JP5963410B2 - Flow path device and fluid mixing method - Google Patents

Flow path device and fluid mixing method Download PDF

Info

Publication number
JP5963410B2
JP5963410B2 JP2011175900A JP2011175900A JP5963410B2 JP 5963410 B2 JP5963410 B2 JP 5963410B2 JP 2011175900 A JP2011175900 A JP 2011175900A JP 2011175900 A JP2011175900 A JP 2011175900A JP 5963410 B2 JP5963410 B2 JP 5963410B2
Authority
JP
Japan
Prior art keywords
channel
flow
fluid
flow path
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011175900A
Other languages
Japanese (ja)
Other versions
JP2013040776A (en
Inventor
英資 井形
英資 井形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011175900A priority Critical patent/JP5963410B2/en
Priority to US14/237,553 priority patent/US20140241110A1/en
Priority to PCT/JP2012/069534 priority patent/WO2013021877A1/en
Publication of JP2013040776A publication Critical patent/JP2013040776A/en
Application granted granted Critical
Publication of JP5963410B2 publication Critical patent/JP5963410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3012Interdigital streams, e.g. lamellae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3039Micromixers with mixing achieved by diffusion between layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • B01J2219/00894More than two inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00959Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00968Type of sensors
    • B01J2219/0097Optical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は複数の流体を混合するための流路を有する流路デバイスおよび流体を混合する方法に関する。   The present invention relates to a flow path device having a flow path for mixing a plurality of fluids and a method for mixing fluids.

化学および生化学反応の経過や結果を確かめるために濃度、成分などの所望の情報を得ることは分析化学の基礎的な事項であり、それらの情報の取得を目的としたさまざまな装置およびセンサが発明されている。それらの装置やセンサを微細化し、所望の情報を得るまでの全工程をマイクロデバイス上にての実現を目指す、マイクロ・トータル・アナリシス・システム(μ−TAS)またはラブオンチップと呼ばれるコンセプトがある。これは、採取された原料や未精製検体をマイクロデバイス内の流路を通過させることにより検体精製や化学反応などの工程を経て、最終的な化学合成物や検体中に含まれる成分の濃度などを得ることを目標とするコンセプトである。また、これらの分析や反応を司るマイクロデバイスは、必然的に微小量の溶液や気体を扱うことから、マイクロ流路デバイス、あるいはマイクロ流体デバイスと呼ばれることが多い。   Obtaining desired information such as concentration and composition in order to confirm the progress and results of chemical and biochemical reactions is a fundamental matter of analytical chemistry, and various devices and sensors for obtaining such information are available. Invented. There is a concept called a micro total analysis system (μ-TAS) or a lab-on-a-chip, which aims to realize all processes from micronization of these devices and sensors to obtaining desired information on a microdevice. This is because the collected raw materials and unpurified specimens are passed through the flow path in the microdevice, and then the final chemical synthesis and the concentration of the components contained in the specimens are passed through processes such as specimen purification and chemical reaction. It is a concept that aims to obtain In addition, microdevices that control these analyzes and reactions inevitably handle minute amounts of solutions and gases, and are often called microchannel devices or microfluidic devices.

従来技術のデスクトップサイズの分析機器と比較すると、マイクロ流路デバイスを用いることによってデバイス内に含まれる流体は低容量化されるため、必要試薬量の低減および分析物量の微量化による反応時間の短縮が期待される。このようなマイクロ流路デバイスの利点が認知されるにつれて、μ−TASに関わる技術が注目を集めている。   Compared to conventional desktop-sized analytical instruments, the volume of fluid contained in the device is reduced by using a micro-channel device, so the reaction time is shortened by reducing the amount of necessary reagents and reducing the amount of analyte. There is expected. As the advantages of such microchannel devices are recognized, the technology related to μ-TAS is attracting attention.

一方、デスクトップサイズの装置をマイクロデバイス化することにより、新たな特徴が生じる。一例として、比界面積の上昇や分子拡散のみによる流体の混合促進などが挙げられ、デスクトップサイズの分析機器では無視できうる現象がマイクロデバイス内では重要になる。特に流路内で複数の溶液を効率的に混合させることは、化学反応を実施するうえで重要であるが、マイクロ流路においては同じ方向に流れる複数の溶液を合流させると層流を形成してしまい、混合が進みにくいという現象が生じる。   On the other hand, a new feature is created by converting a desktop-sized device into a microdevice. As an example, there is an increase in specific interface area or fluid mixing promotion only by molecular diffusion, and a phenomenon that can be ignored in a desktop-size analytical instrument becomes important in a microdevice. In particular, it is important to efficiently mix a plurality of solutions in a flow path in order to carry out a chemical reaction. However, in a micro flow path, a plurality of solutions flowing in the same direction are combined to form a laminar flow. This causes a phenomenon that mixing is difficult to proceed.

マイクロ流路内で混合を促進させる方法として、特許文献1には深溝型のマイクロリアクタで、流路の幅に比べて深さ寸法を大きくし、深さ方向に平行な接触面を持つ層流を形成することが示されている。   As a method for promoting mixing in a micro flow path, Patent Document 1 discloses a deep groove type microreactor in which a laminar flow having a contact surface parallel to the depth direction is made larger in depth than the width of the flow path. It has been shown to form.

特開2007−050320号公報(図4(B))Japanese Patent Laying-Open No. 2007-050320 (FIG. 4B)

特許文献1に記載のマイクロリアクタは、合流前の2つの流路とも深溝となっており、合流後も同じ深溝幅で合流する構成である。   The microreactor described in Patent Document 1 has a structure in which both of the two flow paths before joining are deep grooves, and after joining, the same deep groove width is joined.

このため、合流時の両者の液量を精度よく制御することが難しく、混合の割合は界面に沿った方向において均一にならない場合があった。   For this reason, it is difficult to accurately control the amount of both liquids at the time of merging, and the mixing ratio may not be uniform in the direction along the interface.

よって、大量の反応合成を行うリアクタという観点においては問題とならないが、後にPCRなどの検査反応処理を行うμ−TASなどの分野においては、量的なコントロールが困難となる場合があり、より好適な形態が求められていた。   Therefore, this is not a problem from the viewpoint of a reactor that performs a large amount of reaction synthesis, but in the field such as μ-TAS in which a test reaction process such as PCR is performed later, quantitative control may be difficult and is more preferable. A new form was required.

本発明は、このような背景技術を鑑みてなされたものであり、流路を流れる流体を能動的に操作する必要がなく、簡便に作製でき、且つ混合量を制御しつつ流体の混合を促進できる流路デバイスおよびそれを用いた流体の混合方法を提供するものである。   The present invention has been made in view of such background art, and it is not necessary to actively manipulate the fluid flowing through the flow path, and can be easily manufactured and promotes fluid mixing while controlling the mixing amount. The present invention provides a flow channel device that can be used and a fluid mixing method using the same.

上記の課題を解決するマイクロ流体デバイスは、第1〜3の流体をそれぞれ供給するための第1〜3のインレットと、前記第1〜3のインレットに接続された第1〜3の流路と、前記第1〜3の流路に対して第1および第2の合流地点において順次接続された合流流路と、前記合流流路の下流に配され混合流路と、と備え、前記第1の合流地点は、前記第1の流体と、前記第2の流体とが所定方向に積層された2層流を形成可能に構成されており、前記第2の合流地点は、前記2層流に対して、前記所定方向に前記第3の流体が積層された3層流を形成可能に構成されており、前記混合流路は、前記合流流路の端部において、前記所定方向の長さが前記合流流路の断面よりも長い断面を有することを特徴とする。 The microfluidic device that solves the above-described problems includes first to third inlets for supplying first to third fluids, respectively, and first to third flow paths connected to the first to third inlets. the a merge channel which are sequentially connected in the first and second junction with respect to the first to third flow path, and mixing channel arranged downstream of the confluent channel, and wherein said first The first merge point is configured to be capable of forming a two-layer flow in which the first fluid and the second fluid are stacked in a predetermined direction, and the second merge point is the two-layer flow On the other hand, it is configured to be able to form a three-layer flow in which the third fluid is laminated in the predetermined direction, and the mixing channel has a length in the predetermined direction at an end of the merged channel. Has a cross section longer than the cross section of the merging channel .

本発明によれば、複数の流体を合流流路で合流させた後に、下流の拡大流路で接触界面方向が大きくなるように層流を形成させることができる。これにより、合流時の各流体の量的な制御が容易であり、且つ速やかに混合させる流路デバイスを提供することができる。   According to the present invention, it is possible to form a laminar flow so that the contact interface direction becomes larger in the downstream enlarged flow channel after a plurality of fluids are merged in the merge flow channel. Thereby, it is easy to quantitatively control the fluids at the time of merging, and it is possible to provide a flow path device that mixes quickly.

本発明の流路デバイスの原理を示す概念図である。It is a conceptual diagram which shows the principle of the flow-path device of this invention. 本発明の流路デバイスの一実施形態を示す図である。It is a figure which shows one Embodiment of the flow-path device of this invention. 本発明の流路デバイスを用いた2液混合の一実施態様を示す概念図である。It is a conceptual diagram which shows one embodiment of 2 liquid mixing using the flow-path device of this invention. 本発明の流路デバイスを用いた2液混合の一実施態様の流路断面図である。It is a channel sectional view of one embodiment of two liquid mixing using a channel device of the present invention. 本発明の流路デバイスを用いた2液混合の一実施態様を示す概念図である。It is a conceptual diagram which shows one embodiment of 2 liquid mixing using the flow-path device of this invention. 本発明の流路デバイスを用いた2液混合の一実施態様の流路断面図である。It is a channel sectional view of one embodiment of two liquid mixing using a channel device of the present invention. 本発明の流路デバイスを用いた3液混合の一実施態様を示す概念図である。It is a conceptual diagram which shows one embodiment of 3 liquid mixing using the flow-path device of this invention. 本発明の流路デバイスを用いた3液混合の一実施態様の流路断面図である。It is a channel sectional view of one embodiment of 3 liquid mixing using a channel device of the present invention. 本発明の流路デバイスを用いた4液以上を混合する一実施態様を示す概念図である。It is a conceptual diagram which shows one embodiment which mixes 4 or more liquids using the flow-path device of this invention.

以下、本発明を詳細に説明する。なお、特にXYZの方向軸に関する記載がない場合は、基板に形成された流路のうち、基板面に平行な方向の平面を流路幅方向、基板面に垂直な方向の平面を流路高さ方向として説明する。   Hereinafter, the present invention will be described in detail. In particular, when there is no description regarding the XYZ direction axis, among the channels formed on the substrate, the plane in the direction parallel to the substrate surface is the channel width direction, and the plane in the direction perpendicular to the substrate surface is the channel height. This will be described as the direction.

本発明に関わるデバイスは、流体を流すための、少なくとも2つの流路と、該2つの流路の流体を合流させ、それぞれの流体による界面を形成する合流流路と、前記合流流路の下流に配され、流れ方向に対する断面が該合流流路よりも界面が増大する方向に長い混合流路と、を有することを特徴とする。   A device according to the present invention includes at least two flow paths for flowing a fluid, a merge flow path that merges the fluids of the two flow paths to form an interface with the respective fluids, and a downstream of the merge flow path And a mixing channel whose cross section with respect to the flow direction is longer in the direction in which the interface is larger than that of the merged channel.

本発明に関わる流体の混合方法は、少なくとも2つの流路と、該2つの流路の流体を合流させる合流流路と、を有する流路デバイスを用いた流体の混合方法であって、前記2つの流路から流体をそれぞれ流し、合流流路においてそれぞれの流体による界面を形成させ、該合流流路の下流にて前記流体どうしの界面を増大させることを特徴とする。   A fluid mixing method according to the present invention is a fluid mixing method using a flow path device having at least two flow paths and a merging flow path for merging the fluids of the two flow paths. Fluids are allowed to flow from two flow paths, interfaces are formed in the combined flow paths, and the interfaces between the fluids are increased downstream of the combined flow paths.

流路デバイスは、混合流路となる溝が形成された第1の基板を有しており、混合流路が、合流流路から離れるにつれて前記溝の深さ方向に大きくなる拡大流路部を有する構成、さらには拡大流路部の天面が、第2の基板の底面である構成であることが好ましい。   The flow channel device has a first substrate on which a groove serving as a mixing flow channel is formed, and an enlarged flow channel portion that increases in the depth direction of the groove as the mixing flow channel moves away from the merging flow channel. It is preferable that the configuration having the top surface of the enlarged flow path portion is the bottom surface of the second substrate.

またさらに、第1の基板に第1流路、第2の基板に第2流路が形成され、前記第1流路の端部が前記第2流路に接続して第2の基板に合流流路を形成するように第2の基板と第1の基板を接合した流路デバイスとして構成し、前記合流流路の端部が、前記第1の基板に形成された前記流路の略端部に接続することが好ましい。   Still further, a first flow path is formed on the first substrate, a second flow path is formed on the second substrate, and an end of the first flow path is connected to the second flow path to join the second substrate. A flow path device is formed by joining the second substrate and the first substrate so as to form a flow path, and the end of the merged flow path is substantially the end of the flow path formed on the first substrate. It is preferable to connect to the part.

あるいは、第1の基板に分岐を有する第1流路、第2の基板に分岐を有する第2流路が形成され、前記第1流路の一つの端部が前記第2流路に接続して第2の基板に形成された第2の合流流路を形成し、前記第2流路の一つの端部が前記第1流路に接続して第1の基板に形成された第1の合流流路を形成し、前記第1の合流流路の端部が前記第2の合流流路に接続するように第2の基板と第1の基板を接合したマイクロ流体デバイスであり、前記第2の合流流路の端部が前記第1の基板に形成された前記流路の略端部に接続することが好ましい。   Alternatively, a first flow path having a branch on the first substrate and a second flow path having a branch on the second substrate are formed, and one end of the first flow path is connected to the second flow path. A second confluence channel formed on the second substrate is formed, and one end of the second channel is connected to the first channel and the first substrate is formed on the first substrate. A microfluidic device in which a confluence channel is formed and a second substrate and a first substrate are joined such that an end of the first confluence channel is connected to the second confluence channel; It is preferable that an end portion of the two merging flow paths is connected to a substantially end portion of the flow path formed on the first substrate.

そして合流流路において、界面の方向を変えるための屈曲流路を有する構成にするとよい。混合のための複数の流路、流路に接続する供給口などを、深い溝を形成した混合流路に対して、一方の領域側にそれらを集積化させることができるようになる。これにより、もう一方の領域を混合後の流路を形成する領域として使用できるようになるので、より集積化することができるようになる。   And it is good to set it as the structure which has a bending flow path for changing the direction of an interface in a confluence | merging flow path. A plurality of channels for mixing, supply ports connected to the channels, and the like can be integrated on one region side with respect to the mixing channel formed with deep grooves. As a result, the other region can be used as a region for forming the channel after mixing, and therefore, it can be further integrated.

本発明の流路デバイスを作製する際の接合において、流路の断面積の高さが幅よりも大きいほうが、接合時の製造誤差を考慮すると、幅が高さよりも大きい形のマイクロ流路よりも、マイクロ流路の断面積を保持したまま接合できる。   In the joining at the time of manufacturing the flow channel device of the present invention, the height of the cross-sectional area of the flow channel is larger than the width, considering the manufacturing error at the time of joining, than the micro flow channel having a shape whose width is larger than the height. In addition, bonding can be performed while maintaining the cross-sectional area of the microchannel.

本発明の流路デバイスは、いわゆるマイクロ流路として、幅、高さ、長さの少なくともいずれかのサイズがμmオーダー、すなわち0.1μm〜500μmであるマイクロ流路デバイスにおいて好適に実施される。   The flow channel device of the present invention is suitably implemented as a so-called micro flow channel in a micro flow channel device having a size of at least one of width, height, and length on the order of μm, that is, 0.1 μm to 500 μm.

例えば、幅50μm、高さ20μmのマイクロ流路において、接合時の圧力により高さ方向が1μm押しつぶされたとすると、断面積は95μmとなる。一方、幅20μm、高さ50μmのマイクロ流路において、同じ製造誤差があるとすると、断面積は98μmとなり、本来意図した100μmにより近くなる。よって、プラスチック素材などでマイクロ流路を作製しようとすると、流路断面積を保つためには流路高さが幅よりも大きい方が有利となる。ここで、前述の層流を多層に形成して混合を促進する方法は、マイクロ流路の断面積の幅方向に界面が形成されるように多層の層流を形成し、層流の界面面積を大きくすることによって混合を促進する。ところが、マイクロ流路の高さが幅方向と比較して大きいときの混合に対しては、界面面積が小さい方向における層流を形成するため、最適ではない。 For example, in a micro flow channel having a width of 50 μm and a height of 20 μm, if the height direction is crushed by 1 μm by the pressure during bonding, the cross-sectional area is 95 μm 2 . On the other hand, the width 20 [mu] m, in microchannel height 50 [mu] m, when there are the same manufacturing errors, the cross-sectional area becomes closer 98 .mu.m 2 becomes, the originally intended 100 [mu] m 2. Therefore, when it is going to produce a micro channel with a plastic material etc., in order to maintain a channel cross-sectional area, it is advantageous that the channel height is larger than the width. Here, in the method of promoting mixing by forming the laminar flow in multiple layers, the multi-layer laminar flow is formed so that the interface is formed in the width direction of the cross-sectional area of the microchannel, and the interface area of the laminar flow is Promote mixing by increasing the size. However, it is not optimal for mixing when the height of the microchannel is larger than that in the width direction because a laminar flow is formed in the direction where the interface area is small.

本発明は、マイクロ流路内に層流を形成するが、ある特定の流路内における流体の流れが層流を形成するかまたは乱流を形成するかはレイノルズ数(Re)で見積もることが可能であり、以下の式、
Re=UL/ν
によって導かれる。ここで、U代表速度、Lは代表長さ、νは動粘度係数である。厳密な境界となる数値はないが、一般におよそレイノルズ数が2000より低ければ、当該系の流体は層流を形成すると考えられている。実際、マイクロ流路の場合レイノルズ数が低くなることが知られ、その値は通常100より低く、しばしば1以下にもなるため、マイクロ流路においては流体の流れは層流を形成するものと考えてよい。よって、複数の流体を同一のマイクロ流路に注入したとき、それぞれの流体の流れは接触している界面近傍を除いて混合されることなく進行する。本発明における流路とは、特に断らない限り、レイノルズ数が低いため流路を流れる流体は層流を形成する大きさであるとする。
In the present invention, a laminar flow is formed in a microchannel, but whether a fluid flow in a specific channel forms a laminar flow or a turbulent flow can be estimated by the Reynolds number (Re). Is possible and the following formula:
Re = UL / ν
Led by. Here, the U representative speed, L is the representative length, and ν is the kinematic viscosity coefficient. Although there is no numerical value that is a strict boundary, it is generally considered that if the Reynolds number is lower than 2000, the fluid of the system forms a laminar flow. In fact, it is known that the Reynolds number is low in the case of a microchannel, and the value is usually lower than 100 and often less than 1. Therefore, in the microchannel, the fluid flow is considered to form a laminar flow. It's okay. Therefore, when a plurality of fluids are injected into the same microchannel, the flow of each fluid proceeds without being mixed except in the vicinity of the contacting interface. Unless otherwise specified, the flow path in the present invention has a low Reynolds number, so that the fluid flowing through the flow path is sized to form a laminar flow.

マイクロ流路内における流体の混合は、微少場であるため物理的に撹拌することが容易でなく、また重力の影響もほぼ無視できるほどに小さいことから、混合は分子の拡散に依存する。Einstein−Smoluchowskiの理論から、1次元における分子の拡散時間(t)、拡散距離(σ)および流体の拡散係数(D)の関係、
t=σ/2D
が知られている。いま、あるマイクロ流路の流路幅をwとしたとき、拡散時間はw/Dに比例する。
Since the mixing of fluids in the microchannel is a very small field, it is not easy to physically stir, and the influence of gravity is so small that it can be almost ignored. Therefore, the mixing depends on the diffusion of molecules. From the Einstein-Smoluchowski theory, the relationship between the diffusion time (t) of the molecule in one dimension, the diffusion distance (σ) and the diffusion coefficient (D) of the fluid,
t = σ 2 / 2D
It has been known. Now, the diffusion time is proportional to w 2 / D, where w is the channel width of a microchannel.

いま、流路断面積が流路幅100μm、流路高さ20μmのマイクロ流路において、2種類の流体がそれぞれ幅50μm、高さ20μmの断面積を有しながら流れているとする。このときそれぞれの流体を構成する分子の拡散に必要な移動距離は、最長50μmであるから、分子の拡散係数を1x10−6cm/sとしたとき、分子の移動に要する時間は12.5秒である。一方、同じ断面積を有するマイクロ流路だが、流路幅20μm、流路高さ100μmで、2種類の流体がそれぞれ幅10μm、高さ100μmの断面積を有しながら流れているときの分子の移動に要する時間は、0.5秒である。つまり、拡散に要する距離が1/5になることにより、移動時間は1/25に短縮される。 Now, it is assumed that two types of fluids are flowing in a micro flow channel having a flow channel cross-sectional area of 100 μm and a flow channel height of 20 μm, each having a cross-sectional area of 50 μm wide and 20 μm high. At this time, the moving distance necessary for the diffusion of the molecules constituting each fluid is a maximum of 50 μm. Therefore, when the diffusion coefficient of the molecules is 1 × 10 −6 cm 2 / s, the time required for the movement of the molecules is 12.5. Seconds. On the other hand, although the microchannels have the same cross-sectional area, the molecular flow of the two types of fluid flowing while having a channel width of 20 μm and a channel height of 100 μm and a cross-sectional area of 10 μm width and 100 μm height respectively. The time required for the movement is 0.5 seconds. That is, the travel time is reduced to 1/25 by reducing the distance required for diffusion to 1/5.

さらに、層流により形成された界面を通過する分子の量は流束(J)、断面積(A)、時間(t)としたとき、
J・A・t
により決定される。界面を通過する分子の量が大きい方が混合が促進されるため、混合効率は界面の断面積に比例する。例えば、流路幅20μm、流路高さ100μmで断面積が100μmであるマイクロ流路において、2種類の流体が交互に幅5μm、高さ100μmの断面積を有しながら4本の層流を形成して流れているとき、分子の拡散係数を1x10−6cm/sとすると、分子の移動に要する時間は0.125秒である。これを2本の層流が同じ断面積のマイクロ流路を流れているときの状態と比べると、界面面積は3倍になるので、その分の寄与も混合時間には含まれる。
Furthermore, when the amount of molecules passing through the interface formed by laminar flow is defined as flux (J), cross-sectional area (A), and time (t),
J ・ A ・ t
Determined by. Since mixing is promoted when the amount of molecules passing through the interface is larger, the mixing efficiency is proportional to the cross-sectional area of the interface. For example, in a micro flow channel having a flow channel width of 20 μm, a flow channel height of 100 μm, and a cross-sectional area of 100 μm 2 , four laminar flows have two kinds of fluids alternately having a cross-sectional area of 5 μm wide and 100 μm high. When the molecular diffusion coefficient is 1 × 10 −6 cm 2 / s, the time required for the movement of the molecule is 0.125 seconds. Compared with the state in which two laminar flows are flowing through microchannels having the same cross-sectional area, the interface area is tripled, and the corresponding contribution is included in the mixing time.

つまり、多層の層流を形成することにより、混合に必要な拡散距離を減少させ、かつ界面面積を大きく保つことが混合効率を高める上で重要な要素である。   That is, by forming a multi-layer laminar flow, reducing the diffusion distance necessary for mixing and maintaining a large interface area are important factors for increasing the mixing efficiency.

本発明は上記の原理を利用して、マイクロ流路内に界面面積が大きくなる方向に多層の層流を形成して、マイクロ流路内における複数の流体の混合を実施する。なお、以下の説明においては2本の流体により形成された層流を2層流、3本の流体により形成された層流を3層流などと記述する。   The present invention utilizes the above principle to form a multi-layered laminar flow in the direction in which the interface area increases in the microchannel and to mix a plurality of fluids in the microchannel. In the following description, a laminar flow formed by two fluids is described as a two-layer flow, and a laminar flow formed by three fluids is described as a three-layer flow.

図1は本発明のデバイスの界面面積を大きく保った上で層流を形成する一実施態様を示す概念図である。以下、図1を用いて詳細に説明する。   FIG. 1 is a conceptual diagram showing an embodiment in which a laminar flow is formed while keeping the interface area of the device of the present invention large. Hereinafter, it demonstrates in detail using FIG.

本実施形態のデバイスは、合流流路12がその端部13において略直角に屈曲し、Z軸方向への変位を伴いながら混合流路14に接続している。合流流路12は複数の流体が合流したときに、層流を形成し、接触界面を除いて流体の混合が進行しづらい大きさである。   In the device of the present embodiment, the merging channel 12 is bent at a substantially right angle at the end portion 13 and connected to the mixing channel 14 while being displaced in the Z-axis direction. The merging channel 12 forms a laminar flow when a plurality of fluids merge, and has a size that makes it difficult for fluid mixing to proceed except for the contact interface.

合流流路の下流に配置された混合流路14はX軸方向を流路幅とし、Z軸方向を流路高さとしたとき、流路幅対流路高さのアスペクト比が合流流路よりも大きく形成されている。   The mixing channel 14 disposed downstream of the merge channel has an aspect ratio of channel width to channel height that is greater than that of the merge channel, where the X axis direction is the channel width and the Z axis direction is the channel height. Largely formed.

すなわち、流れ方向(Y軸方向)に対する断面が該合流流路よりも界面が増大する方向(Z軸方向)に長い混合流路を下流に設けることで、層流の接触界面の面積を増大させ、混合を促進させることができるようになる。   That is, the area of the laminar contact interface is increased by providing a mixing channel downstream in the direction (Z-axis direction) in which the cross section with respect to the flow direction (Y-axis direction) increases in the interface (Z-axis direction). Will be able to promote mixing.

合流流路12と混合流路14との接続部分は、図1に示すように、端部13の位置から離れるにつれて徐々にアスペクト比を大きくするように、徐々に流路高さを変更する拡大流路部が混合流路の一部として設けられているとよい。このような構造は、合流流路12を一枚の基板に作製し、混合流路14を他の基板に作製して、端部13を混合流路14の略端部の位置に一致させ、合流流路12と混合流路14が略直角となるように二枚の基板を接合すると作製できる。   As shown in FIG. 1, the connection portion between the merging flow channel 12 and the mixing flow channel 14 is an enlargement in which the flow channel height is gradually changed so as to gradually increase the aspect ratio as the distance from the position of the end portion 13 increases. The flow path portion may be provided as a part of the mixing flow path. In such a structure, the merging channel 12 is produced on one substrate, the mixing channel 14 is produced on another substrate, and the end portion 13 is made to coincide with the position of the substantially end portion of the mixing channel 14; It can be manufactured by joining two substrates so that the merging channel 12 and the mixing channel 14 are substantially perpendicular.

図2は、本形態の流路デバイスを二枚の基板を接合することで構成した具体例を示すものである。混合流路14を有する第1の基板18と合流流路13の一部を有する第2の基板とが接合され、流路デバイスを構成している。混合流路14は、合流流路13との接続部分に、合流流路から離れるにつれて溝の深さ方向に大きくなる拡大流路部16が形成されている。   FIG. 2 shows a specific example in which the flow path device of this embodiment is configured by joining two substrates. The first substrate 18 having the mixing flow path 14 and the second substrate having a part of the merge flow path 13 are joined to form a flow path device. In the mixing channel 14, an enlarged channel portion 16 that increases in the depth direction of the groove as the distance from the merging channel 13 is formed at a connection portion with the merging channel 13.

図2(a)は、図1の流路デバイスをX軸方向からみた断面図に対応するものであり、図2(b)は(a)のA−A‘断面およびB−B’断面の流路断面形状を模式的に示すものである。   2A corresponds to a cross-sectional view of the flow channel device of FIG. 1 viewed from the X-axis direction, and FIG. 2B is a cross-sectional view taken along the lines AA ′ and BB ′ of FIG. The flow channel cross-sectional shape is schematically shown.

本形態においては、流体10と流体11は互いに混和できる流体でZ軸方向に重なった2層流を形成しており、合流流路12内をまずX軸方向に流れている。合流流路12の端部13において、流体10および流体11はZ軸の負の方向に略直角に曲がると、それぞれ流体10’および流体11’となる。このとき、流体10’は流体11’に比べてよりX軸の正の方向に位置し、おおよそ2層流は保たれる。流体10’および流体11’はY軸方向に伸びる混合流路14内においておおよそ2層流を保ったまま流れるが、混合流路14の流路高さが流路幅より大きな値を有する地点でそれぞれ流体10’’および流体11’’を形成する。よって、流体10’’と流体11’’は、それぞれ流体10と流体11として合流流路12に存在していた時と比較すると、接触界面が増加し、両流体が混合される効率が高くなり、混合の進展の様子は15のように示される。すなわち、図2(b)で示すように、混合流路14の流れ方向における流路の断面形状が、合流流路12よりも界面が増大する方向(Z軸方向)に長い形状となっている。界面の法線方向(X軸方向)は、ともに同じ幅とすることが製造の観点で好ましいが、異なっていても良い。   In this embodiment, the fluid 10 and the fluid 11 are fluids that can be mixed with each other to form a two-layer flow that overlaps in the Z-axis direction, and first flow in the merging channel 12 in the X-axis direction. When the fluid 10 and the fluid 11 bend substantially at right angles to the negative direction of the Z-axis at the end 13 of the merging channel 12, they become fluid 10 'and fluid 11', respectively. At this time, the fluid 10 'is positioned in the positive direction of the X axis as compared with the fluid 11', and the two-layer flow is maintained. The fluid 10 ′ and the fluid 11 ′ flow while maintaining a roughly two-layer flow in the mixing channel 14 extending in the Y-axis direction, but at a point where the channel height of the mixing channel 14 has a value larger than the channel width. Form fluid 10 '' and fluid 11 '', respectively. Therefore, compared with the case where the fluid 10 ″ and the fluid 11 ″ exist in the merge channel 12 as the fluid 10 and the fluid 11, respectively, the contact interface increases, and the efficiency of mixing the two fluids increases. The progress of mixing is shown as 15. That is, as shown in FIG. 2B, the cross-sectional shape of the flow channel in the flow direction of the mixing flow channel 14 is longer than the merged flow channel 12 in the direction in which the interface increases (Z-axis direction). . The normal direction (X-axis direction) of the interface is preferably the same width from the viewpoint of manufacturing, but may be different.

なお、図1においては、流体10と流体11がZ軸方向に重なった2層流を形成しながら合流流路12を流れているが、この2層流を形成することは、以下の方法で達成できる。流体10が流れるための合流流路12を一枚の基板に作製し、流体11を供給するマイクロ流路を他の基板に作製して合流流路12に交差するように二枚の基板を接合することにより実現できる。このとき、流体11を供給するマイクロ流路と、混合流路14が同じ基板上に形成されていることが好ましい。また、合流流路12の流体幅対流路高さの比は任意であるが、マイクロ流体デバイス全体に占める面積を低減するためにおおむね100μm以下の流路幅であることが望ましい。さらに、合流流路12内で形成される接触界面において、わずかな量の流体10と流体11は混合されるが、混合流路14において均一に混合させることを目的とするときは、合流流路12で少量の混合が生じてもかまわない。   In FIG. 1, the fluid 10 and the fluid 11 flow through the merging flow path 12 while forming a two-layer flow overlapping in the Z-axis direction. The formation of the two-layer flow is performed by the following method. Can be achieved. A merging channel 12 for flowing the fluid 10 is made on one substrate, a micro channel for supplying the fluid 11 is made on another substrate, and the two substrates are joined so as to intersect the merging channel 12 This can be achieved. At this time, it is preferable that the micro flow path for supplying the fluid 11 and the mixing flow path 14 are formed on the same substrate. Further, the ratio of the fluid width to the channel height of the merging channel 12 is arbitrary, but it is desirable that the channel width is approximately 100 μm or less in order to reduce the area occupied by the entire microfluidic device. Furthermore, a small amount of the fluid 10 and the fluid 11 are mixed at the contact interface formed in the merging channel 12, but when the purpose is to uniformly mix in the mixing channel 14, the merging channel A small amount of mixing can occur at 12.

合流流路12や混合流路14を形成するデバイスの材質は、ガラス、セラミック、半導体またはそれらのハイブリッドなど、特に限定を設ける必要はないが、混合流路14の流路幅対流路高さを大きくするためには、プラスチック材質であると作製しやすい。プラスチック材質であれば、流路高さが流路幅と比較して大きな流路でも、機械加工や射出成型などの比較的安価な方法により流路を形成することが可能だからである。   The material of the device that forms the merging channel 12 and the mixing channel 14 does not need to be particularly limited, such as glass, ceramic, semiconductor, or a hybrid thereof. In order to increase the size, it is easy to produce a plastic material. This is because if the plastic material is used, the flow path can be formed by a relatively inexpensive method such as machining or injection molding even if the flow path height is larger than the flow path width.

流体10や流体11は、互いに混和性であれば特に制限はない。また、流体10と流体11の主成分が同一のものであっても構わない。例えば、流体10と流体11の主成分は水であるが、いずれにも水溶性の物質が含まれており、流体10と流体11の混合によって物質の反応が開始されるものである。また、流体10内に水溶性の検体が含まれ、流体11が水を主成分とする試薬であってもよい。   The fluid 10 and the fluid 11 are not particularly limited as long as they are miscible with each other. Further, the main components of the fluid 10 and the fluid 11 may be the same. For example, although the main component of the fluid 10 and the fluid 11 is water, both of them contain a water-soluble substance, and the reaction of the substance is started by mixing the fluid 10 and the fluid 11. Alternatively, the fluid 10 may include a water-soluble specimen, and the fluid 11 may be a reagent mainly composed of water.

以上、マイクロ流路内で層流を形成するとき、接触界面面積が大きくなる方向に層流を形成する方法を説明したが、さらに層流を多層に形成する方法を実施例を通じて説明する。   The method for forming a laminar flow in the direction in which the contact interface area increases when laminar flow is formed in the microchannel has been described above, and a method for forming a laminar flow in multiple layers will be described through examples.

以下、実施例を示し本発明をさらに具体的に説明する。なお、以下の実施例は本発明をより詳細に説明するための例であって、実施形態は以下の実施例のみに限定されない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the following examples are examples for explaining the present invention in more detail, and the embodiments are not limited to the following examples.

(実施例1)
実施例1において、マイクロ流路内において多層の層流を形成し、その層流の方向転換をすることにより接触界面面積が大きくなる方向に多層層流を形成する本発明の方法について図3および図4を用いて説明する。
Example 1
In Example 1, a multi-layer laminar flow is formed in a microchannel, and the multi-layer laminar flow is formed in a direction in which the contact interface area is increased by changing the direction of the laminar flow. This will be described with reference to FIG.

図3はマイクロ流体デバイスにおけるインレットと流路を表示した斜視図である。実線で記載された流路は第2の基板に作製された流路であり、破線で示された流路は第1の基板に作製された流路である。第2の基板に形成された溝と第1の基板の平面部分、または第1の基板に形成された溝と第2の基板の平面部分を一致させて接合することにより、第2と第1の基板に流路が形成される。ただし、図3における24、24’、26、28においては、第2の基板に作製された流路と第1の基板に作製された流路が交差する位置であるので、流路が高さ方向の変位を伴って接続している。   FIG. 3 is a perspective view showing inlets and flow paths in the microfluidic device. The flow path indicated by a solid line is a flow path prepared on the second substrate, and the flow path indicated by a broken line is a flow path manufactured on the first substrate. The groove formed on the second substrate and the planar portion of the first substrate, or the groove formed on the first substrate and the planar portion of the second substrate are aligned and joined to each other. A flow path is formed on the substrate. However, in 24, 24 ′, 26, and 28 in FIG. 3, the flow path formed on the second substrate and the flow path formed on the first substrate intersect with each other. Connected with displacement in direction.

第2のインレットに含まれる流体20は、分岐を有する流路22を流れる。第1のインレットに含まれる流体21は分岐を有する流路23を流れる。なお、流路20と流体21は互いに混和できる物質である。流路23は流路22と合流地点24において合流する。このとき、流路23を流れる流体21は合流地点24において、Z軸の正の方向への変位を伴いながら流体20と合流する。そして、合流流路25内において、流体20と流体21は流体20がZ軸の正の方向にある向きで2層流を形成する。図4(A)は合流地点24における、ZX断面図を表わしている。   The fluid 20 contained in the second inlet flows through the flow path 22 having a branch. The fluid 21 contained in the first inlet flows through the flow path 23 having a branch. The flow path 20 and the fluid 21 are substances that can be mixed with each other. The flow path 23 merges with the flow path 22 at the merge point 24. At this time, the fluid 21 flowing through the flow path 23 joins the fluid 20 at the joining point 24 while being displaced in the positive direction of the Z axis. And in the confluence | merging flow path 25, the fluid 20 and the fluid 21 form a two-layer flow in the direction in which the fluid 20 is in the positive direction of the Z axis. FIG. 4A shows a ZX cross-sectional view at the junction 24.

一方、流路22および流路23を合流地点24’方向に流れる、それぞれ流体20および流体21は、合流地点24’において、流体20がZ軸の負の方向への変位を伴いながら流体21と合流し、合流流路25’を流れる。合流地点24’と合流流路25’内を流れる流体20と流体21の様子を、合流地点24’付近のZX断面図を図4(B)に示している。流体20は流路22からZ軸の負の方向への変位を伴って流体21と合流しているため、合流流路25’内では、流体20がZ軸の正の方向になる2層流を形成する。   On the other hand, the fluid 20 and the fluid 21 flowing in the direction of the joining point 24 ′ in the flow path 22 and the flow path 23 are respectively in contact with the fluid 21 while the fluid 20 is displaced in the negative direction of the Z axis at the joining point 24 ′. Merge and flow through the merge channel 25 ′. FIG. 4B shows a state of the fluid 20 and the fluid 21 flowing in the joining point 24 ′ and the joining flow path 25 ′, and a ZX sectional view in the vicinity of the joining point 24 ′. Since the fluid 20 merges with the fluid 21 with a displacement in the negative direction of the Z axis from the flow channel 22, the two-layer flow in which the fluid 20 is in the positive direction of the Z axis in the merged flow channel 25 ′. Form.

合流流路25および合流流路25’はさらなる合流地点26にて合流する。このときの流体の流れをZX断面図として図4(C)に示す。合流流路25’を流れる2層流は、Z軸の正の方向へ変位を伴いながら、合流流路25を流れる2層流と合流するため、合流流路27内で4層流を形成する。このさいに、合流流路25および合流流路25’における層流の形成方向は合流地点26を通過しても不変である。なお、合流流路25と合流流路25’が合流するときの、XY平面上に作製される角度であるが、180度のときはそれぞれの流路を流れる層流が維持されない場合が生じるため、角度は180度であってはならない。好ましくは、0度より大きくおおよそ45度以下である。   The merge channel 25 and the merge channel 25 ′ merge at a further merge point 26. The flow of the fluid at this time is shown in FIG. The two-layer flow that flows through the merge channel 25 ′ merges with the two-layer flow that flows through the merge channel 25 while being displaced in the positive direction of the Z axis, so that a four-layer flow is formed in the merge channel 27. . At this time, the formation direction of the laminar flow in the merging channel 25 and the merging channel 25 ′ is unchanged even if it passes through the merging point 26. In addition, although it is the angle produced on XY plane when the merge flow path 25 and the merge flow path 25 'merge, when it is 180 degrees, the laminar flow which flows through each flow path may not be maintained. The angle should not be 180 degrees. Preferably, it is greater than 0 degree and approximately 45 degrees or less.

合流流路27を流れる4層流は、端部28において、混合流路29と略直角に接続される。このときの流体の様子を図4(D)に示す。合流流路27を流れる4層流は、端部28において、Z軸の負の方向へ変位を受けることにより、Z軸方向に重なった層流がX軸方向に重なった層流に変換される。方向転換を受けた層流は、X軸方向への重なりを保持したまま、混合流路29をY軸方向へと流れる。混合流路29は、流路幅(X軸方向)より流路高さ(Z軸方向)が大きい流路なので、層流が形成する接触界面面積が大きい状態にある。よって、界面面積を大きく保ちながら多層の層流を形成することができるため、混合が大きく促進される。   The four-layer flow flowing through the merge channel 27 is connected to the mixing channel 29 at a substantially right angle at the end portion 28. The state of the fluid at this time is shown in FIG. The four-layer flow flowing through the merge channel 27 is displaced in the negative direction of the Z-axis at the end portion 28, whereby the laminar flow overlapping in the Z-axis direction is converted into a laminar flow overlapping in the X-axis direction. . The laminar flow subjected to the direction change flows through the mixing channel 29 in the Y-axis direction while maintaining the overlap in the X-axis direction. Since the mixing channel 29 is a channel whose channel height (Z-axis direction) is larger than the channel width (X-axis direction), the contact interface area formed by the laminar flow is large. Therefore, since a multi-layer laminar flow can be formed while keeping the interface area large, mixing is greatly promoted.

流体20と流体21の混合比率を調整するためには、第2と第1のインレットに印加する圧力を調整することにより、流体20および流体21の流量を任意に設定できる。また、混合比率は混合流路29における各層流の幅を観測することにより、混合流路29内に注入された流体の量を確かめることが可能である。   In order to adjust the mixing ratio of the fluid 20 and the fluid 21, the flow rates of the fluid 20 and the fluid 21 can be arbitrarily set by adjusting the pressure applied to the second and first inlets. In addition, the mixing ratio can be confirmed by observing the width of each laminar flow in the mixing channel 29 to confirm the amount of fluid injected into the mixing channel 29.

このように本発明では、界面面積が大きくなる方向に多層の層流を形成することを、Z軸方向への変位を伴う構造を有しながらも2枚の基板を接合することにより達成できる。また、界面面積を大きくするためには、XY平面上で例えば合流流路27の幅を広くする方法も考えられるが、XY平面方向の面積が大きくなりデバイスの集積化には不利になる。つまり、本発明のように混合流路29の流路幅を流路高さより小さい状態の流路とすれば、混合に要するXY平面方向の面積が低減され、より集積化に適したデバイスを作製することができる効果も有する。   As described above, in the present invention, it is possible to form a multi-layer laminar flow in the direction in which the interface area increases by joining two substrates while having a structure with displacement in the Z-axis direction. In order to increase the interface area, for example, a method of increasing the width of the merge channel 27 on the XY plane is conceivable. However, the area in the XY plane direction increases, which is disadvantageous for device integration. That is, if the channel width of the mixing channel 29 is smaller than the channel height as in the present invention, the area in the XY plane direction required for mixing is reduced, and a device more suitable for integration is manufactured. It also has an effect that can be done.

(実施例2)
実施例2おいて、混合流路を用いて多層の層流を形成し、接触界面面積が大きくなる方向に多層層流を形成する本発明の方法について図5および図6を用いて説明する。
(Example 2)
In Example 2, a method of the present invention for forming a multi-layer laminar flow using a mixing channel and forming a multi-layer laminar flow in a direction in which the contact interface area increases will be described with reference to FIGS.

図5はマイクロ流体デバイスにおけるインレットと流路を表示した斜視図である。実線で記載された流路は第2の基板に作製された流路であり、破線で示された流路は第1の基板に作製された流路である。第2の基板に形成された溝と第1の基板の平面部分、または第1の基板に形成された溝と第2の基板の平面部分を一致させて接合することにより、第2と第1の基板に流路が形成される。ただし、図5における44、44’46、46’においては、第2の基板に作製された流路と第1の基板に作製された流路が交差する位置であるので、流路が高さ方向の変位を伴って接続している。   FIG. 5 is a perspective view showing inlets and flow paths in the microfluidic device. The flow path indicated by a solid line is a flow path prepared on the second substrate, and the flow path indicated by a broken line is a flow path manufactured on the first substrate. The groove formed on the second substrate and the planar portion of the first substrate, or the groove formed on the first substrate and the planar portion of the second substrate are aligned and joined to each other. A flow path is formed on the substrate. However, in 44, 44'46, and 46 'in FIG. 5, the flow path made on the second substrate and the flow path made on the first substrate intersect with each other, so that the flow path is high. Connected with displacement in direction.

第2のインレットに含まれる流体40は、流路42および流路42’に分岐して流れる。第1のインレットに含まれる流体41は、流路43および流路43’に分岐して流れる。流路43および流路43’の端部は、それぞれ流路42および流路42’に接続し、その位置を合流地点44とする。流体41は合流地点44にてZ軸の正の方向に変位を受けながら流体40と合流する。この時の様子を、図6(A)に表わす。合流流路45には、流体40が流体41に対して、Z軸の正の方向にある状態の2層流が形成される。同様に、合流流路45’においても、流体41が合流地点44’にて流体40と合流し、流体40が流体41に対して、Z軸の正の方向にある状態の2層流が形成される。   The fluid 40 contained in the second inlet branches and flows into the flow path 42 and the flow path 42 '. The fluid 41 contained in the first inlet branches and flows into the flow path 43 and the flow path 43 '. The end portions of the flow channel 43 and the flow channel 43 ′ are connected to the flow channel 42 and the flow channel 42 ′, respectively, and the position thereof is set as a merging point 44. The fluid 41 joins the fluid 40 while being displaced in the positive direction of the Z axis at the joining point 44. The situation at this time is shown in FIG. A two-layer flow in which the fluid 40 is in the positive direction of the Z axis with respect to the fluid 41 is formed in the merge channel 45. Similarly, in the merging channel 45 ′, the fluid 41 merges with the fluid 40 at the merging point 44 ′, and a two-layer flow in a state where the fluid 40 is in the positive direction of the Z axis with respect to the fluid 41 is formed. Is done.

合流流路45を流れる流体は、端部46において、図6(B)に示されるように、Z軸の負の方向に変位を受け、層流の向きがZ軸方向に重なった向きからX軸方向に重なった向きに変換される。そして、この層流の向きを保持したまま混合流路48の合流地点47へ流れる。一方、合流流路45’を流れる流体は、端部46’において、Z軸の負の方向に変位を受け、2層流の向きがZ軸方向に重なった向きからY軸方向に重なった向きに変換される。そして、その2層流の向きを保持したまま混合流路48の合流地点47へ流れる。   As shown in FIG. 6B, the fluid flowing through the merge channel 45 is displaced in the negative direction of the Z axis, as shown in FIG. 6B, and the direction of the laminar flow is X from the direction overlapping the Z axis direction. It is converted to the direction that overlaps the axial direction. And it flows to the junction point 47 of the mixing channel 48 while maintaining the direction of this laminar flow. On the other hand, the fluid flowing through the confluence channel 45 ′ is displaced in the negative direction of the Z-axis at the end 46 ′, and the direction in which the two-layer flow is overlapped in the Y-axis direction from the direction overlapping the Z-axis direction. Is converted to And it flows to the merge point 47 of the mixing channel 48 while maintaining the direction of the two-layer flow.

合流地点47は混合流路48内に配置され、Z軸方向の変位を伴わない合流地点である。つまり、端部46および端部46’から来る流れは、X軸方向に重なった向きの2層流を形成する。合流地点47直前の流れは2層流であるから、XY平面の断面図である図6(C)に示されるように、合流地点47を通過すると4層流が形成される。さらに混合流路48を進行する4層流の流れは、接触界面面積が大きい方向に形成されているため、混合が速やかに進展する。   The junction point 47 is a junction point that is arranged in the mixing channel 48 and does not involve displacement in the Z-axis direction. That is, the flow coming from the end portion 46 and the end portion 46 ′ forms a two-layer flow that is superposed in the X-axis direction. Since the flow immediately before the junction point 47 is a two-layer flow, as shown in FIG. 6C which is a cross-sectional view of the XY plane, a four-layer flow is formed when passing through the junction point 47. Furthermore, since the four-layer flow that travels through the mixing channel 48 is formed in a direction in which the contact interface area is large, mixing proceeds rapidly.

このように、本発明は混合に適する多層の層流を混合流路内で形成して、混合を促進することができる。   As described above, the present invention can promote mixing by forming a multilayer laminar flow suitable for mixing in the mixing channel.

(実施例3)
実施例3として、3種類以上の流体を速やかに混合するため方法について図7および図8を用いて説明する。
(Example 3)
As Example 3, a method for quickly mixing three or more kinds of fluids will be described with reference to FIGS.

第2のインレットに流体60、第1のインレットに流体61、第三のインレットに流体62を含むマイクロ流体デバイスがある。それぞれのインレットから流れでた流体は、混合流路68へ向けて流れながら多層の層流を形成して、混合流路68内で混合される。なお、図7において、実線で示された部分は第2の基板に形成された流路で、破線で示された部分は第1の基板に形成された流路であり、合流地点63、63’、64、64’、および端部66、66’にて互いに接続されている。つまり、このマイクロ流体デバイスは混合する流体が3種類ありながら、2枚の基板から構成されている。   There is a microfluidic device that includes a fluid 60 in a second inlet, a fluid 61 in a first inlet, and a fluid 62 in a third inlet. The fluid flowing from each inlet forms a multi-layered laminar flow while flowing toward the mixing channel 68 and is mixed in the mixing channel 68. In FIG. 7, the part indicated by a solid line is a flow path formed on the second substrate, and the part indicated by a broken line is a flow path formed on the first substrate. ', 64, 64' and ends 66, 66 'are connected to each other. That is, this microfluidic device is composed of two substrates while there are three types of fluids to be mixed.

流体61は合流地点63において、Z軸方向の変位を伴いながら流体60と合流し、流体60が流体61に対してZ軸の正の方向になるような2層流が形成される。このときの流体の様子を図8(A)に示す。次に、流体62は合流地点64において、流体60と流体61で構成された2層流のZ軸の負の方向に3層目の層を形成するように合流し、3層流となって合流流路65を流れる。このときの流体60、流体61および流体62の様子は図8(B)に示される通りである。   The fluid 61 merges with the fluid 60 at the merge point 63 with displacement in the Z-axis direction, and a two-layer flow is formed such that the fluid 60 is in the positive direction of the Z-axis with respect to the fluid 61. The state of the fluid at this time is shown in FIG. Next, the fluid 62 is merged at the merge point 64 so as to form a third layer in the negative direction of the Z-axis of the two-layer flow composed of the fluid 60 and the fluid 61 to form a three-layer flow. It flows through the merge channel 65. The state of the fluid 60, the fluid 61, and the fluid 62 at this time is as shown in FIG.

合流流路65の端部66において、3層流はZ軸の負の方向に流れを変化させることにより、3層流の向きがX軸方向に重なった流れに変換され、混合流路68を合流地点67へと向かって流れる。このときの3層流の向きを図示したものが、図8(C)である。合流地点63’、64’および合流流路65’を通過した流体も同様に3層流を形成し、端部66’において、3層流の向きがY軸方向に重なった流れに変換され、混合流路68を合流地点67へと向かって流れる。   At the end portion 66 of the merging channel 65, the three-layer flow is converted into a flow in which the direction of the three-layer flow is overlapped in the X-axis direction by changing the flow in the negative direction of the Z-axis. It flows toward the confluence point 67. FIG. 8C shows the direction of the three-layer flow at this time. Similarly, the fluid that has passed through the joining points 63 ′, 64 ′ and the joining flow path 65 ′ also forms a three-layer flow, and is converted into a flow in which the direction of the three-layer flow overlaps the Y-axis direction at the end 66 ′. It flows through the mixing channel 68 toward the junction point 67.

合流地点67付近の流体の流れの様子をXY平面の断面図に表わして図8(D)に図示する。流体60、流体61および流体62により形成された2本の3層流は、Z軸方向の変位を伴わない合流地点67へと向かう。混合流路68は、レイノルズ数が低い状態になる大きさなので、2本の3層流は合流地点67で合流すると6層流を形成する。混合流路68内に6層流が形成されることによって、混合されるために必要な分子拡散の距離が低減され、かつ混合流路68は幅(X軸方向)が高さ(Z軸方向)より大きいため、界面面積も大きく保持されるため、混合が促進され易い環境になる。   FIG. 8D illustrates a state of fluid flow in the vicinity of the confluence point 67 in a cross-sectional view on the XY plane. The two three-layer flows formed by the fluid 60, the fluid 61, and the fluid 62 go to the joining point 67 that is not displaced in the Z-axis direction. Since the mixing channel 68 is sized so that the Reynolds number is low, when the two three-layer flows merge at the merge point 67, a six-layer flow is formed. By forming a six-layer flow in the mixing channel 68, the distance of molecular diffusion required for mixing is reduced, and the width (X-axis direction) of the mixing channel 68 is high (Z-axis direction). ) Is larger, the interface area is also kept large, so that the mixing is easily promoted.

図7においては、3種類の流体を混合するように図示してあるが、さらに多くの種類の流体を混合するには以下の方法で実現できる。必要があるときには、合流地点64および64’より端部66および66’の方向に第1の基板内に流路を形成し、その流路が合流流路65および65’にZ軸の負の方向から合流するように接続させることにより実現できる。この時のインレットと各流路を図9に示す。つまり、図7における流体62が単独で流れる流路と同じ構造の流路を第1の基板内に平行して新たな流路を作製するだけで、4種類以上の流体の混合にも対応できる。   In FIG. 7, three types of fluids are mixed, but more types of fluids can be mixed by the following method. When necessary, a flow path is formed in the first substrate in the direction of the end portions 66 and 66 ′ from the merge points 64 and 64 ′, and the flow path is connected to the merge flow paths 65 and 65 ′ with a negative Z-axis. This can be realized by connecting so as to merge from the direction. The inlet and each flow path at this time are shown in FIG. That is, it is possible to cope with mixing of four or more kinds of fluids simply by creating a new flow path in parallel with the flow path having the same structure as the flow path of the fluid 62 in FIG. 7 in the first substrate. .

このように、本発明は2種類の流体の混合に特化したものではないため、3種類以上の流体を混合するさいにおいて、2種類の流体を混合する構造の全部分を繰り返し配置する必要がなく、デバイスの混合に要する面積が低減できるという効果も有する。さらに、4種類、5種類の流体の混合のためにも容易な設計変更で対応することができる。   As described above, the present invention is not specialized for mixing two kinds of fluids. Therefore, when mixing three or more kinds of fluids, it is necessary to repeatedly arrange all parts of the structure for mixing two kinds of fluids. There is also an effect that the area required for mixing devices can be reduced. Furthermore, it is possible to cope with the mixing of four types and five types of fluids with an easy design change.

(実施例4)
実施例4として、流路に注入される流体が非混和性の流体においても本発明が有用であることを説明するために、マイクロ流体デバイス内における液−液抽出を例として図1を用いて説明する。
Example 4
As Example 4, in order to explain that the present invention is useful even when the fluid injected into the flow path is immiscible, a liquid-liquid extraction in a microfluidic device will be used as an example with reference to FIG. explain.

検体を含む流体10、および検体を抽出するための流体11は内は、合流流路12においてはZ軸方向に重なった層流を形成する。検体は流体11と親和性を保有するものであり、流体11に接触すると、流体11内に抽出される。この抽出効率は、流体10と流体11の接触界面面積に依存し、接触界面面積が大きい方が抽出効率は高い。   The fluid 10 containing the specimen and the fluid 11 for extracting the specimen form a laminar flow that overlaps in the Z-axis direction in the merging channel 12. The specimen has affinity with the fluid 11, and is extracted into the fluid 11 when contacting the fluid 11. This extraction efficiency depends on the contact interface area between the fluid 10 and the fluid 11, and the extraction efficiency is higher when the contact interface area is larger.

いま、合流流路12内を流れる流体10および11は端部13において2層流の方向が変換され、混合流路14へと流れる。液−液抽出のさいには、流体10と流体11は互いに非混和であることが多く、混合流路14においてもX軸方向に重なった2層流は保持される。しかし、混合流路14の幅(X軸方向)は高さ(Z軸方向)より高く、その接触界面面積は合流流路12内の2層流よりも大きく設定できる。よって、界面面積の上昇とともに、検体の流体11への抽出効率は高まる。   Now, the fluids 10 and 11 flowing in the confluence channel 12 are changed in the direction of the two-layer flow at the end 13 and flow to the mixing channel 14. In the liquid-liquid extraction, the fluid 10 and the fluid 11 are often immiscible with each other, and the two-layer flow overlapping in the X-axis direction is maintained also in the mixing channel 14. However, the width (X-axis direction) of the mixing channel 14 is higher than the height (Z-axis direction), and the contact interface area can be set larger than the two-layer flow in the merging channel 12. Therefore, the extraction efficiency of the specimen into the fluid 11 increases as the interface area increases.

検体は、例えば水溶液中に存在するトルエンであり、これを水とトルエンの混合物を流体10としたとき、流体11はオイルであると、水溶液中のトルエンを流体11のオイル内に抽出できる。   The specimen is, for example, toluene existing in an aqueous solution. When the fluid 10 is a mixture of water and toluene, and the fluid 11 is oil, the toluene in the aqueous solution can be extracted into the oil of the fluid 11.

このように、本発明は流体を混合させる以外のアプリケーションにおいても、層流を界面面積が大きくなる方向に形成することにより、界面を通過することが必須な反応に対して効果を有する。   As described above, the present invention has an effect on a reaction in which it is essential to pass through an interface by forming a laminar flow in a direction in which the interface area increases in applications other than mixing fluids.

本発明は、化学反応、化学分析を実施するためのマイクロ流体デバイスに利用することができる。   The present invention can be used in a microfluidic device for performing chemical reaction and chemical analysis.

10、10’、10’’ 流体
11、11’、11’’ 流体
12 マイクロ流路
13 端部
14 混合流路
15 流体の混合の様子
20 流体
21 流体
22 流路
23 流路
24、24’ 合流地点
25 合流流路
26 合流地点
27 合流流路
28 端部
29 混合流路
40 流体
41 流体
42、42’ 流路
43、43’ 流路
44、44’ 合流地点
45、45’ 合流流路
46、46’ 端部
47 合流地点
48 混合流路
60 流体
61 流体
62 流体
63、63’ 合流地点
64、64’ 合流地点
65、65’ 合流流路
66、66’ 端部
67 合流地点
68 混合流路
10, 10 ′, 10 ″ fluid 11, 11 ′, 11 ″ fluid 12 micro flow channel 13 end 14 mixing flow channel 15 fluid mixing state 20 fluid 21 fluid 22 flow channel 23 flow channel 24, 24 ′ merge Point 25 Junction channel 26 Junction point 27 Junction channel 28 End 29 Mixing channel 40 Fluid 41 Fluid 42, 42 'Channel 43, 43' Channel 44, 44 'Junction point 45, 45' Junction channel 46, 46 'end 47 merge point 48 mixing flow path 60 fluid 61 fluid 62 fluid 63, 63' merge point 64, 64 'merge point 65, 65' merge flow path 66, 66 'end 67 merge point 68 mixing flow path

Claims (5)

第1〜3の流体をそれぞれ供給するための第1〜3のインレットと、
前記第1〜3のインレットに接続された第1〜3の流路と、
前記第1〜3の流路に対して第1および第2の合流地点において順次接続された合流流路と、前記合流流路の下流に配され混合流路と、と備え、
前記第1の合流地点は、前記第1の流体と、前記第2の流体とが所定方向に積層された2層流を形成可能に構成されており、前記第2の合流地点は、前記2層流に対して、前記所定方向に前記第3の流体が積層された3層流を形成可能に構成されており、前記混合流路は、前記合流流路の端部において、前記所定方向の長さが前記合流流路の断面よりも長い断面を有する
ことを特徴とするマイクロ流路デバイス。
First to third inlets for supplying first to third fluids, respectively;
First to third flow paths connected to the first to third inlets ;
A merging channel sequentially connected at the first and second merging points with respect to the first to third channels, and a mixing channel disposed downstream of the merging channel ,
The first merge point is configured to be capable of forming a two-layer flow in which the first fluid and the second fluid are laminated in a predetermined direction, and the second merge point is the 2 The laminar flow is configured to be able to form a three-layer flow in which the third fluid is laminated in the predetermined direction. A microchannel device having a cross section whose length is longer than that of the merged channel.
第1の基板に分岐を有するマイクロ流路である第1流路、第2の基板に分岐を有するマイクロ流路である第2流路が形成され、前記第1流路の一つの端部が前記第2流路に接続して第2の基板に形成された第2の合流流路を形成し、前記第2流路の一つの端部が前記第1流路に接続して第1の基板に形成された第1の合流流路を形成し、前記第1の合流流路の端部が前記第2の合流流路に接続するように第2の基板と第1の基板を接合したマイクロ流路デバイス A first flow path that is a micro flow path having a branch on the first substrate and a second flow path that is a micro flow path having a branch on the second substrate are formed, and one end of the first flow path is A second merge channel formed on the second substrate is formed by connecting to the second channel, and one end of the second channel is connected to the first channel and the first A first merge channel formed on the substrate is formed, and the second substrate and the first substrate are joined so that an end of the first merge channel is connected to the second merge channel. Microchannel device . 前記合流流路の下流に配された混合流路を備え、A mixing channel disposed downstream of the merge channel,
前記第2の合流流路は、所定方向に積層された4層流を形成可能に構成されており、前記混合流路は、前記合流流路の端部において、前記所定方向の長さが前記合流流路の断面よりも長い断面を有するThe second merging channel is configured to be capable of forming a four-layer flow stacked in a predetermined direction, and the mixing channel has a length in the predetermined direction at an end of the merging channel. Has a longer cross section than the cross section of the confluence channel
ことを特徴とする請求項2に記載のマイクロ流路デバイス。The microchannel device according to claim 2.
前記流路デバイスは、前記混合流路となる溝が前記第1の基板に設けられており、前記混合流路が、合流流路から離れるにつれて前記溝の深さ方向に大きくなる拡大流路部を有する請求項に記載のマイクロ流路デバイス。 The channel device, the mixing channel and becomes groove is provided on the first substrate, the mixing channel is merged flow channel expanding flow path portion increases in the depth direction of the groove with distance from the The microchannel device according to claim 3 , comprising: 前記流路デバイスは、前記第1の基板の上側に前記第2の基板を有し、前記拡大流路部の天面が、前記第2の基板の底面である請求項に記載のマイクロ流路デバイス。 5. The micro flow according to claim 4 , wherein the flow path device has the second substrate above the first substrate, and a top surface of the enlarged flow path portion is a bottom surface of the second substrate. Road device.
JP2011175900A 2011-08-11 2011-08-11 Flow path device and fluid mixing method Expired - Fee Related JP5963410B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011175900A JP5963410B2 (en) 2011-08-11 2011-08-11 Flow path device and fluid mixing method
US14/237,553 US20140241110A1 (en) 2011-08-11 2012-07-25 Fluidic channel device, method for mixing fluids, fluid control device, and liquid control system
PCT/JP2012/069534 WO2013021877A1 (en) 2011-08-11 2012-07-25 Fluidic channel device, method for mixing fluids, fluid control device, and liquid control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175900A JP5963410B2 (en) 2011-08-11 2011-08-11 Flow path device and fluid mixing method

Publications (2)

Publication Number Publication Date
JP2013040776A JP2013040776A (en) 2013-02-28
JP5963410B2 true JP5963410B2 (en) 2016-08-03

Family

ID=47668388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175900A Expired - Fee Related JP5963410B2 (en) 2011-08-11 2011-08-11 Flow path device and fluid mixing method

Country Status (3)

Country Link
US (1) US20140241110A1 (en)
JP (1) JP5963410B2 (en)
WO (1) WO2013021877A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9255827B2 (en) * 2013-12-17 2016-02-09 International Business Machines Corporation Computer based fluid flow velocity estimation from concentrations of a reacting constituent for products and services
US11047722B2 (en) 2013-12-17 2021-06-29 International Business Machines Corporation Computer based fluid flow velocity estimation from concentrations of a reacting constituent for products and services
WO2016122643A1 (en) 2015-01-30 2016-08-04 Hewlett-Packard Development Company, L.P. Diagnostic chip
GB201622024D0 (en) * 2016-11-14 2017-02-08 Inventage Lab Inc Apparatus and method for large scale production of monodisperse, microsheric and biodegradable polymer-based drug delivery
JP6342542B1 (en) * 2017-04-06 2018-06-13 株式会社神戸製鋼所 Fluid flow path device
CN109395625B (en) * 2017-08-16 2022-03-29 北京普利生仪器有限公司 Reaction liquid stirring method and mechanism and in-vitro detection equipment
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
EP4013539A1 (en) 2019-08-12 2022-06-22 Waters Technologies Corporation Mixer for chromatography system
KR102367263B1 (en) * 2020-07-08 2022-02-25 연세대학교 산학협력단 Microfluidic mixer and microfluidic device comprising the same
CN113546588B (en) * 2021-07-14 2022-09-23 宁波九胜创新医药科技有限公司 Microchannel reactor with anti-blocking structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19536856C2 (en) * 1995-10-03 1997-08-21 Danfoss As Micromixer and mixing process
JP3638151B2 (en) * 1996-03-28 2005-04-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Small liquid mixing device
US6136272A (en) * 1997-09-26 2000-10-24 University Of Washington Device for rapidly joining and splitting fluid layers
US5842787A (en) * 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
DE19746583A1 (en) * 1997-10-22 1999-04-29 Merck Patent Gmbh Micro-mixer for liquid, viscous or gaseous phases
EP1403209A1 (en) * 2002-09-24 2004-03-31 The Technology Partnership Limited Fluid routing device
JP5252390B2 (en) * 2007-02-14 2013-07-31 国立大学法人名古屋大学 Fluid mixing apparatus, fluid mixing method, and mold structure
US9440207B2 (en) * 2007-09-18 2016-09-13 Indiana University Research And Technology Corporation Compact microfluidic structures for manipulating fluids

Also Published As

Publication number Publication date
US20140241110A1 (en) 2014-08-28
JP2013040776A (en) 2013-02-28
WO2013021877A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5963410B2 (en) Flow path device and fluid mixing method
JP4792664B2 (en) Mixing method, mixing mechanism, micromixer and microchip having the mixing mechanism
Zhao et al. Control and applications of immiscible liquids in microchannels
Sivashankar et al. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications
US9205396B2 (en) Microfluidic device
Aota et al. Parallel multiphase microflows: fundamental physics, stabilization methods and applications
KR100666500B1 (en) Serpentine laminating chaotic micromixer
KR100941069B1 (en) Microfluidic dilution device
JP2014198324A (en) Microfluidic channel and microfluidic device
JP2007225438A (en) Microfluid chip
JP4683066B2 (en) Liquid mixing mechanism
JP2013545095A (en) Microfluidic device including auxiliary channel and bypass channel
JP2003220322A (en) Liquid mixing mechanism
JP5116112B2 (en) Fluid mixing apparatus and fluid mixing method
JP4415944B2 (en) Liquid mixing mechanism
KR20100004262A (en) Method for mixing micro-fluids and micro-fluidic mixing device
JP2005077397A (en) Flow-varying structure and micromixer
KR101113727B1 (en) Vertical lamination micromixer
KR101176175B1 (en) Micro mixer and method for fabricating thereof
KR101515403B1 (en) Microfluidic Channel Using Hook-Shaped Structures, Manufacturing Method Thereof, and Analysis System Having the Same
CN115245847B (en) Micro-hybrid chip based on Tesla valve
TW200940162A (en) A micromixer and microreactor with split-and-recombination and chaotic mechanisms
JP2006255584A (en) Micro reactor
Delgado et al. Universal pre-mixing dry-film stickers capable of retrofitting existing microfluidics
EP2106846A1 (en) Mixing junction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160628

R151 Written notification of patent or utility model registration

Ref document number: 5963410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees