JP2006075679A - Two-phase flow stabilizing chip - Google Patents

Two-phase flow stabilizing chip Download PDF

Info

Publication number
JP2006075679A
JP2006075679A JP2004260074A JP2004260074A JP2006075679A JP 2006075679 A JP2006075679 A JP 2006075679A JP 2004260074 A JP2004260074 A JP 2004260074A JP 2004260074 A JP2004260074 A JP 2004260074A JP 2006075679 A JP2006075679 A JP 2006075679A
Authority
JP
Japan
Prior art keywords
flow
cross
sectional shape
flow path
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004260074A
Other languages
Japanese (ja)
Other versions
JP4528585B2 (en
Inventor
Katsumasa Sakamoto
勝正 坂本
Hiroaki Nakanishi
博昭 中西
Keiichi Yoshida
佳一 吉田
Manabu Tokeshi
学 渡慶次
Takehiko Kitamori
武彦 北森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Kanagawa Academy of Science and Technology
Original Assignee
Shimadzu Corp
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Kanagawa Academy of Science and Technology filed Critical Shimadzu Corp
Priority to JP2004260074A priority Critical patent/JP4528585B2/en
Publication of JP2006075679A publication Critical patent/JP2006075679A/en
Application granted granted Critical
Publication of JP4528585B2 publication Critical patent/JP4528585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize a two-phase flow formed in the flow channel in a microchip. <P>SOLUTION: Grooves different in cross-sectional area are respectively formed to the surfaces of two substrates and the groove forming surfaces of both substrates are laminated to form a flow channel having a protruded cross section, which comprises flow channel parts different in cross-sectional area, in the chip. When two kinds of solvents different in properties are allowed to flow to the flow channel from an introducing port. The interface of the two-phase flow is rotated by 90° to become parallel to the bonded surface of the chip and the two-phase flow is stabilized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は化学反応や分析を行なわせるために、微量溶液中の物質、例えば微生物、蛋白質、核酸、糖質、抗原、抗体又はこれらが結合した混合物を抽出したり、二相流を安定化させる装置に関するものである。   The present invention extracts a substance in a minute amount of solution, for example, a microorganism, protein, nucleic acid, carbohydrate, antigen, antibody or a mixture of these, or stabilizes a two-phase flow in order to perform a chemical reaction or analysis. It relates to the device.

近年、分析化学の分野ではμTAS(Micro Total Systems)の研究が盛んになりつつあり、マイクロチップを用いて分析の高速・省サンプル・省溶媒化を図ることが期待されている。マイクロチップ上の微小空間中の反応では、従来の化学操作を用いた反応よりも反応効率を向上できる可能性も示されている。化学プロセスや装置の使用をミクロサイズで行う場合、マクロサイズで行なう場合に比べて、化学反応が起きる単位体積あたりの界面積(比界面積という)が大きいことから、液体と液体の界面で起こる現象の効率は高くなる。また、流体力学によりマイクロチャンネルを流れる液体は流路が微細なためにレイノルズ数が小さくなり、流れと同じ方向に平行な2層が形成されやすい。   In recent years, in the field of analytical chemistry, research on μTAS (Micro Total Systems) has been actively conducted, and it is expected to use a microchip to achieve high-speed analysis, sample saving, and solvent saving. In the reaction in the micro space on the microchip, there is a possibility that the reaction efficiency can be improved as compared with the reaction using the conventional chemical operation. When a chemical process or equipment is used at a micro size, the interface area per unit volume (called specific interface area) at which a chemical reaction occurs is larger than at a macro size, so it occurs at the liquid-liquid interface. The efficiency of the phenomenon is increased. Further, the liquid flowing through the microchannel due to fluid dynamics has a small Reynolds number because the flow path is fine, and two layers parallel to the same direction as the flow are easily formed.

例えば水とフェノールのような混じらない2液間で抽出を行う場合で流路が通常サイズの場合、液体は2層になったままでは反応場となる比界面積が小さく不利であるが、流路の空間サイズが小さい場合は拡散距離が短くなると同時に反応の比界面積も大きいので、機械的な混合を行う必要がなく、分子の拡散のみにより混合抽出が可能となる。   For example, when extraction is performed between two liquids such as water and phenol that are not mixed, and the flow path has a normal size, the liquid has a small specific interface area that becomes a reaction field if it remains in two layers, but it is disadvantageous. When the space size of the path is small, the diffusion distance is shortened and the specific interface area of the reaction is also large. Therefore, it is not necessary to perform mechanical mixing, and mixed extraction can be performed only by molecular diffusion.

これまで、流路(マイクロチャンネル)において二相流を安定化させるために、底面に溝状のガイドを設ける方法(非特許文献1参照。)や、底面に破線状ガイドラインを設ける方法(非特許文献2参照。)、オクタデシルトリクロロシランのトルエン溶液で化学修飾を行うことで疎水性に処理する方法(非特許文献3参照。)がとられてきている。しかし、より簡便な方法で二相流を安定に流す方法が望まれている。
また、例えばエマルジョンの分離を行うには、遠心分離する方法が一般的に用いられている。最近、マイクロチャンネルにおいて、エマルジョンを分離させる方法として、親水性の基板と疎水性の基板を張り合わせて作った流路にエマルジョンを通して相分離させる方法が報告された(非特許文献4参照。)が、より簡便な方法でエマルジョン分離させる方法が望まれている。
Anal. Chem., 74, 1565-1571 (2001) 第7回化学とマイクロナノシステム研究会 講演予稿集 P52 2P08 第7回化学とマイクロナノシステム研究会 講演予稿集 P59 2P15 The 7th International conference on Microreaction Technology, 予稿集 P41
Until now, in order to stabilize the two-phase flow in the flow channel (microchannel), a method of providing a groove-shaped guide on the bottom surface (see Non-Patent Document 1), or a method of providing a broken-line guideline on the bottom surface (Non-Patent Document). Reference 2)), and a method of hydrophobic treatment by chemical modification with a toluene solution of octadecyltrichlorosilane (see Non-Patent Document 3) has been taken. However, a method of allowing a two-phase flow to flow stably by a simpler method is desired.
For example, a centrifugal separation method is generally used to separate the emulsion. Recently, as a method of separating an emulsion in a microchannel, a method of phase separation through an emulsion through a flow path formed by bonding a hydrophilic substrate and a hydrophobic substrate has been reported (see Non-Patent Document 4). A method of separating the emulsion by a simpler method is desired.
Anal. Chem., 74, 1565-1571 (2001) Proceedings of the 7th Chemistry and Micro-Nano System Research Meeting P52 2P08 Proceedings of the 7th Chemistry and Micro-Nano System Research Meeting P59 2P15 The 7th International conference on Microreaction Technology, Proceedings P41

一般にマイクロチャンネルでは、レイノルズ数が小さいため二相流が形成されやすいが、溶媒の粘性やチャンネル表面との表面張力などにより、溶媒の種類によっては、二相流が形成されにくい場合がある。たとえば、ジクロロメタン/水、クロロホルム/水、n−へキサン/水などがこの例にあたる。つまりこれらの溶媒を用いてマイクロチャンネル中で相間分子輸送を行って溶媒抽出を行うことは、界面が不安定化しプラグ流になってしまうことから難しい。
本発明は、簡単な流路形状によってマイクロチップ中で安定した二相流を形成したり、エマルジョンを相分離できるようにすることを目的とするものである。
In general, in a microchannel, a two-phase flow is likely to be formed because the Reynolds number is small, but depending on the type of the solvent, a two-phase flow may be difficult to form due to the viscosity of the solvent or the surface tension with the channel surface. Examples include dichloromethane / water, chloroform / water, n-hexane / water, and the like. That is, it is difficult to carry out solvent extraction by carrying out interphase molecular transport in a microchannel using these solvents because the interface becomes unstable and becomes a plug flow.
An object of the present invention is to form a stable two-phase flow in a microchip with a simple flow path shape or to enable phase separation of an emulsion.

本発明は、基板内に1mm以下の幅と深さの断面形状をもつ流路を有するチップにおいて、前記流路の流通方向に直交する断面形状は第一、第二の凸型形状が接合した凸型であり、第一の断面形状は第二の断面形状と比べて断面積及び幅が大きいことを特徴とする二相流安定化チップである。
第一の断面形状をもつ流路部分の内面が親水性であり、第二の断面形状をもつ流路部分の内面が疎水性であることが好ましい。
そのための一方法として、第一の断面形状をもつ流路部分及び第二の断面形状をもつ流路部分の内面の一方又は両方が親水性又は疎水性に化学修飾することができる。
他の方法として、第一の断面形状をもつ流路部分を親水性の基板に形成し、第二の断面形状をもつ流路部分を疎水性の基板に形成してもよい。
2つの液入り口をもち、それらの液入り口につながる液流入路が前記流路に合流してつながることによって、二相流安定化チップを提供することができる。
In the present invention, in a chip having a channel having a cross-sectional shape with a width and depth of 1 mm or less in the substrate, the cross-sectional shape orthogonal to the flow direction of the channel is joined by the first and second convex shapes. The two-phase flow stabilizing chip has a convex shape, and the first cross-sectional shape is larger in cross-sectional area and width than the second cross-sectional shape.
It is preferable that the inner surface of the channel portion having the first cross-sectional shape is hydrophilic and the inner surface of the channel portion having the second cross-sectional shape is hydrophobic.
As one method for that purpose, one or both of the inner surface of the channel portion having the first cross-sectional shape and the channel portion having the second cross-sectional shape can be chemically modified to be hydrophilic or hydrophobic.
As another method, the flow channel portion having the first cross-sectional shape may be formed on the hydrophilic substrate, and the flow channel portion having the second cross-sectional shape may be formed on the hydrophobic substrate.
A two-phase flow stabilization chip can be provided by having two liquid inlets and connecting a liquid inflow path connected to the liquid inlets to the flow path.

前記チップにエマルジョンを流す場合、比界面積により二層流が形成されることによって相分離することができる。   When the emulsion is allowed to flow through the chip, phase separation can be achieved by forming a two-layer flow with a specific interface area.

本発明の二相流安定化チップは断面形状が凸型であることを特徴としており、流路の断面の比界面積の違いによって簡単な構造で二相流が安定化する。
流路部分の内面に化学修飾したり、又は親水性もしくは疎水性の性質を有する基板を用いることによって、第一の断面形状をもつ流路部分の内面をより親水性にし、第二の断面形状をもつ流路部分を疎水性とすることができ、二相流を一層安定化させることができる。
また、気―液の界面安定化においては、マイクロチェンネルを利用した気―液反応など合成反応にも応用できる。また、二相流の界面において抽出操作することもでき、エマルジョンなどの相分離に応用できる。
本発明の構成はごく単純な構造であり、様々なチップ作製工程に導入できるため、バルブ等を組み込んだ複雑なマイクロチップにも展開可能である。
このようにマイクロチップの高度集積化やマイクロチップ中の多層液形成のための新しい技術手段が提供される。
The two-phase flow stabilization chip of the present invention is characterized in that the cross-sectional shape is convex, and the two-phase flow is stabilized with a simple structure due to the difference in specific interface area of the cross section of the flow path.
By chemically modifying the inner surface of the flow channel portion or using a substrate having hydrophilic or hydrophobic properties, the inner surface of the flow channel portion having the first cross-sectional shape becomes more hydrophilic, and the second cross-sectional shape It is possible to make the flow path portion having the hydrophobicity, and it is possible to further stabilize the two-phase flow.
In addition, gas-liquid interface stabilization can also be applied to synthesis reactions such as gas-liquid reactions using microchannels. Moreover, extraction operation can also be performed at the interface of a two-phase flow, and can be applied to phase separation of an emulsion or the like.
Since the structure of the present invention is a very simple structure and can be introduced into various chip manufacturing processes, it can be applied to complicated microchips incorporating valves and the like.
In this way, new technical means for highly integrated microchips and multilayer liquid formation in the microchips are provided.

図1に一実施例の二相流安定化チップにおける流路の断面形状の例を示す。チップ中の流路の例としては、それぞれの基板2、4に流路となる溝3a、3bを形成し、それらの溝が重なって流路を形成するように2枚の基板を張り合わせる方法(図1−A)と、1枚の基板7に断面形状が異なる流路部分9a,9bをもつ流路となる溝9を形成し、その溝9の開口を閉じるように平坦な基板5を張り合わせる方法(図1−B)がある。   FIG. 1 shows an example of the cross-sectional shape of the flow path in the two-phase flow stabilization chip of one embodiment. As an example of the flow path in the chip, grooves 3a and 3b to be flow paths are formed on the respective substrates 2 and 4, and the two substrates are bonded to form a flow path by overlapping the grooves. (FIG. 1-A) and the groove | channel 9 used as the flow path which has flow-path part 9a, 9b from which cross-sectional shape differs in the board | substrate 7 of 1 sheet, and the flat board | substrate 5 is closed so that the opening of the groove | channel 9 may be closed. There is a method of bonding (FIG. 1-B).

それぞれの基板に流路となる溝を形成した2枚の基板を張り合わせて作製した(図1−A)の一実施例の製造方法を図2に示す。
(A)まず、ガラス基板30を洗浄した後、フォトレジスト32をコーティングする。
(B)次に、フォトマスク34を用いてUV(紫外)光をフォトレジスト32に露光する。
(C)その後、フォトレジスト32を現像してパターニングする。
(D)パターニングされたフォトレジスト32をマスクとして、基板30を例えば46%フッ酸水溶液にてエッチングして、流路溝36を形成する。
(E)フォトレジスト32を除去する。
(F)同様にして他の基板に断面の大きさの異なる流路溝を形成し、両基板の溝が形成されている面を向かい合わせ、フッ酸溶液により液密に接合することにより流路38を形成する。
FIG. 2 shows a manufacturing method of an embodiment (FIG. 1-A) produced by bonding two substrates each having a groove to be a flow path formed on each substrate (FIG. 1A).
(A) First, after the glass substrate 30 is washed, the photoresist 32 is coated.
(B) Next, the photoresist 32 is exposed to UV (ultraviolet) light using the photomask 34.
(C) Thereafter, the photoresist 32 is developed and patterned.
(D) Using the patterned photoresist 32 as a mask, the substrate 30 is etched with, for example, a 46% hydrofluoric acid aqueous solution to form the flow channel groove 36.
(E) The photoresist 32 is removed.
(F) Similarly, the flow path grooves having different cross-sectional sizes are formed on the other substrates, the surfaces of the both substrates on which the grooves are formed face each other, and the flow paths are formed by liquid-tight bonding with a hydrofluoric acid solution. 38 is formed.

基板の素材としてはガラス基板の他、シリコン基板や樹脂基板を用いることができる。いずれの場合も上基板と下基板の接合面に、化学的に、機械的に、あるいはレーザー照射やイオンエッチング等の各種の手段によって流路となる溝を形成し、それらの溝が重なるように張り合わせることで、本発明で提案する凸型形状の流路を作りこむことができる。   As a substrate material, a glass substrate, a silicon substrate, or a resin substrate can be used. In any case, a groove to be a flow path is formed on the bonding surface of the upper substrate and the lower substrate chemically, mechanically, or by various means such as laser irradiation or ion etching so that the grooves overlap. By sticking together, the convex channel proposed in the present invention can be created.

本発明による流路の断面形状は凸型であり、第一の大きい断面形状と第二の小さい断面形状が合わさった形である。図3に断面形状の例を示す。それぞれの断面形状の加工の手段について、(B),(C),(D),(F),(H)に示す三角形又は台形の部分についてはシリコン基板のアルカリによる異方性エッチングにより、(E),(F),(G),(H)に示す曲線をもつ部分についてはウエットエッチングの方法により、また(A),(B),(C),(E),(G)の矩形についてはドライエッチングによる異方性エッチングの方法により、それぞれ形成することが可能である。   The cross-sectional shape of the channel according to the present invention is a convex shape, and the first large cross-sectional shape and the second small cross-sectional shape are combined. FIG. 3 shows an example of the cross-sectional shape. Regarding the means for processing each cross-sectional shape, the triangular or trapezoidal portions shown in (B), (C), (D), (F), and (H) are obtained by anisotropic etching of the silicon substrate with alkali ( The portions having curves shown in E), (F), (G), and (H) are processed by wet etching, and the rectangles (A), (B), (C), (E), and (G) are used. Can be formed by anisotropic etching using dry etching.

一実施例を図4および5によって示す。カバーとなる上基板2、下基板4は例えば石英ガラス基板である。上基板2及び4は上から見た図である。基板は流路を作製できる材質であればよい。ガラス基板2のガラス基板4との接触面側には、100μmの幅、40μmの深さを持つ流路用の溝8a(図5−B)と、液体又は気体導入用の2つの導入穴10−1、10−2と、排出のための排出穴10−3が形成されている。溝8は蛇行し、一端部は導入穴10−1、10−2の近傍で2つに分岐して導入穴10−1、10−2につながり、他端部は排出穴10−3につながっている。導入穴10−1、10―2及び排出穴10−3は貫通穴として形成されている。ガラス基板4のガラス基板2との接触面側には300μmの幅、40μmの深さの流路用の溝8b(図5−B)が形成されている。溝8aと溝8bは向かい合わせると重なる対称形に形成されている。両基板2、4の溝形成面を向かい合わせて密着させ、例えばフッ酸溶液による接合などの手段で液密に接合することで流路を形成する。
上記流路の幅と深さは例示であって、幅、深さとも変更することができる。
One example is illustrated by FIGS. The upper substrate 2 and the lower substrate 4 serving as covers are, for example, quartz glass substrates. The upper substrates 2 and 4 are viewed from above. The substrate may be any material that can produce a flow path. On the contact surface side of the glass substrate 2 with the glass substrate 4, a channel groove 8 a (FIG. 5B) having a width of 100 μm and a depth of 40 μm and two introduction holes 10 for introducing liquid or gas. -1, 10-2 and a discharge hole 10-3 for discharge. The groove 8 meanders, one end branches into two near the introduction holes 10-1 and 10-2 and is connected to the introduction holes 10-1 and 10-2, and the other end is connected to the discharge hole 10-3. ing. The introduction holes 10-1, 10-2 and the discharge hole 10-3 are formed as through holes. On the contact surface side of the glass substrate 4 with the glass substrate 2, a channel groove 8 b (FIG. 5B) having a width of 300 μm and a depth of 40 μm is formed. The groove 8a and the groove 8b are formed symmetrically so as to overlap each other when facing each other. The groove forming surfaces of both the substrates 2 and 4 are brought into close contact with each other, and the flow paths are formed by, for example, liquid-tight bonding by means such as bonding with a hydrofluoric acid solution.
The width and depth of the flow path are examples, and both the width and depth can be changed.

ガラス基板2とガラス基板4の溝形成面を向かい合わせに接合させたのが図5(A)のガラス基板6である。流路8の断面図を図5の(B)に示す。流路溝8aの幅12−2は100μm、流路溝8bの幅12−3は300μm、流路溝8aの深さ12−4は40μm、流路溝8bの深さ12−5は40μmである。
このような流路8において、導入穴10−1から気体を流し、導入穴10−2から水を流すと、流れやすい空気が流路幅の狭い方であるガラス基板2の流路8aを流れ、流れにくい水がガラス基板4の流路部分8bを流れるために、流路8の中で流体層の90度回転がおこり、ガラス基板2の流路部分8aを空気が、ガラス基板4の流路部分8bを水が選択的に流れる。
The glass substrate 6 in FIG. 5A is obtained by bonding the groove forming surfaces of the glass substrate 2 and the glass substrate 4 face to face. A cross-sectional view of the flow path 8 is shown in FIG. The width 12-2 of the flow channel 8a is 100 μm, the width 12-3 of the flow channel 8b is 300 μm, the depth 12-4 of the flow channel 8a is 40 μm, and the depth 12-5 of the flow channel 8b is 40 μm. is there.
In such a flow path 8, when a gas is flowed from the introduction hole 10-1 and water is flowed from the introduction hole 10-2, easy-to-flow air flows through the flow path 8 a of the glass substrate 2 having the narrower flow path width. Since the difficult-to-flow water flows through the flow path portion 8b of the glass substrate 4, the fluid layer rotates 90 degrees in the flow path 8, and air flows through the flow path portion 8a of the glass substrate 2 and flows through the glass substrate 4. Water selectively flows through the path portion 8b.

本チップの流路は、断面形状が上側と下側の基板で異なることを特徴としているが、流路内面を化学修飾することにより、さらに流路中の二相流を安定化することができる。例えば、10%オクタデシルトリクロロシランのトルエン溶液で化学修飾(非特許文献3参照。)を行うことで疎水性に処理する方法があり、また、TiO2などの光触媒よって親水性に処理する方法もある。 The flow path of this chip is characterized in that the cross-sectional shape differs between the upper and lower substrates, but the two-phase flow in the flow path can be further stabilized by chemically modifying the inner surface of the flow path. . For example, there is a method of hydrophobic treatment by chemical modification (see Non-Patent Document 3) with a toluene solution of 10% octadecyltrichlorosilane, and there is also a method of hydrophilic treatment by a photocatalyst such as TiO 2 . .

二相流を安定化させる手段として、化学修飾する方法以外に、疎水性、又は親水性の基板を用いることもできる。例えば、ガラス基板を用いることで親水性とし、PTFE(ポリテトラフルオロエチレン)を基板として用いることで疎水性とすることもできる。   As a means for stabilizing the two-phase flow, a hydrophobic or hydrophilic substrate can be used in addition to the chemical modification method. For example, it can be made hydrophilic by using a glass substrate and can be made hydrophobic by using PTFE (polytetrafluoroethylene) as a substrate.

前記に示した二相流を安定化させる手段は組み合わせることが可能であり、例えば、ガラス基板にエッチングによる手段で流路を形成し、これを化学処理したものを親水性基板として用い、ポリ四フッ化エチレン基板にエッチングにより流路を形成したものを疎水性基板として用いることができる。   The means for stabilizing the two-phase flow described above can be combined. For example, a flow path is formed on a glass substrate by means of etching, and this is chemically treated and used as a hydrophilic substrate. A hydrophobic substrate in which a flow path is formed by etching on a fluoroethylene substrate can be used.

流路の凸型断面形状による、二相流の安定化の模式図を図6に示す。図6(A)は二相流安定化チップを示し、図5(A)に示されたものである。(B)はチップ中の流路8の断面形状を示し、(C)は導入穴10−1、10−2からの流路が合流している部分の平面図で、2層の流れ22−1、22−2が示されている。(E)はその部分の断面形状である。(D)は流路が合流してから層の90度回転がおこった後の2層の流れ22−1、22−2が示されたものである。(F)はその部分の断面形状であり、上側に層の流れ22−1があることを示している。
例えば、相22−1として酢酸エチル、相22−2として水を流した場合、表面図(C)から(D)に移動していくに従って流路中の相が90度回転し、第一の相22−2の上に第二の相22−1が乗るような形になり、断面積の異なる流路を流れることによって二相流が安定していることがわかる。
図4及び図5の導入穴10−1と導入穴10−2から流す物質は、酢酸エチル/水のほか、空気/水など、様々な組み合わせができる。
FIG. 6 shows a schematic diagram of stabilization of the two-phase flow according to the convex cross-sectional shape of the flow path. FIG. 6A shows a two-phase flow stabilization chip, which is shown in FIG. (B) shows the cross-sectional shape of the flow path 8 in the chip, and (C) is a plan view of the portion where the flow paths from the introduction holes 10-1 and 10-2 are joined. 1, 22-2 are shown. (E) is the cross-sectional shape of the part. (D) shows the two-layer flows 22-1 and 22-2 after 90-degree rotation of the layers has occurred after the flow paths merge. (F) is the cross-sectional shape of the portion, and shows that there is a layer flow 22-1 on the upper side.
For example, when ethyl acetate is flowed as the phase 22-1 and water is flowed as the phase 22-2, the phase in the flow path rotates 90 degrees as it moves from the surface view (C) to (D). It turns out that the second phase 22-1 rides on the phase 22-2, and the two-phase flow is stable by flowing through the flow paths having different cross-sectional areas.
4 and 5 can be various combinations such as air / water in addition to ethyl acetate / water.

エマルジョンの分離を行なうためのチップ図の一実施例を図7および8によって示す。カバーとなる上基板2、下基板4は例えば石英ガラス基板である。ガラス基板2のガラス基板4との接触面側には、100μmの幅、40μmの深さを持つ流路用の溝11a(図8−B)と、エマルジョン導入用の導入穴14−1、排出のための排出穴14−2が形成されている。溝11は蛇行し、一端部は導入穴14−1につながり、他端部は排出穴14−2につながっている。導入穴14−1及び排出穴14−2は貫通穴として形成されている。ガラス基板4のガラス基板2との接触面側には300μmの幅、40μmの深さの流路用の溝11b(図8−B)が形成されている。溝11aと溝11bは向かい合わせると重なる対称形に形成されている。両基板2、4の溝形成面を向かい合わせて密着させ、例えばフッ酸溶液による接合などの手段で液密に接合することで流路を形成する。
上記流路の幅と深さは例示であって、幅、深さとも変更することができる。
One example of a chip diagram for performing emulsion separation is illustrated by FIGS. The upper substrate 2 and the lower substrate 4 serving as covers are, for example, quartz glass substrates. On the contact surface side of the glass substrate 2 with the glass substrate 4, a channel groove 11 a (FIG. 8B) having a width of 100 μm and a depth of 40 μm, an introduction hole 14-1 for emulsion introduction, and discharge A discharge hole 14-2 is formed. The groove 11 meanders, one end is connected to the introduction hole 14-1, and the other end is connected to the discharge hole 14-2. The introduction hole 14-1 and the discharge hole 14-2 are formed as through holes. On the contact surface side of the glass substrate 4 with the glass substrate 2, a channel groove 11 b (FIG. 8B) having a width of 300 μm and a depth of 40 μm is formed. The groove 11a and the groove 11b are formed symmetrically so as to overlap each other. The groove forming surfaces of both the substrates 2 and 4 are brought into close contact with each other, and the flow path is formed by, for example, liquid-tight bonding by means such as bonding with a hydrofluoric acid solution.
The width and depth of the flow path are examples, and both the width and depth can be changed.

ガラス基板2とガラス基板4の溝形成面を向かい合わせに接合させたのが図8(A)のガラス基板6である。流路11の断面図を図8の(B)に示す。流路溝11aの幅16−2は100μm、流路溝11bの幅16−3は300μm、流路溝11aの深さ16−4は40μm、流路溝11bの深さ16−5は40μmである。
このような流路11において、導入穴14−1から水と油のエマルジョンを流すと、流れやすい油部分が流路幅の狭い方であるガラス基板2の流路11aを流れ、流れにくい水部分がガラス基板4の流路部分11bを流れるために、流路11中のエマルジョンの相分離がおこり、ガラス基板2の流路部分11aに油部分が、ガラス基板4の流路部分11bに水部分が選択的に流れる。
The glass substrate 6 in FIG. 8A is obtained by bonding the groove forming surfaces of the glass substrate 2 and the glass substrate 4 face to face. A cross-sectional view of the flow path 11 is shown in FIG. The width 16-2 of the flow channel 11a is 100 μm, the width 16-3 of the flow channel 11b is 300 μm, the depth 16-4 of the flow channel 11a is 40 μm, and the depth 16-5 of the flow channel 11b is 40 μm. is there.
In such a channel 11, when water and oil emulsion is flowed from the introduction hole 14-1, the oil part that is easy to flow flows through the channel 11 a of the glass substrate 2 having a narrow channel width, and the water part that is difficult to flow Flows through the flow passage portion 11b of the glass substrate 4, so that the phase separation of the emulsion in the flow passage 11 occurs, the oil portion in the flow passage portion 11a of the glass substrate 2, and the water portion in the flow passage portion 11b of the glass substrate 4. Flows selectively.

エマルジョンを分離する際も、前記二相流を安定化させたときと同じように流路内面を親水性又は疎水性に化学修飾などの方法で処理することにより分離能をあげることが可能である。   When separating the emulsion, it is possible to increase the separation performance by treating the inner surface of the flow path with a hydrophilic or hydrophobic chemical modification in the same manner as when the two-phase flow is stabilized. .

本発明による二相流安定化チップを用いると、微少量の液―液抽出や微少量の気―液反応にも用いることができる。また、エマルジョンの分離を行なうこともできる。   When the two-phase flow stabilization chip according to the present invention is used, it can be used for a very small amount of liquid-liquid extraction and a very small amount of gas-liquid reaction. In addition, the emulsion can be separated.

(A),(B)はそれぞれ実施例の流路断面図である。(A), (B) is a channel sectional view of an example, respectively. エッチング法による流路形成方法を示す工程断面図である。It is process sectional drawing which shows the flow-path formation method by the etching method. (A)〜(H)はそれぞれ流路の凸型断面形状の例である。(A)-(H) are examples of the convex cross-sectional shape of a flow path, respectively. 一実施例のマイクロチップを構成する2枚の基板の平面図である。It is a top view of the two board | substrates which comprise the microchip of one Example. 同実施例のマイクロチップを示す図であり、(A)は平面図、(B)は(A)のX−X線位置での断面図である。It is a figure which shows the microchip of the Example, (A) is a top view, (B) is sectional drawing in the XX line position of (A). マイクロチップの流路で相が90度回転するときの模式図であり、(A)は平面図、(B)は流路の断面図、(C)及び(D)は平面図を拡大したもの、(E)及び(F)はそれぞれ(C)及び(D)の断面図である。It is a schematic diagram when a phase rotates 90 degrees in a channel of a microchip, (A) is a plan view, (B) is a sectional view of the channel, and (C) and (D) are enlarged plan views. , (E) and (F) are sectional views of (C) and (D), respectively. 他の実施例のマイクロチップを構成する2枚の基板の平面図である。It is a top view of two board | substrates which comprise the microchip of another Example. 同実施例のマイクロチップを示す図であり、(A)は平面図、(B)は(A)のX−X線位置での断面図である。It is a figure which shows the microchip of the Example, (A) is a top view, (B) is sectional drawing in the XX line position of (A).

符号の説明Explanation of symbols

2,4,5,6,7,30 ガラス基板
3,8,9,11 流路
3a,3b,8a,8b,9a,9b,11a,11b 流路部分
10−1,10−2,14−1 導入口
10−3,14−2 排出口
2, 4, 5, 6, 7, 30 Glass substrate 3, 8, 9, 11 Channel 3a, 3b, 8a, 8b, 9a, 9b, 11a, 11b Channel portion 10-1, 10-2, 14- 1 Inlet 10-3, 14-2 Outlet

Claims (6)

基板内に1mm以下の幅と深さの断面形状をもつ流路を有するチップにおいて、
前記流路の流通方向に直交する断面形状は第一、第二の凸型形状が接合した凸型であり、
第一の断面形状は第二の断面形状と比べて断面積及び幅が大きいことを特徴とする二相流安定化チップ。
In a chip having a channel having a cross-sectional shape with a width and depth of 1 mm or less in a substrate,
The cross-sectional shape perpendicular to the flow direction of the flow path is a convex shape in which the first and second convex shapes are joined,
The two-phase flow stabilizing chip, wherein the first cross-sectional shape has a larger cross-sectional area and width than the second cross-sectional shape.
第一の断面形状をもつ流路部分の内面が親水性であり、第二の断面形状をもつ流路部分の内面が疎水性である請求項1に記載の二相流安定化チップ。   The two-phase flow stabilizing chip according to claim 1, wherein the inner surface of the flow path portion having the first cross-sectional shape is hydrophilic, and the inner surface of the flow path portion having the second cross-sectional shape is hydrophobic. 第一の断面形状をもつ流路部分及び第二の断面形状をもつ流路部分の内面の一方又は両方が親水性又は疎水性に化学修飾されている請求項1又は2に記載の二相流安定化チップ。   3. The two-phase flow according to claim 1, wherein one or both of the flow path portion having the first cross-sectional shape and the inner surface of the flow path portion having the second cross-sectional shape are chemically modified to be hydrophilic or hydrophobic. Stabilization chip. 第一の断面形状をもつ流路部分が親水性の基板に形成され、第二の断面形状をもつ流路部分が疎水性の基板に形成されている請求項1から3のいずれかに記載の二相流安定化チップ。   The flow path portion having a first cross-sectional shape is formed on a hydrophilic substrate, and the flow path portion having a second cross-sectional shape is formed on a hydrophobic substrate. Two-phase flow stabilization chip. 2つの液入り口をもち、それらの液入り口につながる液流入路が前記流路に合流してつながる請求項1から4のいずれかに記載の二相流安定化チップ。   5. The two-phase flow stabilization chip according to claim 1, wherein the two-phase flow stabilizing chip has two liquid inlets and a liquid inflow path connected to the liquid inlets is connected to the flow path. 前記流路は1つの液入り口をもつ請求項1から4のいずれかに記載の二相流安定化チップ。
The two-phase flow stabilization chip according to any one of claims 1 to 4, wherein the flow path has one liquid inlet.
JP2004260074A 2004-09-07 2004-09-07 Two-phase flow stabilization chip Expired - Fee Related JP4528585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260074A JP4528585B2 (en) 2004-09-07 2004-09-07 Two-phase flow stabilization chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260074A JP4528585B2 (en) 2004-09-07 2004-09-07 Two-phase flow stabilization chip

Publications (2)

Publication Number Publication Date
JP2006075679A true JP2006075679A (en) 2006-03-23
JP4528585B2 JP4528585B2 (en) 2010-08-18

Family

ID=36155586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260074A Expired - Fee Related JP4528585B2 (en) 2004-09-07 2004-09-07 Two-phase flow stabilization chip

Country Status (1)

Country Link
JP (1) JP4528585B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272231A (en) * 2005-03-30 2006-10-12 Hitachi Ltd Microchannel
JP2009226271A (en) * 2008-03-19 2009-10-08 Kanagawa Acad Of Sci & Technol Method of changing emulsion into plug flow and microflow path for this change
US20130319105A1 (en) * 2012-05-31 2013-12-05 Yokogawa Electric Corporation Micro flow sensor
JP2016166861A (en) * 2015-03-06 2016-09-15 ソニー株式会社 Microchip, analyzing device, and analyzing method
WO2016143278A1 (en) * 2015-03-06 2016-09-15 Sony Corporation Microchip, analysis apparatus, and analysis method
WO2019142832A1 (en) * 2018-01-22 2019-07-25 味の素株式会社 Target component extraction method, extraction device, production method and production device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507962A (en) * 1994-10-22 1998-08-04 セントラル リサーチ ラボラトリーズ リミティド Method and apparatus for diffusion transfer between immiscible fluids
JP2001137693A (en) * 1999-11-11 2001-05-22 Kawamura Inst Of Chem Res Fine chemical device having liquid separating structure
JP2005169386A (en) * 2003-11-17 2005-06-30 Kanagawa Acad Of Sci & Technol Method of partial-chemical-modifying microchannel inner surface and microchannel structure
JP2005329364A (en) * 2004-05-21 2005-12-02 Dkk Toa Corp Gas-liquid reaction unit and analyzer
JP2005331474A (en) * 2004-05-21 2005-12-02 Dkk Toa Corp Gas-liquid reaction unit, and analyzer
JP2006075680A (en) * 2004-09-07 2006-03-23 Shimadzu Corp Multistage extraction chip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507962A (en) * 1994-10-22 1998-08-04 セントラル リサーチ ラボラトリーズ リミティド Method and apparatus for diffusion transfer between immiscible fluids
JP2001137693A (en) * 1999-11-11 2001-05-22 Kawamura Inst Of Chem Res Fine chemical device having liquid separating structure
JP2005169386A (en) * 2003-11-17 2005-06-30 Kanagawa Acad Of Sci & Technol Method of partial-chemical-modifying microchannel inner surface and microchannel structure
JP2005329364A (en) * 2004-05-21 2005-12-02 Dkk Toa Corp Gas-liquid reaction unit and analyzer
JP2005331474A (en) * 2004-05-21 2005-12-02 Dkk Toa Corp Gas-liquid reaction unit, and analyzer
JP2006075680A (en) * 2004-09-07 2006-03-23 Shimadzu Corp Multistage extraction chip

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481859B2 (en) * 2005-03-30 2010-06-16 株式会社日立製作所 Micro channel
JP2006272231A (en) * 2005-03-30 2006-10-12 Hitachi Ltd Microchannel
JP2009226271A (en) * 2008-03-19 2009-10-08 Kanagawa Acad Of Sci & Technol Method of changing emulsion into plug flow and microflow path for this change
US9581480B2 (en) * 2012-05-31 2017-02-28 Yokogawa Electric Corporation Micro flow sensor
US20130319105A1 (en) * 2012-05-31 2013-12-05 Yokogawa Electric Corporation Micro flow sensor
CN103453959A (en) * 2012-05-31 2013-12-18 横河电机株式会社 Micro flow sensor
CN103453959B (en) * 2012-05-31 2016-02-24 横河电机株式会社 Minor flow sensor
JP2016166861A (en) * 2015-03-06 2016-09-15 ソニー株式会社 Microchip, analyzing device, and analyzing method
WO2016143278A1 (en) * 2015-03-06 2016-09-15 Sony Corporation Microchip, analysis apparatus, and analysis method
US10919035B2 (en) 2015-03-06 2021-02-16 Sony Corporation Microchip, analysis apparatus, and analysis method
WO2019142832A1 (en) * 2018-01-22 2019-07-25 味の素株式会社 Target component extraction method, extraction device, production method and production device
JPWO2019142832A1 (en) * 2018-01-22 2021-01-07 味の素株式会社 Extraction method, extraction device, manufacturing method and manufacturing device of the target component
JP7392473B2 (en) 2018-01-22 2023-12-06 味の素株式会社 Extraction method, extraction device, manufacturing method, and manufacturing device of target component

Also Published As

Publication number Publication date
JP4528585B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US6851846B2 (en) Mixing method, mixing structure, micromixer and microchip having the mixing structure
US8398866B2 (en) Microchip for forming emulsion and method for manufacturing the same
Kralj et al. Integrated continuous microfluidic liquid–liquid extraction
US8037903B2 (en) Micromachined electrowetting microfluidic valve
Aota et al. Parallel multiphase microflows: fundamental physics, stabilization methods and applications
US9604210B2 (en) Controlled fluid delivery in a microelectronic package
US20070047388A1 (en) Fluidic mixing structure, method for fabricating same, and mixing method
US20030226806A1 (en) Methods and devices for liquid extraction
Sun et al. Controlled dispensing and mixing of pico-to nanoliter volumes using on-demand droplet-based microfluidics
WO2004054696A1 (en) A mixing apparatus and method
JP5963410B2 (en) Flow path device and fluid mixing method
US20060185584A1 (en) Microfluidic chip and manipulating apparatus having the same
Maruyama et al. Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device
JP2007216123A (en) Micro-channel chip
JP4528585B2 (en) Two-phase flow stabilization chip
JP4481859B2 (en) Micro channel
JP2006075680A (en) Multistage extraction chip
WO2013151126A1 (en) Fluid control device and fluid mixer
Bunge et al. Symmetric surficial phaseguides: a passive technology to generate wall-less channels by two-dimensional guiding elements
KR100485317B1 (en) Micro mixer and method of manufacturing the same
JP2005331253A (en) Chip for microchemical system and micro-pump
JP2005211708A (en) Liquid-liquid extraction apparatus
Tamaki et al. Liquid filling method for nanofluidic channels utilizing the high solubility of CO2
JP6968578B2 (en) Microreactor, as well as extraction and reaction methods
JP2005169218A (en) Micro-mixer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20041129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4528585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees