JP2001137693A - Fine chemical device having liquid separating structure - Google Patents

Fine chemical device having liquid separating structure

Info

Publication number
JP2001137693A
JP2001137693A JP32040799A JP32040799A JP2001137693A JP 2001137693 A JP2001137693 A JP 2001137693A JP 32040799 A JP32040799 A JP 32040799A JP 32040799 A JP32040799 A JP 32040799A JP 2001137693 A JP2001137693 A JP 2001137693A
Authority
JP
Japan
Prior art keywords
contact angle
water
separation chamber
flow path
curable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32040799A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Atsushi Teramae
敦司 寺前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP32040799A priority Critical patent/JP2001137693A/en
Publication of JP2001137693A publication Critical patent/JP2001137693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fine chemical device capable of continuously performing extraction or oil-water separation by bringing a fine quantity of mutually immiscible liquids into contact with each other and separating. SOLUTION: A capillary flow passage is formed in the fine chemical device, the inside surface in the down stream end of the flow passage has a low contact angle part having <=25 deg. contact angle with water and a high contact angle part having >=10 deg. higher contact angle with water than that of the low contact angle part, a liquid separating chamber having a cross-sectional area 2-1,000 times of that of the capillary flow passage is formed and respective discharge passages from the low contact angle part and the high contact angel part are formed in the liquid separating chamber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、相互に混和しない
液体が毛細管状の流路中を接触つつ流れた後、それぞれ
の液体に分離されて流出する機構を有する微小ケミカル
デバイスに関し、更に詳しくは、物理化学や化学工学の
分野における油水分離デバイスや液−液抽出用微小デバ
イス;合成化学、生化学などの分野における油水分離デ
バイスや液体−液体間の物質移動を伴う合成用微小デバ
イス;集積型DNA分析,微小電気泳動,微小クロマト
グラフィーなどの微小分析デバイスと組み合わせること
のできる試料調製用微小デバイス;質量スペクトルや液
体クロマトグラフィーなどの分析試料調製用微小デバイ
スなどに適用可能な微小ケミカルデバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microchemical device having a mechanism in which immiscible liquids flow in a capillary channel while contacting each other, and then are separated into respective liquids and flow out. Oil-water separation devices and liquid-liquid extraction microdevices in the fields of physical chemistry and chemical engineering; oil-water separation devices in the fields of synthetic chemistry and biochemistry, and synthesis microdevices involving liquid-liquid mass transfer; integrated type The present invention relates to a microdevice for preparing a sample that can be combined with a microanalytical device such as DNA analysis, microelectrophoresis, and microchromatography; and a microchemical device applicable to a microdevice for preparing an analytical sample such as mass spectrum and liquid chromatography.

【0002】[0002]

【従来の技術】「マイクロチャンネル内での高速分子輸
送」99−1 セパレーションズ サイエンス&テクノ
ロジー(SST)研究会講演会、高分子学会主催、予稿
集9頁(1999)には、石英に掘られた幅250μm
、深さ100μm のマイクロチャンネル内でのキシレ
ン/水系での液−液抽出について記載されている。
2. Description of the Related Art "High-speed molecular transport in microchannels" 99-1 Separations Science & Technology (SST) Seminar, sponsored by the Society of Polymer Science, 9 pages (1999) 250μm
Liquid-liquid extraction in a xylene / water system in a 100 μm deep microchannel.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記文
献のように液体同士を直接接触させると、それらを再び
ミクロスケールで分離することは相当に困難であった。
However, when the liquids are brought into direct contact with each other as described in the above-mentioned literature, it is considerably difficult to separate them again on a micro scale.

【0004】本発明が解決しようとする課題は、相互に
混和しない極微量の液体を直接接触させた後、再び分離
することのできる微小ケミカルデバイスを提供すること
にあり、また、液体同士をミクロスケールで直接接触さ
せることによって抽出速度を上げ、接触させた液体を再
び分離する抽出デバイスとして使用が可能な微小ケミカ
ルデバイスを提供することにある。
[0004] The problem to be solved by the present invention is to provide a microchemical device capable of directly contacting a very small amount of liquid that is immiscible with each other and then separating it again. An object of the present invention is to provide a microchemical device that can be used as an extraction device that increases the extraction speed by directly contacting with a scale and separates the contacted liquid again.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
を解決する方法について鋭意検討した結果、細い流路の
下流端に、水との接触角が低い部分と高い部分を有する
部屋を設け、かつ、接触角が低い部分と高い部分からそ
れぞれ流出路を形成することで、層状、塊状、あるいは
分散状で流路中を流れた相互に混和しない液体を、流出
端で分離することが可能であることを見いだし、本発明
を完成するに至った。
Means for Solving the Problems As a result of intensive studies on a method for solving the above-mentioned problems, the present inventors have found that a room having a low contact angle and a high contact angle with water is provided at the downstream end of a narrow channel. By providing the outflow passages from the low and high contact angle portions, it is possible to separate the immiscible liquids flowing in the flow path in the form of a layer, a block, or a dispersion at the outflow end. The inventors have found that this is possible, and have completed the present invention.

【0006】即ち、本発明は上記課題を解決するため
に、(I)断面積が1×10-12m2〜1×10-6m2 の範
囲にある毛細管状の流路を有する微小ケミカルデバイス
であって、流路の下流端に該流路の断面積の2〜10
00倍の断面積を有する分液室が設けられていること、
分液室が、その内面に水との接触角が相対的に低い低
接触角部分と、水との接触角が該低接触角部分より10
度以上高い高接触角部分を有すること、及び、分液室
の低接触角部分と高接触角部分から、それぞれ流出路が
設けられていること、を特徴とする分液機構を有する微
小ケミカルデバイス(以下、「分液機構を有する微小ケ
ミカルデバイス」を単に「デバイス」と称する。)を提
供する。
That is, in order to solve the above problems, the present invention provides (I) a microchemical having a capillary channel having a cross-sectional area in the range of 1 × 10 −12 m 2 to 1 × 10 −6 m 2. The device, wherein the cross-sectional area of the flow path is 2 to 10 at the downstream end of the flow path.
A separation chamber having a cross-sectional area of 00 times is provided,
The liquid separation chamber has a low contact angle portion having a relatively low contact angle with water on its inner surface, and a contact angle with water that is 10 times smaller than the low contact angle portion.
A micro-chemical device having a liquid separation mechanism, characterized by having a high contact angle portion higher than or equal to degrees and an outflow path provided from each of the low contact angle portion and the high contact angle portion of the liquid separation chamber. (Hereinafter, a “microchemical device having a liquid separation mechanism” is simply referred to as a “device.”).

【0007】また、本発明は上記課題を解決するため
に、(II)分液室の低接触角部分の水との接触角αと高
接触角部分の水との接触角βが、(イ)α≦25°であ
り、かつ、35°≦β、(ロ)25°<α≦90°であ
り、かつ、(α+40°)≦β≦90°、(ハ)α≦9
0°であり、かつ、90°<β、の少なくとも一つの条
件を満足する上記(II)に記載の微小ケミカルデバイス
を提供する。
In order to solve the above problems, the present invention provides (II) a contact angle α with water at a low contact angle portion of a liquid separation chamber and a contact angle β with water at a high contact angle portion of (a). ) Α ≦ 25 °, 35 ° ≦ β, (b) 25 ° <α ≦ 90 °, (α + 40 °) ≦ β ≦ 90 °, (c) α ≦ 9
A microchemical device according to the above (II), which satisfies at least one condition of 0 ° and 90 ° <β.

【0008】また、本発明は上記課題を解決するため
に、(III)流路及び分液室が、互いに密着された部材
(A)と部材(B)との間に形成されたものである上記
(I)又は(II)項に記載の微小ケミカルデバイスを提
供する。
In order to solve the above-mentioned problems, the present invention is characterized in that (III) a flow path and a liquid separating chamber are formed between a member (A) and a member (B) which are in close contact with each other. A microchemical device according to the above (I) or (II) is provided.

【0009】また、本発明は上記課題を解決するため
に、(IV)部材(A)及び部材(B)が有機高分子重合
体からなる上記(III)項に記載の微小ケミカルデバイ
スを提供する。
In order to solve the above-mentioned problems, the present invention provides (IV) a microchemical device according to the above (III), wherein the member (A) and the member (B) are made of an organic polymer. .

【0010】さらに、本発明は上記課題を解決するため
に、(V)部材(A)及び部材(B)がそれぞれ、ポリ
カーボネート系重合体、塩化ビニル系重合体、ポリアミ
ド系重合体、ポリエステル系重合体、(メタ)アクリル
系架橋重合体、マレイミド系架橋重合体、からなる群か
ら選ばれた重合体からなる上記(III)項に記載の微小
ケミカルデバイスを提供する。
Further, in order to solve the above-mentioned problems, according to the present invention, (V) the member (A) and the member (B) are each made of a polycarbonate polymer, a vinyl chloride polymer, a polyamide polymer, and a polyester polymer. The microchemical device according to the above (III), comprising a polymer selected from the group consisting of a coalesced polymer, a (meth) acrylic crosslinked polymer, and a maleimide crosslinked polymer.

【0011】さらにまた、本発明は上記課題を解決する
ために、(VI)流路の上流端に接続して複数の流入路が
形成されている上記(I)〜(V)項のいずれかに記載
の微小ケミカルデバイスを提供する。
Furthermore, in order to solve the above-mentioned problems, the present invention provides (VI) any one of the above items (I) to (V), wherein a plurality of inflow channels are formed connected to the upstream end of the flow channel. And a microchemical device according to (1).

【0012】[0012]

【発明の実施の形態】本発明のデバイスの基材の形状
は、特に限定する必要がなく、用途目的に応じた形状を
採りうる。例えば、シート状(フィルム、リボンなどを
含む。以下同じ)、板状、塗膜状、棒状、管状、その他
複雑な形状の成型物などであり得るが、シート状、板状
又は棒状であることが特に好ましい。基材は、その内部
に毛細管状の流路(以下、「毛細管状の流路」を単に
「流路」と称する。)が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The shape of the substrate of the device of the present invention does not need to be particularly limited, and can take a shape according to the purpose of use. For example, it may be in the form of a sheet (including a film, a ribbon, and the like; the same applies hereinafter), a plate, a coating, a rod, a tube, and a molded article having a complicated shape. Is particularly preferred. A capillary channel (hereinafter, the “capillary channel” is simply referred to as a “channel”) is formed inside the substrate.

【0013】基材は、密着した部材(A)と部材(B)
から成り、互いに密着した部材(A)と部材(B)との
間に流路が形成されたものであることが好ましい。本発
明で言う密着とは、気密あるいは液密に接触しているこ
とを言い、非接着の接触、接着、粘着を含む。勿論、接
着や粘着は、接着剤や粘着剤を介する接触であって良
い。基材の構造は、例えば、部材(A)と部材(B)の
間の、流路以外の部分に固体状物質が充填された構造で
あっても良いし、また、例えば、表面に溝を有する部材
(A)の溝を有する面に他の部材(B)が密着して形成
された構造であっても良い。
The base material is a member (A) and a member (B)
It is preferable that a flow path is formed between the member (A) and the member (B) which are in close contact with each other. The close contact referred to in the present invention refers to air-tight or liquid-tight contact, and includes non-adhesive contact, adhesion, and adhesion. Needless to say, the adhesion or the adhesion may be a contact through an adhesive or a pressure-sensitive adhesive. The structure of the base material may be, for example, a structure in which a portion between the member (A) and the member (B) other than the flow path is filled with a solid substance, or, for example, a groove may be formed on the surface. A structure may be used in which another member (B) is formed in close contact with the grooved surface of the member (A).

【0014】部材(A)の形状は、上記の基材の場合と
同様である。部材(A)は、更に別の部材、例えば、支
持体、と一体化された形態であってもよい。部材(A)
が塗膜状である場合には、支持体と一体化された状態で
使用される。支持体の素材、形状も任意であり、例え
ば、部材(A)の場合に示した素材や形状であって良
い。複数の微小ケミカルデバイスを1つの部材(A)上
に形成することも可能であるし、製造後、これらを切断
して複数の微小ケミカルデバイスとすることも可能であ
る。
The shape of the member (A) is the same as that of the above-mentioned base material. The member (A) may be in a form integrated with another member, for example, a support. Member (A)
When is a coating film, it is used in a state of being integrated with the support. The material and shape of the support are also arbitrary, and for example, the material and shape shown in the case of the member (A) may be used. It is possible to form a plurality of microchemical devices on one member (A), or it is also possible to cut them after manufacturing to form a plurality of microchemical devices.

【0015】部材(B)の形状は、部材(A)と直接あ
るいは接着剤や粘着剤を介して密着させることが可能な
ものであれば、その形状、構造、表面状態などは任意で
ある。部材(B)の採りうる形状や好ましい形状につい
ては、部材(A)の場合と同様である。部材(B)は、
表面に溝が形成されている必要は無いが、溝や溝以外の
構造が形成されていても良い。例えば、部材(B)は、
表面に溝が形成された部材(A)の鏡像体であることも
好ましい。エネルギー線硬化性化合物を接着剤として使
用し、溝が形成された部材(A)上に部材(B)を接着
する場合であって、部材(A)が使用するエネルギー線
を透過させない場合には、部材(B)は使用するエネル
ギー線を透過させるものである必要がある。
The shape of the member (B) is arbitrary, as long as it can be brought into close contact with the member (A) directly or via an adhesive or a pressure-sensitive adhesive. The shape and preferable shape of the member (B) are the same as those of the member (A). The member (B)
It is not necessary that a groove is formed on the surface, but a groove or a structure other than the groove may be formed. For example, the member (B)
It is also preferably a mirror image of the member (A) having a groove formed on the surface. When the member (B) is bonded on the member (A) having the groove formed thereon using the energy ray-curable compound as an adhesive, and the energy beam used by the member (A) is not transmitted. The member (B) needs to transmit the energy beam to be used.

【0016】本発明のケミカルデバイスの素材は任意で
あり、有機高分子重合体(以下、単に「重合体」と称す
る)、ガラス、石英などの結晶、セラミック、炭素、金
属、シリコンの如き半導体、などであってよいが、成形
しやすさの面から、重合体であることが好ましい。
The material of the chemical device of the present invention is arbitrary, and includes a polymer such as an organic polymer (hereinafter, simply referred to as a “polymer”), a crystal such as glass or quartz, a semiconductor such as ceramic, carbon, metal or silicon; And the like, but it is preferably a polymer in terms of ease of molding.

【0017】本発明のケミカルデバイスの素材、例え
ば、部材(A)や部材(B)の素材として用いられる重
合体は、熱可塑性重合体であっても、熱硬化性重合体で
あっても良いが、成形性の良い点で熱可塑性重合体が好
ましく、また、表面に溝を形成する場合に溝の形成が容
易、硬化速度が高い、表面親水化が容易などの点でエネ
ルギー線硬化性の架橋重合体が好ましい。本発明のケミ
カルデバイスの素材は、ポリマーブレンドやポリマーア
ロイで構成されていても良いし、複合体や積層体であっ
ても良い。
The polymer used as the material of the chemical device of the present invention, for example, the material of the member (A) or the member (B) may be a thermoplastic polymer or a thermosetting polymer. However, a thermoplastic polymer is preferable in terms of good moldability, and when forming grooves on the surface, it is easy to form grooves, the curing speed is high, and the surface is easily made hydrophilic. Crosslinked polymers are preferred. The material of the chemical device of the present invention may be composed of a polymer blend or a polymer alloy, or may be a composite or a laminate.

【0018】本発明のケミカルデバイスの素材として好
ましく使用できる重合体としては、例えば、ポリスチレ
ン、ハイインパクトポリスチレン、ポリ−α−メチルス
チレン、ポリスチレン/マレイン酸共重合体、ポリスチ
レン/アクリロニトリル共重合体の如きスチレン系重合
体;ポルスルホン、ポリエーテルスルホンの如きポリス
ルホン系重合体;ポリメチルメタクリレート、ポリアク
リロニトリルの如きポリ(メタ)アクリル系重合体;ポ
リマレイミド系重合体;ポリカーボネート系重合体;酢
酸セルロース、メチルセルロースの如きセルロース系重
合体;ポリウレタン系重合体;ポリ塩化ビニル、ポリ塩
化ビニリデンの如き塩素系重合体;ナイロン、芳香族ポ
リアミドの如きポリアミド系重合体;芳香族ポリイミ
ド、芳香族ポリエーテルイミドの如きポリイミド系重合
体;ポリエチレン、ポリプロピレンの如きポリオレフィ
ン系重合体;ポリフェニレンオキサイド、ポリフェニレ
ンスルフィドの如きポリエーテル系やポリチオエーテル
系重合体;ポリエチレンテレフタレート、ポリアリレー
トの如きポリエステル系重合体、ポリ四フッ化エチレ
ン、パーフロロアルコキシパーフロロエチレン−四フッ
化エチレン共重合体(PFA)などのフッ素系重合体な
どが挙げられる。また、エネルギー線硬化性の架橋重合
体としては、(メタ)アクリロイル基を有するエネルギ
ー線硬化性化合物の硬化物や、マレイミド基を有するエ
ネルギー線硬化性化合物の硬化物が好ましい。勿論、重
合体は単独重合体の他、共重合体であっても良い。
Examples of the polymer which can be preferably used as a material of the chemical device of the present invention include polystyrene, high impact polystyrene, poly-α-methylstyrene, polystyrene / maleic acid copolymer, and polystyrene / acrylonitrile copolymer. Styrene-based polymers; polysulfone-based polymers such as porsulfone and polyethersulfone; poly (meth) acryl-based polymers such as polymethyl methacrylate and polyacrylonitrile; polymaleimide-based polymers; polycarbonate-based polymers; Cellulose polymers such as polyurethane polymers; Chlorine polymers such as polyvinyl chloride and polyvinylidene chloride; Polyamide polymers such as nylon and aromatic polyamide; Aromatic polyimides and aromatic polyethers Polyimide polymers such as polyethylene and polypropylene; Polyether polymers and polythioether polymers such as polyphenylene oxide and polyphenylene sulfide; Polyester polymers such as polyethylene terephthalate and polyarylate; And fluorine-based polymers such as perfluoroalkoxyperfluoroethylene-tetrafluoroethylene copolymer (PFA). Further, as the energy ray-curable crosslinked polymer, a cured product of an energy ray-curable compound having a (meth) acryloyl group or a cured product of an energy ray-curable compound having a maleimide group is preferable. Of course, the polymer may be a homopolymer or a copolymer.

【0019】これらの中でも、耐溶剤性に優れ、使用可
能な溶剤の範囲が広い上、接着性にも優れるので、ポリ
カーボネート、ポリ塩化ビニル、ナイロン、芳香族ポリ
アミド、ポリイミド、ポリエーテルイミド、ポリエチレ
ンテレフタレート、ポリアリレートが好ましく、成形性
や価格などから、ポリカーボネート、ポリ塩化ビニル、
ナイロン、ポリアリレートが特に好ましい。また、ポリ
(メタ)アクリル系架橋重合体、ポリマレイミド橋架橋
重合体などのエネルギー線硬化性の架橋重合体もまた好
ましい。
Among these, polycarbonate, polyvinyl chloride, nylon, aromatic polyamide, polyimide, polyetherimide, and polyethylene terephthalate are excellent in solvent resistance, a wide range of usable solvents and excellent adhesiveness. , Polyarylate is preferable, from the viewpoint of moldability and price, polycarbonate, polyvinyl chloride,
Nylon and polyarylate are particularly preferred. Further, an energy ray-curable crosslinked polymer such as a poly (meth) acrylic crosslinked polymer and a polymaleimide bridge crosslinked polymer is also preferable.

【0020】本発明のケミカルデバイスが部材(A)と
部材(B)を主要な部材として構成されている場合に
は、これらの素材として、上記本発明のケミカルデバイ
スに使用できる素材として示したものが使用できる。部
材(B)の素材は部材(A)と同じであっても良いし、
異なっていても良い。
When the chemical device of the present invention comprises the member (A) and the member (B) as the main members, these materials are shown as materials that can be used in the above-described chemical device of the present invention. Can be used. The material of the member (B) may be the same as the material of the member (A),
It may be different.

【0021】本発明のデバイスの流路は、断面積が1×
10-12m2 以上であり、好ましくは1×10-10m2 以上
であり、また1×10-6m2以下であり、好ましくは1×
10 -7m2以下である毛細管状の流路である。この流路
に、互いに混和しない複数の液体を流すことによって、
例えば、流通中に液体間で物質交換を行わせることがで
きる。流路がこの寸法より小さい場合、製造や使用が困
難となり、流路がこの寸法より大きい場合、本発明の効
果が小さくなる傾向にあるので好ましくない。流路の断
面形状は任意であり、例えば、矩形(角が丸められた矩
形を含む。以下同じ)、台形、円、楕円、スリット状な
どであり得る。流路断面の最大径とそれに直角な方向の
径との比は、用途、目的に応じて任意に設定できるが、
一般には1〜10が好ましく、1〜5がさらに好まし
い。これらの形状、寸法は流路全体にわたって一定であ
る必要はない。
The channel of the device of the present invention has a cross-sectional area of 1 ×.
10-12mTwo Or more, preferably 1 × 10-TenmTwo that's all
And 1 × 10-6mTwoOr less, preferably 1 ×
10 -7mTwoThe following is a capillary channel. This channel
By flowing a plurality of liquids that are immiscible with each other,
For example, material exchange between liquids during distribution is possible.
Wear. If the flow path is smaller than this size, manufacturing and use are difficult.
If the flow path is larger than this size, the effect of the present invention
This is not preferable because the fruit tends to be small. Disconnection of flow path
The surface shape is arbitrary, for example, a rectangle (rectangular with rounded corners)
Including shape. The same applies below), trapezoid, circle, ellipse, slit
Which can be. The maximum diameter of the flow path cross section and the direction perpendicular to it
The ratio with the diameter can be set arbitrarily according to the application and purpose.
Generally, 1 to 10 is preferable, and 1 to 5 is more preferable.
No. These shapes and dimensions are constant over the entire flow path.
Need not be.

【0022】流路が部材(A)と部材(B)の間に形成
されている場合、流路は、例えば、(イ)部材(A)と
部材(B)の間の、流路以外の部分に固体状物質が充填
されて形成されていても良いし、また、例えば、(ロ)
表面に溝を有する部材(A)の溝を有する面に、他の部
材(B)が密着されて形成されていても良い。上記
(イ)における流路は、部材(B)を上にした時の底面
が部材(A)、側面が充填された固体状物質、上面が部
材(B)で構成されており、上記(ロ)における流路
は、底面と側面が部材(A)、上面が部材(B)又は部
材(B)に塗布された接着剤もしくは粘着剤で構成され
ている。
When the flow path is formed between the member (A) and the member (B), the flow path may be, for example, (a) a part other than the flow path between the member (A) and the member (B). The portion may be formed by filling a solid substance, or for example, (b)
Another member (B) may be formed in close contact with the grooved surface of the member (A) having the groove on the surface. The flow path in (a) is composed of the member (A) on the bottom surface when the member (B) is turned up, a solid substance filled on the side surface, and the member (B) on the top surface. The channel in () has a bottom surface and side surfaces formed of the member (A), and a top surface formed of the member (B) or an adhesive or a pressure-sensitive adhesive applied to the member (B).

【0023】流路が部材(A)と部材(B)との間に形
成されている場合には、流路の部材(A)と部材(B)
の密着面に水平な方向の寸法/垂直な方向の寸法比は、
0.3〜10が好ましく、0.5〜5がさらに好まし
い。
When the flow passage is formed between the member (A) and the member (B), the members (A) and (B) of the flow passage are formed.
The ratio of the dimension in the horizontal direction to the dimension in the vertical direction to the contact surface of
0.3-10 are preferable, and 0.5-5 are more preferable.

【0024】流路の流線方向の形状、例えば、流路が部
材(A)と部材(B)との間に形成されている場合に
は、部材(A)と部材(B)との密着面に垂直な方向か
ら見た形状は、用途目的に応じて直線、曲線、渦巻き、
ジグザグ、その他任意の形状であってよい。
In the case where the flow path is formed between the member (A) and the member (B), for example, when the flow path is formed between the member (A) and the member (B), the member (A) and the member (B) are in close contact with each other. Shapes viewed from the direction perpendicular to the surface are straight, curved, spiral,
It may be zigzag or any other shape.

【0025】流路が部材(A)と部材(B)との間の流
路以外の部分に固体状物質が充填されて形成されている
構造の場合、固体状物質の厚みは必ずしも均一である必
要はないが、均一であることが好ましい。
In the case of a structure in which the flow path is formed by filling a portion other than the flow path between the member (A) and the member (B) with a solid substance, the thickness of the solid substance is always uniform. It is not necessary, but preferably uniform.

【0026】流路が部材(A)と部材(B)との間の流
路以外の部分に固体状物質が充填されて形成された構造
の形成方法は、例えば、部材(A)と部材(B)の間
にエネルギー線硬化性組成物を挟持し、部材(A)及び
/又は部材(B)の外部から、流路となる部分を除いて
エネルギー線を照射し、未硬化のエネルギー線硬化性組
成物を除去する方法、流路となるべき部分を切り抜い
た密着性のシート状部材を部材(A)と部材(B)間に
挟んで互いに密着する方法、流路となるべき部分に保
護物質、例えば、四フッ化エチレン製の棒状物を置き、
重合性物質や溶融樹脂を充填・固化した後、保護物質を
除去する方法、などを採ることができる。本法は工程数
は少ないが、流路径がが小さくなると未硬化のエネルギ
ー線硬化性組成物や保護物質の除去が困難となるため、
比較的寸法の大きな流路を形成する方法として好適であ
る。
A method for forming a structure in which a flow path is formed by filling a portion other than the flow path between the member (A) and the member (B) with a solid substance is described in, for example, the member (A) and the member (B). An energy-ray-curable composition is sandwiched between B), and energy rays are irradiated from the outside of the member (A) and / or the member (B) except for a portion serving as a flow path, and uncured energy-ray curing is performed. Method for removing the conductive composition, a method in which an adhesive sheet-like member cut out from a part to be a flow path is sandwiched between a member (A) and a member (B) to make close contact with each other, and protection to a part to be a flow path Put a substance, for example, a rod made of tetrafluoroethylene,
After filling and solidifying the polymerizable substance or the molten resin, a method of removing the protective substance can be employed. Although the number of steps in this method is small, it becomes difficult to remove the uncured energy ray-curable composition and the protective substance when the channel diameter is small,
This is suitable as a method for forming a channel having a relatively large size.

【0027】流路が、表面に溝を有する部材(A)の溝
を有する面に他の部材(B)が密着されて形成される場
合、部材(A)に設けられた溝は、その周辺部より低
い、いわゆる溝として形成されていても良いし、部材
(A)表面に立つ壁の間として形成されていても良い。
部材(A)の表面に溝を設ける方法は任意であり、例え
ば、射出成型、溶剤キャスト法、溶融レプリカ法、切
削、エッチング、フォトリソグラフィー(エネルギー線
リソグラフィーを含む)、エッチング法、蒸着法、気相
重合法、溝となるべき部分を切り抜いたシート状部材と
板状部材との密着などの方法を利用できる。部材(A)
は、複数の素材で構成されていてもよく、例えば、溝の
底と側面が異なる素材で形成されていても良い。部材
(A)には、溝以外の構造部分、例えば、貯液槽、反応
槽、分析機構などとなる構造を設けることができる。
When the flow path is formed by adhering another member (B) to the grooved surface of the member (A) having a groove on the surface, the groove provided on the member (A) It may be formed as a so-called groove lower than the portion, or may be formed between walls standing on the surface of the member (A).
The method of providing a groove on the surface of the member (A) is arbitrary. For example, injection molding, solvent casting, melt replica method, cutting, etching, photolithography (including energy beam lithography), etching, vapor deposition, vapor deposition, A phase polymerization method, a method such as close contact between a sheet-like member and a plate-like member in which a portion to be a groove is cut out can be used. Member (A)
May be formed of a plurality of materials, and for example, may be formed of materials having different bottoms and side surfaces of the grooves. The member (A) may be provided with a structural portion other than the groove, for example, a structure serving as a liquid storage tank, a reaction tank, an analysis mechanism, or the like.

【0028】部材(A)が表面に溝を有するものである
場合の、部材(A)と部材(B)の密着方法は、部材
(A)表面の溝が流路として形成される方法であれば、
任意であり、溶剤型接着剤の使用、無溶剤型接着剤の使
用、溶融型接着剤の使用、部材(A)及び/又は部材
(B)表面への溶剤塗布による接着、熱や超音波による
融着、などを使用しうるが、無溶剤型の接着剤の使用が
好ましく、無溶剤型接着剤としてエネルギー線硬化性樹
脂を用い、エネルギー線照射により硬化させて接着する
方法が、微小なデバイスの精密な接着が可能であり、生
産性も高いことから、好ましい。また、溝に保護材を充
填した状態で接着し、その後、保護材を除去する方法を
採ることも可能である。部材(B)は接着剤の硬化物そ
のものであってもよい。
When the member (A) has a groove on the surface, the member (A) and the member (B) may be in close contact with each other by a method in which the groove on the surface of the member (A) is formed as a flow path. If
Optional, use of solvent type adhesive, use of solventless type adhesive, use of melt type adhesive, adhesion by applying solvent to the surface of member (A) and / or member (B), heat or ultrasonic Although fusion, etc. can be used, the use of a solventless adhesive is preferable, and a method of bonding by curing by energy beam irradiation using an energy ray-curable resin as the solventless adhesive is preferable. This is preferable because it enables precise bonding of the particles and has high productivity. It is also possible to adopt a method in which the groove is filled with a protective material and then bonded, and then the protective material is removed. The member (B) may be a cured product of the adhesive itself.

【0029】部材(A)と部材(B)の非接着の接触方
法は、例えば、クランプ、ネジ、リベットなどにより固
定された状態であり得る。
The non-adhesive contact between the member (A) and the member (B) may be, for example, a state in which the member (A) and the member (B) are fixed by a clamp, a screw, a rivet, or the like.

【0030】本発明の微小ケミカルデバイスの、流路内
面の水との接触角は任意であるが、低いほど、互いに混
和しない2液が層状になって流れやすく、液−液接触効
率が高くなるため好ましい。流路内面の水との接触角
は、好ましくは25°以下、さらに好ましくは15°以
下、最も好ましくは5°以下である。流路内面は、相対
的に水との接触角が低い低接触角部分と、水との接触角
が流路の低接触角部分の水との接触角より10°以上高
い高接触角部分を有し、かつ、流路の低接触角部分と流
路の高接触角部分がそれぞれ流路の上流端から下流端に
わたって途切れずに連続していることも、互いに混和し
ない2液が層状になって安定して流れやすいため好まし
い。流路の高接触角部分の水との接触角は、好ましくは
35°以上であり、さらに好ましくは45°以上、さら
に好ましくは70°以上、最も好ましくは90°以上で
ある。しかしながら、本発明のデバイスにおいては、互
いに混和しない2液が必ずしも流路中を層状になって流
れる必要はなく、塊状や分散状態で流れても、分液室に
おいて分離することが可能である。
Although the contact angle of the microchemical device of the present invention with water on the inner surface of the flow path is arbitrary, the lower the lower, the more easily the two liquids that are immiscible with each other flow in a layer, and the higher the liquid-liquid contact efficiency. Therefore, it is preferable. The contact angle of the inner surface of the flow channel with water is preferably 25 ° or less, more preferably 15 ° or less, and most preferably 5 ° or less. The inner surface of the flow channel has a low contact angle portion where the contact angle with water is relatively low, and a high contact angle portion where the contact angle with water is at least 10 ° higher than the contact angle with water at the low contact angle portion of the flow channel. And that the low contact angle part of the flow path and the high contact angle part of the flow path are continuous without interruption from the upstream end to the downstream end of the flow path, respectively. It is preferable because it is stable and easy to flow. The contact angle of the high contact angle portion of the flow channel with water is preferably 35 ° or more, more preferably 45 ° or more, further preferably 70 ° or more, and most preferably 90 ° or more. However, in the device of the present invention, the two liquids that are immiscible with each other do not necessarily need to flow in a layered manner in the flow path, and can be separated in the liquid separation chamber even if they flow in a lump or in a dispersed state.

【0031】本発明のデバイスは、流路の下流端に該流
路の断面積の2〜1000倍、好ましくは3〜100
倍、さらに好ましくは4〜30倍の断面積を有する分液
室が設けられている。分液室の断面積とは、液体の流線
方向に垂直な断面の面積を言う。分液室の断面形状は、
寸法の縦/横比が2以上であることが好ましく、3以上
であることがより好ましく、4以上であることが最も好
ましい。縦/横比の上限は特に設ける必要はないが製造
の容易さから100以下であることが好ましく、30以
下であることがより好ましい。分液室の液体の流線方向
の長さは任意である。
The device of the present invention has a cross-sectional area of 2 to 1000 times, preferably 3 to 100 times the cross-sectional area of the flow path at the downstream end of the flow path.
A liquid separation chamber having a cross-sectional area of 2 times, more preferably 4 to 30 times is provided. The cross-sectional area of the liquid separation chamber refers to the area of a cross section perpendicular to the liquid streamline direction. The sectional shape of the separation chamber is
The aspect ratio of the dimension is preferably 2 or more, more preferably 3 or more, and most preferably 4 or more. The upper limit of the aspect ratio does not need to be particularly set, but is preferably 100 or less, more preferably 30 or less from the viewpoint of ease of production. The length of the liquid in the liquid separating chamber in the streamline direction is arbitrary.

【0032】分液室は、その内面に水との接触角が相対
的に低い低接触角部分と、水との接触角が該低接触角部
分より10度以上高い高接触角部分を有する。低接触角
部分と高接触角部分の水との接触角の差がこれ未満であ
ると、相互に混和しない液体の分液が困難となりがちで
ある。また、低接触角部分の水との接触角が低いほど、
高接触角部分の水との接触角が比較的低くても上記の不
都合が生じにくく、高接触角部分の水との接触角が高い
ほど、低接触角部分の水との接触角が比較的高くても上
記の不都合が生じにくい。
The liquid separating chamber has, on its inner surface, a low contact angle portion having a relatively low contact angle with water and a high contact angle portion having a contact angle with water higher than the low contact angle portion by 10 degrees or more. If the difference between the contact angles of the low contact angle portion and the high contact angle portion with water is less than this, it tends to be difficult to separate liquids that are immiscible with each other. Also, the lower the contact angle with water in the low contact angle part,
Even if the contact angle of the high contact angle portion with water is relatively low, the above-mentioned inconvenience is unlikely to occur.The higher the contact angle of the high contact angle portion with water, the higher the contact angle of the low contact angle portion with water. Even if it is high, the above-mentioned inconvenience is unlikely to occur.

【0033】低接触角部分の水との接触角をα、高接触
角部分の水との接触角をβとした場合に、以下の(イ)
〜(ハ)のいずれかの条件を満足する組み合わせが好ま
しい。
When the contact angle of the low contact angle portion with water is α and the contact angle of the high contact angle portion with water is β, the following (A)
A combination that satisfies any one of conditions (a) to (c) is preferable.

【0034】(イ)α≦25°であり、かつ35°≦β
であることが好ましく、α≦10°であり、かつ35°
≦βでであることがさらに好ましく、αとβの差が大き
いほど好ましい。
(A) α ≦ 25 ° and 35 ° ≦ β
Is preferably α ≦ 10 ° and 35 °
≦ β is more preferable, and the larger the difference between α and β, the more preferable.

【0035】(ロ)25°<α≦90°であり、かつ
(α+40°)≦β≦90°であることが好ましく、α
とβの差が大きいほど好ましい。あるいは、
(B) It is preferable that 25 ° <α ≦ 90 ° and (α + 40 °) ≦ β ≦ 90 °.
It is preferable that the difference between β and β is large. Or,

【0036】(ハ)α≦90°であり、かつ90°<β
であることが好ましく、αとβの差が大きいほど好まし
い。
(C) α ≦ 90 ° and 90 ° <β
It is preferable that the difference between α and β is large.

【0037】また、上記の(イ)と(ハ)を同時に満足
すること、即ち、(ニ)α≦25°であり、かつ90°
<βであることがより好ましく、α≦10°であり、か
つ90°<βであることが最も好ましい。
Further, the above (a) and (c) are simultaneously satisfied, that is, (d) α ≦ 25 ° and 90 °
<Β is more preferable, α ≦ 10 °, and most preferably 90 ° <β.

【0038】高接触角部分は、また、使用する疎水性液
体との接触角が90°以下であることが好ましい。
The high contact angle portion preferably has a contact angle with the hydrophobic liquid to be used of 90 ° or less.

【0039】分液室の内面には、低接触角部分、高接触
角部分以外の第3の部分があっても良い。なお、本発明
で言う水との接触角とは、液滴法により測定した静止角
を言う。測定に先立って、試料を温度24±1℃、湿度
65±5%の雰囲気に1時間以上静置し、温度24±1
℃、湿度65±5%で測定する。測定は、置液後3分の
安定化時間の後に行なう。試料の乾燥条件などによって
接触角が変化する場合には、最も低い値を採用する。
A third portion other than the low contact angle portion and the high contact angle portion may be provided on the inner surface of the liquid separation chamber. The term “contact angle with water” as used in the present invention refers to a static angle measured by a droplet method. Prior to the measurement, the sample was allowed to stand in an atmosphere at a temperature of 24 ± 1 ° C. and a humidity of 65 ± 5% for 1 hour or more, and the temperature was kept at a temperature of 24 ± 1.
It is measured at 65 ° C and a humidity of 65 ± 5%. The measurement is performed after a stabilization time of 3 minutes after the placement. When the contact angle changes depending on the drying conditions of the sample, the lowest value is adopted.

【0040】分液室の液体の流線に垂直な方向の断面に
おいて、高接触角部分と低接触角部分が流路表面に占め
る部分の数は、それぞれ単数であっても複数であっても
良いが、それぞれ単数であることが好ましい。分液室の
液体の流線に垂直な方向の断面において、高接触角部分
と低接触角部分が流路表面に占める場所及び割合は任意
であるが、流路との接続部分においては、該断面を低接
触角部分と高接触角部分に分割したとき、該分割された
それぞれの溝状の部分の深さ/幅の比が、好ましくは1
以下、さらに好ましくは0.7以下、最も好ましくは
0.5以下となることが好ましい。該深さ/幅比の下限
は特に設ける必要はないが、1/100以上であること
が好ましく、1/30以上であることが好ましい。この
ように分液室を作製することによって、塊状や分散状態
で分液室に流入した2液を分離することが容易となる。
In the cross section of the liquid separation chamber in a direction perpendicular to the liquid stream line, the number of portions occupied by the high contact angle portion and the low contact angle portion on the flow path surface may be singular or plural. Good, but preferably singular. In the cross section of the liquid separation chamber in the direction perpendicular to the streamline of the liquid, the location and ratio of the high contact angle portion and the low contact angle portion occupying the flow channel surface are arbitrary, but in the connection portion with the flow channel, When the cross section is divided into a low contact angle portion and a high contact angle portion, the depth / width ratio of each of the divided groove portions is preferably 1
It is more preferably 0.7 or less, most preferably 0.5 or less. The lower limit of the depth / width ratio is not particularly required, but is preferably 1/100 or more, more preferably 1/30 or more. By forming the liquid separation chamber in this manner, it becomes easy to separate the two liquids that have flowed into the liquid separation chamber in a lump or dispersed state.

【0041】また、流出路との接続部分における、分液
室の液体の流線に垂直な方向の断面において、高接触角
部分と低接触角部分が流路表面に占める場所及び割合
は、該断面を低接触角部分と高接触角部分に分割したと
き、該分割されたそれぞれの溝状の部分の深さ/幅の比
が、好ましくは1以上、さらに好ましくは1.5以上、
最も好ましくは2以上となる形状であることが好まし
い。該深さ/幅比の上限は特に設ける必要はないが、1
00以下であることが好ましく、30以下であることが
好ましい。このように分液室を作製することによって、
分離された2液を独立に流出路から流出させることが容
易となる。
In a section perpendicular to the flow line of the liquid in the liquid separation chamber at the connection portion with the outflow channel, the location and ratio of the high contact angle portion and the low contact angle portion occupying the flow channel surface are as follows. When the cross section is divided into a low contact angle portion and a high contact angle portion, the depth / width ratio of each of the divided groove portions is preferably 1 or more, more preferably 1.5 or more,
Most preferably, the shape is 2 or more. There is no particular need to set an upper limit for the depth / width ratio.
It is preferably at most 00, more preferably at most 30. By making the separation chamber in this way,
It is easy to make the two separated liquids flow out of the outflow channel independently.

【0042】分液室の液体の流線に垂直な方向の断面に
おいて、高接触角部分と低接触角部分が流路表面に占め
る場所及び割合の、流路との接続部分から流出路との接
続部分に至る流線方向の中間の状態は任意であり、連続
的に移行してもよいし、階段状あるいは1段で不連続に
移行しても良い。しかしながら、不連続に移行する場合
であっても、高接触角部分と低接触角部分はそれぞれ途
切れずに連続していることが好ましい。
In the cross section of the liquid separation chamber in the direction perpendicular to the liquid stream line, the location and ratio of the high contact angle portion and the low contact angle portion occupying the flow channel surface from the connection portion with the flow channel to the outflow channel. The intermediate state in the streamline direction leading to the connection portion is arbitrary, and may be shifted continuously, or may be shifted stepwise or discontinuously in one step. However, even in the case of a discontinuous transition, it is preferable that the high contact angle portion and the low contact angle portion are respectively continuous without interruption.

【0043】分液室の流線方向の長さは任意であるが、
液体の滞留時間を1秒以上とすることが好ましく、10
秒以上とすることがさらに好ましい。
The length of the liquid separation chamber in the streamline direction is arbitrary,
The residence time of the liquid is preferably 1 second or more, preferably 10 seconds or more.
More preferably, the time is at least seconds.

【0044】分液室内面の低接触角部分及び/又は高接
触角部分は、部材(A)、部材(B)、充填された固体
状物質などの、分液室の壁面を構成する素材として、し
かるべき接触角を示す素材を使用することにより形成さ
れていても良いし、分液室内面の表面処理によって形成
されていても良い。表面処理は、分液室を形成する素材
に施した後、分液室を形成しても良いし、分液室形成後
に施しても良い。親水化あるいは疎水化のための表面処
理は、目的部位のみを処理することもできるし、目的部
位を保護した状態で全体を処理した後、保護を外すこと
もできる。処理方法により好適な方法を採用できる。
The low contact angle portion and / or the high contact angle portion on the inner surface of the liquid separation chamber are used as materials constituting the wall surface of the liquid separation chamber, such as the member (A), the member (B), and the filled solid substance. It may be formed by using a material having an appropriate contact angle, or may be formed by surface treatment of the inner surface of the liquid separation chamber. The surface treatment may be performed on the material forming the separation chamber, and then the separation chamber may be formed, or may be performed after the formation of the separation chamber. The surface treatment for hydrophilization or hydrophobization may be performed only on the target site, or may be removed after the entire site is treated with the target site protected. A suitable method can be adopted depending on the processing method.

【0045】表面処理による分液室内表面の親水化方法
は任意であり、例えば、プラズマ処理、プラズマ重合、
コロナ放電処理、表面の化学修飾、表面への親水性化合
物のグラフト重合、親水性ポリマーのコーティング、な
どが挙げられる。
The method of hydrophilizing the surface of the liquid separation chamber by the surface treatment is optional. For example, plasma treatment, plasma polymerization,
Examples include corona discharge treatment, chemical modification of the surface, graft polymerization of a hydrophilic compound on the surface, and coating of a hydrophilic polymer.

【0046】プラズマ処理やプラズマ重合としては、酸
素;アセトン、有機酸の如き分子中に酸素原子を有する
化合物;アミンの如き分子中に窒素原子を有する化合物
の存在下での処理が好適である。また、常圧プラズマ処
理も可能である。
As the plasma treatment or plasma polymerization, treatment in the presence of oxygen; a compound having an oxygen atom in a molecule such as acetone or an organic acid; or a compound such as an amine having a nitrogen atom in a molecule is preferable. Also, normal pressure plasma processing is possible.

【0047】表面の化学修飾の方法としては、例えば、
ハロゲン化とその置換反応やエポキシ基の導入とそれへ
の付加反応などによる水酸基、カルボキシル基、アミノ
基、アミド基等の導入;濃硫酸、発煙硫酸、過硫酸塩と
の接触によるスルホン化;濃硝酸、発煙硝酸などとの接
触によるニトロ化、及びその置換や還元による水酸基や
アミノ基の導入;アジド等を用いた光化学反応、などが
挙げられる。
As a method of chemical modification of the surface, for example,
Introduction of hydroxyl group, carboxyl group, amino group, amide group, etc. by halogenation and its substitution reaction, introduction of epoxy group and addition reaction thereto; sulfonation by contact with concentrated sulfuric acid, fuming sulfuric acid, persulfate; Nitration by contact with nitric acid or fuming nitric acid, and introduction of a hydroxyl group or amino group by substitution or reduction thereof; photochemical reaction using azide or the like.

【0048】親水性の重合性化合物のグラフト重合の方
法としては、例えば、基材のコロナ処理、プラズマ処
理、放射線処理などの後、親水性の付加重合性化合物と
接触させる方法や、光重合を利用した方法、などが挙げ
られる。
Examples of the method of graft polymerization of a hydrophilic polymerizable compound include, for example, a method of subjecting a base material to a corona treatment, a plasma treatment, a radiation treatment, etc., and then contacting with a hydrophilic addition polymerizable compound, or a method of photopolymerization. Methods used, and the like.

【0049】これらの中でも、親水性の重合性化合物の
グラフト重合は、親水性ポリマーからなる層が、基材を
構成する疎水性重合体に親水性重合体の層が共有結合し
ているため、親水性層が剥離したり、親水性層の構成成
分が溶出したりする危険性がないので、好ましい。ま
た、親水性の重合性化合物としては、炭素−炭素不飽和
二重結合を有する重合性化合物を用いることが、重合速
度が高くなるので、好ましい。
Among these, the graft polymerization of a hydrophilic polymerizable compound is performed because the layer composed of the hydrophilic polymer is covalently bonded to the hydrophobic polymer constituting the base material. This is preferable because there is no danger of the hydrophilic layer peeling off or elution of the constituent components of the hydrophilic layer. Further, as the hydrophilic polymerizable compound, it is preferable to use a polymerizable compound having a carbon-carbon unsaturated double bond because the polymerization rate is increased.

【0050】親水性ポリマーのコーティングは、可溶性
ポリマーの溶液を印刷などにより任意のパターンで基板
上に塗布する方法である。使用できる可溶性ポリマーと
しては、例えば、ポリヒドロキシメチルメタクリレー
ト、ポリビニルアルコール、スルホン化セルロース、ス
ルホン化ポリスルホン、などが挙げられる。
The coating of a hydrophilic polymer is a method of applying a solution of a soluble polymer on a substrate in an arbitrary pattern by printing or the like. Examples of soluble polymers that can be used include polyhydroxymethyl methacrylate, polyvinyl alcohol, sulfonated cellulose, sulfonated polysulfone, and the like.

【0051】コーティング法のように、親水性ポリマー
が基材に化学結合していない場合には、親水性ポリマー
が使用中に溶出する可能性があるため、これを防止する
ために、親水性ポリマーとして架橋ポリマーを用いるこ
とが好ましい。親水性の架橋ポリマーからなる層は、コ
ーティング後に架橋させる方法、あるいは、親水性の架
橋重合性化合物のコーティングと架橋重合により容易に
形成することができる。親水性ポリマーのコーティング
は、親水化の程度が高いものが得られるので、好まし
い。親水性ポリマーのコーティングを、親水性の重合性
化合物のオンサイト重合で行う場合、親水性の重合性化
合物として、炭素−炭素不飽和二重結合を有する重合性
化合物を用いることが、重合速度が高くなるので、好ま
しい。
When the hydrophilic polymer is not chemically bonded to the substrate as in the coating method, the hydrophilic polymer may elute during use. It is preferable to use a crosslinked polymer. The layer made of a hydrophilic cross-linked polymer can be easily formed by a method of cross-linking after coating, or a coating of a hydrophilic cross-linkable polymerizable compound and cross-linking polymerization. Hydrophilic polymer coatings are preferred because they provide a high degree of hydrophilicity. When the coating of the hydrophilic polymer is performed by on-site polymerization of a hydrophilic polymerizable compound, the polymerization rate can be increased by using a polymerizable compound having a carbon-carbon unsaturated double bond as the hydrophilic polymerizable compound. It is preferable because it becomes higher.

【0052】表面処理による疎水化方法は、任意であ
り、例えば、フッ素処理、プラズマ処理、プラズマ重
合、表面の化学修飾、表面への疎水性化合物のグラフト
重合、疎水性ポリマーのコーティング、などが挙げられ
る。
The method of hydrophobization by surface treatment is optional, and examples include fluorine treatment, plasma treatment, plasma polymerization, chemical modification of the surface, graft polymerization of a hydrophobic compound on the surface, and coating of a hydrophobic polymer. Can be

【0053】プラズマ処理やプラズマ重合は、例えば、
四フッ化炭素の如きフッ化物、テトラクロロエタンの如
き塩化物、メタンやベンゼンの如き炭化水素の存在下
で、プラズマ処理やプラズマ重合を行なうことにより、
疎水化することができる。
The plasma treatment and the plasma polymerization are performed, for example,
By performing plasma treatment or plasma polymerization in the presence of fluorides such as carbon tetrafluoride, chlorides such as tetrachloroethane, and hydrocarbons such as methane and benzene,
Can be hydrophobized.

【0054】表面の化学修飾としては、例えば、フッ素
化、塩素化、ブロム化、などのハロゲン化、及びこれら
の置換反応によるアルキル化;アジド化合物などを用い
た光化学反応、などが挙げられる。
The chemical modification of the surface includes, for example, halogenation such as fluorination, chlorination, bromination, and the like, and alkylation by a substitution reaction thereof; photochemical reaction using an azide compound and the like.

【0055】疎水性ポリマーのコーティングは、溶剤可
溶性ポリマーの溶液を塗布する方法である。
The coating of a hydrophobic polymer is a method of applying a solution of a solvent-soluble polymer.

【0056】表面への疎水性化合物のグラフト重合とし
ては、例えば、部材をコロナ処理、プラズマ処理、放射
線処理などの表面処理をした後、疎水性の付加重合性化
合物と接触させる方法;光重合を利用した表面グラフト
法、などが挙げられる。
The graft polymerization of a hydrophobic compound onto the surface is, for example, a method in which a member is subjected to a surface treatment such as a corona treatment, a plasma treatment or a radiation treatment and then brought into contact with a hydrophobic addition-polymerizable compound; Surface grafting method, and the like.

【0057】互いに混和しない液体は、本デバイスの流
路中を層状で、分散状態で、あるいは塊状で流れ、分液
室に入る。本発明のデバイスは、互いに混和しない液体
が流路中を塊状になって流れる場合であっても、分液室
にて分離し、それぞれの流出路から各単独で流出させる
ことができる。
The liquids that are immiscible with each other flow in the flow path of the device in a layered, dispersed, or bulk form, and enter the separation chamber. In the device of the present invention, even when liquids that are immiscible with each other flow in a lump in the flow path, the liquids can be separated in the liquid separation chamber and individually discharged from the respective flow paths.

【0058】分液室の形成方法は任意であり、例えば、
流路と同様の方法で流路と同時に形成することができ
る。即ち、基材が部材(A)と部材(B)間に形成され
ている場合には、分液室もまた、部材(A)と部材
(B)間の流路と同一平面内の形成されていても良い。
The method of forming the liquid separation chamber is arbitrary.
It can be formed simultaneously with the flow channel in the same manner as the flow channel. That is, when the base material is formed between the member (A) and the member (B), the liquid separation chamber is also formed in the same plane as the flow path between the member (A) and the member (B). May be.

【0059】分液室の低接触角部分と高接触角部分か
ら、それぞれ分液室からの流出路が設けられている。各
流出路は、分液室の中の互いに離れた位置に設けること
が、分液を完全にする上で好ましい。流出路内面の水と
の接触角は任意であるが、低接触角部分に接続された流
出路の水との接触角は90°以下であることが好まし
く、高接触角部分に接続された流出路の水との接触角は
90°以上であり、かつ、該流出路から流出させる液体
との接触角が90°以下であることが好ましい。流出路
は、デバイス外に開口していても良いし、デバイス内の
他の構造部分に接続していても良い。
Outflow passages from the liquid separation chamber are provided from the low contact angle part and the high contact angle part of the liquid separation chamber. It is preferable to provide the outflow channels at positions separated from each other in the liquid separating chamber in order to complete the liquid separation. The contact angle with water on the inner surface of the outflow channel is arbitrary, but the contact angle with water of the outflow channel connected to the low contact angle portion is preferably 90 ° or less, and the outflow channel connected to the high contact angle portion is preferable. It is preferable that the contact angle of the channel with water is 90 ° or more, and the contact angle with the liquid discharged from the outflow channel is 90 ° or less. The outflow channel may be open to the outside of the device or may be connected to another structural part in the device.

【0060】流出路の形状や構造は任意であり、流路や
分液室と同様にして形成することもできるし、異なる構
造や方法で形成することもできる。例えば、基材が部材
(A)と部材(B)間に形成されている場合には、流出
路もまた部材(A)と部材(B)間に形成されていても
良いし、部材(A)及び/又は部材(B)を貫通する孔
として形成されていても良い。流出路にはチューブを接
続することが好ましい。チューブの長さの調節により背
圧を調節し、互いに混和しない液体の粘度や流量が異な
る場合であっても、安定した分液を可能にする。
The shape and structure of the outflow channel are arbitrary, and can be formed in the same manner as the flow channel or liquid separation chamber, or can be formed by a different structure or method. For example, when the base material is formed between the member (A) and the member (B), the outflow channel may also be formed between the member (A) and the member (B), or the member (A) ) And / or a hole penetrating the member (B). It is preferable to connect a tube to the outflow channel. The back pressure is adjusted by adjusting the length of the tube, so that even when the viscosities and flow rates of the immiscible liquids are different, stable liquid separation can be achieved.

【0061】本発明のデバイスは、例えば、液−液抽出
の用途に使用する場合には、流路の上流端に接続して、
複数の流入路を形成することができる。流入路の寸法、
形状、内面の水との接触角は任意である。
When the device of the present invention is used for, for example, liquid-liquid extraction, it is connected to the upstream end of a flow path,
A plurality of inflow channels can be formed. Dimensions of the inflow channel,
The shape and the contact angle of the inner surface with water are arbitrary.

【0062】本発明のデバイスには、流路、流入路、流
出路の他に、これら以外の構造、例えば、貯液槽、反応
槽、膜分離機構、流量調節機構、デバイス外へ接続口、
その他の流入路、分岐したその他の流出路などが形成さ
れていても良い。
The device of the present invention has a structure other than these, such as a liquid storage tank, a reaction tank, a membrane separation mechanism, a flow control mechanism, a connection port outside the device,
Other inflow paths and other branched outflow paths may be formed.

【0063】本発明のデバイスの使用に当たっては、例
えば、流路に親水性液体(通常は水溶液)及び該親水性
液体と混和しない疎水性液体を独立した流入路から導入
することができる。あるいは、流路に分散溶液を導入す
ることができる。また、あるいは、流路に反応や温度変
化により相分離する均一混合溶液を導入することができ
る。流路内を、層状、塊状あるいは分散状態で流れた親
水性液体及び疎水性液体は、分液室に入り2液に分離さ
れ、親水性液体は分液室の低接触角部分に接続された流
出路に入り、疎水性液体は分液室の高接触角部分に接続
された流出路に入り、2液は分離されて流出する。2液
を完全に分離するためには、流出路の接続口付近の親水
性/疎水性のバランスを調節すること、及び流量比や粘
度に応じて流出路径や流出路長を調節することにより目
的を達することができる。相互に混和しない複数の液体
は3液であっても良い。
In using the device of the present invention, for example, a hydrophilic liquid (usually an aqueous solution) and a hydrophobic liquid that is immiscible with the hydrophilic liquid can be introduced into the channel from an independent inflow channel. Alternatively, a dispersion solution can be introduced into the channel. Alternatively, a homogeneous mixed solution that undergoes phase separation due to a reaction or a change in temperature can be introduced into the channel. The hydrophilic liquid and the hydrophobic liquid that flowed in a layered, lump, or dispersed state in the flow path entered the separation chamber and were separated into two liquids, and the hydrophilic liquid was connected to the low contact angle portion of the separation chamber. After entering the outflow channel, the hydrophobic liquid enters the outflow channel connected to the high contact angle portion of the separation chamber, and the two liquids are separated and flow out. In order to completely separate the two liquids, adjust the balance of hydrophilicity / hydrophobicity near the connection port of the outflow channel, and adjust the outflow channel diameter and outflow channel length according to the flow rate ratio and viscosity. Can be reached. The plurality of liquids that are immiscible with each other may be three liquids.

【0064】[0064]

【実施例】以下、実施例を用いて、本発明を更に詳細に
説明するが、本発明はこれらの実施例の範囲に限定され
るものではない。なお、以下の実施例において、「部」
は「重量部」を表わす。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the scope of these examples. In the following examples, "part"
Represents "parts by weight".

【0065】<エネルギー線硬化性組成物の調製>実施
例で使用するエネルギー線硬化性組成物の調製方法を示
した。
<Preparation of Energy Radiation-Curable Composition> The method of preparing the energy radiation-curable composition used in the examples was described.

【0066】[エネルギー線硬化性組成物[e1]の調
製]1分子中に平均3個のアクリル基を有するウレタン
アクリレートオリゴマー(大日本インキ化学工業(株)製
の「ユニディックV−4263」)40部、ノニルフェ
ノキシポリエチレングリコール(n=8)アクリレート
(東亜合成化学社製の「M−114」)60部、紫外線
重合開始剤1−ヒドロキシシクロヘキシルフェニルケト
ン(チバガイギー社製の「イルガキュアー184」)5
部及び重合遅延剤2,4−ジフェニル−4−メチル−1
−ペンテン(関東化学社製)0.1部を混合してエネル
ギー線硬化性組成物[e1]を調製した。この組成物
[e1]の硬化物の水との接触角を表1に示した。
[Preparation of energy ray-curable composition [e1]] Urethane acrylate oligomer having an average of three acrylic groups in one molecule (“Unidick V-4263” manufactured by Dainippon Ink and Chemicals, Inc.) 40 parts, nonylphenoxy polyethylene glycol (n = 8) acrylate ("M-114" manufactured by Toa Gosei Chemical Co., Ltd.) 60 parts, ultraviolet polymerization initiator 1-hydroxycyclohexyl phenyl ketone ("Irgacure 184" manufactured by Ciba Geigy) 5
Part and polymerization retarder 2,4-diphenyl-4-methyl-1
-0.1 parts of pentene (manufactured by Kanto Chemical Co., Ltd.) was mixed to prepare an energy ray-curable composition [e1]. Table 1 shows the contact angle of the cured product of this composition [e1] with water.

【0067】[エネルギー線硬化性組成物[e2]の調
製]ウレタンアクリレートオリゴマー(「ユニディック
V−4263」)40部、ジシクロペンタニルジアクリ
レート(日本化薬社製の「R−684」)60部、紫外
線重合開始剤1−ヒドロキシシクロヘキシルフェニルケ
トン(「イルガキュアー184」)5部及び重合遅延剤
2,4−ジフェニル−4−メチル−1−ペンテン(関東
化学社製)0.1部を混合してエネルギー線硬化性組成
物[e2]を調製した。この組成物[e2]の硬化物の
水との接触角を表1に示した。
[Preparation of energy ray-curable composition [e2]] 40 parts of urethane acrylate oligomer (“Unidick V-4263”), dicyclopentanyl diacrylate (“R-684” manufactured by Nippon Kayaku Co., Ltd.) 60 parts, an ultraviolet polymerization initiator 1-hydroxycyclohexylphenyl ketone ("Irgacure 184") 5 parts and a polymerization retarder 2,4-diphenyl-4-methyl-1-pentene (Kanto Chemical Co., Ltd.) 0.1 part The mixture was mixed to prepare an energy ray-curable composition [e2]. Table 1 shows the contact angle of the cured product of this composition [e2] with water.

【0068】[エネルギー線硬化性組成物[e3]の調
製]ウレタンアクリレートオリゴマー(「ユニディック
V−4263」)100部、紫外線重合開始剤1−ヒド
ロキシシクロヘキシルフェニルケトン(「イルガキュア
ー184」)5部及び重合遅延剤2,4−ジフェニル−
4−メチル−1−ペンテン(関東化学社製)0.1部を
混合してエネルギー線硬化性組成物[e3]を調製し
た。この組成物[e3]の硬化物の水との接触角を表1
に示した。
[Preparation of energy ray-curable composition [e3]] Urethane acrylate oligomer (“Unidick V-4263”) 100 parts, UV polymerization initiator 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184”) 5 parts And a polymerization retarder 2,4-diphenyl-
0.1 part of 4-methyl-1-pentene (manufactured by Kanto Chemical Co., Ltd.) was mixed to prepare an energy ray-curable composition [e3]. Table 1 shows the contact angle of the cured product of this composition [e3] with water.
It was shown to.

【0069】[エネルギー線硬化性組成物[e4]の調
製]ウレタンアクリレートオリゴマー(「ユニディック
V−4263」)65部、ノニルフェノキシポリエチレ
ングリコール(n=17)アクリレート(第一工業製薬
化学社製の「N−177E」)35部、紫外線重合開始
剤1−ヒドロキシシクロヘキシルフェニルケトン(「イ
ルガキュアー184」)5部及び重合遅延剤2,4−ジ
フェニル−4−メチル−1−ペンテン(関東化学社製)
0.1部を混合してエネルギー線硬化性組成物[e4]
を調製した。この組成物[e4]の硬化物の水との接触
角を表1に示した。
[Preparation of energy ray-curable composition [e4]] 65 parts of urethane acrylate oligomer (“Unidick V-4263”), nonylphenoxy polyethylene glycol (n = 17) acrylate (manufactured by Daiichi Kogyo Seiyaku Kagaku) 35 parts of "N-177E"), 5 parts of an ultraviolet polymerization initiator 1-hydroxycyclohexyl phenyl ketone ("Irgacure 184") and a polymerization retarder 2,4-diphenyl-4-methyl-1-pentene (manufactured by Kanto Chemical Co., Ltd.) )
0.1 part is mixed and the energy ray-curable composition [e4]
Was prepared. Table 1 shows the contact angle of the cured product of this composition [e4] with water.

【0070】[エネルギー線硬化性組成物[e5]の調
製]ウレタンアクリレートオリゴマー(「ユニディック
V−4263」)70部、ノニルフェノキシポリエチレ
ングリコール(n=17)アクリレート(「N−177
E」)30部、紫外線重合開始剤1−ヒドロキシシクロ
ヘキシルフェニルケトン(「イルガキュアー184」)
5部及び重合遅延剤2,4−ジフェニル−4−メチル−
1−ペンテン(関東化学社製)0.1部を混合してエネ
ルギー線硬化性組成[e5]を調製した。この組成物
[e5]の硬化物の水との接触角を表1に示した。
[Preparation of energy ray-curable composition [e5]] Urethane acrylate oligomer (“Unidick V-4263”) 70 parts, nonylphenoxy polyethylene glycol (n = 17) acrylate (“N-177”)
E ") 30 parts, UV polymerization initiator 1-hydroxycyclohexyl phenyl ketone (" Irgacure 184 ")
5 parts and a polymerization retarder 2,4-diphenyl-4-methyl-
0.1 part of 1-pentene (manufactured by Kanto Chemical Co., Ltd.) was mixed to prepare an energy ray-curable composition [e5]. Table 1 shows the contact angle of the cured product of this composition [e5] with water.

【0071】[エネルギー線硬化性組成物[e6]の調
製]ポリテトラメチレングリコール(平均分子量25
0)マレイミドカプリエート(特開平11−12440
3号の合成例13に記載の方法によって合成した。)7
0部及びノニルフェノキシポリエチレングリコール(n
=17)アクリレート(「N−177E」)30部を混
合してエネルギー線硬化性組成物[e6]を製した。こ
の組成物[e6]の硬化物の水との接触角を表1に示し
た。
[Preparation of energy ray-curable composition [e6]] Polytetramethylene glycol (average molecular weight 25
0) Maleimide capriate (JP-A-11-12440)
No. 3 by the method described in Synthesis Example 13. ) 7
0 parts and nonylphenoxy polyethylene glycol (n
= 17) 30 parts of acrylate (“N-177E”) were mixed to produce an energy ray-curable composition [e6]. Table 1 shows the contact angle of the cured product of this composition [e6] with water.

【0072】[実施例1] 〔部材(A)の作製〕透明硬質ポリ塩化ビニル(積水成
型社製)[p1]製の10cm×10cm×2mmの板の中心
部5cm×2.5cmの範囲(1)を含む範囲にエネルギー
線硬化性組成物[e1]を127μm のバーコーターを
用いて塗布し、フォトマスクにて照射しない部分を被っ
た後、ポリ塩化ビニル板(1)の図1に示したエネルギ
ー線硬化性組成物[e1]硬化物層1(2)となる部分
のみをウシオ電機製のマルチライト200型露光装置用
光源ユニットにて窒素雰囲気中で50mW/cm2 の紫外線
を20秒間照射した。紫外線照射後、水流にて未硬化物
を洗浄除去することにより、後の製造工程により分液室
低接触角部(6)の底となる、図1に示した形状の厚み
102μm のエネルギー線硬化性組成物[e1]硬化物
層1(2)を形成した。
[Example 1] [Preparation of member (A)] The center of a 10 cm x 10 cm x 2 mm plate made of transparent rigid polyvinyl chloride (manufactured by Sekisui Molding Co., Ltd.) [p1] in an area of 5 cm x 2.5 cm ( The energy ray-curable composition [e1] is applied to the area including the area 1) by using a 127 μm bar coater, and the area not irradiated with a photomask is covered. Then, as shown in FIG. 1 of the polyvinyl chloride plate (1). Only the part to be the energy beam curable composition [e1] cured product layer 1 (2) was exposed to UV light of 50 mW / cm 2 for 20 seconds in a nitrogen atmosphere using a light source unit for a Multilight 200 type exposure apparatus manufactured by Ushio Inc. Irradiated. After irradiation with ultraviolet rays, the uncured material is washed and removed with a water flow, so that an energy ray cured with a thickness of 102 μm and having the shape shown in FIG. The curable composition [e1] cured product layer 1 (2) was formed.

【0073】次いで、エネルギー線硬化性組成物[e
1]硬化物層1(2)の未形成部(2’)にエネルギー
線硬化性組成物[e2]を127μm のバーコーターを
用いて塗布し、図1の(2)部分をフォトマスクで被っ
た後、窒素雰囲気中で上記と同じ紫外線を照射した。紫
外線照射後、水流にてエネルギー線硬化性組成物[e
1]硬化物層1(2)の表面に付着していた未硬化物を
洗浄除去することにより、ポリ塩化ビニル板(1)の
(2’)部分に厚み102μm のエネルギー線硬化性組
成物[e2]硬化物層1(2’)を形成した。
Next, the energy ray-curable composition [e
1] The energy ray-curable composition [e2] is applied to the unformed portion (2 ′) of the cured product layer 1 (2) using a 127 μm bar coater, and the portion (2) in FIG. 1 is covered with a photomask. After that, the same ultraviolet ray was irradiated in a nitrogen atmosphere. After irradiation with ultraviolet rays, the energy ray-curable composition [e
1) An energy-ray-curable composition having a thickness of 102 μm on the (2 ′) portion of the polyvinyl chloride plate (1) by washing and removing the uncured substance adhering to the surface of the cured substance layer 1 (2) [ e2] A cured product layer 1 (2 ′) was formed.

【0074】硬化物層1上に、エネルギー線硬化性組成
物[e1]を127μm のバーコーターを用いて塗布
し、図2に示した形状の、流路(4)、流入路(5)、
分液室低接触角部(6)、分液室高接触角部(6’)、
流出路(7)となる部分及び図2の紙面内上半分部分
(3’)をフォトマスクで被った後、窒素雰囲気中で上
記と同じ紫外線を30秒間照射した。紫外線照射後、水
流にて未硬化物を洗浄除去することにより、エネルギー
線硬化性組成物[e1]硬化物層2(3)を形成した。
The energy ray-curable composition [e1] is applied onto the cured product layer 1 using a 127 μm bar coater, and the flow path (4), the inflow path (5), and the like shown in FIG.
Separation chamber low contact angle part (6), separation chamber high contact angle part (6 '),
After covering the part to be the outflow path (7) and the upper half part (3 ′) in the paper surface of FIG. 2 with a photomask, the same ultraviolet ray as above was irradiated in a nitrogen atmosphere for 30 seconds. After the ultraviolet irradiation, the uncured material was washed and removed with a stream of water to form a cured material layer 2 (3) of the energy ray-curable composition [e1].

【0075】さらに、該ポリ塩化ビニル板(1)のエネ
ルギー線硬化性組成物[e1]硬化物層2(3)が形成
されていない部分に、エネルギー線硬化性組成物[e
2]を127μm のバーコーターを用いて塗布し、図2
に示した形状の、流路(4)、流入路(5’)、分液室
低接触角部(6)、分液室高接触角部(6’)、流出路
(7’)となる部分及び図2の紙面内下半分部分(3)
をフォトマスクで被った後、窒素雰囲気中で上記と同じ
紫外線を30秒間照射した。紫外線照射後、水流にてエ
ネルギー線硬化性組成物[e1]硬化物層2(3)の表
面に付着した未硬化物を洗浄除去することにより、エネ
ルギー線硬化性組成物[e2]硬化物層2(3’)を形
成した。
Further, the energy ray-curable composition [e1] of the polyvinyl chloride plate (1) was formed on the portion where the cured product layer 2 (3) was not formed.
2] was applied using a 127 μm bar coater, and FIG.
The flow path (4), the inflow path (5 '), the separation chamber low contact angle section (6), the separation chamber high contact angle section (6'), and the outflow path (7 ') have the shapes shown in FIG. Part and the lower half part (3) in the drawing of FIG.
Was covered with a photomask, and then irradiated with the same ultraviolet rays for 30 seconds in a nitrogen atmosphere. After irradiating the ultraviolet rays, the energy beam-curable composition [e1] cured product layer is washed and removed by a water stream to remove the uncured material attached to the surface of the cured product layer 2 (3). 2 (3 ′) was formed.

【0076】以上の工程を経た部材には、エネルギー線
硬化性組成物[e1]硬化物層2(3)及びエネルギー
線硬化性組成物[e2]硬化物層2(3’)の欠損部と
して幅240μm 、深さ102μm 、長さ3cmの溝状の
流路(4)、それぞれ幅120μm 、深さ102μm の
流入路(5、5’)、3mm×3mmの分液室(6)、及び
それぞれ幅120μm 、深さ102μm の流出路(7、
7’)が形成されている。その後、流入路(5、5’)
及び流出路(7、7’)の端部に直径0.5mmのキリ穴
を穿ってデバイス外からの流入口(8、8’)及びデバ
イス外への流出口(9、9’)を形成して、部材(A)
[A1]を得た。
The member having undergone the above-described steps is provided as a defective portion of the energy ray-curable composition [e1] cured product layer 2 (3) and the energy ray-curable composition [e2] cured product layer 2 (3 ′). A groove-shaped flow path (4) having a width of 240 μm, a depth of 102 μm, and a length of 3 cm, an inflow channel (5, 5 ′) having a width of 120 μm and a depth of 102 μm, and a separation chamber (6) of 3 mm × 3 mm, respectively. Outflow channel with a width of 120 μm and a depth of 102 μm (7,
7 ′) is formed. Then the inflow channel (5, 5 ')
In addition, a hole having a diameter of 0.5 mm is formed at the end of the outflow channel (7, 7 ') to form an inflow port (8, 8') from outside the device and an outflow port (9, 9 ') outside the device. And the member (A)
[A1] was obtained.

【0077】〔部材(B)の接着〕ポリプロピレン二軸
延伸フィルム(二村化学社製の「FOR」、厚さ30μ
m)(図示せず)のコロナ処理面に、127μm のバー
コーターを用いてエネルギー線硬化性組成物[e3]を
塗布し、次いで、窒素雰囲気中で、上記と同じ紫外線を
1秒間照射して、塗膜を流動性は喪失したものの不完全
硬化の状態とした。この塗膜面を部材(A)[A1]の
溝が形成された面に貼り合わせ、ポリプロピレン二軸延
伸フィルム側から上記と同じ紫外線をさらに60秒間照
射して塗膜を完全硬化させることによって、エネルギー
線硬化性組成物[e3]硬化物(10)で構成された厚
さ103μm のシート状の部材(B)[B1]を形成す
ると同時に部材(A)[A1]の表面に接着し、それら
の間に高さ102μm 、幅240μm 、長さ3cmの毛細
管状の流路(4)、幅120μm 、深さ102μm の毛
細管状の流入路(5、5’)、3mm×3mm×102μm
の分液室(6、6’)、幅120μm 、深さ102μm
の毛細管状の流出路(7、7’)を形成した。その後、
ポリプロピレン二軸延伸フィルムを剥離し、図2に示し
た5cm×2.5cmの範囲を切り出して、微小ケミカルデ
バイス[D1]を得た。
[Adhesion of member (B)] Polypropylene biaxially stretched film (“FOR” manufactured by Nimura Chemical Co., Ltd., thickness 30 μm)
m) The energy ray-curable composition [e3] is applied to the corona-treated surface (not shown) using a 127 μm bar coater, and then irradiated with the same ultraviolet ray as described above for 1 second in a nitrogen atmosphere. The coating film was in an incompletely cured state although the fluidity was lost. The coating film surface is bonded to the grooved surface of the member (A) [A1], and the same ultraviolet light is irradiated from the polypropylene biaxially stretched film side for another 60 seconds to completely cure the coating film. A sheet-shaped member (B) [B1] having a thickness of 103 μm and composed of the energy ray-curable composition [e3] cured product (10) is simultaneously formed and adhered to the surface of the member (A) [A1]. Capillary channel (4) having a height of 102 μm, a width of 240 μm, and a length of 3 cm, a capillary inflow channel (5, 5 ′) having a width of 120 μm and a depth of 102 μm, 3 mm × 3 mm × 102 μm
Separation chamber (6, 6 ′), width 120 μm, depth 102 μm
Outflow channels (7, 7 ′) were formed. afterwards,
The polypropylene biaxially stretched film was peeled off, and a 5 cm × 2.5 cm area shown in FIG. 2 was cut out to obtain a microchemical device [D1].

【0078】〔各部の水との接触角〕用いた素材の水と
の接触角を表1に示した。微小ケミカルデバイス[D
1]の分液室(6、6’)は、流路との接続口付近にお
ける部材(A)側の面及び図2の紙面内上側の側面の水
との接触角が22°の低接触角部分(6)であり、分液
室(6、6’)内の部材(A)側の面の残りの部分、及
び部材(B)側の面が水との接触角が68°の高接触角
部分(6’)、分液室の図2の紙面内下側側面が91°
の高接触角部分であった。また、分液室(6)の流出路
(7’)との接続口付近における部材(A)側の面は、
水との接触角が91°の高接触角部分となっていた。ま
た、流路(4)は、部材(A)側の面及び一方の側面の
水との接触角が22°、他方の側面が91°、部材
(B)側の面が68°であった。流出路(7)は、部材
(A)側の面及び両側面の水との接触角が22°、部材
(B)側の面が水との接触角が68°であり、流出路
(7’)は、部材(A)側の面及び両側面の水との接触
角が91°、部材(B)側の面は68°であった。
[Contact Angles of Each Part with Water] The contact angles of the raw materials used with water are shown in Table 1. Micro chemical device [D
The liquid separation chamber (6, 6 ′) of [1] has a low contact angle of 22 ° with water on the surface on the member (A) side near the connection port with the flow path and on the upper side surface in FIG. The remaining portion of the surface on the member (A) side and the surface on the member (B) side in the liquid separation chamber (6, 6 ′) having a contact angle with water of 68 ° are corner portions (6). The contact angle portion (6 '), the lower side surface of the liquid separation chamber in FIG.
Was a high contact angle portion. Further, the surface on the member (A) side near the connection port with the outflow channel (7 ′) of the liquid separation chamber (6) is as follows:
The contact angle with water was a high contact angle portion of 91 °. In the flow path (4), the contact angle with water on the surface on the member (A) side and one side surface was 22 °, the other side surface was 91 °, and the surface on the member (B) side was 68 °. . The outflow channel (7) has a contact angle of 22 ° with water on the surface on the member (A) side and both side surfaces, and a contact angle with water of 68 ° on the member (B) side. '), The contact angle with water on the surface on the member (A) side and on both side surfaces was 91 °, and the surface on the member (B) side was 68 °.

【0079】〔液−液接触試験〕微小ケミカルデバイス
[D1]を、部材(A)が上側になるように設置し、マ
イクロシリンジにて、流入口(7)から水を注入し、流
出口(9)から流出を開始した後、マイクロシリンジに
て、流入口(7’)からn−ヘキサンを注入し、両者と
も流量を0.01mm3 /秒とすると、2液は流路(4)
を層状で流れ、分液室(6)を経て、水は流出路(7)
に入って流出口(9)から流出し、n−ヘキサンは流出
路(7’)に入って流出口(9’)から流出した。
[Liquid-Liquid Contact Test] The microchemical device [D1] was placed so that the member (A) was on the upper side, water was injected from the inlet (7) with a microsyringe, and the outlet ( after starting the outflow from 9) at microsyringe inlet (7 ') from the injected n- hexane and the flow rate both the 0.01 mm 3 / sec, the two-liquid flow path (4)
Flows in a layer form, passes through a liquid separation chamber (6), and water flows out of an outflow path (7).
Then, n-hexane entered the outflow channel (7 ') and flowed out of the outlet (9').

【0080】また、水の流量を0.5倍、n−ヘキサン
の流量を1,5倍にしたところ、水とn−ヘキサンはそ
れぞれが凝集して塊状となって流路(4)中を流れた
が、水は分液室の低接触角部分(6)に付着し、n−ヘ
キサンは分液室の高接触角部分(6’)に付着して分離
され、それぞれが独立に流出路(7)及び流出路
(7’)から流出した。さらにこのとき、衝撃的な流量
変化や加速度を伴うデバイスの姿勢変化があっても独立
に流出する状態に変化はなかった。
When the flow rate of water was increased by 0.5 times and the flow rate of n-hexane was increased by 1.5 times, the water and n-hexane respectively aggregated and formed a lump in the flow path (4). As it flows, water adheres to the low contact angle part (6) of the separation chamber, and n-hexane adheres to the high contact angle part (6 ′) of the separation chamber and is separated. (7) and outflow from the outflow channel (7 '). Furthermore, at this time, there was no change in the state of independent outflow even if there was a sudden change in the flow rate or a change in the attitude of the device accompanying acceleration.

【0081】<比較例1>本比較例では、分液室の低接
触角部分の水との接触角と高接触角部分の水との接触角
の差が10°未満である例を示した。
<Comparative Example 1> In this comparative example, the difference between the contact angle with water at the low contact angle portion and the contact angle with water at the high contact angle portion of the liquid separation chamber was less than 10 °. .

【0082】〔微小ケミカルデバイスの作製〕実施例1
において、エネルギー線硬化性組成物[e2]及びエネ
ルギー線硬化性組成物[e3]に代えて、エネルギー線
硬化性組成物[e4]を使用した以外は、実施例1と同
様にして、微小ケミカルデバイス[CD1]を作製し
た。
[Production of microchemical device] Example 1
In the same manner as in Example 1 except that the energy ray-curable composition [e4] was used instead of the energy ray-curable composition [e2] and the energy ray-curable composition [e3], Device [CD1] was produced.

【0083】〔各部の水との接触角〕即ち、微小ケミカ
ルデバイス[CD1]の分液室(6、6’)は、流路と
の接続口付近における部材(A)側の面及び図2の紙面
内上側の側面の水との接触角が22°の低接触角部分
(6)であり、分液室(6、6’)内の部材(A)側の
面の残りの部分、及び部材(B)側の面が水との接触角
が68°の高接触角部分(6’)、分液室の図2の紙面
内下側側面が30°であった。また、分液室(6)の流
出路(7’)との接続口付近における部材(A)側の面
は、水との接触角が30°となっていた。また、流路
(4)は、部材(A)側の面及び一方の側面の水との接
触角が22°、他方の側面が30°、部材(B)側の面
が68°であった。流出路(7)は、部材(A)側の面
及び両側面の水との接触角が22°、部材(B)側の面
が水との接触角が68°であり、流出路(7’)は、部
材(A)側の面及び両側面の水との接触角が30°、部
材(B)側の面は68°であった。
[Contact Angle of Each Part with Water] In other words, the liquid separation chambers (6, 6 ') of the microchemical device [CD1] are located on the surface of the member (A) near the connection port with the flow path and in FIG. Is a low contact angle portion (6) having a contact angle of 22 ° with water on the upper side surface of the paper surface, the remaining portion of the surface on the member (A) side in the liquid separation chamber (6, 6 ′), and The surface on the member (B) side had a high contact angle portion (6 ′) having a contact angle with water of 68 °, and the lower side surface of the liquid separating chamber in FIG. 2 was 30 °. In addition, the surface on the member (A) side near the connection port with the outflow path (7 ′) of the liquid separation chamber (6) had a contact angle with water of 30 °. In the channel (4), the contact angle between the surface on the member (A) side and one side surface with water was 22 °, the other side surface was 30 °, and the surface on the member (B) side was 68 °. . The outflow channel (7) has a contact angle of 22 ° with water on the surface on the member (A) side and both side surfaces, and a contact angle with water of 68 ° on the member (B) side. '), The contact angle with water on the surface on the member (A) side and on both side surfaces was 30 °, and the surface on the member (B) side was 68 °.

【0084】〔液−液接触試験〕微小ケミカルデバイス
[CD1]について実施例1と同様の試験を行ったとこ
ろ、体積流量比1:1では水とn−ヘキサンは層状に流
れ、微妙な調節を行うと流出路から独立に流出させるこ
とは可能ではあったが、相当に困難であり、僅かな流量
変化やデバイスの姿勢変化により分液室で分離されず、
流出路(7)、流出路(7’)の双方又は一方から、水
とn−ヘキサンの両者が流出した。
[Liquid-Liquid Contact Test] The same test as in Example 1 was conducted on the microchemical device [CD1]. At a volume flow ratio of 1: 1, water and n-hexane flowed in layers, and fine adjustment was performed. When this was done, it was possible to make it flow out independently from the outflow channel, but it was quite difficult, and it was not separated in the separation chamber due to slight flow rate changes and changes in the device attitude.
Both water and n-hexane flowed out from both or one of the outflow channel (7) and the outflow channel (7 ′).

【0085】また、体積流量比が0.5:1.5では、
2液はそれぞれ凝集し、塊状となって流路を流れ、分液
室で分離されずに流出路(7)、流出路(7’)の双方
又は一方から、水とn−ヘキサンの両者が流出した。
When the volume flow ratio is 0.5: 1.5,
The two liquids are respectively agglomerated, aggregated and flow through the flow path, and are not separated in the liquid separation chamber, and both water and n-hexane are discharged from both or one of the outflow path (7) and the outflow path (7 ′). Leaked.

【0086】即ち、分液室の低接触角部分の水との接触
角と高接触角部分の水との接触角の差が8°では、互い
に混和しない2液は分離が不十分となることがわかる。
That is, if the difference between the contact angle with water at the low contact angle portion and the contact angle with water at the high contact angle portion of the separation chamber is 8 °, the two immiscible liquids will not be sufficiently separated. I understand.

【0087】<実施例2>本実施例では、分液室の低接
触角部分の水との接触角と高接触角部分の水との接触角
の差が10°を若干上回る例を示した。
<Embodiment 2> In this embodiment, an example was shown in which the difference between the contact angle with water at the low contact angle portion and the contact angle with water at the high contact angle portion of the liquid separation chamber was slightly more than 10 °. .

【0088】〔微小ケミカルデバイスの作製〕実施例1
において、エネルギー線硬化性組成物[e2]及びエネ
ルギー線硬化性組成物[e3]に代えて、エネルギー線
硬化性組成物[e5]を使用した以外は、実施例1と同
様にして、微小ケミカルデバイス[D2]を作製した。
[Production of microchemical device] Example 1
In the same manner as in Example 1 except that the energy ray-curable composition [e2] was used instead of the energy ray-curable composition [e2] and the energy ray-curable composition [e3], Device [D2] was produced.

【0089】〔各部の水との接触角〕微小ケミカルデバ
イス[D2]は、分液室(6、6’)の流路(4)との
接続口付近における部材(A)側の面及び一方の側面の
水との接触角が22°、部材(A)側の面の流出路
(7’)との接続口付近の部分、及び部材(B)側の面
と他方の側面が36°であった。流路(4)は、部材
(A)側の面及び一方の側面の水との接触角が22°、
他方の側面及び部材(B)側の面が36°であった。流
出路(7)は、両側面の水との接触角が22°、部材
(A)側の面及び部材(B)側の面が36°であり、流
出路(7’)は、内面全部が36°であった。
[Contact Angle of Each Part with Water] The microchemical device [D2] is provided on the surface on the member (A) side near the connection port with the flow path (4) of the liquid separation chamber (6, 6 '). The contact angle of the side surface of the member with water is 22 °, the portion of the member (A) side near the connection port with the outflow passage (7 ′), and the member (B) side surface and the other side surface are 36 °. there were. The flow path (4) has a contact angle of 22 ° with water on the surface on the member (A) side and one side surface,
The other side surface and the surface on the member (B) side were 36 °. The outflow channel (7) has a contact angle with water on both sides of 22 °, the surface on the member (A) side and the surface on the member (B) side is 36 °, and the outflow channel (7 ′) has an entire inner surface. Was 36 °.

【0090】〔液−液接触試験〕微小ケミカルデバイス
[D2]について実施例1と同様の試験を行ったとこ
ろ、水とn−ヘキサンの体積流量比が1:1の時は実施
例1と同様に、水とn−ヘキサンは流路(4)中を層状
に流れ、分液室(6、6’)にて分離され、流出路
(7)と流出路(7’)に分離されて入り、流出口
(9)と流出口(9’)からそれぞれ流出した。しか
し、n−ヘキサンの流量を一定とし、水の流量を1.5
倍にしたところ、流出口(8’)から、n−ヘキサンと
同時に水が流出した。
[Liquid-Liquid Contact Test] The same test as in Example 1 was conducted on the microchemical device [D2]. When the volume flow ratio of water to n-hexane was 1: 1, the same as in Example 1 was performed. , Water and n-hexane flow in layers in the flow path (4), are separated in the separation chambers (6, 6 '), and are separated into the outflow path (7) and the outflow path (7'). , And flowed out from the outlet (9) and the outlet (9 '), respectively. However, when the flow rate of n-hexane is constant and the flow rate of water is 1.5
As a result, water flowed out of the outlet (8 ') simultaneously with n-hexane.

【0091】また、体積流量比が0.5:1.5では、
2液はそれぞれ凝集し、塊状となって流路を流れたが、
分液室で分離され、流出路(7)、流出路(7’)から
それぞれ独立に流出させることが可能であった。しかし
ながら、衝撃的な流量変化や加速度を伴うデバイスの姿
勢変化により分液室で分離されず、流出路(7)、流出
路(7’)の双方又は一方から、水とn−ヘキサンの両
者が流出しがちであった。
When the volume flow ratio is 0.5: 1.5,
The two liquids agglomerated each other and formed a lump and flowed through the flow path.
The liquid was separated in the liquid separation chamber, and could be independently discharged from the outflow channel (7) and the outflow channel (7 ′). However, it is not separated in the liquid separation chamber due to a change in the flow rate or a change in the position of the device accompanied by an acceleration, and both water and n-hexane are discharged from both or one of the outflow channel (7) and the outflow channel (7 ′). Tend to spill.

【0092】即ち、分液室の低接触角部分の水との接触
角と高接触角部分の水との接触角の差が14°あると、
互いに混和しない2液を分離して流出させることが可能
であることがわかる。
That is, if the difference between the contact angle with water at the low contact angle portion and the contact angle with water at the high contact angle portion of the liquid separation chamber is 14 °,
It can be seen that it is possible to separate and flow out two liquids that are immiscible with each other.

【0093】[実施例3] 〔部材(A)の作製〕ポリカーボネート(三菱エンジニ
アリングプラスチックス社製の「ユーピロンS−200
0」)[p2]製の10cm×10cm×2mmの板(図示せ
ず)の中心部5cm×2.5cmの範囲(11)を含む範囲
に、エネルギー線硬化性組成物[e1]を127μm の
バーコーターを用いて塗布した後、フォトマスクを通し
て、図3に示した3mm×1.5mmの範囲(12)に、ウ
シオ電機製のマルチライト200型露光装置用光源ユニ
ットを用いて窒素雰囲気中で50mW/cm2 の紫外線を2
0秒間照射して、図3に示した3mm×1.5mmの範囲
(12)に、厚み102μm のエネルギー線硬化性組成
物[e1]硬化物層1(12)を形成した。紫外線照射
後、未硬化部を流水にて洗浄除去した。
[Example 3] [Production of member (A)] Polycarbonate ("Iupilon S-200" manufactured by Mitsubishi Engineering-Plastics Corporation)
0 ") The energy ray-curable composition [e1] of 127 μm in a range including a range (11) of 5 cm × 2.5 cm at the center of a 10 cm × 10 cm × 2 mm plate (not shown) made of [p2]. After application using a bar coater, through a photomask, into a 3 mm × 1.5 mm area (12) shown in FIG. 3 using a light source unit for a multilight 200 type exposure apparatus manufactured by Ushio Inc. in a nitrogen atmosphere. 50 mW / cm 2 UV light 2
Irradiation was performed for 0 second to form a cured product layer 1 (12) of the energy ray-curable composition [e1] having a thickness of 102 μm in a range (12) of 3 mm × 1.5 mm shown in FIG. After the ultraviolet irradiation, the uncured portion was washed and removed with running water.

【0094】次いで、ポリカーボネート板(11)の残
りの部分に、エネルギー線硬化性組成物[e2]を12
7μm のバーコーターを用いて塗布した後、エネルギー
線硬化性組成物[e1]硬化物層1(12)以外の部分
に同じ紫外線を20秒間照射してエネルギー線硬化性組
成物[e2]硬化物層1(12’)を形成した。
Next, 12 parts of the energy ray-curable composition [e2] was added to the remaining part of the polycarbonate plate (11).
After applying using a 7 μm bar coater, the same ultraviolet ray is irradiated for 20 seconds to the portion other than the energy ray-curable composition [e1] cured product layer 1 (12) for 20 seconds, and the energy ray-curable composition [e2] cured product Layer 1 (12 ') was formed.

【0095】次いで、これらの層の上にエネルギー線硬
化性組成物[e2]を127μm のバーコーターを用い
て塗布した後、フォトマスクを通して、図2に示した流
路(14)及び分液室(15、15’)となるべき部分
をフォトマスクで被って窒素雰囲気中で同じ紫外線を照
射した。紫外線照射後、水流及びアセトンにて未硬化物
を洗浄除去することにより、図2に示した形状の、流路
(14)となるべき幅210μm 、深さ102μm の
溝、及び分液室(15、15’)となるべき幅3mm、長
さ3mm、深さ102μm の凹部を有する、厚み102μ
m のエネルギー線硬化性組成物[e1]硬化物層2(1
3)を形成し、部材(A)[A3]とした。このとき、
図1のエネルギー線硬化性組成物[e1]硬化物層1
(12)は、分液室(15、15’)となるべきの凹部
の、図4における紙面内下側の底面に形成されていた。
Next, the energy ray-curable composition [e2] was applied on these layers using a 127 μm bar coater, and then, through a photomask, the flow path (14) and the liquid separation chamber shown in FIG. The part to be (15, 15 ') was covered with a photomask and irradiated with the same ultraviolet ray in a nitrogen atmosphere. After the ultraviolet irradiation, the uncured material is washed and removed with a water stream and acetone to form a groove having a width of 210 μm and a depth of 102 μm to be a flow path (14) and a separation chamber (15) having the shape shown in FIG. , 15 ′) having a recess having a width of 3 mm, a length of 3 mm and a depth of 102 μm, and a thickness of 102 μm.
m of the energy ray-curable composition [e1] cured product layer 2 (1
3) was formed to obtain the member (A) [A3]. At this time,
Energy ray curable composition [e1] cured product layer 1 of FIG.
(12) was formed on the bottom surface on the lower side in the drawing of FIG. 4 of the concave portion that should become the liquid separation chamber (15, 15 ′).

【0096】〔部材(B)の接着〕紫外線照射パターン
が部材(A)の場合の鏡像体であること、かつ、エネル
ギー線硬化性組成物[e2]硬化物層3(19’)形成
のための紫外線照射時間が2秒であること以外は、部材
(A)の作製の前半と同様にして、図5に示したポリカ
ーボネート板(18)に、図3の鏡像体である形状のエ
ネルギー線硬化性組成物[e1]硬化物の層3(19)
及びエネルギー線硬化性組成物[e2]硬化物層3(1
9’)となるべき流動性を喪失した半硬化物の層が形成
された部材(B)前駆体を得た。
[Adhesion of the member (B)] The ultraviolet irradiation pattern is a mirror image in the case of the member (A), and the cured layer 3 (19 ') of the energy ray-curable composition [e2] is formed. 5 was applied to the polycarbonate plate (18) shown in FIG. 5 in the same manner as in the first half of the production of the member (A) except that the ultraviolet irradiation time was 2 seconds. Composition [e1] cured product layer 3 (19)
And the energy ray-curable composition [e2] cured product layer 3 (1
The precursor of the member (B) in which a layer of the semi-cured material having lost the fluidity to be 9 ′) was formed was obtained.

【0097】次いで、部材(B)に形成された半硬化物
の層を部材(A)[A3]の溝が形成された面に、パタ
ーンが重なるように貼り合わせた後、上記と同じ紫外線
をさらに30秒間照射して塗膜を完全硬化させることに
より、エネルギー線硬化性組成物[e1]硬化物層3
(19)、エネルギー線硬化性組成物[e2]硬化物層
3(19’)及びポリカーボネート板(18)からなる
部材(B)[B3]を形成すると同時に、部材(A)
[A3]の表面に接着し、それらの間に幅210μm 、
高さ102μm 、長さ3cmの毛細管状の流路(14)、
及び、幅3mm、長さ3mm、深さ102μm の分液室(1
5、15’)を形成した。
Next, the layer of the semi-cured material formed on the member (B) is bonded to the surface of the member (A) [A3] where the groove is formed so that the pattern overlaps, and then the same ultraviolet rays as above are applied. By further irradiating for 30 seconds to completely cure the coating film, the energy ray-curable composition [e1] cured product layer 3
(19) At the same time as forming the members (B) and [B3] composed of the energy ray-curable composition [e2] cured product layer 3 (19 ′) and the polycarbonate plate (18), the member (A)
Adhered to the surface of [A3], between them 210 μm wide,
A capillary channel (14) having a height of 102 μm and a length of 3 cm,
And a liquid separation chamber (1 mm wide, 3 mm long, 102 μm deep)
5, 15 ').

【0098】次いで、流路(14)の端部、分液室の低
接触角部分(15)の端部及び分液室の高接触角部分
(15’)の端部において、部材(A)、部材(B)
に、直径0.5mmのキリ孔を穿ち、部材(A)[A3]
を貫通する流入路(16)、流出路(17)及び部材
(B)[B3]を貫通する流入路(16’)、流出路
(17’)を形成した後、図2に示した5cm×2.5cm
の範囲を切り出して微小ケミカルデバイス[D3]を作
製した。
Next, at the end of the flow path (14), the end of the low contact angle part (15) of the separation chamber and the end of the high contact angle part (15 ') of the separation chamber, the member (A) , Member (B)
, A drill hole with a diameter of 0.5 mm is drilled into the member (A) [A3]
After forming the inflow channel (16), the outflow channel (17), and the inflow channel (16 ′) and the outflow channel (17 ′) that penetrate the member (B) [B3], 5 cm × 2.5cm
Was cut out to produce a microchemical device [D3].

【0099】〔各部の水との接触角〕用いた素材の水と
の接触角を表1に示した。微小ケミカルデバイス[D
3]における分液室(15、15’)の内面は、部材
(A)面及び部材(B)面の図6における紙面内下半分
の部分が水との接触角が22°の低接触角部分(1
5)、部材(A)面及び部材(B)面の図6における紙
面内上半分の部分が水との接触角が91°の高接触角部
分(15’)及び全側面が91°の高接触角部分であっ
た。また、流路(14)の内面は、水との接触角が91
°であり、分液室の低接触角部(15)との接続部にお
ける流出路(16)の内面の水との接触角は22°、高
接触角部(15’)との接続部における流出路(16)
の内面の水との接触角は91°であった。
[Contact Angles of Each Part with Water] The contact angles of the materials used with water are shown in Table 1. Micro chemical device [D
In [3], the inner surface of the liquid separation chamber (15, 15 ') has a low contact angle of 22 [deg.] With the lower half of the member (A) surface and the member (B) surface in FIG. Part (1
5), the upper half of the surface of the member (A) and the surface of the member (B) in FIG. 6 in FIG. 6 has a high contact angle portion (15 ′) having a contact angle with water of 91 ° and a height of 91 ° on all side surfaces It was the contact angle part. The inner surface of the channel (14) has a contact angle with water of 91%.
°, the contact angle of the inner surface of the outflow passage (16) with water at the connection portion with the low contact angle portion (15) of the separation chamber is 22 °, and the contact angle with the high contact angle portion (15 ′) at the connection portion. Outflow channel (16)
The contact angle of the inner surface with water was 91 °.

【0100】〔液−液接触試験〕微小ケミカルデバイス
[D3]を、流入路(16、16’)と流出路(17、
17’)がデバイスの側面となる向きに設置し、流入路
(16、16’)にそれぞれマイクロシリンジを接続し
て、流入路(16)から水、流入路(16’)からn−
ヘキサンをそれぞれ流量0.01mm3 /秒で注入する
と、水とn−ヘキサンはそれぞれ塊状となって流れた
が、分液室の低接触角部分(15)に水、分液室の高接
触角部分(15’)にn−ヘキサンが集まり、流出路
(17)から水、流出路(17’)からn−ヘキサンが
流出した。また、n−ヘキサンの流量を一定とし、水の
流量を0.5〜2倍に変化させても水とn−ヘキサンは
分離されて流出した。
[Liquid-liquid contact test] The microchemical device [D3] was connected to the inflow path (16, 16 ') and the outflow path (17, 16).
17 ′) is installed so as to face the side of the device, micro-syringes are connected to the inflow channels (16, 16 ′), and water is supplied from the inflow channel (16) and n− is supplied from the inflow channel (16 ′).
When hexane was injected at a flow rate of 0.01 mm 3 / sec, water and n-hexane respectively flowed in a lump, but the low contact angle portion (15) of the separation chamber and the high contact angle of the separation chamber (15). N-Hexane gathered in the portion (15 '), water flowed out of the outflow channel (17), and n-hexane flowed out of the outflow channel (17'). Even when the flow rate of n-hexane was kept constant and the flow rate of water was changed 0.5 to 2 times, water and n-hexane were separated and flowed out.

【0101】[実施例4] 〔親水性層形成材料の調製〕ポリエチレングリコールモ
ノ−4−ノニルフェニルエーテル(n’=10)(東京
化成工業社製の「PMNE10」)5部、2−メタクリ
ロイルオキシエチルアシッドホスフェート(大八化学工
業社製の「MR200」)5部及び水90部からなる溶
液を調製し、親水性層形成材料とした。
Example 4 [Preparation of Material for Forming Hydrophilic Layer] 5 parts of polyethylene glycol mono-4-nonylphenyl ether (n ′ = 10) (“PMNE10” manufactured by Tokyo Chemical Industry Co., Ltd.), 2-methacryloyloxy A solution composed of 5 parts of ethyl acid phosphate (“MR200” manufactured by Daihachi Chemical Industry Co., Ltd.) and 90 parts of water was prepared as a material for forming a hydrophilic layer.

【0102】〔部材(A)の作製〕ポリカーボネート
(三菱エンジニアリングプラスチックス社製の「ユーピ
ロンS−2000」)[p2]製の10cm×10cm×2
mmの板(図示せず)の中心部5cm×2.5cmの範囲(1
1)を含む範囲に、エネルギー線硬化性組成物[e1]
を127μm のバーコーターを用いて塗布した後、フォ
トマスクを通して、図3に示した3mm×1.5mmの範囲
(12)に、ウシオ電機製のマルチライト200型露光
装置用光源ユニットを用いて窒素雰囲気中で50mW/cm
2 の紫外線を3秒間照射して、完全に硬化していない半
硬化状態の塗膜を得た。紫外線照射後、水流にて非照射
部の未硬化物を除去した。未硬化物を除去後、該半硬化
塗膜を親水性層形成材料中に投入し、上記と同じ紫外線
を40秒間照射して塗膜を完全に硬化させると同時に、
表面に実質的に無視できる厚みに親水性化合物がグラフ
ト重合で結合した、厚み102μm のエネルギー線硬化
性組成物[e1]硬化物層1(12)を形成した。この
塗膜の水との接触角は5°であった。
[Production of member (A)] 10 cm × 10 cm × 2 made of polycarbonate (“Iupilon S-2000” manufactured by Mitsubishi Engineering-Plastics Corporation) [p2]
5cm x 2.5cm area (1
In the range including 1), the energy ray-curable composition [e1]
Was applied using a 127 μm bar coater, and then passed through a photomask into a 3 mm × 1.5 mm area (12) shown in FIG. 3 using a light source unit for a multilight 200 type exposure apparatus manufactured by Ushio Inc. 50mW / cm in atmosphere
By irradiating the ultraviolet ray of No. 2 for 3 seconds, a semi-cured coating film which was not completely cured was obtained. After the ultraviolet irradiation, the uncured material in the non-irradiated portion was removed with a water stream. After removing the uncured material, the semi-cured coating film is put into a hydrophilic layer forming material, and the same ultraviolet light is irradiated for 40 seconds to completely cure the coating film,
A cured product layer 1 (12) having a thickness of 102 μm, in which a hydrophilic compound was bonded by graft polymerization to a substantially negligible thickness on the surface, was formed. The contact angle of this coating film with water was 5 °.

【0103】さらに、ポリカーボネート板(11)の残
りの部分に、エネルギー線硬化性組成物[e2]を12
7μm のバーコーターを用いて塗布した後、エネルギー
線硬化性組成物[e1]硬化物層1(12)以外の部分
に、同じ紫外線を20秒間照射して、エネルギー線硬化
性組成物[e2]硬化物層1(12’)を形成した。
Further, 12 parts of the energy ray-curable composition [e2] was added to the remaining part of the polycarbonate plate (11).
After applying using a 7 μm bar coater, the same ultraviolet ray is irradiated for 20 seconds to the portion other than the energy ray-curable composition [e1] cured product layer 1 (12) to form the energy ray-curable composition [e2]. A cured product layer 1 (12 ′) was formed.

【0104】次いで、これらの層の上に、エネルギー線
硬化性組成物[e2]を127μmのバーコーターを用
いて塗布した後、フォトマスクを通して、図4に示した
流路(14)及び分液室(15、15’)となるべき部
分をフォトマスクで被って窒素雰囲気中で上記と同じ紫
外線を照射した。紫外線照射後、水流及びアセトンにて
未硬化物を洗浄除去することにより、図4に示した形状
の流路(14)となるべき幅210μm 、深さ102μ
m の溝及び分液室(15、15’)となるべき幅3mm、
長さ3mm、深さ102μm の凹部を有する、厚み102
μm のエネルギー線硬化性組成物[e1]硬化物層2
(13)を形成し、部材(A)[A4]とした。このと
き、図1のエネルギー線硬化性組成物[e1]硬化物層
1(12)は、分液室の低接触角部分(15)となるべ
きの凹部の底の、図4における紙面内下半分を占める位
置に形成されていた。
Next, the energy ray-curable composition [e2] was applied on these layers using a 127 μm bar coater, and then, through a photomask, the flow path (14) and the liquid separation shown in FIG. The portions to be chambers (15, 15 ') were covered with a photomask and irradiated with the same ultraviolet rays as described above in a nitrogen atmosphere. After the ultraviolet irradiation, the uncured material is washed and removed with a water stream and acetone to form a flow path (14) having the shape shown in FIG.
3mm wide to be a groove and a liquid separation chamber (15, 15 ')
Thickness 102 having a concave portion having a length of 3 mm and a depth of 102 μm
μm energy ray-curable composition [e1] cured product layer 2
(13) was formed to obtain the member (A) [A4]. At this time, the energy ray-curable composition [e1] cured product layer 1 (12) in FIG. 1 is positioned below the bottom of the concave portion that should become the low contact angle portion (15) of the liquid separation chamber, in the paper plane in FIG. It was formed in a position occupying half.

【0105】〔部材(B)の接着〕紫外線照射パターン
が部材(A)の場合の鏡像体で、かつ、エネルギー線硬
化性組成物[e2]硬化物の層3(19’)となるべき
部分への紫外線照射時間が3秒であること以外は、部材
(A)[A4]作製の前半と同様にして、図5に示した
図3の鏡像体である形状のポリカーボネート板(18)
に、エネルギー線硬化性組成物[e1]硬化物層3(1
9)及びエネルギー線硬化性組成物[e2]硬化物層3
(19’)となるべき流動性を喪失した半硬化物の層が
形成された部材(B)前駆体を得た。
[Adhesion of Member (B)] A portion to be the mirror image body when the ultraviolet irradiation pattern is the member (A) and to become the layer 3 (19 ') of the cured product of the energy ray-curable composition [e2]. The polycarbonate plate (18) having the shape of the mirror image of FIG. 3 shown in FIG. 5 in the same manner as in the first half of the production of the member (A) [A4], except that the ultraviolet irradiation time to the member was 3 seconds.
The energy ray-curable composition [e1] cured product layer 3 (1
9) and energy ray-curable composition [e2] cured product layer 3
A member (B) precursor in which a layer of a semi-cured material having lost fluidity to be (19 ′) was formed was obtained.

【0106】次いで、部材(B)に形成された半硬化物
の層を部材(A)[A4]の溝が形成された面に、パタ
ーンが重なるように貼り合わせ、上記と同じ紫外線をさ
らに30秒間照射して塗膜を完全硬化させることによ
り、エネルギー線硬化性組成物[e1]の硬化物層3
(20)、エネルギー線硬化性組成物[e2]の硬化物
層3(19’)及びポリカーボネート板(18)からな
る部材(B)[B4]を形成すると同時に、部材(A)
[A4]の表面に接着し、それらの間に幅210μm 、
高さ102μm の毛細管状の流路(14)、及び、幅3
mm、長さ3mm、深さ102μm の分液室(15、1
5’)を形成した。
Next, the layer of the semi-cured material formed on the member (B) is bonded to the groove-formed surface of the member (A) [A4] so that the pattern is overlapped, and the same ultraviolet rays as described above are further applied for 30 minutes. The cured product layer 3 of the energy ray-curable composition [e1] is obtained by completely irradiating the coating film by irradiating for 2 seconds.
(20) At the same time as forming the members (B) and [B4] composed of the cured product layer 3 (19 ′) of the energy ray-curable composition [e2] and the polycarbonate plate (18), the member (A)
Adhered to the surface of [A4] with a width of 210 μm between them,
Capillary channel (14) with a height of 102 μm and a width of 3
mm, length 3 mm, depth 102 μm
5 ′).

【0107】次いで、流路(14)の上流端、分液室の
低接触角部(15)端部及び分液室の高接触角部(1
5’)端部に、直径0.5mmのキリ孔を穿ち、部材
(A)[A3]を貫通した流入路(16)及び流出路
(17)及び部材(B)[B3]を貫通した流入路(1
6’)及び流出路(17’)を形成した後、図2に示し
た5cm×2.5cmの範囲を切り出して微小ケミカルデバ
イス[D3]を作製した。
Next, the upstream end of the flow path (14), the low contact angle part (15) end of the liquid separation chamber, and the high contact angle part (1) of the liquid separation chamber
5 ') An inflow passage (16) and an outflow passage (17) penetrating through the member (A) [A3] and an inflow penetrating through the member (B) [B3] are drilled at the ends. Road (1
After forming 6 ′) and the outflow channel (17 ′), a range of 5 cm × 2.5 cm shown in FIG. 2 was cut out to produce a microchemical device [D3].

【0108】〔各部の水との接触角〕用いた素材の水と
の接触角を表1に示した。微小ケミカルデバイス[D
3]は、分液室(15、15’)の内面が、部材(A)
面及び部材(B)面の図2における紙面内上半分の部分
が水との接触角が5°の低接触角部分、部材(A)面及
び部材(B)面の図2における紙面内下半分の部分が水
との接触角が91°の高接触角部分及び全側面が91°
の高接触角部分から構成されていた。また、流路(1
4)の内面の水との接触角は91°であり、分液室の低
接触角部(15)との接続部における流出路(16)の
内面の水との接触角は22°、高接触角部(15’)と
の接続部における流出路(16’)の内面の水との接触
角は91°であった。
[Contact Angles of Each Part with Water] The contact angles of the materials used with water are shown in Table 1. Micro chemical device [D
3] is that the inner surface of the liquid separation chamber (15, 15 ′) is a member (A)
2 is a low contact angle portion where the contact angle with water is 5 °, and the lower half of the surface of the member (A) and the surface of the member (B) in FIG. The high contact angle part where the half part has a contact angle with water of 91 ° and all sides are 91 °
Of high contact angle. In addition, the flow path (1
The contact angle with water on the inner surface of 4) is 91 °, and the contact angle with water on the inner surface of the outflow passage (16) at the connection portion with the low contact angle portion (15) of the liquid separation chamber is 22 ° and high. The contact angle with the water on the inner surface of the outflow channel (16 ') at the connection with the contact angle portion (15') was 91 °.

【0109】〔液−液接触試験〕実施例3と同様の試験
を行い、実施例3と同様の結果を得た。
[Liquid-Liquid Contact Test] The same test as in Example 3 was performed, and the same result as in Example 3 was obtained.

【0110】[実施例5]実施例3において、部材
(A)のエネルギー線硬化性組成物[e2]硬化物層1
(12’)の上へのエネルギー線硬化性組成物[e2]
の塗布に際し、127μm のバーコーター代えて、30
0μm のバーコーターを用いることにより、厚さ220
μm のエネルギー線硬化性組成物[e2]硬化物層2
(13)を形成したこと、流路寸法が幅300μm 、
高さ220μm であること、流出路(17’)として
直径1.6mmのキリ孔を穿ち、外径1.6mm、内径0.
5mmのポリ四フッ化エチレン製のチューブを流路(1
4)位置まで挿入し固定したこと、及び流出路(1
7)として直径0.5mmのキリ孔を流路(14)位置ま
でで穿ち、また流路(14)位置までの半分の深さまで
の範囲を直径1.6mmのキリ孔とし、外径1.6mm、内
径0.5mmのポリ四フッ化エチレン製のチューブを流路
(14)位置の半分の深さまで挿入し固定したこと、以
外は、実施例3と同様にして、微小ケミカルデバイス
[D5]を作製した。
Example 5 In Example 3, the energy ray-curable composition [e2] of the member (A) was used.
Energy ray-curable composition [e2] on (12 ′)
When coating with a bar coater of 127 μm, 30
By using a bar coater of 0 μm, a thickness of 220 μm can be obtained.
μm energy ray-curable composition [e2] cured layer 2
(13) that the flow path dimension is 300 μm in width,
A height of 220 μm, a drill hole of 1.6 mm in diameter as an outflow channel (17 ′), an outer diameter of 1.6 mm and an inner diameter of 0.
Pass a 5 mm polytetrafluoroethylene tube through the channel (1
4) Inserted and fixed to the position, and the outflow channel (1
As 7), a drill hole having a diameter of 0.5 mm is drilled up to the position of the flow path (14), and a half hole up to the depth of the flow path (14) is formed as a drill hole having a diameter of 1.6 mm. Microchemical device [D5] in the same manner as in Example 3 except that a tube made of polytetrafluoroethylene having a diameter of 6 mm and an inner diameter of 0.5 mm was inserted and fixed to half the depth of the position of the flow path (14). Was prepared.

【0111】〔各部の水との接触角〕微小ケミカルデバ
イス[D5]は、流出路(17)の分液室低接触角部
(15)との接続部における内面の水との接触角が22
°、流出路(17’)の分液室高接触角部(15’)と
の接続部の内面の水との接触角が110°であった以外
は、微小ケミカルデバイス[D3]と同様であった。
[Contact Angle of Each Part with Water] The microchemical device [D5] has a contact angle with water on the inner surface of the outflow path (17) at the connection part with the low contact angle part (15) of the separation chamber.
°, and the same as the microchemical device [D3], except that the contact angle with water on the inner surface of the connection portion of the outflow passage (17 ′) with the liquid separation chamber high contact angle portion (15 ′) was 110 °. there were.

【0112】〔液−液接触試験〕微小ケミカルデバイス
[D5]を、流入路(16、16’)と流出路(17、
17’)がデバイスの側面となる向きに設置し、流入路
(16、16’)にそれぞれマイクロシリンジを接続し
て、流入路(16)から水を流量0.04mm3 /秒で注
入すると、流出路(17)に接続されたチューブから水
が流出した。次いで、水を同様に注入しながら、流入路
(16’)からn−ヘキサンを流量0.04mm3 /秒で
注入すると、水とn−ヘキサンはそれぞれ凝集して塊状
で流れたが、分液室(15、15’)でそれぞれが凝
集、分離し、流出路(17)に接続されたチューブから
水、流出路(17’)に接続されたチューブからn−ヘ
キサンが流出した。
[Liquid-Liquid Contact Test] The microchemical device [D5] was connected to the inflow path (16, 16 ') and the outflow path (17, 16).
17 ′) is installed so as to face the side of the device, micro-syringes are connected to the inflow channels (16, 16 ′), and water is injected from the inflow channel (16) at a flow rate of 0.04 mm 3 / sec. Water flowed out of the tube connected to the outflow channel (17). Then, while n-hexane was injected at a flow rate of 0.04 mm 3 / sec from the inflow path (16 ′) while water was similarly injected, the water and n-hexane respectively aggregated and flowed in a lump. In the chambers (15, 15 '), they were coagulated and separated, and water flowed out of the tube connected to the outflow channel (17), and n-hexane flowed out of the tube connected to the outflow channel (17').

【0113】また、n−ヘキサンの流量を一定とし、水
の流量を0.5〜2倍に変化させても水とn−ヘキサン
は分離されて流出し、水とn−ヘキサンの体積流量比を
1とし、合計の流量を3倍にしても、水とn−ヘキサン
は分離されて流出した。さらに、階段状の流量変化や加
速度を伴うデバイスの姿勢変化があっても変化はなかっ
た。
Further, even if the flow rate of n-hexane is fixed and the flow rate of water is changed to 0.5 to 2 times, water and n-hexane are separated and flow out, and the volume flow ratio of water and n-hexane is changed. Was set to 1, and even if the total flow rate was tripled, water and n-hexane were separated and flowed out. Furthermore, there was no change even if there was a stepwise change in the flow rate or a change in the attitude of the device accompanying acceleration.

【0114】<実施例6> 〔微小ケミカルデバイスの作製〕実施例1において、エ
ネルギー線硬化性組成物[e2]に代えて、エネルギー
線硬化性組成物[e6]を使用した以外は、実施例1と
同様にして、微小ケミカルデバイス[D6]を作製し
た。
<Example 6> [Preparation of microchemical device] Example 1 was repeated except that the energy ray-curable composition [e6] was used in place of the energy ray-curable composition [e2]. In the same manner as in No. 1, a microchemical device [D6] was produced.

【0115】〔各部の水との接触角〕微小ケミカルデバ
イス[D6]は、分液室(6、6’)の部材(B)面及
び側面が水との接触角45°の高接触角部分(6’)で
あり、流出路(7’)の部材(B)面の水との接触角が
45°であり、流出路(7)は、内面全部が水との接触
角が45であった以外は、微小ケミカルデバイス[D
1]と同様であった。
[Contact Angle of Each Part with Water] The microchemical device [D6] has a high contact angle portion where the member (B) surface and the side surface of the liquid separation chamber (6, 6 ') have a contact angle of 45 ° with water. (6 ′), the contact angle of the outflow path (7 ′) with the water on the surface of the member (B) is 45 °, and the entire inner surface of the outflow path (7) has a contact angle of 45 °. Other than the micro chemical device [D
1].

【0116】〔液−液接触試験〕微小ケミカルデバイス
[D6]について、実施例1と同様の試験を行ったとこ
ろ、水とn−ヘキサンの体積流量比が1の時は、実施例
1と同様に、水とn−ヘキサンは流路(4)中を層状に
流れ、分液室(6、6’)にて分液され、水とn−ヘキ
サンは流出路(7)と流出路(7’)にそれぞれ独立に
入り、流出口(9)と流出口(9’)からそれぞれ流出
した。しかし、n−ヘキサンの流量を一定とし、水の流
量を1.5倍にしたところ、流出口(8’)から、n−
ヘキサンと同時に水が流出した。
[Liquid-Liquid Contact Test] The same test as in Example 1 was performed on the microchemical device [D6]. When the volume flow ratio between water and n-hexane was 1, the same as in Example 1 was performed. Then, water and n-hexane flow in a layered manner in the flow path (4) and are separated in the separation chambers (6, 6 ′), and the water and n-hexane are separated in the outflow path (7) and the outflow path (7). '), Respectively, and flowed out from the outlet (9) and the outlet (9'). However, when the flow rate of n-hexane was kept constant and the flow rate of water was increased by a factor of 1.5, n-hexane was supplied from the outlet (8 ').
Water eluted with hexane.

【0117】また、水とn−ヘキサンの体積流量比が
0.5:1.5では、2液はそれぞれ凝集し、塊状とな
って流路を流れたが、分液室(6、6’)で分離され、
流出路(7)、流出路(7’)からそれぞれ独立に流出
させることが可能であった。しかしながら、階段状の流
量変化や加速度を伴うデバイスの姿勢変化により分液室
で分離されず、流出路(7)、流出路(7’)の双方又
は一方から、水とn−ヘキサンの両者が流出しがちであ
った。
When the volume flow ratio of water to n-hexane was 0.5: 1.5, the two liquids were agglomerated and formed a lump and flowed through the flow path. )
The outflow path (7) and the outflow path (7 ′) can be independently discharged. However, it is not separated in the liquid separation chamber due to a stepwise change in the flow rate or a change in the attitude of the device accompanying acceleration, and both water and n-hexane are discharged from both or one of the outflow channel (7) and the outflow channel (7 ′). Tend to spill.

【0118】即ち、分液室の低接触角部分の水との接触
角と高接触角部分の水との接触角の差が10°以上ある
と、互いに混和しない2液を分離して流出させることが
可能であることがわかる。
That is, when the difference between the contact angle of water at the low contact angle portion and the contact angle of water at the high contact angle portion of the liquid separation chamber is 10 ° or more, two liquids that are immiscible with each other are separated and discharged. It turns out that it is possible.

【0119】<実施例7>本比較例では、分液室の断面
積が流路断面積の2.5倍である例を示した。
<Embodiment 7> This comparative example shows an example in which the sectional area of the liquid separation chamber is 2.5 times the sectional area of the flow path.

【0120】〔微小ケミカルデバイスの作製〕実施例5
において、分液室の低接触角部分及び高接触角部分の寸
法を幅750μm 、高さ220μm とした以外は、実施
例5と同様にして、微小ケミカルデバイス[D7]を作
製した。
[Preparation of Microchemical Device] Example 5
In Example 5, a microchemical device [D7] was produced in the same manner as in Example 5, except that the dimensions of the low contact angle portion and the high contact angle portion of the liquid separation chamber were 750 μm in width and 220 μm in height.

【0121】〔液−液接触試験〕微小ケミカルデバイス
[D7]について、実施例5と同様の試験を行ったとこ
ろ、分液室で水とn−ヘキサンがそれぞれ凝集、分離
し、流出路(17)に接続されたチューブから水、流出
路(17’)に接続されたチューブからn−ヘキサンが
流出した。但し、水とn−ヘキサンの体積流量比を1と
し、合計の流量を3倍にすると分離は不完全となった。
[Liquid-Liquid Contact Test] The same test as in Example 5 was performed on the microchemical device [D7]. As a result, water and n-hexane respectively aggregated and separated in the liquid separating chamber, and the outflow path (17) ) And n-hexane flowed out of the tube connected to the outlet channel (17 '). However, when the volume flow ratio of water and n-hexane was set to 1 and the total flow rate was tripled, the separation was incomplete.

【0122】<比較例2>本比較例では、分液室の断面
積が流路断面積と同じである例を示した。
<Comparative Example 2> In this comparative example, an example in which the cross-sectional area of the liquid separation chamber is the same as the cross-sectional area of the flow channel is shown.

【0123】〔微小ケミカルデバイスの作製〕実施例5
において、分液室断面の低接触角部分及び高接触角部分
の幅を流路幅の各1/2とし、分液室断面積を流路断面
積と同じとした以外は、実施例5と同様にして、微小ケ
ミカルデバイス[CD2]を作製した。
[Production of microchemical device] Example 5
In Example 5, except that the widths of the low contact angle portion and the high contact angle portion of the liquid separation chamber section were each set to 1 / of the flow path width, and the liquid separation chamber cross-sectional area was the same as the flow path cross-sectional area. Similarly, a microchemical device [CD2] was manufactured.

【0124】〔液−液接触試験〕微小ケミカルデバイス
[CD2]について実施例5と同様の試験を行ったとこ
ろ、分液室で水とn−ヘキサンは分離されず、流出路
(17)に接続されたチューブ及び流出路(17’)に
接続されたチューブの両者から、水とn−ヘキサンの両
者が流出した。即ち、分液室の断面積が流路断面積と同
じであると、塊状となって流路を流れた2液は分液室で
分離されないことがわかる。
[Liquid-Liquid Contact Test] When the same test as in Example 5 was performed on the microchemical device [CD2], water and n-hexane were not separated in the liquid separating chamber, and were connected to the outflow channel (17). Both water and n-hexane flowed out of both the tube connected and the tube connected to the outflow channel (17 '). That is, when the cross-sectional area of the liquid separation chamber is the same as the cross-sectional area of the flow path, it can be seen that the two liquids that have flowed in the flow path in a lump are not separated in the liquid separation chamber.

【0125】<実施例8> 〔微小ケミカルデバイスの作製〕実施例1において、部
材(A)及び部材(B)の素材として、ポリカーボネー
ト[p2]に代えて、それぞれ、透明硬質ポリ塩化ビ
ニル[p1]、ナイロン6(BASFジャパン社製の
「A4H」)[p3]、ポリアリレート樹脂(ユニチ
カ株式会社製の「Uポリマー U−70)[p4]をそ
れぞれ使用した以外は、実施例3と同様にして、微小ケ
ミカルデバイス[D8−1〜3]を作製した。
<Example 8> [Production of microchemical device] In Example 1, instead of polycarbonate [p2], transparent rigid polyvinyl chloride [p1] was used as a material for members (A) and (B). ], Nylon 6 (“A4H” manufactured by BASF Japan) [p3], and a polyarylate resin (“U polymer U-70” manufactured by Unitika Ltd.) [p4], respectively, except that they were used. Thus, microchemical devices [D8-1 to D8-1] were produced.

【0126】〔液−液接触試験〕微小ケミカルデバイス
[D8−1〜3]について実施例3と同様の試験を行
い、実施例3と同様の結果を得た。
[Liquid-Liquid Contact Test] The same test as in Example 3 was performed on the microchemical device [D8-1-3], and the same result as in Example 3 was obtained.

【0127】<応用例> 〔抽出試験〕実施例3で作製した微小ケミカルデバイス
[D3]を、流入路(16、16’)と流出路(17、
17’)がデバイスの側面となる向きに設置し、流入路
(16、16’)にそれぞれマイクロシリンジを接続し
て、流入路(16)から0.1N水酸化ナトリウム水溶
液、流入路(16’)からフェノールフタレンを飽和ま
で溶解させたキシレン溶液をそれぞれ流量0.01mm3
/秒で注入したところ、水溶液とキシレン溶液はそれぞ
れ塊状となって流れたが、分液室の低接触角部分(1
5)に水溶液、分液室の高接触角部分(15’)にキシ
レン溶液が集まり、流出路(17)から水溶液、流出路
(17’)からキシレン溶液が流出した。このとき、注
入した0.1N水酸化ナトリウム水溶液およびキシレン
溶液、流出するキシレン溶液は共に無色透明であった
が、流出する0.1N水酸化ナトリウム水溶液は薄い赤
色を呈していた。即ち、フェノールフタレンがキシレン
相から水相へ抽出された。
<Application Example> [Extraction Test] The microchemical device [D3] prepared in Example 3 was connected to the inflow path (16, 16 ′) and the outflow path (17, 16 ′).
17 ′) is installed so as to face the side of the device, micro-syringes are respectively connected to the inflow channels (16, 16 ′), and a 0.1N aqueous sodium hydroxide solution and an inflow channel (16 ′) are connected through the inflow channel (16). ) From which xylene solution in which phenolphthalene is dissolved until saturation is 0.01 mm 3 respectively.
The solution and the xylene solution flowed together in a lump when injected at a rate of 1 / sec.
In 5), the aqueous solution and the xylene solution collected in the high contact angle portion (15 ') of the liquid separating chamber, and the aqueous solution and the xylene solution flowed out of the outflow channel (17) and (17'). At this time, the injected 0.1N sodium hydroxide aqueous solution and xylene solution, and the outflowing xylene solution were both colorless and transparent, but the outflowing 0.1N sodium hydroxide aqueous solution was pale red. That is, phenolphthalene was extracted from the xylene phase to the aqueous phase.

【0128】[0128]

【表1】本実施例で使用した素材の水との接触角 [Table 1] Contact angle with water of the material used in this example

【0129】[0129]

【発明の効果】本発明の微小ケミカルデバイスは、隔膜
やバッチ式分液装置を必要とせず、構造が単純で、極め
て小型の抽出用ケミカルデバイスであり、極微量のサン
プルの抽出処理、抽出反応などに適用することができ
る。
The microchemical device of the present invention does not require a diaphragm or a batch type liquid separation device, has a simple structure, and is an extremely small chemical device for extraction. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作製した微小ケミカルデバイスの作製
途中の部材(A)をその表面に垂直な方向から見た破砕
平面図である。
FIG. 1 is a crushed plan view of a member (A) in the process of manufacturing a microchemical device manufactured in an example as viewed from a direction perpendicular to the surface thereof.

【符号の説明】[Explanation of symbols]

1 ポリ塩化ビニル板 2 エネルギー線硬化性組成物[e1]硬化物層1 2’ エネルギー線硬化性組成物[e2]硬化物層1 DESCRIPTION OF SYMBOLS 1 Polyvinyl chloride board 2 Energy ray curable composition [e1] Cured material layer 1 2 'Energy ray curable composition [e2] Cured material layer 1

【図2】実施例で作製した微小ケミカルデバイスを部材
(B)の表面に垂直な方向から見た破砕平面図である。
FIG. 2 is a diagram showing a member of the microchemical device manufactured in the example.
It is the crushing top view seen from the direction perpendicular | vertical to the surface of (B).

【符号の説明】[Explanation of symbols]

1 ポリ塩化ビニル板 2’ エネルギー線硬化性組成物[e2]硬化物層1 3’ エネルギー線硬化性組成物[e2]硬化物層2 4 流路 5 流入路 5’ 流入路 6 分液室(低接触角部) 6’ 分液室(高接触角部) 7 流出路 7’ 流出路 8 流入口 8’ 流入口 9 流出口 9’ 流出口 10 エネルギー線硬化性組成物[e3]硬化物 DESCRIPTION OF SYMBOLS 1 Polyvinyl chloride board 2 'Energy-ray-curable composition [e2] Cured material layer 1 3' Energy-ray-curable composition [e2] Cured material layer 2 4 Flow path 5 Inflow path 5 'Inflow path 6 Separation chamber ( 6 'Separation chamber (high contact angle section) 7 Outflow path 7' Outflow path 8 Inflow port 8 'Inflow port 9 Outflow port 9' Outflow port 10 Cured product of energy ray-curable composition [e3]

【図3】実施例3で作製した微小ケミカルデバイスの作
製途中の部材を部材(B)の表面に垂直な方向から見た
破砕平面図である。
FIG. 3 is a crushed plan view of a member in the process of manufacturing the microchemical device manufactured in Example 3 as viewed from a direction perpendicular to the surface of the member (B).

【符号の説明】[Explanation of symbols]

11 ポリカーボネート板 12 エネルギー線硬化性組成物[e1]硬化物層1 12’ エネルギー線硬化性組成物[e2]硬化物層1 DESCRIPTION OF SYMBOLS 11 Polycarbonate board 12 Energy beam curable composition [e1] Cured material layer 1 12 'Energy beam curable composition [e2] Cured material layer 1

【図4】実施例3で作製した微小ケミカルデバイスの作
製途中の部材を部材(B)の表面に垂直な方向から見た
破砕平面図である。
FIG. 4 is a crushed plan view of a member in the course of manufacturing the microchemical device manufactured in Example 3 as viewed from a direction perpendicular to the surface of the member (B).

【符号の説明】[Explanation of symbols]

11 ポリカーボネート板 12 エネルギー線硬化性組成物[e1]硬化物層1 12’ エネルギー線硬化性組成物[e2]硬化物層1 13 エネルギー線硬化性組成物[e1]硬化物層2 14 流路 15 分液室(低接触角部) 15’ 分液室(高接触角部) DESCRIPTION OF SYMBOLS 11 Polycarbonate board 12 Energy beam curable composition [e1] Cured material layer 1 12 'Energy beam curable composition [e2] Cured material layer 1 13 Energy beam curable composition [e1] Cured material layer 2 14 Channel 15 Separation chamber (low contact angle) 15 'Separation chamber (high contact angle)

【図5】実施例3で作製した微小ケミカルデバイスの作
製途中の部材を部材(B)の表面に垂直な方向から見た
破砕平面図である。
FIG. 5 is a crushed plan view of a member in the process of manufacturing the microchemical device manufactured in Example 3, viewed from a direction perpendicular to the surface of the member (B).

【符号の説明】[Explanation of symbols]

18 ポリカーボネート板 19 エネルギー線硬化性組成物[e1]硬化物層3 19’ エネルギー線硬化性組成物[e2]硬化物層3 Reference Signs List 18 polycarbonate plate 19 energy ray-curable composition [e1] cured layer 3 19 'energy ray-curable composition [e2] cured layer 3

【図6】実施例で作製した微小ケミカルデバイスを部材
(B)の表面に垂直な方向から見た破砕平面図である。
FIG. 6 is a diagram showing a member of the microchemical device manufactured in the example.
It is the crushing top view seen from the direction perpendicular | vertical to the surface of (B).

【符号の説明】[Explanation of symbols]

11 ポリカーボネート板 12’ エネルギー線硬化性組成物[e2]硬化物層1 13 エネルギー線硬化性組成物[e1]硬化物層2 14 流路 15 分液室(低接触角部) 15’ 分液室(高接触角部) 16 流入路 16’ 流入路 17 流出路 17’ 流出路 19 エネルギー線硬化性組成物[e1]硬化物層3 DESCRIPTION OF SYMBOLS 11 Polycarbonate board 12 'Energy beam curable composition [e2] Cured material layer 1 13 Energy beam curable composition [e1] Cured material layer 2 14 Flow path 15 Separation chamber (low contact angle part) 15' Separation chamber (High contact angle part) 16 Inflow path 16 ′ Inflow path 17 Outflow path 17 ′ Outflow path 19 Energy ray curable composition [e1] Cured material layer 3

【図7】実施例で作製した微小ケミカルデバイスを部材
(B)の表面に平行な方向から見た正面図である。
FIG. 7 shows a member of the microchemical device manufactured in the example.
It is the front view seen from the direction parallel to the surface of (B).

【符号の説明】[Explanation of symbols]

11 ポリカーボネート板 12 エネルギー線硬化性組成物[e1]硬化物層1 13 エネルギー線硬化性組成物[e1]硬化物層2 16 流入路 16’ 流入路 17 流出路 17’ 流出路 18 ポリカーボネート板 19’ エネルギー線硬化性組成物[e2]硬化物層3 DESCRIPTION OF SYMBOLS 11 Polycarbonate board 12 Energy beam curable composition [e1] Cured material layer 1 13 Energy beam curable composition [e1] Cured material layer 2 16 Inflow path 16 'Inflow path 17 Outflow path 17' Outflow path 18 Polycarbonate plate 19 ' Energy ray-curable composition [e2] cured product layer 3

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G01N 31/20 G01N 31/20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // G01N 31/20 G01N 31/20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 断面積が1×10-12m2〜1×10-6m2
の範囲にある毛細管状の流路を有する微小ケミカルデバ
イスであって、 流路の下流端に該流路の断面積の2〜1000倍の断
面積を有する分液室が設けられていること、 分液室が、その内面に水との接触角が相対的に低い低
接触角部分と、水との接触角が該低接触角部分より10
度以上高い高接触角部分を有すること、及び、 分液室の低接触角部分と高接触角部分から、それぞれ
流出路が設けられていること、を特徴とする微小ケミカ
ルデバイス。
1. A sectional area of 1 × 10 −12 m 2 to 1 × 10 −6 m 2.
A microchemical device having a capillary flow path in the range of, wherein a liquid separation chamber having a cross-sectional area of 2 to 1000 times the cross-sectional area of the flow path is provided at the downstream end of the flow path, The liquid separation chamber has a low contact angle portion having a relatively low contact angle with water on its inner surface, and a contact angle with water that is 10 times smaller than the low contact angle portion.
A microchemical device characterized by having a high contact angle portion higher than or equal to a degree, and an outflow passage provided from each of a low contact angle portion and a high contact angle portion of a liquid separation chamber.
【請求項2】 分液室の低接触角部分の水との接触角α
と高接触角部分の水との接触角βが、(イ)α≦25°
であり、かつ、35°≦β、(ロ)25°<α≦90°
であり、かつ、(α+40°)≦β≦90°、(ハ)α
≦90°であり、かつ、90°<β、の少なくとも一つ
の条件を満足する請求項1記載の微小ケミカルデバイ
ス。
2. A contact angle α of water at a low contact angle portion of a liquid separation chamber.
The contact angle β between water and the water at the high contact angle is
35 ° ≦ β, (b) 25 ° <α ≦ 90 °
And (α + 40 °) ≦ β ≦ 90 °, (c) α
The microchemical device according to claim 1, wherein ≤ 90 ° and at least one condition of 90 ° <β is satisfied.
【請求項3】 流路及び分液室が、互いに密着された部
材(A)と部材(B)との間に形成されたものである請
求項1又は2記載の微小ケミカルデバイス。
3. The microchemical device according to claim 1, wherein the flow path and the liquid separating chamber are formed between the member (A) and the member (B) which are in close contact with each other.
【請求項4】 部材(A)及び部材(B)が有機高分子
重合体からなる請求項3記載の微小ケミカルデバイス。
4. The microchemical device according to claim 3, wherein the member (A) and the member (B) are made of an organic polymer.
【請求項5】 部材(A)及び部材(B)がそれぞれ、
ポリカーボネート系重合体、塩化ビニル系重合体、ポリ
アミド系重合体、ポリエステル系重合体、(メタ)アク
リル系架橋重合体、マレイミド系架橋重合体、からなる
群から選ばれた重合体からなる請求項3記載の微小ケミ
カルデバイス。
5. The member (A) and the member (B) are:
4. A polymer selected from the group consisting of a polycarbonate polymer, a vinyl chloride polymer, a polyamide polymer, a polyester polymer, a (meth) acrylic crosslinked polymer, and a maleimide crosslinked polymer. The microchemical device as described.
【請求項6】 流路の上流端に接続して複数の流入路が
形成されている請求項1〜5のいずれか1項に記載の微
小ケミカルデバイス。
6. The microchemical device according to claim 1, wherein a plurality of inflow paths are formed by being connected to an upstream end of the flow path.
JP32040799A 1999-11-11 1999-11-11 Fine chemical device having liquid separating structure Pending JP2001137693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32040799A JP2001137693A (en) 1999-11-11 1999-11-11 Fine chemical device having liquid separating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32040799A JP2001137693A (en) 1999-11-11 1999-11-11 Fine chemical device having liquid separating structure

Publications (1)

Publication Number Publication Date
JP2001137693A true JP2001137693A (en) 2001-05-22

Family

ID=18121126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32040799A Pending JP2001137693A (en) 1999-11-11 1999-11-11 Fine chemical device having liquid separating structure

Country Status (1)

Country Link
JP (1) JP2001137693A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305937A (en) * 2003-04-08 2004-11-04 Tosoh Corp Structure having minute flow passage
JP2005144634A (en) * 2003-11-19 2005-06-09 Nippon Kayaku Co Ltd Washing method for microchemical device and manufacturing method for optically-active epoxide using the same
JP2005519751A (en) * 2002-03-14 2005-07-07 マイクロニクス, インコーポレイテッド Microfluidic channel network device
JP2006075679A (en) * 2004-09-07 2006-03-23 Shimadzu Corp Two-phase flow stabilizing chip
US7572375B2 (en) 2004-02-16 2009-08-11 Fuji Xerox Co., Ltd. Method and device for treating fine particles
KR101128119B1 (en) 2003-01-31 2012-03-23 스미또모 가가꾸 가부시키가이샤 Device and method of classifying emulsion and method of demulsifying emulsion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519751A (en) * 2002-03-14 2005-07-07 マイクロニクス, インコーポレイテッド Microfluidic channel network device
KR101128119B1 (en) 2003-01-31 2012-03-23 스미또모 가가꾸 가부시키가이샤 Device and method of classifying emulsion and method of demulsifying emulsion
JP2004305937A (en) * 2003-04-08 2004-11-04 Tosoh Corp Structure having minute flow passage
JP2005144634A (en) * 2003-11-19 2005-06-09 Nippon Kayaku Co Ltd Washing method for microchemical device and manufacturing method for optically-active epoxide using the same
US7572375B2 (en) 2004-02-16 2009-08-11 Fuji Xerox Co., Ltd. Method and device for treating fine particles
JP2006075679A (en) * 2004-09-07 2006-03-23 Shimadzu Corp Two-phase flow stabilizing chip
JP4528585B2 (en) * 2004-09-07 2010-08-18 株式会社島津製作所 Two-phase flow stabilization chip

Similar Documents

Publication Publication Date Title
KR100739515B1 (en) Microdevice having multilayer structure and method for fabricating the same
JP2001137613A (en) Fine chemical device having extraction structure
EP3409363A1 (en) Particle separation apparatus and particle separation method
JP3777112B2 (en) Microfluidic device and manufacturing method thereof
JP2002018271A (en) Micro chemical device
JP2010111129A (en) Microfluid product and method of manufacturing same
US20060033243A1 (en) Fabricating structures in micro-fluidic channels based on hydrodynamic focusing
JP2002102681A (en) Minute chemical device having heating/deairing mechanism
JP2000262871A (en) Microporous membrane separation device and its production
JP2001137693A (en) Fine chemical device having liquid separating structure
JP2004130219A (en) Microfluid element, fluid treatment device, and fluid treatment method
JP2000042402A (en) Liquid transport device and its production
JP2003084001A (en) Micro fluid device having micro valve mechanism, micro valve mechanism driving apparatus therefor, and flow control method
JP2001088096A (en) Micro chemical device with absorbing type liquid feeding mechanism
JP4039481B2 (en) Method for manufacturing microfluidic device having porous part
JP2007216226A (en) Micronozzle, its manufacturing method, spotting method, and spotter
JP2002370200A (en) Method of manufacturing miniature valve mechanism
JP2000288381A (en) Manufacture of microchemical device
JP2001070784A (en) Extremely small chemical device with valve mechanism
JP2002086399A (en) Micro-device having lamination structure and manufacturing method for it
JP2006043696A (en) Material separation device and material separation method
JP2000248076A (en) Production of minute chemical device
JP2008043883A (en) Material separation device and material separation method
JP2004177161A (en) Micro-fluid device and micro-chemical device
JP4307771B2 (en) Manufacturing method of microfluidic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303