JP2004183035A - Aluminum alloy sheet for aluminum can barrel with screw - Google Patents

Aluminum alloy sheet for aluminum can barrel with screw Download PDF

Info

Publication number
JP2004183035A
JP2004183035A JP2002350348A JP2002350348A JP2004183035A JP 2004183035 A JP2004183035 A JP 2004183035A JP 2002350348 A JP2002350348 A JP 2002350348A JP 2002350348 A JP2002350348 A JP 2002350348A JP 2004183035 A JP2004183035 A JP 2004183035A
Authority
JP
Japan
Prior art keywords
aluminum
ear
aluminum alloy
ratio
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002350348A
Other languages
Japanese (ja)
Inventor
Hiroshi Yokoi
洋 横井
Seiichi Hirano
清一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2002350348A priority Critical patent/JP2004183035A/en
Publication of JP2004183035A publication Critical patent/JP2004183035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet having excellent neck workability and screwing workability in an aluminum can with a screw. <P>SOLUTION: The aluminum alloy sheet has a composition comprising, by weight, 0.25 to 0.40% Si, 0.35 to 0.50% Fe, 0.15 to 0.25% Cu, 0.7 to 1.3% Mn, 0.93 to 1.3% Mg, and ≤0.25% Zn, and the balance aluminum with inevitable impurities. The number of intermetallic compound grains of ≥1 μm observed from the sheet surface is ≥3,500 pieces/mm<SP>2</SP>. The 45° ear ratio in a formed cup drawn under the conditions meeting a blank diameter of 55 mm and a drawing ratio of 1.67 is ≤3%. Further, (the average value of 0 to 180° ear heights)-(the average value of 45° ear heights)≤0.3 mm is satisfied. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は,絞り,しごき加工で成形されるリシール機能のついたネジ付アルミ缶胴用アルミニウム合金板に関する。
【0002】
【従来技術】
アルミ缶としては,従来から2ピース(蓋と胴)からなる2ピースアルミ缶が用いられてきた。この2ピースアルミ缶の胴部(以下,2ピースアルミ缶胴と称す)を製造するに当たっては,図1に示すように,素材となるアルミ缶胴用アルミニウム合金板(板材S0)に対し,ブランキング工程S11を施してブランク材を打ち抜くと共に,カッピング工程S12を施して大径のカップに成形する。次に,カップ絞り(DRAWING)としごき(IRONING)を組み合わせたDI成形工程S13を施して,細長い円筒状カップを作製する。その後,開口部のトリミングを行うトリミング工程S14および内・外面の塗装・印刷を行い,さらに開口部のネック加工を行うネッキング工程S15と,蓋部と嵌合させるためのフランジ部を形成するフランジング工程S16を施して2ピースアルミ缶胴が完成する。
【0003】
一方,最近においては,缶デザインの多様化により,従来の2ピースアルミ缶とは異なる,ボトル形状の缶が誕生した。現在のところ,非特許文献1に示すように,ボトル形状には,口部がペットボトルと同サイズの「ニューボトル缶」と,口部が比較的大きい「ボトル缶」の2種類がある。両者共通の特徴はボトル形状とするための大きなネック部と,ネジキャップによるリシール性を得るためのネジ部とを有する点にある。
【0004】
本明細書では両者を含めたボトル形状の缶を総称して「ネジ付アルミ缶」と称する。ニューボトル缶の製造方法は特許文献2〜特許文献4に,ボトル缶の製造方法は文献5に開示されているが,それらネジ付アルミ缶の胴部(以下,ネジ付アルミ缶胴と称す)の製造方法の主要部を図2,図3に示す。図2は,ボトル缶用の胴部の製造方法を示し,図3は,ニューボトル缶用の胴部の製造方法を示す。
【0005】
両者の加工方法は異なるものの,従来の2ピースアルミ缶胴にない,大きなネック部を形成するための絞り加工,および絞り加工により形成された口部にネジ切り加工を行うことが特徴となっている。
即ち,両者の製造工程は,それぞれ図2,図3に示すごとく,アルミニウム合金板S0に対して,ブランキング工程S21,S31,カッピング工程S22,S32,DI成形工程S23,S33,トリミング工程S24,S34までは,従来の2ピースアルミ缶胴の製造工程とほぼ同様に行われる。その後は,ボトル缶用としては,カップの開口部側にネッキング工程S25を施した後,ネジ切り工程S26を施す。一方,ニューボトル缶用としては,カップの底部側にネッキング+エンド部開口工程S35,カップの開口部側にフランジング工程S36,底部の巻き締め+ネジ切り工程S37が施される。
【0006】
ここで,注目すべき点は,両ネジ付アルミ缶胴の製造方法では,ネッキングを行う工程S25,S35において,詳細な工程はそれぞれ異なるが,いずれも,2ピースアルミ缶胴にない,大きなネック部を形成するための絞り加工が施され,さらにその後のネジ切り工程S26,S36が施される点にある。
【0007】
これらの加工は,従来の2ピースアルミ缶胴より過酷であるため,従来材ではしわや割れが発生しやすい不具合があった。この不具合を解決するために,特許文献6ではベーキング(印刷後の焼付け)後の耐力を220〜250N/mmとすること,さらに好ましくは45°耳の耳率を2.5%以下にすることが開示されている。しかし,ネジ付アルミ缶胴の過酷な加工に絶えきれるアルミニウム合金板を得るには,更なる研究及び改良が必要であった。
【0008】
【非特許文献1】
「飲料缶の新展開−機能と差別化をめざす−」ビバリッジジャパンNo.237(2001年第9号)
【特許文献2】
特開2001−114245号公報
【特許文献3】
特開2001−158436号公報
【特許文献4】
特開2001−162344号公報
【特許文献5】
特開2000−191006号公報
【特許文献6】
特開2002−256366号公報
【0009】
【解決しようとする課題】
本発明は,上記従来の問題点に鑑みてなされたもので,ネジ付アルミ缶のネック加工およびネジ切り加工に優れたアルミニウム合金板を提供しようとするものである。
【0010】
【課題の解決手段】
本発明は,重量比において,Si:0.25〜0.40%,Fe:0.35〜0.50%,Cu:0.15〜0.25%,Mn:0.7〜1.3%,Mg:0.93〜1.3%,Zn:≦0.25%を含み,残部がアルミニウムと不可避的不純物からなる組成を有し,
板表面から観察される1μm以上の金属間化合物が3500個/mm以上であり,
かつ,ブランク径が55mm,絞り比が1.67という条件で絞った成形カップにおける45°耳率が3%以下であると共に,(0−180°耳高さの平均値)−(45°耳高さの平均値)≦0.3mmであることを特徴とするネジ付アルミ缶胴用アルミニウム合金板にある(請求項1)。
【0011】
まず,本発明における各成分の限定範囲について説明する。
Si:0.25〜0.40%,
Siは,Mn,Feとともに,しごき成形時の素材と工具の焼き付き防止に効果のあるα相化合物(Al−Mn−Fe−Si系)形成に必要な成分である。また,この他にAl−Mn−Si相も形成し,Mnの固溶量を低下させて,より均一な変形を促進する。したがって,ネック成形性の向上には,その量の最適化が重要である。Si含有量は,0.25%未満では不十分であり,望ましくは0.28%以上であり,更に望ましくは0.32%以上である。しかし,Si含有量が0.40%を越えて過剰に添加されると,MgSi相晶出物が形成されやすくなり,成形性が低下するとともに耐食性を損なう。
【0012】
Fe:0.35〜0.50%,
Feは,Mnとともに鋳造時にAl(Mn,Fe)相,α相化合物(Al−Fe−Mn−Si系),Al−Fe−Si系の化合物を形成する。これは上述したようにしごき成形時に不可欠である。しかし,Fe添加量が0.50%を越えると粗大な化合物を生じやすく,成形加工時に破断の起点となりうるので好ましくない。また,0.35%未満では,均一変形に寄与する金属間化合物の形成が不十分であり,好ましくない。
【0013】
Cu:0.15〜0.25%,
Cuは,Mgとともに低温熱処理などにより,Al−Mg−Cu系化合物を形成して強度を高め,塗装焼き付けなどの加熱による軟化を抑制する効果をもつ。Cu添加量が0.15%未満であると上記効果が小さく,0.25%を越えると成形加工時の加工硬化性が大きくなりすぎて成形性が低下し,また耐食性が低下し好ましくない。また,現行の国内の缶ボディ材には,Cuが0.20〜0.25%含まれている材料が大半のため,リサイクルの観点からも,上記範囲の量のCuを添加した合金が好ましい。
【0014】
Mn:0.7〜1.3%,
Mnは,強度に寄与する主要元素であり,またα相化合物(Al−Mn−Fe−Si系)の生成によるしごき加工時の焼き付き防止に効果のある成分である。Mn添加量が0.7%未満では上記効果が得られない。1.3%を越えると,Mn固溶量が増加し,ネック成形時に均一変形しにくくなり,好ましくない。
【0015】
Mg:0.93〜1.3%,
Mgは,Mnとともに強度を付与する不可欠な添加元素であり,固溶して合金を硬化する。Mg添加量が0.93%未満では,強度が不十分であり,また後述の0−180°耳の抑制の観点からも所定の量以上の添加が好ましい。一方,酸化抑制しフローマークを出にくくするため,添加量は抑制した方が良いので,1.3%を越えて添加することは望ましくなく,望ましくは1.2%以下である。
【0016】
Zn:≦0.25%,
Znは,絞りおよびしごき加工性,ならびにネック・フランジ成形性の向上に効果がある。しかし,Zn添加量が1.0%を越えると耐食性を損なう傾向があり,コスト的にも不利となる。ここでは,現行のA3004(A3104)と同範囲である0.25%以下とした。
【0017】
また,本発明では,板表面から観察される1μm以上の金属間化合物が3500個/mm以上である。これにより,ネック成形時にひずみが均一に入りやすく,成形性の優れた材料となる。望ましくは4000個/mm以上がよい。一方,この1μm以上の金属間化合物が3500個/mm未満の場合には,上記の成形性向上効果があまり得られない。
ここで,上記金属間化合物としては,例えば,Al(Mn,Fe),α相化合物(Al−Mn−Fe−Si系)等がある。
【0018】
また,本発明では,ブランク径が55mm,絞り比が1.67という条件で絞った成形カップにおける45°耳率が3%以下であると共に,(0−180°耳高さの平均値)−(45°耳高さの平均値)≦0.3mmである。
ネジ付アルミ缶胴のネックを成形する際には,板材を何度も絞っていくので,耳率を小さくすることは重要である。このため,上記のごとく,ブランク径55mmの円板から絞り比1.67で成形した絞りカップにおいて,耳率を3%以下にすること,かつ(0−180°耳高さの平均値)−(45°耳高さの平均値)の値を0.3mm以下とする。好ましくは0.15mm以下がよい。
【0019】
また,製品の板厚が既存のアルミ缶用材料よりも厚くなっている場合には,熱間圧延上がりから冷間圧延上がりまでの冷間圧延の負荷を軽減することが一般的である。しかし,冷間圧延加工度が小さくなると,圧延集合組織の発達が不十分で,また熱間圧延上がりで形成されたCube方位およびCube方位から冷間圧延の過程で増加する圧延軸回りに回転したRD−rotated Cubeに起因する0−180°耳が多く残存しやすくなる。したがって,0−180°耳が大きく残らないように,化学成分および製造条件を規定する必要がある。化学成分として0−180°耳を抑制するために最も効果のある元素はMgであり,少なくとも0.93%以上添加する必要がある。
【0020】
ここで,上記45°耳率,0−180°耳高さの平均値,および45°耳高さの平均値の定義について説明する。なお,0°,45°,180°等の角度は,いずれも圧延方向を0°とした場合に板面上において時計回り方向に角度をとった方向を意味する。また,耳高さおよび谷高さは,いずれも成形カップの底から上端までの高さをいう。
【0021】
まず,45°耳高さ=A,135°耳高さ=B,225°耳高さ=C,315°耳高さ=D,45°と135°の間の最小谷高さ=E,135°と225°の間の最小谷高さ=F,225°と315°の間の最小谷高さ=G,315°と45°の間の最小谷高さ=H,と定義する。
また,0°耳高さ=I,180°耳高さ=Jと定義する。
【0022】
<45°耳率>
(45°耳率)=(M45−V45)/{(M45+V45)/2}×100(%),
ここで,M45=(A+B+C+D)/4,V45=(E+F+G+H)/4
【0023】
<0−180°耳高さの平均値>
(0−180°耳高さの平均値)=(I+J)/2
<45°耳高さの平均値>
(45°耳高さの平均値)=(A+B+C+D)/4
【0024】
【発明の実施の形態】
本発明のネジ付アルミ缶胴用アルミニウム合金板は,上記成分組成において,さらに,Ti:≦0.10%を含むことが好ましい。
Tiは,鋳造組織を微細化し,圧延加工性や再結晶特性を向上し,組織を均一化するので,最終硬質板の異方性を軽減し成形加工性を向上させるのに有効である。なお,鋳塊組織微細化剤としてAl−Ti−B中間合金を添加する場合は,Bが含有されるが,Bは0.02%以下の範囲で添加されるのが好ましい。
Ti添加量が0.01%未満では上記効果が十分に得られず,Ti添加量が0.10%を越える,あるいはB添加量が0.02%を越えると粗大なAl−TiあるいはTi−B化合物を形成し,割れやピンホールなどの重大欠陥を誘発するため好ましくない。
【0025】
次に,上記ネジ付アルミ缶胴用アルミニウム合金板においては,ベーキング後の耐力がベーキング前の耐力より20〜30MPa低いことが好ましい(請求項2)。
ここでいうベーキングとは,ネジ付アルミ缶胴の製造工程の塗料焼き付け工程を想定して,未成形の上記アルミニウム合金板を温度205℃に10分間保持する熱処理を加えることを意味する。そして,ベーキング前の耐力とは,上記アルミニウム合金板にベーキングを加える前に引張試験を行って得られた耐力値を意味し,一方,ベーキング後の耐力とは,上記アルミニウム合金板にベーキングを加えた後に引張試験を行って得られた耐力値を意味する。
【0026】
そして,上記ベーキング前の耐力とベーキング後の耐力との差が,20MPa未満では材料が硬く,ネック成形でしわが発生しやすい。30MPaを越えると,強度の低下が大きく,缶体としての強度を維持できないという問題がある。それ故,上記のごとく,ベーキング前後の耐力の差は20〜30MPaが好ましい。
【0027】
また,板表面に付着しているリオイル油の付着量が30〜250mg/mであることが好ましい(請求項3)。
ここでいうリオイル油とは,板製造の最終工程において板面上に塗布するオイルのことであり,キズ防止,耐食性付与,およびプレス加工時の潤滑の補助の役割を果たすものである。例えば,鉱油系,合成油系のものを用いることができる。また,リオイル油量は,上記アルミニウム合金板の片面当たりに換算した付着量である。上記リオイル油量が30mg/m未満では,成形時に潤滑不良が起こりやすく,一方,250mg/mを越える場合には,潤滑過多により成形時に良好な面質を得ることができない。
【0028】
また,上記ネジ付アルミ缶胴用アルミニウム合金板は,板厚が0.3〜0.45mmであることが好ましい(請求項4)。板厚が0.3mm未満では,所定の缶体強度が得られない。0.45mmを越える場合には,必要以上に板厚が厚すぎてコストアップになり好ましくない。
【0029】
また,本発明のネジ付アルミ缶胴用アルミニウム合金板は,鋳造された鋳塊を均質化処理した後,熱間圧延し,さらに,中間焼鈍を行うことなく冷間圧延を行うことにより作製されていることが好ましい(請求項5)。これにより,上述した優れたネジ付アルミ缶胴用アルミニウム合金板を得ることができる。
以下に,各工程毎にさらに好ましい方法について説明する。
【0030】
鋳造,均質化処理:
上述した成分範囲の合金を,通常の方法で溶解,鋳造した後,得られた鋳塊を,580℃以上,融点以下の温度で1時間以上均質化処理することが好ましい。また,Al(Mn,Fe)から,しごき成形時に焼き付き防止効果のあるα相化合物(Al−Mn−Fe−Si系)の変態を十分に行うためにも,均質化処理はできるだけ高温,長時間行うのが好ましい。しかし,融点を越えた高温で加熱すると,鋳塊の一部が共晶融解を生じ,板表面の面質が悪化するので好ましくない。保持温度が580℃以上融点以下の範囲であれば保持時間は1時間でよく,20時間よりも長く保持しても経済性において不利となる。
【0031】
熱間圧延:
均質化処理後の熱間圧延は,好ましくは450〜550℃で開始する。550℃より高温では表面が酸化したり再結晶粒が粗大化して成形性が低下するなどの問題点を生じやすい。また,450℃より低温では圧延途中の再結晶が不十分となり製品の耳率(異方性)が悪化する傾向がある。硬質板の耳率は,熱間圧延終了時の再結晶集合組織と,それ以後に加えられる冷間圧延時の圧延集合組織に依存する。熱間圧延は圧延終了時の材料温度が280〜350℃になるように行うことが好ましい。350℃を越えると再結晶粒が粗大化し,280℃以下になると再結晶が不十分となり,いずれも耳率を悪化させるので好ましくない。
【0032】
冷間圧延前あるいは途中の中間焼鈍:
中間焼鈍すると,溶質元素の固溶度を上げ,ネック成形性を低下させるので,好ましくない。従って,上記のごとく,中間焼鈍を行うことなく冷間圧延工程を行うことが好ましい。
【0033】
冷間圧延:
冷間圧延は材料強度を向上させるために行う。冷間における総圧下量が60%未満では十分な強度が得られず,また90%より高いと,圧延集合組織が発達しすぎることにより45°耳が高くなりすぎ,材料の歩留まりが悪化する。冷間の総圧下量は,強度と耳率の関係から,より好ましくは80〜88%が良い。
【0034】
そして,上記の好ましい圧下量による冷間圧延まで終えることにより,材料の板表面には,15μmを越える化合物が存在せず,観察した板面の面積を100%とした場合に1〜15μmの化合物の面積率が5.0%以上であり,この1〜15μmの化合物の面積全体を100%とした場合に,α相化合物の面積率が50%以上であり,且つMgSi相の面積率が1.0%以下である状態を得ることが好ましい。
【0035】
15μmを越える化合物が存在すると,しごき成形およびネック成形後のフランジ成形時に割れの起点となる。1〜15μmの化合物は主に鋳造時に生成したAl(Mn,Fe)相晶出物および均質化処理によってα相化したものであり,しごき成形時の焼き付き防止となる。この絶対量が5%未満ではその効果が少ない。さらに,このうち,α相化した化合物が50%未満でも効果が少ない。MgSi相は,塗装焼き付け処理後の強度を維持するために必要なMg固溶量の減少および耐食性に不利となるために,板表面における面積率で1.0%以下とすることが好ましい。
【0036】
【実施例】
本例では,表1に示すごとく,本発明の実施例としての5種類のアルミニウム合金板(E1〜E5)と,比較例としての4種類のアルミニウム合金板(C1〜C4)を製造し,さらにこれらの特性を測定した。
まず,表1に示す成分を含有するアルミニウム合金鋳塊を半連続鋳造にて造塊し,表面を面削後,580℃の温度に12時間保持する均質化処理を行い,直ちに熱間圧延を開始し,350℃の温度で終了し,3mm厚の熱間圧延板を得た。得られた熱間圧延板が常温になってから87%の圧延率で0.4mm厚まで冷間圧延を行って,上記5種類の実施例(E1〜E5)および4種類の比較例(C1〜C4)の供試材を得た。
【0037】
次に,すべての供試材に対し,板面における金属間化合物の観察,耳率の測定,ベーキング後の耐力低下の測定を行い,その特性を評価した。
板面における金属間化合物の観察は,供試材の表面を脱脂洗浄後,SEM(走査型電子顕微鏡)の組成像で板表面を撮影して行った。そして,画像解析装置((株)ニレコ製ルーゼクス500)を用いて金属間化合物の分布密度およびその面積率を測定した。金属間化合物の大きさとしては,その直径を測定した。この場合,金属間化合物の直径は円相当直径,すなわち写真における金属間化合物の面積と同じ面積を有する円の直径として測定した。
判定は,1μm以上の金属間化合物が3500個/mm以上の場合に合格,3500個/mm未満の場合を不合格とした。
【0038】
耳率の測定は,ダイス径34mm,ポンチ径33mm,ポンチ肩R1.5mmの金型を用い,供試材ブランク径55mm,絞り比1.67の条件でカップ絞りを実施した。得られた絞りカップを用い,前述の式により,45°耳率と,(0−180°耳高さの平均値)−(45°耳高さの平均値)の値を求めた。
45°耳率は,3%以下を合格,3%越えを不合格とした。また,(0−180°耳高さの平均値)−(45°耳高さの平均値)は0.3mm以下を合格,0.3mm越えを不合格とした。
【0039】
上記ベーキングの条件は,205℃の温度に10分間保持する条件とした。そして,このベーキングを行っていない供試材とベーキングを完了した供試材をそれぞれJIS5号試験片に加工して,JIS Z2241に準拠して引張試験をを行った。そして,ベーキング前の試験片の耐力値からベーキング後の試験片の耐力値を差し引いて耐力低下値として求めた。
そして,ベーキング後の耐力低下が20〜30MPaの範囲内の場合には合格,これをはみ出した場合を不合格とした。
【0040】
得られた結果を表2に示す。表2より知られるごとく,実施例E1〜E5は,すべての評価項目において合格となり,総合的に合格(○)の判定が得られた。一方,比較例C1〜C4は,少なくとも1つの評価項目において不合格となり,総合的にすべて不合格(×)の判定となった。
【0041】
具体的には,比較例C1においては,Mg量が少ないため,45°耳の形成が少なくなり,(0−180°耳高さの平均値)−(45°耳高さの平均値)が大きくなった。
また,比較例C2においては,Si量が多いため,ベーキングによる軟化量が多く,必要とする缶体強度が得られない。
また,比較例C3においては,Mn量が多く,Si,Fe量が少ないため,晶出物は多くなるがMn固溶量が多くベーキングによる軟化量が少なくなった。
また,比較例C4においては,Si,Fe量が少ないため,晶出物が少ない。そのため,ベーキングによる軟化量が少なくなったと考えられる。
【0042】
【表1】

Figure 2004183035
【0043】
【表2】
Figure 2004183035

【図面の簡単な説明】
【図1】2ピースアルミ缶胴の製造工程を示す説明図。
【図2】ネジ付アルミ缶胴(ボトル缶)の胴部の製造工程を示す説明図。
【図3】ネジ付アルミ缶胴(ニューボトル缶)の胴部の製造工程を示す説明図。
【符号の説明】
S0...アルミニウム合金板,
S11,S21,S31...ブランキング工程,
S12,S22,S32...カッピング工程
S13,S23,S33...DI成形工程,
S14,S24,S34...トリミング工程,
S15,S25...ネッキング工程,
S16,S36...フランジング工程,
S26,S36...ネジ切り工程,
S35...ネッキング+エンド部開口工程,
S37...底部の巻き締め+ネジ切り工程,[0001]
【Technical field】
The present invention relates to an aluminum alloy plate for a screwed aluminum can body having a reseal function and formed by drawing and ironing.
[0002]
[Prior art]
As the aluminum can, a two-piece aluminum can consisting of two pieces (lid and body) has been used. In manufacturing the body of the two-piece aluminum can (hereinafter, referred to as a two-piece aluminum can body), as shown in FIG. A blank material is punched out by performing a ranking step S11, and a cup having a large diameter is formed by performing a cupping step S12. Next, a DI forming step S13 in which cup drawing (DRAWING) and ironing (IRONING) are combined is performed to produce an elongated cylindrical cup. Thereafter, a trimming step S14 for trimming the opening, a coating / printing of the inner and outer surfaces, and a necking step S15 for necking the opening, and flanging for forming a flange for fitting with the lid. By performing step S16, a two-piece aluminum can body is completed.
[0003]
On the other hand, recently, with the diversification of can designs, bottle-shaped cans, which are different from conventional two-piece aluminum cans, have been born. At present, as shown in Non-Patent Document 1, there are two types of bottle shapes, a "new bottle can" having the same size as a plastic bottle and a "bottle can" having a relatively large mouth. A feature common to both is that it has a large neck portion for forming a bottle shape and a screw portion for obtaining resealability with a screw cap.
[0004]
In the present specification, a bottle-shaped can including both of them is generically referred to as a "screwed aluminum can". Patent Literature 2 to Patent Literature 4 disclose a method for manufacturing a new bottle can and Patent Literature 5 disclose a method for manufacturing a bottle can. 2 and 3 show a main part of the manufacturing method of the present invention. FIG. 2 shows a method for producing a body for a bottle can, and FIG. 3 shows a method for producing a body for a new bottle can.
[0005]
Although the two processing methods are different, they are characterized by the draw processing to form a large neck part, which is not in the conventional two-piece aluminum can body, and the threading processing at the mouth formed by the draw processing. I have.
That is, as shown in FIG. 2 and FIG. 3, respectively, the manufacturing steps of the two are performed on the aluminum alloy plate S0 by blanking steps S21, S31, cupping steps S22, S32, DI forming steps S23, S33, trimming step S24, The process up to S34 is performed in substantially the same manner as the conventional manufacturing process of a two-piece aluminum can body. Thereafter, for a bottle can, a necking step S25 is performed on the opening side of the cup, and then a thread cutting step S26 is performed. On the other hand, for a new bottle, a necking + end opening step S35 on the bottom side of the cup, a flanging step S36 on the opening side of the cup, and a bottom tightening + thread cutting step S37 are performed.
[0006]
Here, it should be noted that in the method of manufacturing the double-threaded aluminum can body, detailed steps are different in the steps S25 and S35 of performing necking, but none of the two-piece aluminum can body has a large neck. The point is that drawing processing for forming a portion is performed, and further subsequent threading steps S26 and S36 are performed.
[0007]
Since these processes are more severe than the conventional two-piece aluminum can body, the conventional material has a problem that wrinkles and cracks are easily generated. In order to solve this problem, in Patent Document 6, the proof stress after baking (baking after printing) is set to 220 to 250 N / mm 2, and more preferably, the ear ratio of the 45 ° ear is set to 2.5% or less. It is disclosed. However, further research and improvement were needed to obtain an aluminum alloy plate that could be used for severe processing of a screwed aluminum can body.
[0008]
[Non-patent document 1]
"New Development of Beverage Can-Aiming for Function and Differentiation-" Beverage Japan No. 237 (No. 9, 2001)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-114245 [Patent Document 3]
JP 2001-158436 A [Patent Document 4]
JP 2001-162344 A [Patent Document 5]
Japanese Patent Application Laid-Open No. 2000-191006 [Patent Document 6]
JP 2002-256366 A
[Problem to be solved]
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide an aluminum alloy plate excellent in necking and threading of an aluminum can with a screw.
[0010]
[Means for solving the problem]
In the present invention, in terms of weight ratio, Si: 0.25 to 0.40%, Fe: 0.35 to 0.50%, Cu: 0.15 to 0.25%, Mn: 0.7 to 1.3. %, Mg: 0.93 to 1.3%, Zn: ≤0.25%, the balance being composed of aluminum and unavoidable impurities,
The number of intermetallic compounds of 1 μm or more observed from the plate surface is 3500 / mm 2 or more,
In addition, the 45 ° ear ratio of the formed cup squeezed under the conditions of a blank diameter of 55 mm and a drawing ratio of 1.67 is 3% or less, and (0-180 ° ear height average) − (45 ° ear height). (Average value of height) ≦ 0.3 mm.
[0011]
First, the limited range of each component in the present invention will be described.
Si: 0.25 to 0.40%,
Si, together with Mn and Fe, is a component necessary for forming an α-phase compound (Al—Mn—Fe—Si) that is effective in preventing seizure of the material and the tool during ironing. In addition, an Al-Mn-Si phase is also formed to reduce the solid solution amount of Mn and promote more uniform deformation. Therefore, optimization of the amount is important for improving the neck formability. If the Si content is less than 0.25%, it is insufficient, preferably 0.28% or more, and more preferably 0.32% or more. However, if the Si content exceeds 0.40% and is excessively added, a Mg 2 Si phase crystallized substance is easily formed, and the moldability is reduced and the corrosion resistance is impaired.
[0012]
Fe: 0.35 to 0.50%,
Fe forms an Al 6 (Mn, Fe) phase, an α-phase compound (Al—Fe—Mn—Si type), and an Al—Fe—Si type compound during casting together with Mn. This is essential during ironing as described above. However, if the added amount of Fe exceeds 0.50%, a coarse compound is apt to be generated, which may be a starting point of breakage during molding, which is not preferable. If it is less than 0.35%, the formation of intermetallic compounds contributing to uniform deformation is insufficient, which is not preferable.
[0013]
Cu: 0.15 to 0.25%,
Cu forms an Al-Mg-Cu-based compound together with Mg by low-temperature heat treatment or the like, thereby increasing the strength and suppressing softening due to heating such as paint baking. If the added amount of Cu is less than 0.15%, the above effect is small, and if it exceeds 0.25%, the work hardenability at the time of forming becomes too large, the formability is lowered, and the corrosion resistance is lowered, which is not preferable. In addition, most of the current domestic can body materials contain Cu in an amount of 0.20 to 0.25%. Therefore, from the viewpoint of recycling, an alloy containing Cu in the above range is preferable from the viewpoint of recycling. .
[0014]
Mn: 0.7-1.3%,
Mn is a main element that contributes to strength and is a component that is effective in preventing seizure during ironing due to generation of an α-phase compound (Al-Mn-Fe-Si system). If the amount of Mn is less than 0.7%, the above effects cannot be obtained. If it exceeds 1.3%, the amount of Mn solid solution increases, and it becomes difficult to uniformly deform during neck forming, which is not preferable.
[0015]
Mg: 0.93 to 1.3%,
Mg is an indispensable additive element that imparts strength together with Mn, and solidifies to harden the alloy. If the added amount of Mg is less than 0.93%, the strength is insufficient, and the addition of a predetermined amount or more is also preferable from the viewpoint of suppressing the 0-180 ° ear described below. On the other hand, in order to suppress oxidation and make it difficult to generate flow marks, it is better to suppress the amount of addition. Therefore, it is not desirable to add more than 1.3%, and preferably 1.2% or less.
[0016]
Zn: ≦ 0.25%,
Zn is effective in improving drawability and ironing workability and neck / flange formability. However, if the amount of Zn exceeds 1.0%, corrosion resistance tends to be impaired, which is disadvantageous in terms of cost. Here, it is set to 0.25% or less, which is the same range as the current A3004 (A3104).
[0017]
In the present invention, the number of intermetallic compounds of 1 μm or more observed from the plate surface is 3500 / mm 2 or more. This makes it easy for the strain to enter uniformly during neck forming, resulting in a material having excellent formability. Desirably, the number is 4000 pieces / mm 2 or more. On the other hand, when the number of intermetallic compounds having a size of 1 μm or more is less than 3500 / mm 2 , the above-described effect of improving the formability is not obtained much.
Here, examples of the above-mentioned intermetallic compound include Al 6 (Mn, Fe), α-phase compound (Al-Mn-Fe-Si type), and the like.
[0018]
In the present invention, the 45 ° ear ratio of the molded cup squeezed under the conditions of a blank diameter of 55 mm and a drawing ratio of 1.67 is 3% or less, and (an average value of 0-180 ° ear height) − (Average value of 45 ° ear height) ≦ 0.3 mm.
When forming the neck of a threaded aluminum can body, it is important to reduce the ear ratio because the plate material is repeatedly squeezed. For this reason, as described above, in a draw cup formed from a disk having a blank diameter of 55 mm at a draw ratio of 1.67, the ear ratio is set to 3% or less, and (the average value of 0 to 180 ° ear height). (Average value of 45 ° ear height) is set to 0.3 mm or less. Preferably, it is 0.15 mm or less.
[0019]
When the thickness of the product is thicker than the existing aluminum can material, it is common to reduce the load of cold rolling from hot rolling to cold rolling. However, when the degree of cold rolling was reduced, the development of the rolling texture was insufficient, and the steel roll rotated around the rolling axis, which increased during the cold rolling process from the Cube orientation formed by hot rolling and the Cube orientation. Many 0-180 ° ears caused by the RD-rotated Cube are likely to remain. Therefore, it is necessary to define the chemical composition and the manufacturing conditions so that the 0-180 ° ear does not remain large. The most effective element for suppressing the 0-180 ° ear as a chemical component is Mg, and it is necessary to add at least 0.93% or more.
[0020]
Here, the definitions of the 45 ° ear ratio, the average value of the 0-180 ° ear height, and the average value of the 45 ° ear height will be described. Note that angles such as 0 °, 45 °, and 180 ° mean directions that are angled clockwise on the plate surface when the rolling direction is 0 °. In addition, the ear height and the valley height refer to the height from the bottom to the top of the molding cup.
[0021]
First, 45 ° ear height = A, 135 ° ear height = B, 225 ° ear height = C, 315 ° ear height = D, minimum valley height between 45 ° and 135 ° = E, 135 Define the minimum valley height between ° and 225 ° = F, the minimum valley height between 225 ° and 315 ° = G, and the minimum valley height between 315 ° and 45 ° = H.
Also, 0 ° ear height = I and 180 ° ear height = J are defined.
[0022]
<45 ° ear rate>
(45 ° ear ratio) = (M45−V45) / {(M45 + V45) / 2} × 100 (%),
Here, M45 = (A + B + C + D) / 4, V45 = (E + F + G + H) / 4
[0023]
<Average of 0-180 ° ear height>
(Average of 0-180 ° ear height) = (I + J) / 2
<Average of 45 ° ear height>
(Average value of 45 ° ear height) = (A + B + C + D) / 4
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
It is preferable that the aluminum alloy sheet for a screwed aluminum can body of the present invention further includes Ti: ≤ 0.10% in the above composition.
Ti is effective in reducing the anisotropy of the final hard plate and improving the formability since it refines the cast structure, improves the rolling workability and recrystallization characteristics, and makes the structure uniform. When an Al-Ti-B intermediate alloy is added as an ingot structure refining agent, B is contained, but B is preferably added in a range of 0.02% or less.
If the Ti content is less than 0.01%, the above effect cannot be sufficiently obtained. If the Ti content exceeds 0.10% or the B content exceeds 0.02%, coarse Al-Ti or Ti- It is not preferable because it forms a B compound and induces serious defects such as cracks and pinholes.
[0025]
Next, in the above-mentioned aluminum alloy plate for an aluminum body with a screw, the proof stress after baking is preferably lower by 20 to 30 MPa than the proof stress before baking (claim 2).
The term "baking" as used herein means that a heat treatment for holding the unformed aluminum alloy plate at a temperature of 205 ° C. for 10 minutes is performed assuming a paint baking process in the manufacturing process of the aluminum can body with screws. The proof stress before baking means the proof stress value obtained by conducting a tensile test before baking the aluminum alloy plate, while the proof stress after baking refers to the proof stress after baking the aluminum alloy plate. After the tensile test.
[0026]
If the difference between the proof stress before baking and the proof stress after baking is less than 20 MPa, the material is hard and wrinkles are likely to occur in neck forming. If it exceeds 30 MPa, there is a problem that the strength is greatly reduced and the strength as a can cannot be maintained. Therefore, as described above, the difference in proof stress before and after baking is preferably 20 to 30 MPa.
[0027]
Further, it is preferable that the amount of re-oil oil adhering to the plate surface is 30 to 250 mg / m 2 (Claim 3).
Here, the re-oil oil is oil applied to the plate surface in the final step of plate manufacturing, and plays a role in preventing scratches, imparting corrosion resistance, and assisting lubrication during press working. For example, a mineral oil type or a synthetic oil type can be used. Further, the amount of re-oil oil is the amount of adhesion converted to one side of the aluminum alloy plate. If the re-oil oil amount is less than 30 mg / m 2 , poor lubrication tends to occur during molding, while if it exceeds 250 mg / m 2 , good surface quality cannot be obtained during molding due to excessive lubrication.
[0028]
Preferably, the thickness of the aluminum alloy plate for a screwed aluminum can body is 0.3 to 0.45 mm. If the plate thickness is less than 0.3 mm, a predetermined strength of the can cannot be obtained. If the thickness exceeds 0.45 mm, the thickness is unnecessarily large and the cost increases, which is not preferable.
[0029]
The aluminum alloy sheet for a screwed aluminum can body of the present invention is manufactured by homogenizing a cast ingot, hot rolling, and then cold rolling without intermediate annealing. (Claim 5). Thereby, the above-mentioned excellent aluminum alloy plate for a screwed aluminum can body can be obtained.
Hereinafter, a more preferable method for each step will be described.
[0030]
Casting and homogenization processing:
After melting and casting the alloy in the above-described component range by an ordinary method, it is preferable to homogenize the obtained ingot at a temperature of 580 ° C. or more and the melting point or less for one hour or more. Further, in order to sufficiently transform α 6 (Mn, Fe) into an α-phase compound (Al—Mn—Fe—Si-based) having an anti-seizure effect during ironing, the homogenization treatment should be performed at a temperature as high as possible and as long as possible. It is preferable to perform for a time. However, heating at a high temperature exceeding the melting point is not preferable because eutectic melting occurs in a part of the ingot and the surface quality of the sheet surface deteriorates. If the holding temperature is in the range of 580 ° C. or higher and the melting point or lower, the holding time may be one hour, and holding for longer than 20 hours is disadvantageous in terms of economy.
[0031]
Hot rolling:
Hot rolling after the homogenization treatment preferably starts at 450-550 ° C. If the temperature is higher than 550 ° C., problems such as oxidization of the surface and coarsening of recrystallized grains and deterioration of moldability are likely to occur. On the other hand, if the temperature is lower than 450 ° C., recrystallization during rolling is insufficient, and the ear ratio (anisotropic) of the product tends to deteriorate. The ear ratio of the hard plate depends on the recrystallization texture at the end of hot rolling and the rolling texture at the time of cold rolling added thereafter. Hot rolling is preferably performed such that the material temperature at the end of rolling is 280 to 350 ° C. If the temperature exceeds 350 ° C., the recrystallized grains become coarse, and if the temperature is lower than 280 ° C., the recrystallization becomes insufficient.
[0032]
Intermediate annealing before or during cold rolling:
Intermediate annealing is not preferable because it increases the solid solubility of the solute element and lowers the neck formability. Therefore, as described above, it is preferable to perform the cold rolling step without performing the intermediate annealing.
[0033]
Cold rolling:
Cold rolling is performed to improve material strength. If the total rolling reduction in the cold is less than 60%, sufficient strength cannot be obtained, and if it is higher than 90%, the rolled texture will develop too much and the 45 ° ear will be too high, and the material yield will deteriorate. The total reduction amount in the cold is more preferably 80 to 88% from the relationship between strength and ear ratio.
[0034]
Then, by completing the above-mentioned cold rolling with the preferred rolling reduction, no compound exceeding 15 μm is present on the sheet surface of the material, and when the observed area of the sheet surface is 100%, the compound of 1 to 15 μm is obtained. Is not less than 5.0%, and the area ratio of the α-phase compound is not less than 50% and the area ratio of the Mg 2 Si phase when the entire area of the compound of 1 to 15 μm is 100%. Is preferably 1.0% or less.
[0035]
If a compound exceeding 15 μm is present, it becomes a starting point of cracking during flange forming after ironing and neck forming. The compound having a size of 1 to 15 μm is mainly an Al 6 (Mn, Fe) phase crystallized substance produced at the time of casting and an α phase formed by a homogenization treatment, and prevents seizure during ironing. If the absolute amount is less than 5%, the effect is small. Further, among them, the effect is small even if the α-phased compound is less than 50%. The Mg 2 Si phase is preferably not more than 1.0% in area ratio on the plate surface because the Mg solid solution amount required for maintaining the strength after the paint baking treatment is reduced and the corrosion resistance is disadvantageous. .
[0036]
【Example】
In this example, as shown in Table 1, five types of aluminum alloy plates (E1 to E5) as examples of the present invention and four types of aluminum alloy plates (C1 to C4) as comparative examples were manufactured. These properties were measured.
First, an aluminum alloy ingot containing the components shown in Table 1 was formed by semi-continuous casting, the surface was ground, and a homogenization treatment was performed at a temperature of 580 ° C. for 12 hours. Starting and ending at a temperature of 350 ° C., a 3 mm thick hot rolled sheet was obtained. After the obtained hot-rolled sheet was at room temperature, cold rolling was performed at a rolling reduction of 87% to a thickness of 0.4 mm, and the above-described five examples (E1 to E5) and four comparative examples (C1 To C4) were obtained.
[0037]
Next, the intermetallic compounds were observed on the plate surface, the ear ratio was measured, and the decrease in proof stress after baking was measured for all the test materials, and the characteristics were evaluated.
Observation of the intermetallic compound on the plate surface was performed by degreasing and cleaning the surface of the test material and then photographing the plate surface with a composition image of a scanning electron microscope (SEM). Then, the distribution density of the intermetallic compound and the area ratio thereof were measured using an image analyzer (Lurex 500 manufactured by Nireco Corporation). The diameter of the intermetallic compound was measured. In this case, the diameter of the intermetallic compound was measured as a circle equivalent diameter, that is, the diameter of a circle having the same area as the area of the intermetallic compound in the photograph.
Judgment was made when the intermetallic compound having a particle size of 1 μm or more was 3500 particles / mm 2 or more, and was rejected when it was less than 3500 particles / mm 2 .
[0038]
The ear ratio was measured by using a die having a die diameter of 34 mm, a punch diameter of 33 mm, and a punch shoulder R of 1.5 mm, and performing cup drawing under the conditions of a test material blank diameter of 55 mm and a drawing ratio of 1.67. Using the obtained aperture cup, the values of 45 ° ear ratio and (average value of 0-180 ° ear height) − (average value of 45 ° ear height) were determined by the above-described equations.
As for the 45 ° ear ratio, 3% or less was regarded as acceptable, and exceeding 3% was regarded as unacceptable. The average value of (0-180 ° ear height) − (the average value of 45 ° ear height) was 0.3 mm or less, and 0.3 mm or less was rejected.
[0039]
The baking was performed at a temperature of 205 ° C. for 10 minutes. The unbaked test material and the baked test material were each processed into JIS No. 5 test pieces, and a tensile test was performed in accordance with JIS Z2241. Then, the proof stress value of the test piece after baking was subtracted from the proof stress value of the test piece before baking to obtain a yield strength reduction value.
And, when the reduction in proof stress after baking was in the range of 20 to 30 MPa, the test was passed, and when it exceeded the range, the test was rejected.
[0040]
Table 2 shows the obtained results. As can be seen from Table 2, Examples E1 to E5 passed all of the evaluation items, and a comprehensive pass (○) was obtained. On the other hand, Comparative Examples C1 to C4 failed in at least one of the evaluation items, and all of them were judged as failed (x).
[0041]
Specifically, in Comparative Example C1, since the amount of Mg is small, the formation of 45 ° ears is reduced, and the average value of (0-180 ° ear height) − (the average value of 45 ° ear height) is obtained. It has grown.
In Comparative Example C2, since the amount of Si was large, the amount of softening due to baking was large, and the required strength of the can was not obtained.
In Comparative Example C3, since the amount of Mn was large and the amounts of Si and Fe were small, the amount of crystallized matter was large, but the amount of Mn solid solution was large and the amount of softening by baking was small.
Further, in Comparative Example C4, since the amounts of Si and Fe were small, the amount of crystallized substances was small. Therefore, it is considered that the amount of softening due to baking was reduced.
[0042]
[Table 1]
Figure 2004183035
[0043]
[Table 2]
Figure 2004183035

[Brief description of the drawings]
FIG. 1 is an explanatory view showing a manufacturing process of a two-piece aluminum can body.
FIG. 2 is an explanatory view showing a manufacturing process of a body portion of a screwed aluminum can body (bottle can).
FIG. 3 is an explanatory view showing a manufacturing process of a body portion of a screwed aluminum can body (new bottle can).
[Explanation of symbols]
S0. . . Aluminum alloy plate,
S11, S21, S31. . . Blanking process,
S12, S22, S32. . . Cupping steps S13, S23, S33. . . DI molding process,
S14, S24, S34. . . Trimming process,
S15, S25. . . Necking process,
S16, S36. . . Flanging process,
S26, S36. . . Thread cutting process,
S35. . . Necking + end opening process,
S37. . . Bottom winding + thread cutting process,

Claims (5)

重量比において,Si:0.25〜0.40%,Fe:0.35〜0.50%,Cu:0.15〜0.25%,Mn:0.7〜1.3%,Mg:0.93〜1.3%,Zn:≦0.25%を含み,残部がアルミニウムと不可避的不純物からなる組成を有し,
板表面から観察される1μm以上の金属間化合物が3500個/mm以上であり,
かつ,ブランク径が55mm,絞り比が1.67という条件で絞った成形カップにおける45°耳率が3%以下であると共に,(0−180°耳高さの平均値)−(45°耳高さの平均値)≦0.3mmであることを特徴とするネジ付アルミ缶胴用アルミニウム合金板。
In weight ratio, Si: 0.25 to 0.40%, Fe: 0.35 to 0.50%, Cu: 0.15 to 0.25%, Mn: 0.7 to 1.3%, Mg: 0.93 to 1.3%, Zn: ≤0.25%, the balance being composed of aluminum and unavoidable impurities,
The number of intermetallic compounds of 1 μm or more observed from the plate surface is 3500 / mm 2 or more,
In addition, the 45 ° ear ratio of the formed cup squeezed under the conditions of a blank diameter of 55 mm and a drawing ratio of 1.67 is 3% or less, and (0-180 ° ear height average) − (45 ° ear An aluminum alloy plate for a screwed aluminum can body, characterized by satisfying (average height) ≦ 0.3 mm.
請求項1において,ベーキング後の耐力がベーキング前の耐力より20〜30MPa低いことを特徴とするネジ付アルミ缶胴用アルミニウム合金板。2. The aluminum alloy plate for a screwed aluminum can body according to claim 1, wherein the proof stress after baking is lower than the proof stress before baking by 20 to 30 MPa. 請求項1又は2において,板表面に付着しているリオイル油の付着量が30〜250mg/mであることを特徴とするネジ付アルミ缶胴用アルミニウム合金板。3. The aluminum alloy plate for a screwed aluminum can body according to claim 1, wherein the amount of re-oil oil adhering to the plate surface is 30 to 250 mg / m < 2 >. 請求項1〜3のいずれか1項において,板厚が0.3〜0.45mmであることを特徴とするネジ付アルミ缶胴用アルミニウム合金板。The aluminum alloy plate for a screwed aluminum can body according to any one of claims 1 to 3, wherein the plate thickness is 0.3 to 0.45 mm. 請求項1〜4のいずれか1項において,鋳造された鋳塊を均質化処理した後,熱間圧延し,さらに,中間焼鈍を行うことなく冷間圧延を行うことにより作製されていることを特徴とするネジ付アルミ缶胴用アルミニウム合金板。The method according to any one of claims 1 to 4, wherein the cast ingot is manufactured by homogenizing, then hot rolling, and further cold rolling without intermediate annealing. Features Aluminum alloy plate for aluminum can body with screw.
JP2002350348A 2002-12-02 2002-12-02 Aluminum alloy sheet for aluminum can barrel with screw Pending JP2004183035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350348A JP2004183035A (en) 2002-12-02 2002-12-02 Aluminum alloy sheet for aluminum can barrel with screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350348A JP2004183035A (en) 2002-12-02 2002-12-02 Aluminum alloy sheet for aluminum can barrel with screw

Publications (1)

Publication Number Publication Date
JP2004183035A true JP2004183035A (en) 2004-07-02

Family

ID=32752601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350348A Pending JP2004183035A (en) 2002-12-02 2002-12-02 Aluminum alloy sheet for aluminum can barrel with screw

Country Status (1)

Country Link
JP (1) JP2004183035A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077278A (en) * 2004-09-08 2006-03-23 Furukawa Sky Kk Aluminum alloy sheet for bottle type can
JP2006299330A (en) * 2005-04-19 2006-11-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for bottle can body
JP2007084098A (en) * 2005-09-21 2007-04-05 Showa Aluminum Kan Kk Forming and working method of aluminum can
WO2007052416A1 (en) * 2005-11-02 2007-05-10 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled aluminum alloy sheet for bottle can with excellent neck part formability and process for producing the cold-rolled aluminum alloy sheet
JP2007162056A (en) * 2005-12-13 2007-06-28 Mitsubishi Alum Co Ltd Aluminum alloy sheet for bottle-type beverage can
JP2008194710A (en) * 2007-02-09 2008-08-28 Universal Seikan Kk Di can
JP2008274377A (en) * 2007-05-02 2008-11-13 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for can body
JP2017206283A (en) * 2016-05-18 2017-11-24 昭和電工パッケージング株式会社 Laminated sheet for container and container
JP6405014B1 (en) * 2017-09-20 2018-10-17 株式会社Uacj Aluminum alloy plate for bottle can body and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228696A (en) * 1993-02-05 1994-08-16 Sky Alum Co Ltd Aluminum alloy sheet for di can body
JPH06271969A (en) * 1993-03-19 1994-09-27 Sky Alum Co Ltd Aluminum alloy sheet excellent in ironability and its production
JP2000248326A (en) * 1999-03-03 2000-09-12 Sumitomo Light Metal Ind Ltd High formability aluminum alloy sheet excellent in recyclability, and its manufacture
JP2002256366A (en) * 2001-02-27 2002-09-11 Kobe Steel Ltd Aluminum sheet for bottle
JP2004068061A (en) * 2002-08-05 2004-03-04 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet superior in stab resistance for can body
JP2004124250A (en) * 2002-03-28 2004-04-22 Kobe Steel Ltd Aluminium alloy sheet for bottle can, and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228696A (en) * 1993-02-05 1994-08-16 Sky Alum Co Ltd Aluminum alloy sheet for di can body
JPH06271969A (en) * 1993-03-19 1994-09-27 Sky Alum Co Ltd Aluminum alloy sheet excellent in ironability and its production
JP2000248326A (en) * 1999-03-03 2000-09-12 Sumitomo Light Metal Ind Ltd High formability aluminum alloy sheet excellent in recyclability, and its manufacture
JP2002256366A (en) * 2001-02-27 2002-09-11 Kobe Steel Ltd Aluminum sheet for bottle
JP2004124250A (en) * 2002-03-28 2004-04-22 Kobe Steel Ltd Aluminium alloy sheet for bottle can, and method for manufacturing the same
JP2004068061A (en) * 2002-08-05 2004-03-04 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet superior in stab resistance for can body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077278A (en) * 2004-09-08 2006-03-23 Furukawa Sky Kk Aluminum alloy sheet for bottle type can
JP2006299330A (en) * 2005-04-19 2006-11-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for bottle can body
JP2007084098A (en) * 2005-09-21 2007-04-05 Showa Aluminum Kan Kk Forming and working method of aluminum can
WO2007052416A1 (en) * 2005-11-02 2007-05-10 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled aluminum alloy sheet for bottle can with excellent neck part formability and process for producing the cold-rolled aluminum alloy sheet
JP2007126706A (en) * 2005-11-02 2007-05-24 Kobe Steel Ltd Cold rolled aluminum alloy sheet for bottle can having excellent formability of neck part
JP2007162056A (en) * 2005-12-13 2007-06-28 Mitsubishi Alum Co Ltd Aluminum alloy sheet for bottle-type beverage can
JP2008194710A (en) * 2007-02-09 2008-08-28 Universal Seikan Kk Di can
JP2008274377A (en) * 2007-05-02 2008-11-13 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for can body
JP2017206283A (en) * 2016-05-18 2017-11-24 昭和電工パッケージング株式会社 Laminated sheet for container and container
JP6405014B1 (en) * 2017-09-20 2018-10-17 株式会社Uacj Aluminum alloy plate for bottle can body and manufacturing method thereof
WO2019058935A1 (en) * 2017-09-20 2019-03-28 株式会社Uacj Aluminum alloy plate for bottle-shaped can body and manufacturing method thereof
JP2019056134A (en) * 2017-09-20 2019-04-11 株式会社Uacj Aluminum alloy sheet for bottle can shell and method of producing the same
CN111108223A (en) * 2017-09-20 2020-05-05 株式会社Uacj Aluminum alloy plate for bottle and can and method for producing same

Similar Documents

Publication Publication Date Title
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
WO2012043582A1 (en) Cold-rolled aluminum alloy sheet for bottle can
JP5675447B2 (en) Aluminum alloy plate for resin-coated can body and manufacturing method thereof
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
JP2006265701A (en) Cold-rolled aluminum alloy sheet superior in high-temperature property for bottle-shaped can
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2004183035A (en) Aluminum alloy sheet for aluminum can barrel with screw
JP6405014B1 (en) Aluminum alloy plate for bottle can body and manufacturing method thereof
JP2004244701A (en) Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2007270281A (en) Aluminum alloy sheet for bottle type beverage can and its production method
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JPH10121177A (en) Aluminum alloy sheet excellent in high speed ironing formability for di can drum and manufacture therefor
JP2006299330A (en) Aluminum alloy sheet for bottle can body
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
JP4467443B2 (en) Method for producing aluminum alloy plate
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2016180175A (en) Resin-coated aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can
JP2007169744A (en) Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method
JP4995494B2 (en) High-strength aluminum alloy plate for wide-mouth bottle can cap and method for producing the same
JP3708616B2 (en) Manufacturing method of Ai alloy plate for DI can body excellent in formability
JP4599057B2 (en) Aluminum alloy hard plate for can end having excellent cold rollability and anisotropy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205