JP2005211708A - Liquid-liquid extraction apparatus - Google Patents

Liquid-liquid extraction apparatus Download PDF

Info

Publication number
JP2005211708A
JP2005211708A JP2004018196A JP2004018196A JP2005211708A JP 2005211708 A JP2005211708 A JP 2005211708A JP 2004018196 A JP2004018196 A JP 2004018196A JP 2004018196 A JP2004018196 A JP 2004018196A JP 2005211708 A JP2005211708 A JP 2005211708A
Authority
JP
Japan
Prior art keywords
solution
solute
interface
liquid
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004018196A
Other languages
Japanese (ja)
Inventor
Yukihisa Wada
幸久 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004018196A priority Critical patent/JP2005211708A/en
Publication of JP2005211708A publication Critical patent/JP2005211708A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase an extraction speed at the interface of a microflow channel. <P>SOLUTION: A solution A being a liquid to be extracted containing a solute to be extracted and a solution B becoming a solvent for extracting the solute are supplied to the microflow channel 2 by the pumps 4 and 6 of a liquid feed mechanism, and the solution A and the solution B are brought into contact with each other at the interface thereof in the microflow channel 2 to flow as a laminar stream. A pair of electrodes 12a and 12b are arranged to a side surface on the side of the solution B of the microflow channel 2 along the flow direction of both solutions and an electric line 16 of force is generated by applying AC voltage across both electrodes 12a and 12b from an AC power supply 14 to produce an electric field gradient in the solutions A and B by the electric line of force. The solute 8 is polarized by the electric field thereof and subjected to dielectric migration by the electric field gradient to be enhanced in its concentration at the interface 10 and the extraction speed at the interface 10 is increased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は化学反応や分析を行なうために、微量溶液中の物質、例えば微生物、蛋白質、核酸、糖質、抗原、抗体又はこれらが結合した混合物を抽出する装置に関するものである。   The present invention relates to an apparatus for extracting a substance in a micro solution, for example, a microorganism, a protein, a nucleic acid, a carbohydrate, an antigen, an antibody or a mixture in which these are bound, in order to perform a chemical reaction or analysis.

化学プロセスや装置をミクロサイズで行なう場合、比界面積が大きいことから、液体と液体の界面で起こる現象の効率は高くなる。流体力学によりマイクロチャンネルを流れる液体は流路が微細なためレイノルズ数が小さくなり、流れの方向に平行な2層が形成される。   When a chemical process or apparatus is performed at a micro size, the specific interface area is large, so that the efficiency of a phenomenon occurring at the liquid-liquid interface increases. Due to the fluid dynamics, the liquid flowing through the microchannel has a small flow path, so the Reynolds number is small, and two layers parallel to the flow direction are formed.

例えば水とフェノールのような混じらない2液間で抽出を行なう場合、通常のサイズだと2層になったままでは界面積が小さく不利であるが、空間サイズが小さいと拡散距離が短くなると同時に比界面積も大きいので、機械的な混合を行なう必要なく分子の拡散のみにより混合抽出が可能となる。これらの反応時間は液を混合する部位の形状及び流速によって決まる。   For example, when extraction is performed between two liquids such as water and phenol that are not mixed, the two-layer structure with a normal size is disadvantageous because the interfacial area is small, but if the space size is small, the diffusion distance becomes short. Since the specific interfacial area is also large, it is possible to perform mixed extraction only by molecular diffusion without the need for mechanical mixing. These reaction times are determined by the shape and flow rate of the site where the liquid is mixed.

ミクロ流路を用いた従来の抽出装置の概略を図6に示す(非特許文献1参照。)。
抽出される溶質を含む被抽出溶液である溶液Aと、その溶質を抽出する溶媒となる溶液Bとが送液機構のポンプ4,6によりミクロ流路2に供給され、ミクロ流路2では溶液Aと溶液Bとが界面で接触し互いに層流となって流れ、下流側でそれぞれの層の流路に分岐されて排出される。溶液Aには抽出される溶質8として物質Aが溶解しており、2つの溶液A,Bの界面10で溶液AからBへ溶質8が拡散により移動する。
「マテリアルインテグレーション」誌、Vol.15,No.2,P.3−8(2002)
An outline of a conventional extraction device using a microchannel is shown in FIG. 6 (see Non-Patent Document 1).
Solution A, which is a solution to be extracted containing the solute to be extracted, and solution B, which is a solvent for extracting the solute, are supplied to the microchannel 2 by the pumps 4 and 6 of the liquid feeding mechanism. A and the solution B come into contact with each other at the interface and flow as a laminar flow, and are branched into the flow paths of the respective layers on the downstream side and discharged. The substance A is dissolved in the solution A as the solute 8 to be extracted, and the solute 8 moves from the solution A to B by diffusion at the interface 10 between the two solutions A and B.
“Material Integration”, Vol. 15, no. 2, P.I. 3-8 (2002)

このようなミクロ流路の界面で接触して流れる2つの層流間の液液抽出の抽出速度は拡散により決定されるため、反応速度の向上には限界がある。
そこで、本発明はミクロ流路の界面における抽出速度を高めることを目的とするものである。
Since the extraction speed of liquid-liquid extraction between two laminar flows flowing in contact with each other at the interface of such a microchannel is determined by diffusion, there is a limit to improving the reaction speed.
Therefore, the present invention aims to increase the extraction speed at the interface of the microchannel.

反応時間が2液の界面ができる領域の形状と流速で決まるが、界面のできる領域において溶液中に不均一な電界をかけることにより誘電泳動を起こさせて抽出速度を高める。
すなわち、本発明の液液抽出装置は、抽出される溶質を含む被抽出溶液と前記溶質を抽出する溶媒とが界面で接触し互いに層流となって流れるミクロ流路と、前記流路に前記被抽出溶液及び前記溶媒をそれぞれ供給する送液機構とを備えたものであって、前記流路において前記被抽出溶液中の前記溶質を前記界面方向に誘電泳動させる電場勾配を作用させる電場印加機構を備えたことを特徴とする。
ミクロ流路とは流れの方向に平行な2つの層流が界面で接触して流れることができるような微小な大きさの流路を意味する。
The reaction time is determined by the shape and flow rate of the region where the interface between the two liquids is formed, and in the region where the interface is formed, a non-uniform electric field is applied in the solution to cause dielectrophoresis to increase the extraction speed.
That is, the liquid-liquid extraction apparatus of the present invention includes a micro-flow path in which a solution to be extracted containing a solute to be extracted and a solvent for extracting the solute are in contact with each other and flow in a laminar flow, and the flow path An electric field applying mechanism for supplying an electric field gradient that dielectrophores the solute in the extraction solution in the direction of the interface in the flow path. It is provided with.
The microchannel means a channel having a minute size that allows two laminar flows parallel to the flow direction to flow in contact with each other at the interface.

そのようなミクロ流路における被抽出溶液と抽出溶媒との界面が形成されている領域に電極を配置して交流印加を行ない、被抽出溶液側から抽出溶媒側に電場が強くなるような電場勾配を作用させると誘電泳動が起こる。すなわち、その電場勾配により、溶質である中性粒子が媒質より分極しやすい粒子であれば溶質内で分極が起こり、正・負電荷に加わる力の合力の方向へ移動する。このようにして、分極しやすい溶質は溶液中を移動し、界面へと濃縮される。この結果、界面における溶質の反応時間が短くなる。   An electric field gradient in which an electrode is placed in a region where the interface between the solution to be extracted and the extraction solvent in such a microchannel is formed and alternating current is applied, and the electric field increases from the solution to be extracted side to the extraction solvent side. Dielectrophoresis occurs when. That is, due to the electric field gradient, if the neutral particles as the solute are particles that are more easily polarized than the medium, polarization occurs in the solute and moves in the direction of the resultant force applied to the positive and negative charges. In this way, solutes that are easily polarized move through the solution and are concentrated to the interface. As a result, the reaction time of the solute at the interface is shortened.

本発明ではこのようなミクロ流路を多段に配置して抽出を多段に行なわせることができる。その場合には、1段目のミクロ流路の下流に1又は複数段のミクロ流路が配置され、下流側の各段のミクロ流路は直前の前段ミクロ流路で溶質を抽出した溶媒と他の溶媒が界面で接触し互いに層流となって流れるように構成されており、前記他の溶媒を供給する送液機構と、溶質を抽出した前段からの溶媒中の溶質を前記他の溶媒との界面方向に誘電泳動させる電場勾配を作用させる電場印加機構とをさらに備えている。   In the present invention, such microchannels can be arranged in multiple stages to perform extraction in multiple stages. In that case, one or a plurality of stages of micro-channels are arranged downstream of the first-stage micro-channels, and the downstream micro-channels are the solvent extracted from the solute in the immediately preceding micro-channel. The other solvent comes into contact with each other at the interface and flows in a laminar flow. The liquid feeding mechanism for supplying the other solvent, and the solute in the solvent from the previous stage where the solute is extracted are used as the other solvent. And an electric field applying mechanism for applying an electric field gradient that causes dielectrophoresis in the interface direction with the.

本発明の液液抽出装置では、ミクロ流路に界面方向に誘電泳動を起こさせるように電場勾配を作用させるので、分極特性をもつ溶質に対して高速に抽出を行なうことができるようになる。   In the liquid-liquid extraction apparatus of the present invention, an electric field gradient is applied to the microchannel so as to cause dielectrophoresis in the interface direction, so that extraction can be performed at high speed for a solute having polarization characteristics.

図1は一実施例を概略的に表わす。図6の構成と比較すると、ミクロ流路2及び溶液を供給するポンプ4,6の構成は同じであり、抽出される溶質を含む被抽出溶液である溶液Aと、その溶質を抽出する溶媒となる溶液Bとが送液機構のポンプ4,6によりミクロ流路2に供給され、ミクロ流路2では溶液Aと溶液Bとが界面で接触し互いに層流となって流れ、下流側でそれぞれの層の流路に分岐されて排出される。溶液Aには抽出される溶質8として物質Aが溶解しており、2つの溶液A,Bの界面10で溶液AからBへ溶質8が拡散により移動する。
このミクロ流路2はガラス、シリコン、プラスチックスなどの基板中に形成されたものであり、幅Wが1〜1000μm、深さが1〜1000μmのものである。
FIG. 1 schematically represents an embodiment. Compared with the configuration of FIG. 6, the configurations of the microchannel 2 and the pumps 4 and 6 that supply the solution are the same, and the solution A that is an extraction solution containing the extracted solute, and the solvent that extracts the solute, The solution B is supplied to the micro flow path 2 by the pumps 4 and 6 of the liquid feeding mechanism. In the micro flow path 2, the solution A and the solution B are in contact with each other at the interface and flow in a laminar flow. It is branched into the flow path of the layer and discharged. The substance A is dissolved in the solution A as the solute 8 to be extracted, and the solute 8 moves from the solution A to B by diffusion at the interface 10 between the two solutions A and B.
The microchannel 2 is formed in a substrate such as glass, silicon, or plastic, and has a width W of 1-1000 μm and a depth of 1-1000 μm.

ミクロ流路2において、溶液B側の側面に流れ方向に沿って一対の電極12a,12bが配置されており、両電極12a,12b間に交流電源14から交流電圧が印加されることによって電気力線16が発生し、その電気力線により溶液A,B内に電場勾配が生じる。電極12a,12bは溶質8を抽出しようとする溶液B側の側面に配置されている。電場勾配は電極極12a,12bに近づくほど強くなるため、溶液AからB方向に向かって強くなる方向の電場勾配が形成される。   In the microchannel 2, a pair of electrodes 12a and 12b are arranged along the flow direction on the side surface on the solution B side, and an electric force is applied by applying an AC voltage from the AC power source 14 between the electrodes 12a and 12b. A line 16 is generated, and an electric field gradient is generated in the solutions A and B by the electric lines of force. The electrodes 12a and 12b are arranged on the side surface of the solution B side from which the solute 8 is to be extracted. Since the electric field gradient increases as it approaches the electrode electrodes 12a and 12b, an electric field gradient is formed in a direction that increases from the solution A toward the B direction.

界面10近傍が図2に拡大して示されているように、溶質8はその電場により分極され、電場勾配によって誘電泳動する。その結果、分極した溶質8は電場勾配により溶液Aを界面10方向に移動して界面10での溶質8の濃度が高まり、界面10で溶液Bと反応して溶液B側に移動して抽出される。界面10での抽出は、溶質8と溶液Bとの化学反応を伴う場合だけでなく、化学反応を伴わずに物理的に拡散のみによって抽出される場合も含めて、本発明では「反応」と称している。   As the vicinity of the interface 10 is enlarged and shown in FIG. 2, the solute 8 is polarized by the electric field and dielectrophoresed by the electric field gradient. As a result, the polarized solute 8 is extracted by moving the solution A in the direction of the interface 10 due to the electric field gradient, increasing the concentration of the solute 8 at the interface 10, reacting with the solution B at the interface 10, and moving to the solution B side. The In the present invention, the extraction at the interface 10 includes not only the case where the chemical reaction between the solute 8 and the solution B is involved, but also the case where the extraction is performed by physical diffusion alone without the chemical reaction. It is called.

図3は第2の実施例を表わしたものであり、図1に示されているのと同じミクロ流路が上流側と下段側に2段に配置された例である。上流側のミクロ流路2は図1に示されたものである。そのミクロ流路2で溶液Aから溶質8を抽出した溶液Bが下流側のミクロ流路20へ導かれる。   FIG. 3 shows a second embodiment, in which the same micro flow path as shown in FIG. 1 is arranged in two stages on the upstream side and the lower stage side. The upstream microchannel 2 is the one shown in FIG. The solution B obtained by extracting the solute 8 from the solution A in the microchannel 2 is guided to the microchannel 20 on the downstream side.

ミクロ流路20もミクロ流路2と同様の形状と大きさをもつミクロ流路である。ミクロ流路20では、溶液Bの他にポンプ22により抽出溶媒として溶媒Cが供給されることにより、溶液Bと溶媒Cが層流となり互いに界面24で接触しながら流れる。ミクロ流路20には誘電泳動を起させるための電極26aと26bが溶媒Cの側の側面に流路に沿って配置されている。電極26aと26bには交流電源28から電圧が印加されることにより電気力線30が発生し、図1の実施例で説明したのと同じく、その電気力線30によって溶質8が分極して界面24方向に誘電泳動し、界面24での反応時間が短縮されて溶液B中に抽出される。   The microchannel 20 is also a microchannel having the same shape and size as the microchannel 2. In the microchannel 20, the solvent B is supplied as an extraction solvent by the pump 22 in addition to the solution B, so that the solution B and the solvent C flow in a laminar flow while contacting each other at the interface 24. In the microchannel 20, electrodes 26 a and 26 b for causing dielectrophoresis are disposed on the side surface on the solvent C side along the channel. Electric force lines 30 are generated by applying a voltage from the AC power supply 28 to the electrodes 26a and 26b, and the solute 8 is polarized by the electric force lines 30 as described in the embodiment of FIG. Dielectric migration is performed in 24 directions, the reaction time at the interface 24 is shortened, and the solution B is extracted.

図3では、溶液Aには溶質として符号8で示される物質Aの他に符号8bで示される物質Bが共存している場合を示している。物質AとBとは分極の程度が異なり、物質Aは分極しやすく、物質Bは分極しにくいものである。分極しにくい物質Bは誘電泳動を受けにくく、したがってミクロ流路2での界面10における抽出が起こりにくい。そのためミクロ流路2では溶質として2種類の物質AとBを含む溶液Aから物質Aのみを溶液Bに抽出することができ、その抽出溶液B中の溶質8を下流側のミクロ流路20においてさらに溶液媒Cに抽出することにより、ミクロ流路20から流出する溶媒Cにおける物質Aの純度が高まる。このように、複数種類の物質が共存している場合にも、分極特性に応じて分離することができる。   In FIG. 3, the solution A shows the case where the substance B indicated by reference numeral 8b coexists in addition to the substance A indicated by reference numeral 8 as a solute. The substances A and B have different degrees of polarization, the substance A is easily polarized, and the substance B is difficult to polarize. The substance B which is not easily polarized is not easily subjected to dielectrophoresis, and therefore, the extraction at the interface 10 in the microchannel 2 is difficult to occur. Therefore, in the microchannel 2, only the substance A can be extracted into the solution B from the solution A containing two kinds of substances A and B as solutes, and the solute 8 in the extraction solution B is extracted in the microchannel 20 on the downstream side. Furthermore, by extracting to the solution medium C, the purity of the substance A in the solvent C flowing out from the microchannel 20 is increased. Thus, even when a plurality of types of substances coexist, they can be separated according to the polarization characteristics.

本発明におけるミクロ流路は基体内部に構成されたものである。ミクロ流路は微細加工技術により基体の内部に形成することができる。
ミクロ流路を基板内部に形成する方法とともに、より具体的な実施例を説明する。
In the present invention, the microchannel is configured inside the substrate. The microchannel can be formed inside the substrate by a microfabrication technique.
A more specific embodiment will be described together with a method of forming the microchannel inside the substrate.

図4はこの実施例の液液抽出装置を製造する方法を示したものであり、(A)から(E)の左側の図は平面図、その右側の図は右側面図を表わしている。
(A)ガラス基板40の一方の表面にフォトレジスト42を塗布し、写真製版により流路となる部分に開口をもつ形状にパターン化する。そのレジストパターン42をマスクとしてガラス基板40の表面をウエットエッチング法又はドライエッチング法により所定の深さにエッチングしてミクロ流路となる溝44を形成する。溝44の形状は流路44bの一端が2つの流路42aと42dに分岐し、他端が2つの流路42cと42eに分岐した形状である。
FIG. 4 shows a method of manufacturing the liquid-liquid extraction apparatus of this embodiment. The left side views of (A) to (E) are plan views, and the right side view is a right side view.
(A) A photoresist 42 is applied to one surface of the glass substrate 40, and is patterned into a shape having an opening in a portion that becomes a flow path by photolithography. Using the resist pattern 42 as a mask, the surface of the glass substrate 40 is etched to a predetermined depth by a wet etching method or a dry etching method to form a groove 44 serving as a microchannel. The shape of the groove 44 is such that one end of the flow path 44b branches into two flow paths 42a and 42d and the other end branches into two flow paths 42c and 42e.

(B)分岐流路42a,42d,42c,42eのそれぞれの端部には、基板40の他方の表面側から貫通穴46を開ける。貫通穴46はウエットエッチング法もしくはドライエッチング法により、又はサンドブラストのような物理的な方法により開けることができる。   (B) A through hole 46 is opened from the other surface side of the substrate 40 at each end of the branch flow paths 42a, 42d, 42c, and 42e. The through hole 46 can be opened by a wet etching method, a dry etching method, or a physical method such as sandblasting.

(C)基板40の溝44が形成されている側の表面に他方のガラス基板48を接合する。この接合は、例えば両基板40,48間にフッ酸溶液を介在させて圧着することにより融着して接合させることができる。   (C) The other glass substrate 48 is bonded to the surface of the substrate 40 where the groove 44 is formed. For example, the bonding can be performed by fusing and bonding the two substrates 40 and 48 with a hydrofluoric acid solution interposed therebetween.

(D)両基板40,48の外側の表面に電極となる金属膜50を蒸着法やスパッタリング法により形成する。
(E)その金属膜50を写真製版とエッチングによって電極52a,52b形状にパターン化する。電極52a,52bは流路44bの一方の側方から中央まで存在するように形成する。
(D) A metal film 50 serving as an electrode is formed on the outer surfaces of the substrates 40 and 48 by vapor deposition or sputtering.
(E) The metal film 50 is patterned into the shape of the electrodes 52a and 52b by photolithography and etching. The electrodes 52a and 52b are formed so as to exist from one side to the center of the flow path 44b.

得られた液液抽出装置における動作を図5の拡大図も参照して説明すると、溶質を含んだ溶液Aが一端側の分岐流路44aの貫通穴から供給され、流路44bを経て他端側の分岐流路44cの貫通穴から排出される。他方の液Bが一端側の分岐流路44dの貫通穴から供給され、流路44bを経て他端側の分岐流路44eの貫通穴から排出される。流路44bでは両液AとBが界面で接触しながら流れる。このとき、交流電源14から電極52a,52b間に交流流電圧を印加すると、電極52a,52bは液Bが流れている領域にのみ存在するので、電気力線54によって溶液A側では両溶液の界面に近づくほど強くなる電界勾配が発生し、溶液A中の溶質8が誘電泳動によって界面方向に移動し、液Bに抽出される。   The operation of the obtained liquid-liquid extraction apparatus will be described with reference to the enlarged view of FIG. 5 as well. A solution A containing a solute is supplied from the through hole of the branch channel 44a on one end side, and the other end passes through the channel 44b. It is discharged from the through hole of the side branch passage 44c. The other liquid B is supplied from the through hole of the branch flow path 44d on one end side, and is discharged from the through hole of the branch flow path 44e on the other end side through the flow path 44b. In the flow path 44b, both liquids A and B flow while contacting at the interface. At this time, when an alternating current voltage is applied between the electrodes 52a and 52b from the alternating current power source 14, the electrodes 52a and 52b exist only in the region where the liquid B flows. An electric field gradient that becomes stronger as it approaches the interface is generated, and the solute 8 in the solution A moves toward the interface by dielectrophoresis and is extracted into the liquid B.

基板40,48としては、ガラス基板のほかに、シリコン基板、PDMS(ポリジメチルシロキサン)などのプラスティック材料なども用いることができる。基板40として例えばPDMSを用いた場合には、成型により溝44や貫通穴46を形成することができる。
また、両基板40,48間を接着剤で接着して接合してもよい。
As the substrates 40 and 48, in addition to a glass substrate, a silicon substrate, a plastic material such as PDMS (polydimethylsiloxane), or the like can also be used. For example, when PDMS is used as the substrate 40, the groove 44 and the through hole 46 can be formed by molding.
Further, the substrates 40 and 48 may be bonded together with an adhesive.

本発明の液液抽出装置は、微量溶液中の物質、例えば微生物、蛋白質、核酸、糖質、抗原、抗体又はこれらが結合した混合物を処理する化学システムに利用することができ、特にそのような化学システムをミクロ化したり集積化したりするのに利用するのに適する。例えば、移動相に液体を用いる分離方法、例えば液体クロマトグラフィ(LC)やキャピラリー電気泳動(CE)などに対し、前処理装置として用いれば、純度の高い試料供給が可能になる。
また、本発明では抽出速度が分極特性に依存するので、溶質が2種類以上存在する場合、抽出する溶質と抽出しない溶質を分極特性によって選択することもできも、共存物質の分離装置として利用することもできる。
The liquid-liquid extraction apparatus of the present invention can be used in a chemical system for treating a substance in a micro solution, for example, a microorganism, a protein, a nucleic acid, a carbohydrate, an antigen, an antibody, or a mixture in which these are bound. Suitable for use in micronizing and integrating chemical systems. For example, if a separation method using a liquid as a mobile phase, such as liquid chromatography (LC) or capillary electrophoresis (CE), is used as a pretreatment device, a sample with high purity can be supplied.
In the present invention, since the extraction rate depends on the polarization characteristics, when two or more kinds of solutes are present, the solute to be extracted and the solute not to be extracted can be selected according to the polarization characteristics. You can also.

一実施例を示す概略平面図である。It is a schematic plan view which shows one Example. 同実施例における界面近傍を拡大して示す概略平面図である。It is a schematic plan view which expands and shows the interface vicinity in the Example. 他の実施例を示す概略平面図である。It is a schematic plan view which shows another Example. さらに他の実施例を製造方法とともに示す工程図である。It is process drawing which shows another Example with a manufacturing method. (A)は同実施例における動作を説明するための拡大断面図、(B)の右側の図はその流路部分の拡大断面図、(B)の左側の図は流路を流れる液の流れに垂直な方向からみた断面図である。(A) is an enlarged cross-sectional view for explaining the operation in the same embodiment, (B) right side view is an enlarged cross-sectional view of the flow path portion, and (B) left side view is a flow of liquid flowing through the flow path. It is sectional drawing seen from the direction perpendicular | vertical to. 従来のミクロ流路を示す概略平面図である。It is a schematic plan view which shows the conventional microchannel.

符号の説明Explanation of symbols

4,6,22 送液機構のポンプ
2,20,44 ミクロ流路
8 抽出される溶質
10,24 界面
12a,12b,26a,26b,52a,52b 電極
16,30 電気力線
14,28 交流電源
4, 6, 22 Pump of liquid feeding mechanism 2, 20, 44 Micro flow path 8 Extracted solute 10, 24 Interface 12a, 12b, 26a, 26b, 52a, 52b Electrode 16, 30 Electric field lines 14, 28 AC power supply

Claims (2)

抽出される溶質を含む被抽出溶液と前記溶質を抽出する溶媒とが界面で接触し互いに層流となって流れるミクロ流路と、
前記流路に前記被抽出溶液及び前記溶媒をそれぞれ供給する送液機構と、
前記流路において前記被抽出溶液中の前記溶質を前記界面方向に誘電泳動させる電場勾配を作用させる電場印加機構と、を備えたことを特徴とする液液抽出装置。
A micro flow path in which a solution to be extracted containing a solute to be extracted and a solvent for extracting the solute contact each other at an interface and flow in a laminar flow;
A liquid feeding mechanism for supplying the solution to be extracted and the solvent to the flow path;
An electric field application mechanism for applying an electric field gradient that dielectrophores the solute in the extraction solution in the interface direction in the flow path.
前記流路の下流に1又は複数段のミクロ流路が配置され、
下流側の各段のミクロ流路は直前の前段ミクロ流路で溶質を抽出した溶媒と他の溶媒が界面で接触し互いに層流となって流れるように構成されており、前記他の溶媒を供給する送液機構と、溶質を抽出した前段からの溶媒中の溶質を前記他の溶媒との界面方向に誘電泳動させる電場勾配を作用させる電場印加機構とをさらに備えている請求項1に記載の液液抽出装置。
One or more stages of microchannels are disposed downstream of the channel,
The downstream microchannels of each stage are configured such that the solvent from which the solute was extracted in the immediately preceding microchannel and the other solvent are in contact with each other at the interface and flow in a laminar flow. The liquid feeding mechanism to supply, The electric field application mechanism which acts on the electric field gradient which carries out the dielectrophoresis of the solute in the solvent from the front | former stage which extracted the solute to the interface direction with the said other solvent is further provided. Liquid-liquid extraction device.
JP2004018196A 2004-01-27 2004-01-27 Liquid-liquid extraction apparatus Pending JP2005211708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018196A JP2005211708A (en) 2004-01-27 2004-01-27 Liquid-liquid extraction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018196A JP2005211708A (en) 2004-01-27 2004-01-27 Liquid-liquid extraction apparatus

Publications (1)

Publication Number Publication Date
JP2005211708A true JP2005211708A (en) 2005-08-11

Family

ID=34902777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018196A Pending JP2005211708A (en) 2004-01-27 2004-01-27 Liquid-liquid extraction apparatus

Country Status (1)

Country Link
JP (1) JP2005211708A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1984118A1 (en) * 2006-02-17 2008-10-29 Korea Institute Of Machinery & Materials Apparatus and method for separating particles
JP2011022031A (en) * 2009-07-16 2011-02-03 Canon Inc Reaction treatment apparatus and reaction treatment method
WO2012032802A1 (en) * 2010-09-07 2012-03-15 学校法人東京理科大学 Apparatus for concentrating particles and apparatus for concentrating and extracting particles
CN103194370A (en) * 2013-03-26 2013-07-10 上海交通大学 Device for preparing and enriching single micro-nano bead carried simple-root polymer molecule
JP2014210250A (en) * 2013-04-22 2014-11-13 株式会社神戸製鋼所 Processing apparatus and processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1984118A1 (en) * 2006-02-17 2008-10-29 Korea Institute Of Machinery & Materials Apparatus and method for separating particles
JP2009525862A (en) * 2006-02-17 2009-07-16 コリア インスティチュート オブ マシーナリー アンド マテリアルズ Particle separation apparatus and particle separation method
EP1984118A4 (en) * 2006-02-17 2013-06-26 Korea Mach & Materials Inst Apparatus and method for separating particles
JP2011022031A (en) * 2009-07-16 2011-02-03 Canon Inc Reaction treatment apparatus and reaction treatment method
WO2012032802A1 (en) * 2010-09-07 2012-03-15 学校法人東京理科大学 Apparatus for concentrating particles and apparatus for concentrating and extracting particles
CN103194370A (en) * 2013-03-26 2013-07-10 上海交通大学 Device for preparing and enriching single micro-nano bead carried simple-root polymer molecule
JP2014210250A (en) * 2013-04-22 2014-11-13 株式会社神戸製鋼所 Processing apparatus and processing method

Similar Documents

Publication Publication Date Title
Jeon et al. Ion concentration polarization-based continuous separation device using electrical repulsion in the depletion region
US7727363B2 (en) Microfluidic device and methods for focusing fluid streams using electroosmotically induced pressures
US8231265B2 (en) Microchip for forming emulsion
Kwak et al. Continuous-flow biomolecule and cell concentrator by ion concentration polarization
US8093064B2 (en) Method for using magnetic particles in droplet microfluidics
US7731827B2 (en) Method for capturing charged molecules traveling in a flow stream
US7931790B2 (en) Methods for forming small-volume electrical contacts and material manipulations with fluidic microchannels
Fan et al. Droplet-on-a-wristband: Chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules
Sun et al. Controlled dispensing and mixing of pico-to nanoliter volumes using on-demand droplet-based microfluidics
Kim et al. Stabilization of ion concentration polarization layer using micro fin structure for high-throughput applications
Sim et al. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels
Zagnoni et al. Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow
Xu et al. Droplet coalescence in microfluidic systems
US20060073035A1 (en) Deformable polymer membranes
US20060042950A1 (en) Mirofluidic device wherein the liquid/fluid interface is stabilized
CN111615552A (en) Microfluidic chip for particle purification and fractionation
Sahore et al. Droplet microfluidics in thermoplastics: device fabrication, droplet generation, and content manipulation using integrated electric and magnetic fields
Zhou et al. Acoustic bubble enhanced pinched flow fractionation for microparticle separation
US20080160603A1 (en) Flow stabilization in micro-and nanofluidic devices
Lee et al. Nanoelectrokinetic bufferchannel-less radial preconcentrator and online extractor by tunable ion depletion layer
Li et al. Sheathless electrokinetic particle separation in a bifurcating microchannel
US7473361B2 (en) Diffusion-based molecular separation in structured microfluidic devices
JP2005211708A (en) Liquid-liquid extraction apparatus
Wu et al. Fabrication of AD/DA microfluidic converter using deep reactive ion etching of silicon and low temperature wafer bonding
CN113234588B (en) Asymmetric-hole-based direct-current dielectrophoresis cell exosome separation device and method