JP2007084098A - Forming and working method of aluminum can - Google Patents

Forming and working method of aluminum can Download PDF

Info

Publication number
JP2007084098A
JP2007084098A JP2005273988A JP2005273988A JP2007084098A JP 2007084098 A JP2007084098 A JP 2007084098A JP 2005273988 A JP2005273988 A JP 2005273988A JP 2005273988 A JP2005273988 A JP 2005273988A JP 2007084098 A JP2007084098 A JP 2007084098A
Authority
JP
Japan
Prior art keywords
aluminum
blank
length
height
azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005273988A
Other languages
Japanese (ja)
Other versions
JP2007084098A5 (en
Inventor
Tetsuya Iyama
哲也 井山
Mitsuyo Sugawara
光世 菅原
Yoshiyuki Kuwabara
良幸 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Can Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Can Corp filed Critical Showa Aluminum Can Corp
Priority to JP2005273988A priority Critical patent/JP2007084098A/en
Publication of JP2007084098A publication Critical patent/JP2007084098A/en
Publication of JP2007084098A5 publication Critical patent/JP2007084098A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a cost by making a variation in height of a DI can after DI working in the circumference and by decreasing cut pieces during trimming. <P>SOLUTION: An optimum shape is given to a blank material to be subjected to DI working. Concretely radial length of the blank material in a direction of 0 degree and in a direction of 60 degrees to a rolling direction of an aluminum rolled plate for a can raw material are relatively 0.7 to 1.6% and 0.8 to 1.8% shorter than the radial length in a direction of 90 degrees respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ビール、お茶、清涼飲料等の飲料容器として用いられるアルミニウム缶、特にアルミニウム圧延板を缶素材として、これを打ち抜いたブランク材に絞り加工およびしごき加工を施して製作されるDI缶の缶胴の成形加工方法に関する。   The present invention relates to an aluminum can used as a beverage container for beer, tea, soft drinks, etc., in particular, a DI can produced by subjecting a rolled aluminum plate to a blank material obtained by punching and punching a blank. The present invention relates to a method for forming a can body.

飲料用アルミニウム缶の缶胴の成形は、一般に次のような工程で行われている。先ずアルミニウム圧延板を缶素材とし、これを先ず図3(A)に示すように円形に打ち抜いて所定寸法の円形ブランク材(11)をつくる。次にこのブランク材(11)に絞り加工を施して図3(B)に示すような浅底短円筒形状のカップ材(12)を成形し、これに更に再絞り加工(Redrawing)及びしごき加工(Ironing)を施して、図3(C)に示すような缶胴形状に対応したDI缶(13)を形成する。そして、このDI缶(13)の缶口側上縁(14)の波打ち形状の先端部分を水平なトリミングライン(T)で切断除去するトリミング加工を施すことにより所定の缶高さと直径をもつ缶胴成形体としたのち、更に缶口部をネッキング加工により僅かに縮径し、続いてフランジ加工により缶蓋の巻締め取付用のフランジを形成する。このようにして成形を完了した缶胴は、これに所定の飲料を充填したのち、缶口部に缶蓋を巻き締めして密封し、飲料缶として市場供給される。   The can body of a beverage aluminum can is generally formed by the following process. First, a rolled aluminum plate is used as a can material, and this is first punched into a circular shape as shown in FIG. 3A to produce a circular blank material (11) having a predetermined size. Next, the blank material (11) is drawn to form a cup material (12) having a short bottom cylindrical shape as shown in FIG. 3 (B), and further redrawing and ironing. (Ironing) is performed to form a DI can (13) corresponding to the can body shape as shown in FIG. Then, a can having a predetermined can height and diameter can be obtained by performing a trimming process by cutting and removing the wavy tip portion of the upper edge (14) on the can mouth side of the DI can (13) with a horizontal trimming line (T). After forming the body molded body, the diameter of the can mouth portion is slightly reduced by necking, and then a flange for tightening and attaching the can lid is formed by flange processing. The can body completed in this way is filled with a predetermined beverage, sealed with a can lid wrapped around a can mouth, and supplied as a beverage can.

なお、この明細書において「DI加工」の用語は、絞り加工、再絞り加工、1ないし複数段のしごき加工を含むこれらの一連の加工工程の意味で用いる。従ってまた、「DI缶」の用語は、DI加工を経て得られる成形缶の意味で用いられる。   In this specification, the term “DI processing” is used to mean a series of processing steps including drawing, redrawing, and one or more stages of ironing. Therefore, the term “DI can” is used to mean a molded can obtained through DI processing.

ところで、従来の上記のようなアルミニウム缶の缶胴の成形加工においては、缶素材とするアルミニウム圧延板からブランク材を打ち抜くに際し、これを完全な真円形に打ち抜き、これによって得られた真円形のブランク材を加工出発材料として用いるのが一般的であった。   By the way, in the conventional can processing of the can body of the above aluminum can, when blank material is punched from the aluminum rolled plate used as the can material, it is punched into a perfect round shape, and the round shape obtained thereby It was common to use a blank as a starting material for processing.

しかるところ、このような真円形のブランク材から成形したDI缶にあっては、DI加工を終えたトリミング前の段階の缶形状において、缶口側上縁(14)にかなり大きな波打ち状の変形を有する。つまり、缶の周方向において、缶高さに極めて大きなバラツキ(最大高さと最小高さの差)を有する。特に、缶胴の高さが160mmを超えるような一般にロング缶と称せられる種類の、DI加工段階で苛酷な絞り、しごきが加えられるアルミニウム缶の製造においては、上記のバラツキが顕著にあらわれる。   However, in the DI can molded from such a round blank, in the can shape at the stage before trimming after the DI processing, the upper edge (14) on the can mouth side has a considerably large wavy deformation. Have That is, in the circumferential direction of the can, there is a very large variation in the can height (difference between the maximum height and the minimum height). In particular, in the manufacture of aluminum cans, which are generally called long cans whose height of the can body exceeds 160 mm, and where severe drawing and ironing is applied during the DI processing stage, the above-mentioned variation is prominent.

この缶高さのバラツキの原因は、主としてアルミニウム圧延板による缶素材の製造段階で付与される圧延異方性に起因する。即ち、アルミニウム圧延板は、圧延方向によって材料に固有の伸び特性が異なる。このため、真円形ブランクから出発してDI加工を施したDI缶は、図3(C)および図4(A)に略図的に示すように、缶の高さが缶素材の圧延方向によって異なるものとなる。具体的には、図4(A)に示すように、圧延方向に対して0°方位、45°方位の領域部分に高さの高い山状の耳(13a)を発生し、それらの間の主に90°方位の領域部分が深さの深い谷(13b)となる。   The cause of the variation in the can height is mainly due to the rolling anisotropy imparted at the production stage of the can material by the aluminum rolled sheet. That is, the aluminum rolled sheet has different elongation characteristics specific to the material depending on the rolling direction. For this reason, as shown schematically in FIG. 3 (C) and FIG. 4 (A), a DI can that has been DI processed starting from a true circular blank has a different can height depending on the rolling direction of the can material. It will be a thing. Specifically, as shown in FIG. 4 (A), a mountain-shaped ear (13a) having a high height is generated in a region portion of 0 ° azimuth and 45 ° azimuth with respect to the rolling direction, and between them, Mainly, the region of 90 ° azimuth becomes a deep valley (13b).

このような周方向に高さの大きく異なるDI加工後の缶に対して、これに続いてトリミング加工を施して缶高さを切り揃える場合、上記谷(13b)の下方に加工上の余裕のための若干のトリム代(f)を設定した水平なトリミングライン(T)で缶胴切断が行われる。このため、図4(13)に示すようにトリミング除去片(13c)は、前記耳(13a)領域においてかなり大きな切除面積を占めるものとなり、結果的に大きな材料ロスを生じる。   When such cans after DI processing having different heights in the circumferential direction are subjected to trimming and then the can heights are trimmed, there is a processing margin below the valley (13b). The can body is cut at a horizontal trimming line (T) in which a slight trim margin (f) is set. For this reason, as shown in FIG. 4 (13), the trimming removal piece (13c) occupies a considerably large cut area in the ear (13a) region, resulting in a large material loss.

アルミニウム缶の製造において、その製造コストの削減をはかることは、消費数量が膨大なことも相俟って、極めて重要な課題である。このために従来から、所要強度を保持しつつ缶の肉厚の可及的薄肉化をはかることをはじめとして、DI加工時に生じる缶割れの削減による歩留り率の向上を図ることなど、コスト削減のための種々の改善方策が検討されてきているところである。このような背景下において、上記のようにトリミング除去片(13c)が山状の高い耳(13a)の存在の故に比較的大きな面積を持ち、これが材料ロスにつながることの損失は、コスト削減上の極めて大きな障害となっていることは明らかである。   In the production of aluminum cans, reducing the production cost is an extremely important issue due to the huge amount consumed. For this purpose, cost reductions such as improving the yield rate by reducing can cracks that occur during DI processing, including reducing the thickness of the can as much as possible while maintaining the required strength. Various improvement measures for this purpose have been studied. Under such a background, the trimming removal piece (13c) has a relatively large area due to the presence of the mountain-like high ear (13a) as described above, and the loss resulting from the material loss is a cost reduction. It is clear that this is a huge obstacle.

従来、上記のようなトリミング除去片の大きさから派生する材料ロスの問題点につては、缶素材のアルミニウム圧延板の異方性を低減する方向で種々の改善方策が試みられてきた。その結果ある程度の成果を上げ得ているが、缶素材を圧延によって製造するかぎり、圧延異方性は必然的に発生する問題であり、上記の問題点は不可避なこととして甘受されてきているのが実情である。   Conventionally, various improvement measures have been tried in the direction of reducing the anisotropy of the aluminum rolled sheet of the can material with respect to the problem of the material loss derived from the size of the trimming removal piece as described above. As a result, some results have been achieved, but as long as the can material is manufactured by rolling, rolling anisotropy is a problem that inevitably occurs, and the above problems have been accepted as inevitable. Is the actual situation.

一方、DI缶の口縁側に生じる耳の問題にやや関連する従来技術として、下記特許文献1を見ることができる。   On the other hand, the following Patent Document 1 can be seen as a related art that is somewhat related to the problem of ears occurring on the rim side of the DI can.

特許文献1は、DI成形缶をトリミングしてその上縁の高さを周方向に均一なものとしたのち、缶口部の絞り加工、即ちネッキング加工を施すことによって缶口縁に新たに発生する耳の問題に着目するものである。即ち、トリミング加工後に、缶口径を縮径するネッキング加工を施すことによって生じるネッキング後の缶の高さのバラツキに起因して、その後のフランジ加工によって成形される缶蓋巻き締め用フランジの張出し幅に周方向のバラツキを生じ、結果として缶蓋による密封性が阻害されるおそれがあることに着目するものである。   In Patent Document 1, after trimming a DI molded can and making the height of the upper edge uniform in the circumferential direction, the can mouth is newly drawn at the can mouth edge by drawing, that is, necking. Focus on the ear problem. That is, the overhang width of the flange for tightening the can lid formed by the subsequent flange processing due to the variation in the height of the can after the necking caused by the necking process for reducing the diameter of the can after the trimming process It will be noted that there is a possibility that the sealing in the can lid may be hindered as a result of the occurrence of variations in the circumferential direction.

そして、この問題の改善方策として、缶素材のアルミニウム圧延板の異方性が関連していることの知見に基づき、ブランク材を、缶素材圧延方向に対して0°および45°方向の半径方向の長さを、90°方向の半径方向の長さよりも所定範囲で短くした、略円形に打ち抜くものとすることを主旨とする技術を提案しているものである。
特開平11−169979号公報
And, as a measure for solving this problem, based on the knowledge that the anisotropy of the aluminum rolled sheet of the can material is related, the blank material is in the radial direction of 0 ° and 45 ° with respect to the can material rolling direction. This is a technique which proposes a technique of punching in a substantially circular shape in which the length is shorter than the length in the radial direction in the 90 ° direction by a predetermined range.
Japanese Patent Laid-Open No. 11-169979

しかしながら、この先行提案に係る技術は、ネッキング加工によって生じる耳の問題に関するものであり、DI加工によって生じる一層程度の大きい缶高さのバラツキの問題に対しては、何らの解決方策を教示するものではないのはもとより、ブランクの打ち抜き工程にこの先行提案技術を採用しても、上記の問題を解決しうることにはならない。   However, the technology according to this prior proposal relates to the ear problem caused by the necking process, and teaches any solution for the problem of the larger can height variation caused by the DI process. Of course, even if this prior proposal technique is adopted in the blank punching process, the above problem cannot be solved.

上記のような従来技術の背景下において、本発明は、DI加工後のDI缶の周方向の缶高さの大きなバラツキの程度を大幅に低減し、その結果、トリミング加工によって除去される除去片の占める体積、重量を減少してアルミニウム缶のコストダウンに貢献しうる成形加工方法、特にアルミニウム缶胴の成形加工方法を提供することを目的とする。   Under the background of the prior art as described above, the present invention greatly reduces the degree of large variation in the can height in the circumferential direction of the DI can after DI processing, and as a result, the removed piece removed by trimming processing. An object of the present invention is to provide a molding method that can reduce the volume and weight of the aluminum can and contribute to the cost reduction of the aluminum can, particularly a molding method of the aluminum can body.

本発明は、上記の課題に対して、下記の解決手段を提示するものである。   The present invention provides the following means for solving the above problems.

[1]アルミニウム圧延板からなる缶素材からブランク材を打ち抜き、該ブランク材からカップ材を成形したのち、DI加工によりDI成形缶を得るアルミニウム缶の成形加工方法において、
前記ブランク材を、非真円の略円形に打ち抜く工程を含み、
該非真円の略円形ブランク材は、缶素材圧延方向に対して0°方位の半径方向の長さを、90°方位の半径方向の長さに対して0.7〜1.6%の範囲で短く設定することを特徴とするアルミニウム缶の成形加工方法。
[1] In a forming method of an aluminum can obtained by punching a blank from a can material made of a rolled aluminum plate, forming a cup material from the blank, and obtaining a DI formed can by DI processing.
A step of punching the blank material into a non-circular substantially circular shape,
The non-circular substantially circular blank has a radial length of 0 ° azimuth with respect to the rolling direction of the can material, and a range of 0.7 to 1.6% with respect to a radial length of 90 ° azimuth. A method for forming an aluminum can, characterized in that the length is set short.

[2]アルミニウム圧延板からなる缶素材からブランク材を打ち抜き、該ブランク材からカップ材を成形したのち、DI加工によりDI成形缶を得るアルミニウム缶の成形加工方法において、
前記ブランク材を、非真円の略円形に打ち抜く工程を含み、
該非真円の略円形ブランク材は、缶素材圧延方向に対して60°方位の半径方向の長さを、90°方位の半径方向の長さに対して0.8〜1.8%の範囲で短く設定することを特徴とするアルミニウム缶の成形加工方法。
[2] In an aluminum can molding method for punching a blank material from a can material made of a rolled aluminum plate, forming a cup material from the blank material, and obtaining a DI molded can by DI processing,
A step of punching the blank material into a non-circular substantially circular shape,
The non-circular substantially circular blank has a length in the radial direction of 60 ° with respect to the rolling direction of the can material, and a range of 0.8 to 1.8% with respect to a length in the radial direction of 90 °. A method for forming an aluminum can, characterized in that the length is set short.

[3]アルミニウム圧延板からなる缶素材からブランク材を打ち抜き、該ブランク材からカップ材を成形したのち、DI加工によりDI成形缶を得るアルミニウム缶の成形加工方法において、
前記ブランク材を、非真円の略円形に打ち抜く工程を含み、
該非真円の略円形ブランク材は、缶素材圧延方向に対して0°方位の半径方向の長さを、90°方位の半径方向の長さに対して0.7〜1.6%の範囲で短く設定し、かつ60°方位の半径方向の長さを0.8〜1.8%の範囲で短く設定することを特徴とするアルミニウム缶の成形加工方法。
[3] In an aluminum can molding method of punching a blank material from a can material made of a rolled aluminum plate, forming a cup material from the blank material, and obtaining a DI molded can by DI processing,
A step of punching the blank material into a non-circular substantially circular shape,
The non-circular substantially circular blank has a radial length of 0 ° azimuth with respect to the rolling direction of the can material, and a range of 0.7 to 1.6% with respect to a radial length of 90 ° azimuth. And forming a 60 ° azimuth radial direction short in the range of 0.8 to 1.8%.

[4]DI加工後のDI缶の缶高さのバラツキ(円周方向における缶最大高さと最小高さの差)を、1.5mm以下に制御する前記[1]〜[3]項のいずれか1項に記載のアルミニウム缶の成形加工方法。   [4] Any of [1] to [3] above, wherein the variation in the height of the DI can after DI processing (difference between the maximum height and the minimum height in the circumferential direction) is controlled to 1.5 mm or less. A method for forming an aluminum can according to claim 1.

[5]缶素材が、JIS3000系のアルミニウム合金圧延板である前記[1]ないし[4]のいずれか1項に記載のアルミニウム缶の成形加工方法。   [5] The method for forming an aluminum can according to any one of [1] to [4], wherein the can material is a JIS 3000 series aluminum alloy rolled plate.

[6]前記[1]〜[5]項のいずれか1項に記載の成形加工法によって製造されたアルミニウム缶。   [6] An aluminum can manufactured by the molding method according to any one of [1] to [5].

前記発明[1]のアルミニウム缶の成形加工方法によれば、DI加工によって最も高い山状の耳が発生する傾向のある、缶素材アルミニウム圧延板の圧延方向に対して0°方位の半径方向の長さを、90°方位の半径方向の長さに対して、0.7〜1.6%の範囲で短かく設定した非真円の略円形ブランクを用いて、これをカッピングを含むDI加工に供することとしたことにより、従来の真円形ブランクを用いてDI加工したDI缶の場合の、最大缶高さ領域の高さレベルを十分に低くすることができる。このことは、周方向における缶高さのバラツキの程度を従来のDI缶に較べて大幅に小さくすることを可能にする。ひいては、DI加工後のトリミング加工において切断除去すべきトリミング除去部の見掛け高さを低く設定することが可能になり、材料ロスの削減によりアルミニウム缶の製造歩溜まりを向上しコストダウンを実現することができる。   According to the method for forming an aluminum can according to the invention [1], a radial direction of 0 ° azimuth with respect to the rolling direction of the can raw material aluminum rolled plate tends to generate the highest mountain-like ear by DI processing. DI processing including cupping using a non-circular substantially circular blank whose length is set short in the range of 0.7 to 1.6% with respect to the radial length of 90 ° azimuth. As a result, the height level of the maximum can height region in the case of a DI can that has been DI processed using a conventional round blank can be sufficiently reduced. This makes it possible to greatly reduce the degree of variation in can height in the circumferential direction as compared to conventional DI cans. As a result, it becomes possible to set the apparent height of the trimming removal portion to be cut and removed in the trimming processing after DI processing, and to improve the production yield of aluminum cans and reduce costs by reducing material loss. Can do.

前記発明[2]のアルミニウム缶の成形加工方法によれば、DI加工によって前記0°方位の部分に生じる最大高さ耳に次ぐ高さ、時にはそれを凌ぐ高さの耳を生じる60°方位の半径方向の長さを、90°方位の半径方向の長さに対して0.8〜1.8%の範囲で短く設定した非真円の略円形ブランクを用いて、これをカッピングを含むDI加工に供するものとしたことにより、前記同様にDI缶の周方向の高さのバラツキを低く抑えることができ、材料ロスの削減、歩溜まりの向上、コストダウンに貢献しうる。   According to the method for forming an aluminum can according to the invention [2], a 60 ° azimuth that produces an ear having a height next to the maximum height ear generated in the portion of the 0 ° azimuth by DI processing, and sometimes an ear having a height higher than that. A non-circular substantially circular blank having a radial length set to be shorter in a range of 0.8 to 1.8% with respect to a radial length of 90 ° azimuth is used for DI including cupping. By using it for processing, variation in the circumferential height of the DI can can be kept low as described above, which can contribute to reduction of material loss, improvement of yield, and cost reduction.

前記発明[3]の成形加工方法は、前記発明[1]と[2]の組合せにより、DI缶の周方向の高さのバラツキを更に一層小さいものに制御することが可能になり、発明[1][2]による効果を相乗的に享受し、愈々コストダウン、歩留りの向上に寄与しうる。   In the molding method of the invention [3], the variation in the circumferential height of the DI can can be controlled to be even smaller by the combination of the inventions [1] and [2]. 1] The effects of [2] can be enjoyed synergistically, and can often contribute to cost reduction and yield improvement.

発明[4]のアルミニウム缶の成形加工方法においては、発明[1]〜[3]のいずれかの方法の適用により、DI缶の缶高さのバラツキを1.5mm以下に制御するものであるから、材料ロスの削減による前記効果を遺憾なく確実に享受しうる。   In the method of forming an aluminum can of the invention [4], the variation in the height of the can of the DI can is controlled to 1.5 mm or less by applying any one of the methods of the inventions [1] to [3]. Therefore, the above-mentioned effect due to the reduction of material loss can be surely enjoyed.

発明[5]によるアルミニウム缶の成形加工方法によれば、缶素材として要求される成形性、強度のバランスのとれたJIS3000系アルミニウム合金圧延板を缶素材として用いるものであることにより、前記各発明[1]から[4]の効果を確実に達成しつつ、品質の優れたアルミニウム缶を製造しうる。   According to the method for forming an aluminum can according to the invention [5], by using a JIS 3000 series aluminum alloy rolled plate having a good balance between formability and strength required as a can material, An aluminum can excellent in quality can be produced while reliably achieving the effects [1] to [4].

発明[6]に係るアルミニウム缶は、大量に消費される飲料用等のアルミニウム缶を廉価に製作提供できる。   The aluminum can according to the invention [6] can be manufactured and provided at a low price for aluminum cans for beverages and the like that are consumed in large quantities.

次に、この発明の実施形態について更に具体的に説明する。   Next, embodiments of the present invention will be described more specifically.

本発明によるアルミニウム缶の製造のための成形加工方法は、基本的な工程において従来の工程と同様の工程を踏襲するものである。即ち、従来の成形加工方法と同様に、アルミニウム圧延板からなる缶素材を用い、該缶素材からブランク材を打ち抜き、次いで該ブランク材を絞り加工してカップ材を成形したのち、DI加工によりDI成形缶を得るものである。そしてこのDI缶の缶口側の先端部分を水平なトリミング面で切断除去して周方向に均一な缶高さをもった缶胴成形体を得るものである。   The forming method for producing an aluminum can according to the present invention follows the same steps as the conventional steps in the basic steps. That is, in the same manner as in the conventional forming method, after using a can material made of an aluminum rolled plate, a blank material is punched out from the can material, and then the blank material is drawn to form a cup material. A molded can is obtained. Then, the tip portion of the DI can on the can mouth side is cut and removed by a horizontal trimming surface to obtain a can body molded body having a uniform can height in the circumferential direction.

上記の製缶成形加工方法において、本発明は、アルミニウム圧延板缶素材からのブランク材の打ち抜きに際し、従来のようにこれを真円形状に打ち抜くのではなく、非真円の略円形に打ち抜き、特定形状の略円形ブランク材を得て、これを次位以降の成形加工工程に供する点に特徴を有するものである。   In the above can manufacturing method, the present invention, when punching a blank material from a rolled aluminum plate can material, rather than punching it into a perfect circle as in the prior art, punching into a non-circular substantially circular shape, A substantially circular blank material having a specific shape is obtained, and this is characterized in that it is subjected to subsequent molding processes.

図1は、アルミニウム圧延板から打ち抜いたDI加工前のブランク材の形状を示すものである。図1において点線で示す領域は、従来汎用のたとえば直径158mmの真円形のブランク材の外形を示している。この従来の真円形ブランク材(10)に対し、本発明に係るブランク材(1)は図1に実線で示した非真円の略円形の形状を有する。具体的には、図1に矢印(2)で示した缶素材のアルミニウム圧延板の圧延方向に対し、ブランク材(1)の0°方位の外周縁の2点をa1、a2とし、60°方位の4点をb1、b2、b3、b4とし、90°方位の2点をc1、c2としたとき、各方位の半径方向の長さ(L0 )(L60)(L90)が、相対的に特定の寸法範囲に設定されるものである。 FIG. 1 shows the shape of a blank material before punching from a rolled aluminum sheet. A region indicated by a dotted line in FIG. 1 shows the outer shape of a conventional general blank material having a diameter of, for example, 158 mm. In contrast to the conventional perfect circular blank material (10), the blank material (1) according to the present invention has a non-circular substantially circular shape shown by a solid line in FIG. Specifically, with respect to the rolling direction of the rolled aluminum plate of the can material indicated by the arrow (2) in FIG. 1, the two points of the outer peripheral edge of the 0 ° orientation of the blank (1) and a 1, a 2, When four points of 60 ° azimuth are b 1 , b 2 , b 3 , and b 4 and two points of 90 ° azimuth are c 1 and c 2 , the radial length (L 0 ) (L 60 ) ( L90 ) is set to a relatively specific dimension range.

圧延方向(2)に対して、0°方位の半径方向の長さ(L0 )は、点a1−a2間の距離であり、60°方位の半径方向の長さ(L60)は、点b1−b4、点b2−b3間の距離であり、90°方位の半径方向の長さ(L90)は、点c1−c2間の距離である。 With respect to the rolling direction (2), the radial length (L 0 ) of 0 ° azimuth is the distance between points a 1 and a 2 , and the radial length of 60 ° azimuth (L 60 ) is , Points b 1 -b 4 , and points b 2 -b 3 , and the radial length (L 90 ) of 90 ° azimuth is the distance between points c 1 -c 2 .

而して、本発明において、ブランク材(1)の前記0°方位の半径方向の長さ(L0 )は、90°方位の半径方向の長さ(L90)に対してこれの0.7〜1.6%の範囲で相対的に短く設定されている。そしてまた、60°方位の半径方向の長さ(L60)は、90°方位の半径方向の長さ(L90)に対してこれの0.8〜1.8%の範囲で相対的に短く設定されている。つまり、0°方位の上記長さ(L0 )は、90°方位の上記長さ(L90)の98.4〜99.3%の長さに、60°方位の長さ(L60)は、90°方位の長さ(L90)の98.2〜99.2%の長さに設定されている。具体的には、例えば長さ(L90)が仮に158mmに設定される場合、長さ(L0 )は約155.5〜156.9mmの範囲に、また長さ(L60)は、約155.2〜約156.7mmの範囲に設定されることを意味する。 And Thus, in the present invention, the 0 ° radial length of the orientation of the blank (1) (L 0) is 0 in this respect to the radial direction of the length of the 90 ° azimuth (L 90). It is set relatively short in the range of 7 to 1.6%. Further, the radial length (L 60 ) of the 60 ° azimuth is relatively in the range of 0.8 to 1.8% of the radial length (L 90 ) of the 90 ° azimuth. It is set short. That is, the length (L 0 ) in the 0 ° azimuth is 98.4 to 99.3% of the length (L 90 ) in the 90 ° azimuth, and the length (L 60 ) in the 60 ° azimuth. Is set to a length of 98.2 to 99.2% of the length of the 90 ° azimuth (L 90 ). Specifically, for example, when the length (L 90 ) is set to 158 mm, the length (L 0 ) is in the range of about 155.5 to 156.9 mm, and the length (L 60 ) is about It means that it is set in the range of 155.2 to about 156.7 mm.

前記0°方位の半径方向の長さ(L0 )の最も好ましい範囲は、90°方位の前記長さ(L90)に対し0.9〜1.5%短い範囲であり、前記60°方位の半径方向の長さ(L60)の最も好ましい範囲は、90°方位の前記長さ(L90)に対し1.0〜1.3%短い範囲である。 The most preferred range of the radial length of the 0 ° azimuth (L 0) is from 0.9 to 1.5% short range with respect to the length of the 90 ° azimuth (L 90), the 60 ° orientation The most preferable range of the length (L 60 ) in the radial direction is 1.0 to 1.3% shorter than the length (L 90 ) in the 90 ° azimuth.

ブランク材(1)の圧延方向に対する0°方位、60°方位、および90°方位における各半径方向の長さ(L0 )(L60)(L90)を、上記のような相対値の範囲に設定することにより、該ブランク材(1)を絞り加工してカップ材とし、続いて再絞り加工及びしごき加工を施して例えば缶胴高さ168mmの500ml缶用のDI缶を成形した場合、図2(A)に示すようにDI缶(3)の缶口側上縁(4)に生じる山(4a)と谷(4b)との相差は極めて小さいものとなる。即ち、DI缶(3)の周方向の缶高さのバラツキは、これを1.5mm以下に抑えることができる。このバラツキは、上記各長さ(L0 )(L60)(L90)の相対値の最適設計により一層小さい値に制御することが可能であり、好適には後掲の実施例に示すように、1.0mm以下に制御することが好ましい
このようにDI缶(3)の周方向の高さのバラツキを小さく抑さえることで、その後に行うトリミング加工において、トリミングライン(T)で切除されるトリミング除去片(3c)を図2(B)に示すように見掛け高さの小さいものとすることができ、ひいては該除去片(3c)による材料ロスを減少して、製缶のための材料歩留りを向上することができる。
The length (L 0 ) (L 60 ) (L 90 ) of each radial direction in the 0 ° azimuth, 60 ° azimuth, and 90 ° azimuth with respect to the rolling direction of the blank material (1) is in the range of relative values as described above. When the blank material (1) is drawn into a cup material and subsequently subjected to redrawing and ironing to form a DI can for a 500 ml can having a can body height of 168 mm, for example, As shown in FIG. 2A, the phase difference between the peaks (4a) and valleys (4b) generated at the upper edge (4) on the can mouth side of the DI can (3) is extremely small. That is, the variation in the can height in the circumferential direction of the DI can (3) can be suppressed to 1.5 mm or less. This variation can be controlled to a smaller value by the optimum design of the relative value of each of the lengths (L 0 ), (L 60 ), and (L 90 ), and preferably as shown in the examples described later. In addition, it is preferable to control the thickness of the DI can (3) to be less than 1.0 mm in this way. As shown in FIG. 2 (B), the trimming removal piece (3c) can be made to have a small apparent height, and the material loss due to the removal piece (3c) is reduced, so that the material for can manufacturing Yield can be improved.

また、本発明の適用によるブランク材(1)は、3つの上記各方位の半径方向の長さ(L0 )(L60)(L90)を決めることで、ブランク形状の最適化をはかることができるので、ブランク材(1)を打ち抜くための打ち抜きパンチの設計製作も、これを容易に行うことができる利点もある。 In addition, the blank material (1) according to the application of the present invention can optimize the blank shape by determining the radial lengths (L 0 ), (L 60 ), and (L 90 ) of each of the three orientations. Therefore, there is an advantage that the punching punch for punching the blank material (1) can be designed and manufactured easily.

尚、上記各方位におけるブランク材(1)の外周縁の隣接する点a1、a2、b1〜b4、c1、c2点間の外周縁は、これらをいずれも図1に示すように滑らかな円弧状の線で結んだ形状のものとすることが、缶高さのバラツキを所定の小さい値の範囲内におさめるために好ましい。 In addition, the outer periphery between the points a 1 , a 2 , b 1 to b 4 , c 1 , c 2 adjacent to the outer periphery of the blank material (1) in each of the above directions is shown in FIG. It is preferable to have a shape connected by smooth arc-like lines in order to keep the variation in can height within a predetermined small value range.

また、この発明によるアルミニウム缶の成形加工に用いる缶素材のアルミニウム材としては、缶に所要の特性を維持または保証しつつ、前記の成形加工をスムーズに行いうるものとするべく、従来汎用されているJIS3000系のアルミニウム合金、具体的には例えばJIS3003,3004,3104等のAl−Mn系合金を用いるのが好適である。   In addition, the aluminum material of the can material used for the forming process of the aluminum can according to the present invention has been widely used conventionally so that the forming process can be smoothly performed while maintaining or guaranteeing the required characteristics of the can. It is preferable to use a JIS 3000 series aluminum alloy, specifically, an Al-Mn alloy such as JIS 3003, 3004, 3104.

ここに示す実施例は、従来例及び比較例を含めて、いずれも缶胴径約66mm、缶胴高さ約168mmの容量500mlのアルミニウム缶の製造を対象としているものである。   The examples shown here, including the conventional example and the comparative example, are intended for the production of a 500 ml aluminum can having a can body diameter of about 66 mm and a can body height of about 168 mm.

缶素材として、JIS3004−H19材からなる元板厚0.285mmのアルミニウム圧延板を用いた。   As a can material, an aluminum rolled plate made of JIS3004-H19 material and having a base plate thickness of 0.285 mm was used.

そして先ず、この缶素材から、表1に示す各形状のブランク材を打ち抜きによって製作した。真円形ブランク材(試料1の従来例)の直径は158mmに設定する一方、非真円の略円形ブランク材(試料2〜9の実施例及び比較例)は、圧延方向と直交する90°方位の半径方向の長さを同じく158mmに設定するものとした。   First, blank materials of various shapes shown in Table 1 were produced from this can material by punching. While the diameter of the perfect circular blank material (conventional example of sample 1) is set to 158 mm, the non-circular substantially circular blank material (examples and comparative examples of samples 2 to 9) has a 90 ° azimuth perpendicular to the rolling direction. Similarly, the length in the radial direction was set to 158 mm.

上記の各種ブランク材を用い、はじめに直径97mmのポンチを用いて高さ37mmのカップ材を作成した。   First, a cup material having a height of 37 mm was prepared using a punch having a diameter of 97 mm using the various blank materials described above.

次に、これらのカップ材から、更に、従来の常法によるDI加工に準じ、1回の再絞り加工、及び3回のしごき加工を順次連続的に実施することにより、前記500ml缶用の缶胴部分となるDI缶を作製した。   Next, in accordance with the conventional DI process, the cup material is further subjected to one redrawing process and three ironing processes in succession, so that the can for the 500 ml can can be obtained. A DI can serving as a body portion was produced.

そして、得られたこれらの各種DI缶につき、その周方向の缶高さのバラツキ(最大高さと最小高さの差)を測定した。その結果を表1に示す。   And about these various DI cans obtained, the variation in the can height in the circumferential direction (difference between the maximum height and the minimum height) was measured. The results are shown in Table 1.

Figure 2007084098
Figure 2007084098

上表1に示されるように、従来の真円形ブランク材を用いた試料No.1の従来例においては、DI缶の缶高さのバラツキが2.3mmを超える大きなものであった。これに対し、本願発明の実施例である試料No.3〜6のDI缶においては、上記缶高さのバラツキが約0.6〜0.9mmの範囲に納まっていた。また、本願発明の実施例である試料No.7、8のDI缶においては、上記缶高さのバラツキが約1.4〜1.5mmの範囲に納まっていた。一方、ブランク材の形状が本発明の規定範囲から逸脱する条件で作製された比較例(試料No.2,9)のDI缶においては、これも従来品同様に缶高さのバラツキが2.0mmを超える大きな値を示すものであった。   As shown in Table 1 above, sample Nos. Using conventional round blanks were used. In the conventional example of 1, the can height variation of the DI can was large exceeding 2.3 mm. On the other hand, sample No. which is an embodiment of the present invention is used. In 3 to 6 DI cans, the variation in the height of the cans was in the range of about 0.6 to 0.9 mm. In addition, sample No. In the 7 and 8 DI cans, the variation in the can height was within the range of about 1.4 to 1.5 mm. On the other hand, in the DI can of the comparative example (sample Nos. 2 and 9) manufactured under the condition that the shape of the blank material deviates from the specified range of the present invention, the variation in the can height is 2. A large value exceeding 0 mm was exhibited.

上記の試験結果から、本願発明による成形加工方法で作製されたDI缶は、その後に行われるトリミング加工において切除片の大きさを相対的に小さいものとすることが可能であることを確認できた。ちなみに、この結果から缶素材アルミニウム圧延板の材料歩留りの向上率を試算したところ、缶1個当たりの材料歩留りを従来に対し約0.5%〜約1.5%向上しうることが判明した。   From the above test results, it was confirmed that the DI can produced by the molding method according to the present invention can make the size of the excised piece relatively small in the trimming performed thereafter. . By the way, from this result, when the improvement rate of the material yield of the can raw material aluminum rolled sheet was calculated, it was found that the material yield per can can be improved by about 0.5% to about 1.5% compared to the conventional case. .

本発明の成形加工方法によるブランク材の形状の特質を分かり易いようにやや誇張して示した説明図である。It is explanatory drawing which exaggerated a little and showed the characteristic of the shape of the blank material by the shaping | molding processing method of this invention for easy understanding. 本発明の成形加工方法によって得られるDI缶の形状を示すもので、(A)はDI缶の全体斜視図、(b)はトリミング加工状態を示す缶口部の斜視図である。The shape of the DI can obtained by the shaping | molding processing method of this invention is shown, (A) is the whole perspective view of DI can, (b) is a perspective view of the can mouth part which shows a trimming process state. DI成形加工の通例工程を工程順に示すもので、(A)はブランク材の斜視図、(B)はカップ材の斜視図、(C)はDI成形後のDI缶の概略縦断面図である。The usual process of DI shaping | molding process is shown in order of a process, (A) is a perspective view of a blank material, (B) is a perspective view of a cup material, (C) is a schematic longitudinal cross-sectional view of DI can after DI shaping | molding. . 従来の真円形ブランク材から出発するDI成形加工方法によって得られるDI缶の形状を示すもので、(A)はDI缶の全体斜視図、(B)はトリミング加工状態を示す缶口部の斜視図である。The shape of a DI can obtained by a DI forming method starting from a conventional round blank material is shown. (A) is an overall perspective view of the DI can, and (B) is a perspective view of the can mouth portion showing a trimming state. FIG.

符号の説明Explanation of symbols

1・・・ブランク材
2・・・圧延方向
3・・・DI缶
3a・・・トリミング切除片
4・・・上縁
4a・・・山
4b・・・谷
0 ・・・圧延方向に対する0°方位の半径方向の長さ
60・・・圧延方向に対する60°方位の半径方向の長さ
90・・・圧延方向に対する90°方位の半径方向の長さ
DESCRIPTION OF SYMBOLS 1 ... Blank material 2 ... Rolling direction 3 ... DI can 3a ... Trimming cut piece 4 ... Upper edge 4a ... Mountain 4b ... Valley L 0 ... 0 with respect to rolling direction Radial length of ° orientation L 60: Radial length of 60 ° orientation relative to rolling direction L 90: Radial length of 90 ° orientation relative to rolling direction

Claims (6)

アルミニウム圧延板からなる缶素材からブランク材を打ち抜き、該ブランク材からカップ材を成形したのち、DI加工によりDI成形缶を得るアルミニウム缶の成形加工方法において、
前記ブランク材を、非真円の略円形に打ち抜く工程を含み、
該非真円の略円形ブランク材は、缶素材圧延方向に対して0°方位の半径方向の長さを、90°方位の半径方向の長さに対して0.7〜1.6%の範囲で短く設定することを特徴とするアルミニウム缶の成形加工方法。
In the aluminum can molding method of punching a blank from a can material made of a rolled aluminum plate, molding a cup from the blank, and obtaining a DI molded can by DI processing,
A step of punching the blank material into a non-circular substantially circular shape,
The non-circular substantially circular blank has a length in the radial direction of 0 ° with respect to the rolling direction of the can material and a range of 0.7 to 1.6% with respect to a length in the radial direction of 90 °. A method for forming an aluminum can, characterized in that the length is set short.
アルミニウム圧延板からなる缶素材からブランク材を打ち抜き、該ブランク材からカップ材を成形したのち、DI加工によりDI成形缶を得るアルミニウム缶の成形加工方法において、
前記ブランク材を、非真円の略円形に打ち抜く工程を含み、
該非真円の略円形ブランク材は、缶素材圧延方向に対して60°方位の半径方向の長さを、90°方位の半径方向の長さに対して0.8〜1.8%の範囲で短く設定することを特徴とするアルミニウム缶の成形加工方法。
In the aluminum can molding method of punching a blank from a can material made of a rolled aluminum plate, molding a cup from the blank, and obtaining a DI molded can by DI processing,
A step of punching the blank material into a non-circular substantially circular shape,
The non-circular substantially circular blank has a length in the radial direction of 60 ° with respect to the rolling direction of the can material, and a range of 0.8 to 1.8% with respect to a length in the radial direction of 90 °. A method for forming an aluminum can, characterized in that the length is set short.
アルミニウム圧延板からなる缶素材からブランク材を打ち抜き、該ブランク材からカップ材を成形したのち、DI加工によりDI成形缶を得るアルミニウム缶の成形加工方法において、
前記ブランク材を、非真円の略円形に打ち抜く工程を含み、
該非真円の略円形ブランク材は、缶素材圧延方向に対して0°方位の半径方向の長さを、90°方位の半径方向の長さに対して0.7〜1.6%の範囲で短く設定し、かつ60°方位の半径方向の長さを0.8〜1.6%の範囲で短く設定することを特徴とするアルミニウム缶の成形加工方法。
In the aluminum can molding method of punching a blank from a can material made of a rolled aluminum plate, molding a cup from the blank, and obtaining a DI molded can by DI processing,
A step of punching the blank material into a non-circular substantially circular shape,
The non-circular substantially circular blank has a radial length of 0 ° azimuth with respect to the rolling direction of the can material, and a range of 0.7 to 1.6% with respect to a radial length of 90 ° azimuth. And forming a 60 ° azimuth radial direction short in the range of 0.8 to 1.6%.
DI加工後のDI缶の缶高さのバラツキ(円周方向における缶最大高さと最小高さの差)を、1.5mm以下に制御する請求項1〜3のいずれか1項に記載のアルミニウム缶の成形加工方法。   The aluminum according to any one of claims 1 to 3, wherein variation in the height of the DI can after DI processing (difference between the maximum height and the minimum height in the circumferential direction) is controlled to 1.5 mm or less. Molding method for cans. 缶素材が、JIS3000系のアルミニウム合金圧延板である請求項1ないし4のいずれか1項に記載のアルミニウム缶の成形加工方法。   The method for forming an aluminum can according to any one of claims 1 to 4, wherein the can material is a rolled JIS 3000 series aluminum alloy sheet. 前記請求項1〜5のいずれか1項に記載の成形加工方法によって製造されたアルミニウム缶。
The aluminum can manufactured by the shaping | molding method of any one of the said Claims 1-5.
JP2005273988A 2005-09-21 2005-09-21 Forming and working method of aluminum can Pending JP2007084098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273988A JP2007084098A (en) 2005-09-21 2005-09-21 Forming and working method of aluminum can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273988A JP2007084098A (en) 2005-09-21 2005-09-21 Forming and working method of aluminum can

Publications (2)

Publication Number Publication Date
JP2007084098A true JP2007084098A (en) 2007-04-05
JP2007084098A5 JP2007084098A5 (en) 2008-06-19

Family

ID=37971509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273988A Pending JP2007084098A (en) 2005-09-21 2005-09-21 Forming and working method of aluminum can

Country Status (1)

Country Link
JP (1) JP2007084098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273537A (en) * 2007-04-25 2008-11-13 Daiwa Can Co Ltd Lid for packaging container
GB2551514A (en) * 2016-06-20 2017-12-27 Crown Packaging Technology Inc Draw Die

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169979A (en) * 1997-12-12 1999-06-29 Kobe Steel Ltd Method for working aluminum di can
JPH11210764A (en) * 1998-01-23 1999-08-03 Ntn Corp Bearing outer ring, its manufacture, and clutch release bearing
JP2000263146A (en) * 1999-03-15 2000-09-26 Kobe Steel Ltd Cylinder drawing blank and cylinder drawing method
JP2003201534A (en) * 2002-01-11 2003-07-18 Sky Alum Co Ltd Rolled aluminum-alloy sheet for can end, and noncircular blank for can-end working
JP2004183035A (en) * 2002-12-02 2004-07-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for aluminum can barrel with screw

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169979A (en) * 1997-12-12 1999-06-29 Kobe Steel Ltd Method for working aluminum di can
JPH11210764A (en) * 1998-01-23 1999-08-03 Ntn Corp Bearing outer ring, its manufacture, and clutch release bearing
JP2000263146A (en) * 1999-03-15 2000-09-26 Kobe Steel Ltd Cylinder drawing blank and cylinder drawing method
JP2003201534A (en) * 2002-01-11 2003-07-18 Sky Alum Co Ltd Rolled aluminum-alloy sheet for can end, and noncircular blank for can-end working
JP2004183035A (en) * 2002-12-02 2004-07-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for aluminum can barrel with screw

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273537A (en) * 2007-04-25 2008-11-13 Daiwa Can Co Ltd Lid for packaging container
GB2551514A (en) * 2016-06-20 2017-12-27 Crown Packaging Technology Inc Draw Die
GB2551514B (en) * 2016-06-20 2019-09-18 Crown Packaging Technology Inc A method of manufacturing a metal cup using a draw die having a variable transition surface

Similar Documents

Publication Publication Date Title
US10464707B2 (en) Shaped metal container and method for making same
JP6058002B2 (en) Can manufacturing method and can manufacturing apparatus
RU2566941C2 (en) Can body
KR101111585B1 (en) Expanding die and method of shaping containers
WO2012170618A1 (en) Method of forming a metal container
JP6676949B2 (en) Manufacturing method of metal container
JP2008132522A (en) Metallic can body and its manufacturing method
JP2007084098A (en) Forming and working method of aluminum can
JP2017136605A (en) Manufacturing method of can
JP2017136604A (en) Method of manufacturing can and can
JP2015039712A (en) Manufacturing method of vehicle wheel disc
RU2684986C2 (en) Method for production of cans for drinks, metal bottle or aerosol can from aluminium alloy
JP4431594B2 (en) Can lid with excellent pressure resistance and method for producing the same
JP6795281B2 (en) DI can manufacturing method
JP3926667B2 (en) Manufacturing method for hub inner ring
JP2009241989A (en) Aluminum can for beverage excellent in piercing-proof nature
EP3219402B1 (en) A method of forming drawpieces for the manufacture of containers
KR100381760B1 (en) Structure of a Ironing punch for improving the strippability of a steel Drawn and Ironed can
JP2003236636A (en) Manufacturing method for two-piece wheel
JP2011184053A (en) Can lid
JPH11169979A (en) Method for working aluminum di can
JPH0739971A (en) Production of light weight can drum body
JPH10249461A (en) Method for trimming aluminum di can
JP5040353B2 (en) Metal can manufacturing method
WO2011102066A1 (en) Can lid

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208