JP2006075680A - Multistage extraction chip - Google Patents

Multistage extraction chip Download PDF

Info

Publication number
JP2006075680A
JP2006075680A JP2004260166A JP2004260166A JP2006075680A JP 2006075680 A JP2006075680 A JP 2006075680A JP 2004260166 A JP2004260166 A JP 2004260166A JP 2004260166 A JP2004260166 A JP 2004260166A JP 2006075680 A JP2006075680 A JP 2006075680A
Authority
JP
Japan
Prior art keywords
flow path
substrate
flow
flow channel
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004260166A
Other languages
Japanese (ja)
Inventor
Katsumasa Sakamoto
勝正 坂本
Hiroaki Nakanishi
博昭 中西
Keiichi Yoshida
佳一 吉田
Manabu Tokeshi
学 渡慶次
Takehiko Kitamori
武彦 北森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Kanagawa Academy of Science and Technology
Original Assignee
Shimadzu Corp
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Kanagawa Academy of Science and Technology filed Critical Shimadzu Corp
Priority to JP2004260166A priority Critical patent/JP2006075680A/en
Publication of JP2006075680A publication Critical patent/JP2006075680A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform multistage extraction in the flow channel in a microchip by a simple flow channel shape. <P>SOLUTION: Grooves different in cross-sectional area are respectively formed to the surfaces of two substrates and the groove forming surfaces of both substrates are laminated to form a flow channel having a protruded cross section, which comprises flow channel parts different in cross-sectional area, in the chip. A flow channel 14a is meandered in a continuous state while a flow channel 14b is branched into a plurality of flow channels and an extractable flow channel is formed at the place where the flow channel 14a and the flow channel 14b come into contact with each other. When two kinds of solvents different in properties are allowed to flow from an introducing port, multistage extraction can be performed at the place where the flow channel 14a and the flow channel 14b come into contact with each other. A two-phase flow becomes more stable by chemically treating the inner surfaces of the flow channels to make them hydrophilic or hydrophobic and an extraction effect is increased. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は化学反応や分析を行なわせるために、微量溶液中の物質、例えば微生物、蛋白質、核酸、糖質、抗原、抗体又はこれらが結合した混合物をマイクロチャンネル(微細流路)中で抽出する、多段階抽出チップに関するものである。   In the present invention, in order to perform a chemical reaction or analysis, a substance in a micro solution, for example, a microorganism, a protein, a nucleic acid, a sugar, an antigen, an antibody, or a mixture in which these are bound is extracted in a microchannel (microchannel). This relates to a multistage extraction chip.

近年、分析化学の分野ではμTAS(Micro Total Systems)の研究が盛んになりつつあり、マイクロチップを用いて分析の高速化、省サンプル化及び省溶媒化を図ることが期待されている。マイクロチップの微小空間中での反応は、従来の化学操作を用いた反応よりも反応効率を向上できる可能性も示されている。   In recent years, in the field of analytical chemistry, research on μTAS (Micro Total Systems) has been actively performed, and it is expected to use a microchip to speed up analysis, save samples, and save solvents. It has been shown that the reaction in the microspace of the microchip can improve the reaction efficiency over the reaction using the conventional chemical operation.

化学プロセスや装置の使用をマイクロサイズで行なう場合、マクロサイズで行なう場合に比べて、化学反応が起きる単位体積あたりの界面積(比界面積という)が大きいことから、液体と液体の界面で起こる現象の効率は高くなる。また、流体力学によりマイクロチャンネルを流れる液体は流路が微細なためにレイノルズ数が小さくなり、流れと同じ方向に平行な2層が形成されやすい。   When chemical processes and equipment are used in micro size, the interface area per unit volume (referred to as specific interface area) where chemical reaction occurs is larger than in macro size, so it occurs at the liquid-liquid interface. The efficiency of the phenomenon is increased. Further, the liquid flowing through the microchannel due to fluid dynamics has a small Reynolds number because the flow path is fine, and two layers parallel to the same direction as the flow are easily formed.

例えば水とフェノールのような混じらない2液間で抽出を行う場合、流路が通常サイズのとき、液体は2層になったままでは反応場となる比界面積が小さく不利であるが、流路の空間サイズが小さいときは拡散距離が短くなると同時に反応の比界面積も大きいので、機械的な混合を行う必要がなく、分子の拡散のみにより混合抽出が可能となる。   For example, when performing extraction between two liquids such as water and phenol that are not mixed, when the flow path is a normal size, the liquid has a two-layered liquid and the reaction area is small and disadvantageous. When the space size of the path is small, the diffusion distance is shortened and the specific interface area of the reaction is also large. Therefore, it is not necessary to perform mechanical mixing, and mixing and extraction can be performed only by molecular diffusion.

これまで、マイクロチャンネルにおいて二相流を安定化させるために、底面に溝状のガイドを設ける方法(非特許文献1参照。)や、底面に破線状ガイドラインを設ける方法(非特許文献2参照。)、オクタデシルトリクロロシランのトルエン溶液で化学修飾を行うことで疎水性に処理する方法(非特許文献3参照。)がとられてきている。しかし、より簡便な方法で二相流を安定に流すことができ、それによって溶媒抽出を行なう方法が望まれている。
特開2000-298079 Anal. Chem., 74, 1565-1571 (2001) 第7回化学とマイクロナノシステム研究会 講演予稿集 P52 2P08 第7回化学とマイクロナノシステム研究会 講演予稿集 P59 2P15
Until now, in order to stabilize the two-phase flow in the microchannel, a method of providing a groove-shaped guide on the bottom surface (see Non-Patent Document 1) and a method of providing a broken-line guideline on the bottom surface (see Non-Patent Document 2). ), A method of treating hydrophobicity by chemical modification with a toluene solution of octadecyltrichlorosilane (see Non-Patent Document 3). However, there is a demand for a method that can stably flow a two-phase flow by a simpler method and thereby perform solvent extraction.
JP2000-298079 Anal. Chem., 74, 1565-1571 (2001) Proceedings of the 7th Chemistry and Micro-Nano System Research Meeting P52 2P08 Proceedings of the 7th Chemistry and Micro-Nano System Research Meeting P59 2P15

マイクロチャンネルにおいて抽出を行なう場合、一枚の基板に流路を形成し、これにカバーとなる基板を接合する方法が一般にとられてきたが、多段階抽出が可能な流路を形成する場合、基板上での流路の形成が複雑になり難しかった。そこで、より簡便に多段階の相間分子輸送による溶媒抽出ができる流路形成が望まれている。
一般にマイクロチャンネルでは、レイノルズ数が小さいため二相流が形成されやすいが、溶媒の粘性やチャンネル表面との表面張力などにより、溶媒の種類によっては、二相流が形成されにくい場合がある。たとえば、ジクロロメタン/水、クロロホルム/水、n−へキサン/水などがこの例にあたる。つまりこれらの溶媒を用いてマイクロチャンネル中で相間分子輸送を行って溶媒抽出を行うことは、界面が不安定化しプラグ流になってしまうことから難しい。
本発明は、簡単な流路形状によってマイクロチップで多段階抽出を行なうことを目的とするものである。
When performing extraction in a microchannel, a method of forming a flow path on a single substrate and joining a substrate serving as a cover to the substrate has been generally taken, but when forming a flow path capable of multistage extraction, The formation of the flow path on the substrate was difficult to be complicated. Therefore, it is desired to form a flow path that allows solvent extraction by multi-stage interphase molecular transport more simply.
In general, in a microchannel, a two-phase flow is likely to be formed because the Reynolds number is small, but depending on the type of the solvent, a two-phase flow may be difficult to form due to the viscosity of the solvent or the surface tension with the channel surface. Examples include dichloromethane / water, chloroform / water, n-hexane / water, and the like. That is, it is difficult to carry out solvent extraction by carrying out interphase molecular transport in a microchannel using these solvents because the interface becomes unstable and becomes a plug flow.
An object of the present invention is to perform multistage extraction with a microchip with a simple flow channel shape.

一般にマイクロチップは、一方の接合面に流路等を形成した基板にカバーを張り合わせて作製する。そのため、流路形状に多段階抽出機能を組み込むと流路の配置が複雑になる。上下基板に流路を形成することが可能であるので、本発明は、上基板と下基板のそれぞれの接合面に異なる形状の流路を形成し、接合し密着させることで、一方の基板のみに流路を形成した場合のような複雑な流路配置を無くし、1枚のマイクロチップに多段階抽出用の流路を集積化する。   In general, a microchip is manufactured by attaching a cover to a substrate in which a channel or the like is formed on one joint surface. Therefore, if the multistage extraction function is incorporated in the flow channel shape, the arrangement of the flow channels becomes complicated. Since it is possible to form flow paths in the upper and lower substrates, the present invention forms flow paths of different shapes on the bonding surfaces of the upper substrate and the lower substrate, and joins and adheres them so that only one substrate is present. A complicated flow path arrangement as in the case where the flow paths are formed in a single microchip is eliminated, and a multi-stage extraction flow path is integrated on one microchip.

本発明は、幅と深さが1mm以下である断面形状の溝を有する2枚の基板を接合して形成したチップにおいて、前記基板を接合した界面には、溝が形成された面同士を接合することによってそれぞれ内部流路が形成され、前記一方の基板の流路は一本の連続した形状であり、他方の基板の流路は複数本の並列流路を含み、前記他方の並列流路が一方の流路と異なる位置で合流し、各合流部分で相間分子輸送による抽出を行なうことを特徴とする多段階抽出チップである。
前記他方の流路は1本の流路が内部で複数本に分岐して、前記並列流路を形成しているものとすることができる。
In the present invention, in a chip formed by bonding two substrates having grooves having a cross-sectional shape with a width and depth of 1 mm or less, the surfaces where the grooves are formed are bonded to the interface where the substrates are bonded. In this way, an internal flow path is formed, the flow path of the one substrate has one continuous shape, the flow path of the other substrate includes a plurality of parallel flow paths, and the other parallel flow path Is a multistage extraction chip characterized by merging at a position different from one of the flow paths and performing extraction by interphase molecular transport at each merged portion.
The other channel may be one channel that branches into a plurality of channels to form the parallel channel.

前記両流路の合流部分の流路の断面形状が凸型であり、一方の基板の流路の断面形状は他方の基板の流路の断面形状と比べて断面積及び幅が大きいものとすることができる。
前記両流路の合流部分の流路の断面形状が凸型であり、一方の基板の流路の内面が親水性であり、他方の基板の流路の内面が前記一方の基板の流路の内面より疎水性であるようにすることができる。具体的には、一方の基板の流路と他方の基板の流路の一方又は両方が親水性又は疎水性に化学修飾されていたり、一方の基板が親水性、他方の基板が疎水性となっている。
The cross-sectional shape of the flow path at the confluence portion of both flow paths is convex, and the cross-sectional shape of the flow path of one substrate is larger than the cross-sectional shape of the flow path of the other substrate. be able to.
The cross-sectional shape of the flow path at the confluence portion of both flow paths is convex, the inner surface of the flow path of one substrate is hydrophilic, and the inner surface of the flow path of the other substrate is the flow path of the one substrate. It can be made more hydrophobic than the inner surface. Specifically, one or both of the flow path of one substrate and the flow path of the other substrate are chemically modified to be hydrophilic or hydrophobic, or one substrate is hydrophilic and the other substrate is hydrophobic. ing.

1つの流路における抽出の場合、抽出効率は経時変化にともない平衡状態に近づき低下するが、上下の基板で別々の流路が形成された本発明の場合、抽出される側の流路を一本の連続した流路形状とし、抽出する側の流路を抽出回数に応じた複数の流路をもつ並列流路として複数個所で合流させることで、各合流部分で相関分子輸送による初期濃度での抽出が行なえ、抽出効率を上げることができる。   In the case of extraction in a single flow path, the extraction efficiency approaches an equilibrium state and decreases with time, but in the case of the present invention in which separate flow paths are formed on the upper and lower substrates, the flow path on the side to be extracted is reduced. The continuous flow channel shape of the book, the flow channel on the extraction side is merged at multiple locations as a parallel flow channel with multiple flow channels according to the number of extractions, and at the initial concentration due to correlated molecular transport at each merged part Can be extracted and the extraction efficiency can be increased.

流路の合流部分の断面形状を凸型にし、一方の基板の流路の断面形状が他方の基板の流路の断面形状と比べて断面積及び幅が大きいチップとすることで、合流部分の流路で安定な2相流が形成され、溶媒抽出が効率よく行なわれる。
断面形状が異なる前記流路形状と併せて、又はそれとは別に一方の基板の流路の内面が親水性であり、他方の基板の流路の内面が前記一方の基板の流路の内面より疎水性であるチップ構成とすることや、一方の基板の流路と他方の基板の流路の一方又は両方が親水性又は疎水性に化学修飾されているチップ構成とすることによっても、流路の2相流が安定化する。
流路の内面を親水性又は疎水性に処理することによっても2相流が安定化され、より一層抽出効率を上げることができる。
By making the cross-sectional shape of the merging portion of the flow path into a convex shape, the cross-sectional shape of the flow path of one substrate is a chip having a larger cross-sectional area and width than the cross-sectional shape of the flow path of the other substrate. A stable two-phase flow is formed in the flow path, and solvent extraction is performed efficiently.
In addition to or in addition to the flow path shapes having different cross-sectional shapes, the inner surface of the flow path of one substrate is hydrophilic, and the inner surface of the flow path of the other substrate is more hydrophobic than the inner surface of the flow path of the one substrate Or a chip configuration in which one or both of the flow path of one substrate and the flow path of the other substrate are chemically modified to be hydrophilic or hydrophobic. Two-phase flow is stabilized.
The two-phase flow is also stabilized by treating the inner surface of the flow path with hydrophilicity or hydrophobicity, and the extraction efficiency can be further increased.

気―液の界面安定化においては、マイクロチャンネルを利用した気―液反応など合成反応にも応用でき、二相流の界面において抽出操作することもできる。
本発明の構成はごく単純な構造であり様々なチップ作製工程に導入できるため、バルブ等を組み込んだ複雑なマイクロチップにも展開可能であり、マイクロチップの高度集積化やマイクロチップ中の多層液形成のための新しい技術手段が提供される。
In the stabilization of the gas-liquid interface, it can be applied to a synthesis reaction such as a gas-liquid reaction using a microchannel, and extraction operation can also be performed at the interface of two-phase flow.
Since the structure of the present invention is a simple structure and can be introduced into various chip manufacturing processes, it can be applied to complicated microchips incorporating valves and the like. High integration of microchips and multilayer liquids in microchips are possible. New technical means for forming are provided.

本発明の一実施例を詳細に示す。
多段階抽出チップの一実施例を図1及び図2により説明する。
図1において、(A)はカバーとなる上基板10、(B)は下基板12、(C)は両基板10,12を接合した状態である。これらの基板10,12は例えば石英ガラス基板である。上基板10及び12は上から見た図である。両基板10,12は流路を形成できる材質であればよい。
An embodiment of the present invention will be described in detail.
An embodiment of the multistage extraction chip will be described with reference to FIGS.
In FIG. 1, (A) is an upper substrate 10 serving as a cover, (B) is a lower substrate 12, and (C) is a state in which both substrates 10 and 12 are joined. These substrates 10 and 12 are, for example, quartz glass substrates. The upper substrates 10 and 12 are viewed from above. Both substrates 10 and 12 may be made of any material that can form a flow path.

図2において、(A)は流路14aと流路14bが重なって形成される流路14のX−X位置での、(B)は流路14aと基板12が重なって形成される流路14aのY−Y位置での、(C)は流路14bと基板10が重なって形成される流路14bのZ−Z位置での断面図である。   In FIG. 2, (A) is the XX position of the flow path 14 formed by overlapping the flow path 14a and the flow path 14b, and (B) is a flow path formed by overlapping the flow path 14a and the substrate 12. 14C is a cross-sectional view at the ZZ position of the flow path 14b formed by overlapping the flow path 14b and the substrate 10 at the YY position of 14a.

ガラス基板10のガラス基板12との接触面側には、100μmの幅40、40μmの深さ42を持つ試料を流すための流路14aと、試料導入用の穴16及び排出用の穴18と、溶媒導入用の穴20及び、排出用の穴22が形成されている。流路14aは蛇行しており、一端は試料導入穴16、他端は排出穴18とつながっている。   On the contact surface side of the glass substrate 10 with the glass substrate 12, a flow path 14 a for flowing a sample having a width 40 of 100 μm and a depth 42 of 40 μm, a hole 16 for introducing a sample, and a hole 18 for discharging A hole 20 for introducing a solvent and a hole 22 for discharging are formed. The flow path 14 a is meandering, and one end is connected to the sample introduction hole 16 and the other end is connected to the discharge hole 18.

ガラス基板12のガラス基板10との接触面側には、300μmの幅46、40μmの深さ48を持つ流路14bが形成されている。溝14bは基板内で3本の並列した流路15a,15b,15cに分岐しており、流路14bの一端は、基板10に形成されている貫通穴である溶媒導入穴20とつながり、他端は基板10に形成されている貫通穴である溶媒排出穴22とつながっている。基板12の上に基板10を、流路形成面が重なるように例えばフッ酸溶液により接合で密着させたものが、(C)に示されるチップ24である。   On the contact surface side of the glass substrate 12 with the glass substrate 10, a flow path 14b having a width 46 of 300 μm and a depth 48 of 40 μm is formed. The groove 14b branches into three parallel flow paths 15a, 15b, and 15c in the substrate, and one end of the flow path 14b is connected to the solvent introduction hole 20 that is a through hole formed in the substrate 10, and the like. The end is connected to a solvent discharge hole 22 which is a through hole formed in the substrate 10. A chip 24 shown in (C) is obtained by bonding the substrate 10 on the substrate 12 by bonding with, for example, a hydrofluoric acid solution so that the flow path forming surface overlaps.

流路14aと14bは異なる流路形状をしていることから、チップ24内には5本の並列した流路と、試料及び溶媒の導入穴及び排出穴が形成されている。
前記流路の幅40,46と深さ42,48は例示であって、幅、深さとも変更することができる。
Since the flow paths 14 a and 14 b have different flow path shapes, five parallel flow paths, a sample and solvent introduction hole, and a discharge hole are formed in the chip 24.
The widths 40 and 46 and the depths 42 and 48 of the flow path are examples, and both the width and the depth can be changed.

図2(A)に示されるX−X断面図では基板10,12の溝が向かい合って密着しているが、(B)に示されるY−Y断面図及び(C)に示されるZ−Z断面図では、溝と基板が向かい合って接合されていることで流路14a及び14bを形成している。
図1(C)で、流路14aに導入穴16から抽出したい試料を導入し、流路14bに導入穴20から抽出する溶媒を導入する。溶媒は流路15a,15b,15cに分岐して並列に流れ、断面が図2(A)で示されるような2つの流路14aと14bが合流している流路で溶媒抽出が行なわれる。流路14aのみが存在する位置では試料は抽出溶媒と接していないので溶媒抽出は行なわれない。また、流路14bのみが存在する位置では溶媒のみが流路14bを流れているが、試料液とは接していないので溶媒抽出は行なわれない。
In the XX sectional view shown in FIG. 2 (A), the grooves of the substrates 10 and 12 face each other and are in close contact, but the YY sectional view shown in (B) and ZZ shown in (C). In the cross-sectional view, the grooves 14a and 14b are formed by joining the groove and the substrate facing each other.
In FIG. 1C, a sample to be extracted from the introduction hole 16 is introduced into the flow path 14a, and a solvent to be extracted from the introduction hole 20 is introduced into the flow path 14b. The solvent branches into flow paths 15a, 15b, and 15c and flows in parallel, and solvent extraction is performed in the flow path where two flow paths 14a and 14b join as shown in FIG. Since the sample is not in contact with the extraction solvent at the position where only the flow path 14a exists, the solvent extraction is not performed. Further, only the solvent flows through the flow path 14b at the position where only the flow path 14b exists, but the solvent extraction is not performed because it is not in contact with the sample solution.

流路14aを流れる試料水は、流路15a,15b,15cによって、それぞれ初期濃度の溶媒によって抽出されるために、抽出効果が増大する。
導入穴16から導かれた試料水は流路14aを流れて抽出された後、排出穴18から流れ出ることによって回収される。導入穴20から導かれた溶媒は流路14bを流れて抽出した後、排出穴22から流れ出ることによって回収される。
Since the sample water flowing through the flow path 14a is extracted by the initial concentration solvent through the flow paths 15a, 15b, and 15c, the extraction effect is increased.
The sample water introduced from the introduction hole 16 is collected by flowing out from the discharge hole 18 after flowing through the flow path 14a and being extracted. The solvent guided from the introduction hole 20 flows through the flow path 14b and is extracted, and then recovered by flowing out from the discharge hole 22.

本発明の断面形状の違いによる効果を説明する。
流路14において、導入穴16から気体を流し、導入穴20から水を流すと、流れやすい空気が流路幅の狭い方であるガラス基板10の流路14aを流れ、流れにくい水がガラス基板12の流路14bを流れるために、流路14中の二相流が安定し、ガラス基板10の流路部分14aに空気が、ガラス基板12の流路部分14bに水が選択的に流れる。
The effect by the difference in cross-sectional shape of this invention is demonstrated.
In the flow path 14, when a gas is flowed from the introduction hole 16 and water is flowed from the introduction hole 20, easy-flow air flows through the flow path 14 a of the glass substrate 10 having a narrow flow path width, and water that is difficult to flow is glass substrate. Therefore, the two-phase flow in the flow channel 14 is stabilized, and air selectively flows in the flow channel portion 14a of the glass substrate 10 and water selectively flows in the flow channel portion 14b of the glass substrate 12.

前記実施例の流路は、断面形状が上側と下側の基板で異なることを特徴としているが、流路内面を化学修飾することにより、さらに流路中の二相流を安定化することができる。例えば、オクタデシルトリクロロシランのトルエン溶液で化学修飾を行うことで疎水性に処理することができ、また、TiO2などの光触媒によって親水性に処理することができる。 The flow path of the embodiment is characterized in that the cross-sectional shape differs between the upper and lower substrates, but by chemically modifying the flow path inner surface, the two-phase flow in the flow path can be further stabilized. it can. For example, it can be treated hydrophobic by chemical modification with a toluene solution of octadecyltrichlorosilane, and can be treated hydrophilic by a photocatalyst such as TiO 2 .

二相流を安定化させる手段として、化学修飾する方法以外に、疎水性又は親水性の基板を用いることもできる。例えば、ガラス基板を用いることで親水性とし、PTFE(ポリテトラフルオロエチレン)を基板として用いることで疎水性とすることもできる。   As a means for stabilizing the two-phase flow, a hydrophobic or hydrophilic substrate can be used in addition to the chemical modification method. For example, it can be made hydrophilic by using a glass substrate and can be made hydrophobic by using PTFE (polytetrafluoroethylene) as a substrate.

前記に示した二相流を安定化させる手段は組み合わせることが可能であり、例えば、ガラス基板にエッチングで流路を形成し、これを化学処理したものを親水性基板として用い、PTFE基板にエッチングで流路を形成したものを疎水性基板として用いることができる。   The means for stabilizing the two-phase flow described above can be combined. For example, a flow path is formed by etching on a glass substrate, and this is chemically treated as a hydrophilic substrate and etched on a PTFE substrate. What formed the flow path with can be used as a hydrophobic substrate.

本発明による流路の断面形状は2つの基板の接触部によって決定されるが、図2(A)に示されたX−X断面図の他の形状例を図3に示す。それぞれの断面形状の加工の手段について、(B),(C),(D),(F),(H)に示す三角形又は台形の部分についてはシリコン基板のアルカリによる異方性エッチングにより、また(A),(B),(C),(E),(G)に示す矩形についてはドライエッチングによる異方性エッチングの方法により、(E),(F),(G),(H)に示す曲線をもつ部分についてはウエットエッチングの方法により、それぞれ形成することが可能である。流路の断面形状は前記形状には限定されず、流路14a,14bの幅40,46、深さ42,48及び形状は変更することができる。   The cross-sectional shape of the flow path according to the present invention is determined by the contact portion of the two substrates, and FIG. 3 shows another shape example of the XX cross-sectional view shown in FIG. Regarding the means for processing each sectional shape, the triangular or trapezoidal portions shown in (B), (C), (D), (F), and (H) are obtained by anisotropic etching of the silicon substrate with alkali, and For the rectangles shown in (A), (B), (C), (E), and (G), (E), (F), (G), and (H) are performed by an anisotropic etching method using dry etching. The portions having the curves shown in (1) can be formed by a wet etching method. The cross-sectional shape of the flow channel is not limited to the above shape, and the widths 40 and 46, the depths 42 and 48, and the shapes of the flow channels 14a and 14b can be changed.

基板に流路となる溝を形成した2枚の基板を張り合わせて作製したマイクロチップの製造方法の一例を図4に示す。
(A)まず、ガラス基板30を洗浄した後、その表面にSiやCr等を成膜し、その上にフォトレジスト32をコーティングする。
(B)次に、フォトマスク34を用いてUV(紫外)光をフォトレジスト32に露光する。
(C)その後、フォトレジスト32を現像してパターニングする。
(D)パターニングされたフォトレジスト32をマスクとして、SiやCr等をエッチングしてパターニングし、SiやCr等のパターンをマスクとしてガラス基板30を例えば46%フッ酸水溶液にてエッチングして、流路溝36を形成する。
(E)フォトレジスト32を除去し、SiやCr等を除去する。
(F)同様にして他の基板に断面の大きさの異なる流路溝を形成し、両基板の溝が形成されている面を向かい合わせ、フッ酸溶液により接合で密着させることにより流路38を形成する。
FIG. 4 shows an example of a method for manufacturing a microchip manufactured by bonding two substrates each having a channel serving as a channel on the substrate.
(A) First, after the glass substrate 30 is washed, a film of Si, Cr or the like is formed on the surface, and a photoresist 32 is coated thereon.
(B) Next, the photoresist 32 is exposed to UV (ultraviolet) light using the photomask 34.
(C) Thereafter, the photoresist 32 is developed and patterned.
(D) Si and Cr are etched and patterned using the patterned photoresist 32 as a mask, and the glass substrate 30 is etched using, for example, a 46% aqueous hydrofluoric acid solution using the Si and Cr patterns as a mask. A channel groove 36 is formed.
(E) The photoresist 32 is removed, and Si, Cr, etc. are removed.
(F) Similarly, the flow path grooves having different cross-sectional sizes are formed on the other substrates, the surfaces of the both substrates on which the grooves are formed are faced to each other, and the flow path 38 is bonded by a hydrofluoric acid solution. Form.

基板の素材としては、ガラス基板の他、シリコン基板や樹脂基板を用いることができる。いずれの場合も上基板と下基板の接合面に、化学的に、機械的に、あるいはレーザー照射やイオンエッチング等の各種の手段によって流路となる溝を形成し、それらの溝が重なるように張り合わせることで、本発明で使用する凸型形状の流路を作りこむことができる。   As a substrate material, a glass substrate, a silicon substrate, or a resin substrate can be used. In any case, a groove to be a flow path is formed on the bonding surface of the upper substrate and the lower substrate chemically, mechanically, or by various means such as laser irradiation or ion etching so that the grooves overlap. By sticking together, a convex channel used in the present invention can be created.

本発明による多段階抽出チップは、微少量の液―液抽出や微少量の気―液反応に用いることができる。   The multistage extraction chip according to the present invention can be used for a very small amount of liquid-liquid extraction and a very small amount of gas-liquid reaction.

一実施例の多段階抽出チップの流路形状の平面図を示しており、(A),(B)はそれぞれの基板の流路形状を示す平面図、(C)は両基板を重ね合わせたときの流路形状を示す平面図である。The top view of the channel shape of the multistage extraction chip of one example is shown, (A) and (B) are the top views showing the channel shape of each substrate, and (C) superposed both substrates. It is a top view which shows the flow-path shape at the time. (A)から(C)はそれぞれ図1(C)の流路上の断面形状を示す断面図である。(A) to (C) are cross-sectional views each showing a cross-sectional shape on the flow path of FIG. 1 (C). (A)から(H)は両流路の合流部分の断面形状の例を示す断面図である。(A) to (H) is a cross-sectional view showing an example of a cross-sectional shape of a merged portion of both flow paths. エッチング法による流路形成方法を示す工程断面図である。It is process sectional drawing which shows the flow-path formation method by the etching method.

符号の説明Explanation of symbols

10,12,24 ガラス基板
14a,14b,14 流路
16,20 導入口
18,22 排出口
10, 12, 24 Glass substrates 14a, 14b, 14 Flow path 16, 20 Inlet 18, 22 Outlet

Claims (6)

幅と深さが1mm以下である断面形状の溝を有する2枚の基板を接合して形成したチップにおいて、
前記基板を接合した界面には、溝が形成された面同士を接合することによってそれぞれ内部流路が形成され、
前記一方の基板の流路は一本の連続した形状であり、他方の基板の流路は複数本の並列流路を含み、
前記他方の流路の並列流路が一方の流路と異なる位置で合流し、各合流部分で相間分子輸送による抽出を行なうことを特徴とする多段階抽出チップ。
In a chip formed by joining two substrates having a cross-sectional groove with a width and depth of 1 mm or less,
At the interface where the substrates are bonded, internal flow paths are formed by bonding the surfaces on which the grooves are formed,
The flow path of the one substrate has one continuous shape, and the flow path of the other substrate includes a plurality of parallel flow paths,
A multi-stage extraction chip, wherein parallel flow channels of the other flow channel merge at a position different from one flow channel, and extraction is performed by interphase molecular transport at each merged portion.
前記他方の流路は1本の流路が複数本に分岐して、前記並列流路を形成している請求項1に記載の多段階抽出チップ。   2. The multistage extraction chip according to claim 1, wherein one of the other channels is branched into a plurality of channels to form the parallel channel. 前記両流路の合流部分の流路の断面形状が凸型であり、一方の基板の流路の断面形状は他方の基板の流路の断面形状と比べて断面積及び幅が大きい請求項1又は2に記載の多段階抽出チップ。   The cross-sectional shape of the flow path of the confluence portion of both flow paths is convex, and the cross-sectional shape of the flow path of one substrate is larger than the cross-sectional shape of the flow path of the other substrate. Or the multistage extraction chip | tip of 2. 前記両流路の合流部分の流路の断面形状が凸型であり、一方の基板の流路の内面が親水性であり、他方の基板の流路の内面が前記一方の基板の流路の内面より疎水性である請求項1から3のいずれかに記載の多段階抽出チップ。   The cross-sectional shape of the flow path at the confluence portion of both flow paths is convex, the inner surface of the flow path of one substrate is hydrophilic, and the inner surface of the flow path of the other substrate is the flow path of the one substrate. The multistage extraction chip according to claim 1, which is more hydrophobic than the inner surface. 前記合流部分の流路における一方の基板の流路と他方の基板の流路の一方又は両方が親水性又は疎水性に化学修飾されている請求項3又は4に記載の多段階抽出チップ。   5. The multistage extraction chip according to claim 3, wherein one or both of the flow path of one substrate and the flow path of the other substrate in the flow path of the confluence portion are chemically modified to be hydrophilic or hydrophobic. 一方の基板が親水性、他方の基板が疎水性である請求項1から5のいずれかに記載の多段階抽出チップ。
The multistage extraction chip according to any one of claims 1 to 5, wherein one substrate is hydrophilic and the other substrate is hydrophobic.
JP2004260166A 2004-09-07 2004-09-07 Multistage extraction chip Pending JP2006075680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260166A JP2006075680A (en) 2004-09-07 2004-09-07 Multistage extraction chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260166A JP2006075680A (en) 2004-09-07 2004-09-07 Multistage extraction chip

Publications (1)

Publication Number Publication Date
JP2006075680A true JP2006075680A (en) 2006-03-23

Family

ID=36155587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260166A Pending JP2006075680A (en) 2004-09-07 2004-09-07 Multistage extraction chip

Country Status (1)

Country Link
JP (1) JP2006075680A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075679A (en) * 2004-09-07 2006-03-23 Shimadzu Corp Two-phase flow stabilizing chip
JP2008039100A (en) * 2006-08-08 2008-02-21 Youwa:Kk Flat passage and method for producing the same
WO2009057693A1 (en) * 2007-11-01 2009-05-07 Jfe Engineering Corporation Micro chip, micro chip device, and evaporation operation method using the micro chip
EP2500086A2 (en) 2011-03-18 2012-09-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flow channel structure, and mixing method, extraction method, and reaction method for fluids
CN109967146A (en) * 2019-04-16 2019-07-05 中国工程物理研究院材料研究所 A kind of micro-fluidic laminar flow chip and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075679A (en) * 2004-09-07 2006-03-23 Shimadzu Corp Two-phase flow stabilizing chip
JP4528585B2 (en) * 2004-09-07 2010-08-18 株式会社島津製作所 Two-phase flow stabilization chip
JP2008039100A (en) * 2006-08-08 2008-02-21 Youwa:Kk Flat passage and method for producing the same
WO2009057693A1 (en) * 2007-11-01 2009-05-07 Jfe Engineering Corporation Micro chip, micro chip device, and evaporation operation method using the micro chip
JP2009106916A (en) * 2007-11-01 2009-05-21 Jfe Engineering Corp Microchip, microchip device, and method for evaporation operation using microchip
US9120032B2 (en) 2007-11-01 2015-09-01 Jfe Engineering Corporation Microchip, microchip device, and evaporation operation method using the microchip
EP2500086A2 (en) 2011-03-18 2012-09-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flow channel structure, and mixing method, extraction method, and reaction method for fluids
EP2500086A3 (en) * 2011-03-18 2013-05-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flow channel structure, and mixing method, extraction method, and reaction method for fluids
US8986546B2 (en) 2011-03-18 2015-03-24 Kobe Steel, Ltd. Flow channel structure, and mixing method, extraction method, and reaction method for fluids
CN109967146A (en) * 2019-04-16 2019-07-05 中国工程物理研究院材料研究所 A kind of micro-fluidic laminar flow chip and preparation method thereof

Similar Documents

Publication Publication Date Title
US6851846B2 (en) Mixing method, mixing structure, micromixer and microchip having the mixing structure
Kralj et al. Integrated continuous microfluidic liquid–liquid extraction
US8398866B2 (en) Microchip for forming emulsion and method for manufacturing the same
Aota et al. Parallel multiphase microflows: fundamental physics, stabilization methods and applications
US20070263477A1 (en) Method for mixing fluids in microfluidic channels
US20080110753A1 (en) Device For Handling Drops For Biochemical Analysis, Method For Producing Said Device And A System For Microfluidic Analysis
Maruyama et al. Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device
Sun et al. Controlled dispensing and mixing of pico-to nanoliter volumes using on-demand droplet-based microfluidics
JP5963410B2 (en) Flow path device and fluid mixing method
WO2004054696A1 (en) A mixing apparatus and method
JP2007216123A (en) Micro-channel chip
EP1607748B1 (en) Nucleic acid extracting kit, and nucleic acid extracting method
JP4481859B2 (en) Micro channel
Zhang et al. Study on stair-step liquid triggered capillary valve for microfluidic systems
JP4019044B2 (en) Multi-layer flow microchannel integrated structure and multi-layer flow operation method using the same
JP4528585B2 (en) Two-phase flow stabilization chip
JP2006075680A (en) Multistage extraction chip
KR100967414B1 (en) Microchannel for merging of multiple droplets and method of generating quantitatively merged droplets using the same
JP2006142210A (en) Microchip and fluid mixing method using the same
JP2009119386A (en) Microfluid chip and liquid mixing method using it
Bunge et al. Symmetric surficial phaseguides: a passive technology to generate wall-less channels by two-dimensional guiding elements
KR100485317B1 (en) Micro mixer and method of manufacturing the same
JP2005331253A (en) Chip for microchemical system and micro-pump
Tamaki et al. Liquid filling method for nanofluidic channels utilizing the high solubility of CO2
JP2005211708A (en) Liquid-liquid extraction apparatus