “O” indicates no cracking, and “X” indicates that cracking occurred.

測定結果・評価結果を合金組成と併せて表1に示す。   The measurement results and evaluation results are shown in Table 1 together with the alloy composition.

Figure 2006077278
Figure 2006077278

本発明の組成範囲内にある合金は、ベーク後の強度が十分あり、成形性も良好である。
一方、比較例であるNo.5,7,9はそれぞれSi,Cu,Mgが多いためベーク後強度が増加し、ネック成形性およびカール曲げ性が低下した。No.6,8はFe,Mnが規定量を超えているため、Al−Fe−Mn系の粗大晶出物が増加し、成形性が劣っていた。No.10,11,13はSi、Fe、Mnが少ないために、DI成形性に劣る。また、0.75〜2μmの第2相粒子の分布が少なく、カール成形性に劣る。No.12,14はCu,Mgが少ないため、ベーク後強度が低下している。
An alloy within the composition range of the present invention has sufficient strength after baking and good formability.
On the other hand, No. which is a comparative example. Nos. 5, 7, and 9 each had a large amount of Si, Cu, and Mg, so that the strength after baking increased, and the neck formability and curl bendability decreased. No. In Nos. 6 and 8, since Fe and Mn exceeded the specified amounts, Al-Fe-Mn coarse crystals were increased and the moldability was poor. No. Since 10, 11, and 13 have few Si, Fe, and Mn, they are inferior to DI moldability. Further, the distribution of the second phase particles of 0.75 to 2 μm is small and the curl moldability is poor. No. Since Nos. 12 and 14 are low in Cu and Mg, the strength after baking is lowered.

Claims (1)

必須元素として、Si:0.1〜0.5%(mass%、以下同じ)、Mg:0.8〜1.5%、Mn:0.7〜1.5%、Cu:0.05〜0.5%、Fe:0.2〜0.7%を含み、さらにCr:0.01〜0.3%、Ti:0.01〜0.3%のうち1種または2種を含有したアルミニウム基合金であり、15μm以上の径の第2相粒子が3個/mm以下で、0.75〜2μmの第2相粒子が10000個/mm以上存在し、210℃×10分処理後の引張り耐力が230〜260N/mm の範囲にあることを特徴とする、胴部に対する口部の絞り比が30%以上であるボトル型缶用のアルミニウム合金板。
As essential elements, Si: 0.1 to 0.5% (mass%, the same applies hereinafter), Mg: 0.8 to 1.5%, Mn: 0.7 to 1.5%, Cu: 0.05 to 0.5%, Fe: 0.2-0.7%, Cr: 0.01-0.3%, Ti: 0.01-0.3% one or two of them contained It is an aluminum-based alloy, the number of second phase particles having a diameter of 15 μm or more is 3 / mm 2 or less, and the number of second phase particles of 0.75 to 2 μm is 10,000 / mm 2 or more, and is treated at 210 ° C. for 10 minutes. An aluminum alloy plate for a bottle-type can having a drawing ratio of the mouth portion to the body portion of 30% or more, characterized in that the later tensile yield strength is in the range of 230 to 260 N / mm 2 .
JP2004260773A 2004-09-08 2004-09-08 Aluminum alloy plate for bottle-shaped cans Active JP4750392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260773A JP4750392B2 (en) 2004-09-08 2004-09-08 Aluminum alloy plate for bottle-shaped cans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260773A JP4750392B2 (en) 2004-09-08 2004-09-08 Aluminum alloy plate for bottle-shaped cans

Publications (2)

Publication Number Publication Date
JP2006077278A true JP2006077278A (en) 2006-03-23
JP4750392B2 JP4750392B2 (en) 2011-08-17

Family

ID=36156975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260773A Active JP4750392B2 (en) 2004-09-08 2004-09-08 Aluminum alloy plate for bottle-shaped cans

Country Status (1)

Country Link
JP (1) JP4750392B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097076A (en) * 2004-09-29 2006-04-13 Kobe Steel Ltd Aluminum-alloy sheet for bottle can, and its manufacturing method
JP2009242830A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP2009242831A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
WO2012043582A1 (en) * 2010-09-30 2012-04-05 株式会社神戸製鋼所 Cold-rolled aluminum alloy sheet for bottle can

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062089A (en) * 1992-06-18 1994-01-11 Furukawa Alum Co Ltd Manufacture of aluminum alloy sheet for di forming
JPH0860283A (en) * 1994-08-15 1996-03-05 Sky Alum Co Ltd Aluminum alloy sheet for di can body and its production
JPH10121177A (en) * 1996-10-11 1998-05-12 Furukawa Electric Co Ltd:The Aluminum alloy sheet excellent in high speed ironing formability for di can drum and manufacture therefor
JPH10310837A (en) * 1997-05-12 1998-11-24 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can body, reduced in earing rate
JP2003082429A (en) * 2001-09-11 2003-03-19 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP2004183035A (en) * 2002-12-02 2004-07-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for aluminum can barrel with screw
JP2004244701A (en) * 2003-02-17 2004-09-02 Kobe Steel Ltd Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062089A (en) * 1992-06-18 1994-01-11 Furukawa Alum Co Ltd Manufacture of aluminum alloy sheet for di forming
JPH0860283A (en) * 1994-08-15 1996-03-05 Sky Alum Co Ltd Aluminum alloy sheet for di can body and its production
JPH10121177A (en) * 1996-10-11 1998-05-12 Furukawa Electric Co Ltd:The Aluminum alloy sheet excellent in high speed ironing formability for di can drum and manufacture therefor
JPH10310837A (en) * 1997-05-12 1998-11-24 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can body, reduced in earing rate
JP2003082429A (en) * 2001-09-11 2003-03-19 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP2004183035A (en) * 2002-12-02 2004-07-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for aluminum can barrel with screw
JP2004244701A (en) * 2003-02-17 2004-09-02 Kobe Steel Ltd Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097076A (en) * 2004-09-29 2006-04-13 Kobe Steel Ltd Aluminum-alloy sheet for bottle can, and its manufacturing method
JP2009242830A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP2009242831A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
WO2012043582A1 (en) * 2010-09-30 2012-04-05 株式会社神戸製鋼所 Cold-rolled aluminum alloy sheet for bottle can
JP2012092431A (en) * 2010-09-30 2012-05-17 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
AU2011309067B2 (en) * 2010-09-30 2015-08-20 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled aluminum alloy sheet for bottle can

Also Published As

Publication number Publication date
JP4750392B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP2012092431A (en) Aluminum alloy cold-rolled sheet for bottle can
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
JPWO2015140833A1 (en) Aluminum alloy plate for DR can body and manufacturing method thereof
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2008169417A (en) Aluminum alloy sheet for aerosol container, and its manufacturing method
JP2007270281A (en) Aluminum alloy sheet for bottle type beverage can and its production method
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2008248289A (en) Aluminum alloy sheet for packaging container and manufacturing method therefor
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2001073104A (en) Manufacture of aluminum alloy soft sheet for deep drawing
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2004010941A (en) Aluminum alloy sheet for bottle-type beverage can
JPH07233456A (en) Production of aluminum alloy sheet excellent in formability
JP2011202240A (en) Aluminum alloy sheet for pp cap and method of producing the same
JPH09256129A (en) Production of high strength heat treated type aluminum alloy sheet for drawing
JP3850542B2 (en) Aluminum alloy plate excellent in curling property and winding property and method for producing the same
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JP2007277693A (en) Aluminum alloy sheet for drink can body and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Ref document number: 4750392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250