JP2005144634A - Washing method for microchemical device and manufacturing method for optically-active epoxide using the same - Google Patents

Washing method for microchemical device and manufacturing method for optically-active epoxide using the same Download PDF

Info

Publication number
JP2005144634A
JP2005144634A JP2003388864A JP2003388864A JP2005144634A JP 2005144634 A JP2005144634 A JP 2005144634A JP 2003388864 A JP2003388864 A JP 2003388864A JP 2003388864 A JP2003388864 A JP 2003388864A JP 2005144634 A JP2005144634 A JP 2005144634A
Authority
JP
Japan
Prior art keywords
reaction
microchemical device
microchemical
cleaning
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003388864A
Other languages
Japanese (ja)
Inventor
Akira Sakai
亮 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2003388864A priority Critical patent/JP2005144634A/en
Publication of JP2005144634A publication Critical patent/JP2005144634A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further quickly remove a sample adsorbed by a microchemical device such as a flow passage wall face by washing when reaction is executed by using the microchemical device, to realize quick and highly efficient reaction and analysis, and further, to make an expensive micro device usable for a long period of time. <P>SOLUTION: The washing method for a microchemical device is characterized in that the adsorbed sample is washed by introducing an oxidizer aqueous solution to the microchemical device after reaction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マイクロ化学デバイスを用いた分析や合成反応を行う際に残留する試料などの不要物を効率的に除去し安定した結果を得るための洗浄方法及びそれを用いた光学活性エポキシドの製造方法に関する。   The present invention relates to a cleaning method for efficiently removing unnecessary substances such as samples remaining when performing analysis or synthesis reaction using a microchemical device and obtaining a stable result, and production of an optically active epoxide using the same. Regarding the method.

近年、反応効率を高め、迅速にかつ高感度な分析を行うため、また多数の反応及び分析を効率よく行うため、マイクロリアクタ、マイクロチップなどマイクロ化学デバイスを用いた研究が盛んに行われている。
また、マイクロ化学デバイスのマイクロ流路を多数並列化することにより、医薬品やその中間体などを高効率に生産することを目指した研究も行われている。
In recent years, researches using microchemical devices such as microreactors and microchips have been actively conducted in order to increase reaction efficiency, perform rapid and highly sensitive analysis, and perform many reactions and analyzes efficiently.
In addition, research aimed at producing pharmaceuticals and their intermediates with high efficiency by paralleling a large number of microchannels in a microchemical device has been conducted.

しかし、上記のようなマイクロ化学デバイスを用い化学反応を行う場合に、反応や試料がマイクロ化学デバイスの反応部や観測部、送液部などに吸着し残留し、反応効率が悪くなったり、迅速かつ高感度な分析が行えなくなるという問題があった。さらには流路が吸着物の堆積により圧力のバランスが狂い流体制御が困難になり安定した反応結果や分析結果を与えにくくなったり、吸着物により流路が閉塞しデバイスそのものの使用が不可能になるため、定期的にマイクロ化学デバイスの交換が必要であるという問題点があった。
また、物質生産を目的とし、マイクロ化学デバイスに連続で反応液を通液し反応させる場合は吸着物が堆積しやすく上記問題が起りやすく、特に、均一系触媒反応においては触媒が吸着し堆積することにより触媒の反応系外への損失、触媒の失活、触媒の過剰反応による副反応の増大など多くの問題を引き起こす場合があった。
However, when a chemical reaction is performed using the microchemical device as described above, the reaction or sample adsorbs and remains in the reaction part, observation part, liquid feeding part, etc. of the microchemical device, resulting in poor reaction efficiency or rapid response. In addition, there is a problem that high-sensitivity analysis cannot be performed. In addition, the flow of the flow path becomes imbalanced due to the accumulation of adsorbate, making it difficult to control the fluid, making it difficult to give stable reaction results and analysis results, and the flow path is blocked by the adsorbate, making it impossible to use the device itself. Therefore, there has been a problem that it is necessary to periodically replace the microchemical device.
In addition, for the purpose of substance production, when the reaction solution is continuously passed through the microchemical device and reacted, the adsorbate is likely to deposit, and the above problem is likely to occur. In particular, in the homogeneous catalytic reaction, the catalyst is adsorbed and deposited. As a result, many problems such as loss of the catalyst to the outside of the reaction system, deactivation of the catalyst, and increase of side reactions due to excessive reaction of the catalyst may occur.

上記問題点については、従来、マイクロ化学デバイスの流路壁面を表面修飾し試薬などが吸着しにくくする手法が次のような考案されている。
特許文献1には、マイクロ化学デバイス内をフッ素エーテル系オリゴマーシランカップリング剤などのフッ素系高分子で表面修飾した後に、NOxの測定に用いるとマイクロ化学デバイスへの試料の吸着が抑制でき迅速かつ高感度な分が行えることが記載されている。
しかしながら、この手法は温和な反応条件で安価なマイクロ化学デバイスを使い捨てで使用する場合には有効であるが、反応条件や通液する溶媒や試薬によっては表面処理の劣化が速やかに起る場合があり、苛烈な反応条件下、高価なマイクロ化学デバイスを連続して用いる場合には向かない。
With respect to the above-mentioned problems, conventionally, the following techniques have been devised to modify the surface of the flow channel wall of the microchemical device so that reagents and the like are hardly adsorbed.
In Patent Document 1, the surface of a microchemical device is modified with a fluorine-based polymer such as a fluorine ether-based oligomer silane coupling agent and then used for NOx measurement. It is described that high sensitivity can be achieved.
However, this method is effective when using inexpensive microchemical devices in mild reaction conditions, but the surface treatment may deteriorate quickly depending on the reaction conditions and the solvent or reagent to be passed. Yes, it is not suitable for continuous use of expensive microchemical devices under severe reaction conditions.

非特許文献1には、同軸二重管型のデバイスの壁面に保護層を高速で流すことにより保護液と反応液の層流を形成することにより、反応液が流路壁面に接触しないようにし塩化銀の微小粉末を製造している旨が記載されている。このデバイスは反応器壁面に試料が接触しない点で大変優れたデバイスであるが、デバイスを大きくして流量が必要なため、微少量を扱う反応には不向きであるなどの欠点を有している。   Non-Patent Document 1 discloses that a laminar flow of a protective liquid and a reaction liquid is formed by flowing a protective layer on the wall surface of a coaxial double tube type device at a high speed so that the reaction liquid does not contact the flow path wall surface. It describes that a fine powder of silver chloride is being produced. This device is very good in that the sample does not come into contact with the reactor wall surface, but it has the disadvantage that it is unsuitable for reactions that handle very small amounts because the device is large and requires a flow rate. .

上記のような吸着物を取り除く手法として、有機溶媒、酸、アルカリなどを洗浄剤として用いる手法が考えられるが、洗浄力が弱いことやデバイス自体を劣化させる場合があるなど使用が限定される問題点がある。
有機物質を扱う反応については酸化剤を用いた洗浄が有効であり、吸着した有機物は酸化分解により洗浄される。
As a method for removing the adsorbate as described above, a method using an organic solvent, an acid, an alkali, or the like as a cleaning agent can be considered, but there is a problem that its use is limited, for example, the cleaning power is weak or the device itself may be deteriorated. There is a point.
Cleaning using an oxidizing agent is effective for reactions that handle organic substances, and adsorbed organic substances are cleaned by oxidative decomposition.

特許文献2には、半導体プロセスの一環として半導体の高抵抗化などの原因となるドライエッチングガス、レジスト、被加工膜などを酸化剤、キレート剤、フッ素化合物を含有する処理物表面に高速で流すことにより表面の洗浄法が記されているが、マイクロ化学デバイスを用いた反応や分析の一環として行っているものではなく、流路に通液するものでもない。
さらに、このような酸化剤を用いた洗浄は洗浄液が毒性や腐食性、爆発性を有する場合が多く使いにくい問題点もある。
In Patent Document 2, a dry etching gas, a resist, a film to be processed, and the like that cause high resistance of a semiconductor as a part of a semiconductor process are flowed at high speed on the surface of a processing object containing an oxidizing agent, a chelating agent, and a fluorine compound. However, it is not performed as part of the reaction or analysis using a microchemical device, nor is it passed through the flow path.
Further, the cleaning using such an oxidizing agent has a problem that the cleaning liquid is often toxic, corrosive or explosive and is difficult to use.

また、特許文献3にはマイクロ化学デバイスを用いたエポキシ化反応について記載されている。微小反応器を用いて行うことにより各種エポキシ化反応が安全かつ高効率に実施できる旨が記されているが、混合により原料等が析出する場合や反応により不溶物が生成する場合については述べられておらず、その洗浄方法についての言及も無い。   Patent Document 3 describes an epoxidation reaction using a microchemical device. Although it is stated that various epoxidation reactions can be carried out safely and highly efficiently by using a microreactor, the case where raw materials are precipitated by mixing or the case where insoluble matter is generated by reaction is described. There is no mention of the cleaning method.

特開2003−139761号公報JP 2003-139761 A 特開2002−113431号公報JP 2002-113431 A 特表2003−532646号公報JP 2003-532646 A Hideharu Nagasawa and Kazuhiro Mae、Development of Multi-functional Microstructured Device for Inorganic Fine Particle Crystallization、7Th International Conference on Microreaction Technology , IMRET、2003/9/7-10、p127−129Hideharu Nagasawa and Kazuhiro Mae, Development of Multi-functional Microstructured Device for Inorganic Fine Particle Crystallization, 7Th International Conference on Microreaction Technology, IMRET, 2003/9 / 7-10, p127-129

本願発明は、マイクロチップ、マイクロリアクタなどマイクロ化学デバイスを用い微少な量で反応・分析を行ったり、長時間連続して流し続ける事により効率よく物質を生産するにあたり、前述した問題点を解決することを課題とするものである。即ち、この発明において、マイクロ化学デバイスをもちいて反応を行うにあたり流路壁面などマイクロ化学デバイスに吸着された試料を速やかに除去し、迅速かつ高効率な反応や分析を実現し、さらには高価なマイクロデバイスを長期間使用可能にする課題とするものである。   The present invention solves the above-mentioned problems in producing a substance efficiently by performing a reaction / analysis in a minute amount using a microchemical device such as a microchip or a microreactor or continuously flowing for a long time. Is an issue. That is, in the present invention, when the reaction is performed using the microchemical device, the sample adsorbed on the microchemical device such as the wall surface of the flow path is quickly removed, and a rapid and highly efficient reaction or analysis is realized. The problem is to make the microdevice usable for a long period of time.

本発明者は前記課題を解決すべく鋭意研究の結果、マイクロ化学デバイス内を強酸化剤で定期的に洗浄する事により、少量の洗浄剤で効率よく吸着物を除去できることを見出し、本発明を完成させるに至った。
即ち、本発明は
As a result of diligent research to solve the above problems, the present inventor has found that the adsorbate can be efficiently removed with a small amount of cleaning agent by periodically cleaning the inside of the microchemical device with a strong oxidizing agent. It came to complete.
That is, the present invention

(1)反応後のマイクロ化学デバイスに酸化剤水溶液を通液することを特徴とするマイクロ化学デバイスの洗浄方法、
(2)マイクロ化学デバイスがガラス製のマイクロ化学デバイスである(1)記載の洗浄方法、
(3)ガラス製のマイクロ化学デバイスが石英またはパイレックス(登録商標)である(1)または(2)記載の洗浄方法、
(4)酸化剤が発煙硝酸である(1)〜(3)のいずれか一項に記載の洗浄方法、
(5)酸化剤水溶液を吸引により導入し、吸引部には酸化剤水溶液及び/又は酸化剤から発生するガスを捕捉するための手段を有する(1)〜(4)のいずれか一項に記載の洗浄方法、
(6)(1)〜(5)記載の洗浄方法を反応工程中に間歇的に行うことを特徴とするマイクロ化学デバイスを用いる反応方法、
(7)反応方法が均一系触媒反応である(6)に記載の反応方法、
(8)(7)記載の均一系触媒反応として、サレンマンガン錯体を用いてオレフィンに不斉エポキシ化反応を行うことを特徴とする光学活性エポキシドの製造方法、
(9)酸化剤水溶液を吸引により導入し、吸引部には酸化剤水溶液及び/又は酸化剤から発生するガスを捕捉するための手段を有するマイクロ化学デバイス、
に関する。
(1) A method for cleaning a microchemical device, characterized by passing an aqueous oxidant solution through the microchemical device after reaction,
(2) The cleaning method according to (1), wherein the microchemical device is a glass microchemical device,
(3) The cleaning method according to (1) or (2), wherein the glass microchemical device is quartz or Pyrex (registered trademark).
(4) The cleaning method according to any one of (1) to (3), wherein the oxidizing agent is fuming nitric acid,
(5) The oxidant aqueous solution is introduced by suction, and the suction part has means for capturing gas generated from the oxidant aqueous solution and / or the oxidant, according to any one of (1) to (4). Cleaning method,
(6) A reaction method using a microchemical device, wherein the cleaning method according to (1) to (5) is intermittently performed during the reaction step,
(7) The reaction method according to (6), wherein the reaction method is a homogeneous catalytic reaction,
(8) The method for producing an optically active epoxide characterized by performing an asymmetric epoxidation reaction on an olefin using a salen manganese complex as the homogeneous catalytic reaction according to (7),
(9) A microchemical device having a means for introducing an aqueous oxidant solution by suction and capturing the oxidant aqueous solution and / or gas generated from the oxidant in the suction part;
About.

本願発明により、マイクロ化学デバイスを効率良く洗浄することが出来、それを用いた分析、生産が連続的に安定して実施することができる。   According to the present invention, a microchemical device can be efficiently washed, and analysis and production using it can be carried out continuously and stably.

本発明のマイクロ化学デバイスの洗浄方法とそれを用いた光学活性エポキシドの製造方法について、詳しく説明する。   The method for cleaning a microchemical device of the present invention and the method for producing an optically active epoxide using the same will be described in detail.

本願発明の洗浄方法は、反応後のマイクロ化学デバイスに酸化剤水溶液を通液することを特徴とするマイクロ化学デバイスの洗浄方法である。   The cleaning method of the present invention is a cleaning method for a microchemical device, characterized in that an oxidizing agent aqueous solution is passed through the microchemical device after reaction.

本願発明において、マイクロ化学デバイスは、「マイクロ空間を利用した化学反応を行うために使用される3次元構造体であり固体基板上などにマイクロテクノロジーの適切なプロセスによって作成されるものであり、かつ、500μm以下の等価直径からなる流路(マイクロチャネル)で反応などの操作を行うものであり、マイクロリアクタ、熱交換器、混合器、バルブ、センサーなど各種機能を適宜有するデバイス」が相当する。   In the present invention, the microchemical device is “a three-dimensional structure used for performing a chemical reaction utilizing a microspace, which is produced on a solid substrate or the like by an appropriate process of microtechnology, and , A device having a function such as a microreactor, a heat exchanger, a mixer, a valve, a sensor, etc., which performs an operation such as a reaction in a flow path (microchannel) having an equivalent diameter of 500 μm or less.

また、本願発明において、マイクロリアクタは、「マイクロリアクタは拡散を含む混合、または混合及び化学反応を行うために使用される3次元構造体であり、固体基盤上などにマイクロテクノロジーの適切なプロセスにより作成されるものであり、かつ、500μm以下の等価直径からなるもの」が相当する。   In the present invention, the microreactor is “a three-dimensional structure used to perform mixing including diffusion, or mixing and chemical reaction, and is created on a solid substrate by an appropriate process of microtechnology. And having an equivalent diameter of 500 μm or less ”.

本願発明において用いられるマイクロ化学デバイスの材質は、例えば、石英ガラス、パイレックス(登録商標)、バイコール、コバールなどのガラス製、ステンレス、ハステロイ、チタンなどの金属製、PTFE、ETFEなどのフッ素樹脂製を用いることができるが、好ましくはガラス製のマイクロ化学デバイスであり、より好ましくは石英、パイレックス(登録商標)製のマイクロ化学デバイスである。   The material of the microchemical device used in the present invention is, for example, made of glass such as quartz glass, Pyrex (registered trademark), Vycor, Kovar, etc., made of metal such as stainless steel, hastelloy, titanium, or made of fluororesin such as PTFE or ETFE. Although it can be used, it is preferably a microchemical device made of glass, more preferably a microchemical device made of quartz or Pyrex (registered trademark).

本願発明で使用する酸化剤としては、例えば、発煙硝酸、硝酸、過マンガン酸、重クロム酸、過酸化水素、オゾン、次亜塩素酸、過硫酸等を用いることができ、好ましくは発煙硝酸である。また、硫酸等の無機酸を混合したものを用いても良い。また、これら酸化剤に無機塩を溶解させたものも好ましく、特に好ましくはリチウム塩、ナトリウム塩を溶解させたものが好ましい。酸化剤を水溶液として用いる濃度は、通常、1〜99%(W/W)、好ましくは70〜99%(W/W)である。   As the oxidizing agent used in the present invention, for example, fuming nitric acid, nitric acid, permanganic acid, dichromic acid, hydrogen peroxide, ozone, hypochlorous acid, persulfuric acid and the like can be used, preferably fuming nitric acid. is there. Moreover, you may use what mixed inorganic acids, such as a sulfuric acid. Further, those obtained by dissolving an inorganic salt in these oxidizing agents are preferred, and those obtained by dissolving a lithium salt and a sodium salt are particularly preferred. The density | concentration which uses an oxidizing agent as aqueous solution is 1-99% (W / W) normally, Preferably it is 70-99% (W / W).

また、本願発明において、洗浄液の前後に水、有機溶媒を洗浄液と同様に通液する洗浄を行っても良い。水、有機溶媒は相溶性のものを混合し通液しても良い、用いる有機溶媒としては当業者に知られている有機溶剤を使用することができる。また酸化剤による洗浄の前後に使用しうる洗浄液に添加剤として当業者に知られている界面活性剤を溶解し用いても良い。界面活性剤はアニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両イオン系界面活性剤が好ましく、特に好ましくは脂肪酸塩、αスルホ脂肪酸エステル塩、アルキルベンゼンスルホン酸塩、アルキル硫酸塩、アルキルエーテル硫酸エステル塩、アルキル硫酸トリエタノールアミン、脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウムクロリド、アルキルピリジニウムクロリド、アルキルカルボキシベタインである。これらを添加する場合の濃度は、酸化剤による洗浄の前後に使用する洗浄液に対し、0.01〜10%(W/W)程度である。   Moreover, in this invention, you may perform the washing | cleaning which lets water and an organic solvent flow similarly to a washing | cleaning liquid before and behind a washing | cleaning liquid. Water and an organic solvent may be mixed with each other and allowed to pass through. As the organic solvent to be used, an organic solvent known to those skilled in the art can be used. Further, a surfactant known to those skilled in the art as an additive may be dissolved in a cleaning solution that can be used before and after cleaning with an oxidizing agent. The surfactant is preferably an anionic surfactant, a cationic surfactant, a nonionic surfactant, or a zwitterionic surfactant, particularly preferably a fatty acid salt, an α-sulfo fatty acid ester salt, an alkylbenzene sulfonate, an alkyl sulfate. Salt, alkyl ether sulfate ester salt, alkyl sulfate triethanolamine, fatty acid diethanolamide, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, alkyltrimethylammonium salt, dialkyldimethylammonium chloride, alkylpyridinium chloride, alkylcarboxybetaine . The concentration in the case of adding these is about 0.01 to 10% (W / W) with respect to the cleaning liquid used before and after the cleaning with the oxidizing agent.

本願発明で行う洗浄の間隔は連続で反応を行う場合は1ヶ月以内であり、好ましくは1週間以内、特に好ましくは30分以内である。   The interval of washing performed in the present invention is within one month, preferably within one week, particularly preferably within 30 minutes, when the reaction is carried out continuously.

本願発明の反応方法に適用できる反応としては、マイクロ化学デバイスを用いた合成及び分析に関する当業者が考えうるすべての反応に適応できるが、好ましくはマイクロ化学デバイスの構成材料に吸着しやすいものを取り扱う合成反応及び分析の前処理反応や、反応を行う際に副反応や反応中間体の溶解度が低く不溶物として壁面に付着するような反応に適応可能である。   Reactions applicable to the reaction method of the present invention can be applied to all reactions that can be considered by those skilled in the art of synthesis and analysis using microchemical devices, but preferably those that are easily adsorbed on the constituent materials of microchemical devices are handled. It can be applied to pretreatment reactions for synthesis reactions and analyses, and reactions such that side reactions and reaction intermediates are low in solubility during the reaction and adhere to the wall surface as insoluble matter.

本願発明において、均一系触媒反応とは、化学反応に用いる触媒が固体であったり固相に固定化されておらず、反応を行う溶媒中に均一に溶解しているものである。適用できる反応としては無機金属触媒、有機金属触媒、有機化合物触媒を用いる反応があり、好ましくは有機金属触媒を用いる反応、さらに好ましくはサレンマンガン錯体を用いる反応があげられる。   In the present invention, the homogeneous catalytic reaction is one in which the catalyst used for the chemical reaction is solid or not fixed to the solid phase and is uniformly dissolved in the solvent in which the reaction is carried out. Applicable reactions include reactions using an inorganic metal catalyst, an organometallic catalyst, and an organic compound catalyst, preferably a reaction using an organometallic catalyst, and more preferably a reaction using a salen manganese complex.

本願発明の製造方法で使用するサレンマンガン錯体は、エポキシ化反応に知られた構造式内にサレン誘導体とマンガンを有する触媒であるが、好ましくは光学活性(R、R)−トランス1,2−ビス[(2−ヒドロキシ−3,5−ジターシャリブチルベンジリデン)アミノ]シクロヘキサンマンガン二塩化物または光学活性(S、S)−トランス1,2−ビス[(2−ヒドロキシ−3,5−ジターシャリブチルベンジリデン)アミノ]シクロヘキサンマンガン二塩化物(Jacobsenの触媒)である。   The salen manganese complex used in the production method of the present invention is a catalyst having a salen derivative and manganese in the structural formula known for epoxidation reaction, preferably optically active (R, R) -trans 1,2- Bis [(2-hydroxy-3,5-ditertiarybutylbenzylidene) amino] cyclohexane manganese dichloride or optically active (S, S) -trans 1,2-bis [(2-hydroxy-3,5-ditertiary Butylbenzylidene) amino] cyclohexane manganese dichloride (Jacobsen catalyst).

本願発明の製造方法で使用するオレフィンは、当業者に知られたいずれのオレフィンも用いることができる。好ましくは脂肪族、芳香族及び複素環式芳香族オレフィン特に好ましくはインデンである。脂肪族オレフィンは直鎖、分岐、環状オレフィンである。またオレフィンがαβ不飽和カルボニル化合物であるものも好ましい。   Any olefin known to those skilled in the art can be used as the olefin used in the production method of the present invention. Preferred are aliphatic, aromatic and heterocyclic aromatic olefins, particularly preferably indene. Aliphatic olefins are linear, branched and cyclic olefins. Also preferred are those in which the olefin is an αβ unsaturated carbonyl compound.

図1、図2および図3は本発明による洗浄を行うための洗浄液などの導入管を備えた洗浄機構を備えた化学反応装置の一実施形態の一例を示す概略構成図であり、図4および図5は洗浄液による反応、分析への悪影響を取り除くためマイクロデバイス上で洗浄液を失活させる機構を持つデバイスの流路パターンの一例ある。   1, 2, and 3 are schematic configuration diagrams illustrating an example of an embodiment of a chemical reaction apparatus including a cleaning mechanism including an introduction pipe for cleaning liquid or the like for performing cleaning according to the present invention. FIG. 5 shows an example of a flow path pattern of a device having a mechanism for deactivating the cleaning liquid on the microdevice in order to remove adverse effects on the reaction and analysis by the cleaning liquid.

例えば、図1、図2及び図3に示すように反応液及び洗浄液を送液し、マイクロ化学デバイスを洗浄するシステムの一例は、マイクロ化学デバイス、デバイスに反応液を供給するためのポンプ、デバイスに洗浄液を供給するためのポンプ、ポンプとデバイスを繋ぐチューブ、チューブをデバイスに接続するためのコネクター、反応液を排出するドレイン、反応液及び洗浄液の貯留槽、反応後の混合溶液を溜める貯留槽、除害装置からなる。 For example, as shown in FIGS. 1, 2, and 3, an example of a system for feeding a reaction solution and a cleaning solution and cleaning a microchemical device includes a microchemical device, a pump for supplying the reaction solution to the device, and a device A pump for supplying cleaning liquid to the tube, a tube connecting the pump and the device, a connector for connecting the tube to the device, a drain for discharging the reaction liquid, a storage tank for the reaction liquid and the cleaning liquid, and a storage tank for storing the mixed solution after the reaction Consists of abatement equipment.

図1、図2、図3に示す装置を用いて反応を行う場合には反応液を導入管よりポンプを用いて送液し、混合部位にて混合及び反応もしくは反応部位で反応させ、一定時間ごとに間歇的に反応液の代わりに洗浄液を導入しデバイスの洗浄を行うことにより安定した条件で反応を実施することができ、一定の反応収率や分析結果を得ることを可能とする。   When performing the reaction using the apparatus shown in FIG. 1, FIG. 2, FIG. 3, the reaction solution is fed from the introduction tube using a pump, mixed and reacted at the mixing site, or reacted at the reaction site for a certain period of time. By intermittently introducing a cleaning solution instead of the reaction solution and cleaning the device every time, the reaction can be carried out under stable conditions, and a certain reaction yield and analysis result can be obtained.

洗浄液量の調整、定量ポンプを用いるか定量性のあるインジェクションバルブを用いて行っても良いが、洗浄液量は過剰でも構わないためバルブの開閉時間で調節しても良い。   The cleaning liquid amount may be adjusted by using a metering pump or a quantitative injection valve. However, the cleaning liquid amount may be excessive, and may be adjusted by the valve opening / closing time.

また、図4に示すように、デバイスを用い途中で洗浄液を失活させたり、吸引口に湿式もしくは乾式の除害装置と組み合わせることのより、洗浄液が毒性や腐食性、爆発性を有する洗浄液も環境及び人体共に安全に取り扱うことができる。   In addition, as shown in FIG. 4, the cleaning liquid can be toxic, corrosive, or explosive cleaning liquid by deactivating the cleaning liquid in the middle of using the device or by combining the suction port with a wet or dry detoxifying device. Both environment and human body can be handled safely.

以下、実施例により本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
マイクロデバイスを用いた不斉エポキシ化反応
マイクロ化学デバイスとしてIMT社製有機合成チップ(KG−01)をもちい、図5のような装置を組み反応を行った。導入口1よりインデンに対して1.3倍濃度の次亜塩素酸ナトリウム水溶液を10μL/分の速度で導入する。同様に導入口2より原料及び触媒をそれぞれインデンを1.25mol/L、図6に示すサレンマンガン錯体を0.375mmol/L、4−フェニルピリジン−N−オキシドを1.88mmol/Lの濃度で含む塩化メチレン溶液を10μL/分の速度で導入した。また、希釈溶液としてヘキサンを導入口3より10μL/分の速度で導入した。反応液混合液をドレイン出口より1mol/Lのチオ硫酸ナトリウム水溶液とヘキサンを激しく撹拌している中に導入し反応を停止した。5分間貯留した後に逆相カラム及びキラルカラムを用いたHPLC法により変換効率、光学純度を測定した。さらに、対照実験として60分間通液した有機合成チップを用いてサレンマンガン錯体および4−フェニルピリジン−N−オキシドを添加することなく反応を行った。その結果を表1に示した。また、使用後の有機合成チップを約10μLの発煙硝酸を吸引により通液することにより洗浄したのち1mLの水で通液洗浄したマイクロチップを用いて同様の反応を行ったところ新品のものと同様な結果を得た。
Example 1
Asymmetric epoxidation reaction using a micro device Using an organic synthetic chip (KG-01) manufactured by IMT as a micro chemical device, an apparatus as shown in FIG. A sodium hypochlorite aqueous solution having a concentration 1.3 times that of indene is introduced from the inlet 1 at a rate of 10 μL / min. Similarly, the raw material and the catalyst from the inlet 2 are 1.25 mol / L of indene, 0.375 mmol / L of the salen manganese complex shown in FIG. 6, and 1.88 mmol / L of 4-phenylpyridine-N-oxide, respectively. The methylene chloride solution containing was introduced at a rate of 10 μL / min. Further, hexane was introduced as a diluted solution from the inlet 3 at a rate of 10 μL / min. The reaction mixture was introduced into the 1 mol / L sodium thiosulfate aqueous solution and hexane from the drain outlet while stirring vigorously to stop the reaction. After storing for 5 minutes, the conversion efficiency and optical purity were measured by the HPLC method using a reverse phase column and a chiral column. Furthermore, as a control experiment, the reaction was carried out without adding the salen manganese complex and 4-phenylpyridine-N-oxide using an organic synthetic chip that was passed for 60 minutes. The results are shown in Table 1. In addition, when the organic synthesis chip after use was washed by passing about 10 μL of fuming nitric acid by suction and then subjected to the same reaction using a microchip washed with 1 mL of water, it was the same as a new one. Results were obtained.

表1
使用チップ サレンマンガン錯体の有無 採取時間 光学純度
通液開始より %ee
1 新品 3mol% 0−5分間 79.6
2 新品 3mol% 30−35分間 81.5
3 新品 3mol% 60−65分間 22.1
4 洗浄後 3mol% 0−5分間 80.4
Table 1
Chip used Presence or absence of salen manganese complex Sampling time Optical purity
% Ee from the start of liquid flow
1 New 3 mol% 0-5 minutes 79.6
2 New 3mol% 30-35min 81.5
3 New 3 mol% 60-65 minutes 22.1
4 After washing 3 mol% 0-5 minutes 80.4

本願発明により、高価なマイクロ化学デバイスを使用した用い微少な量で反応・分析を行う際、デバイス内部に吸着した試料による反応効率の低下やコンタミネーションが無く多数の試料を迅速に処理できる。また、何回も使用できるので、チップの廃棄数を削減できる利点も持つ。
このことは、マイクロ化学デバイスを用いた医薬品、農薬などのハイスループットスクリーニングや、コンビナトリアルケミストリー、触媒の高速最適化など探索研究分野において、作業の効率性および廃棄物削減等で大変有用である。
さらには、マイクロ化学デバイスを長時間連続して使用し続ける方法による高効率な物質生産方法を可能にし、生産エネルギーの低減、環境負荷の低減、設備投資費の低減、設備維持管理費の低減などを可能とするため化学産業上大いに有用である。
According to the present invention, when a reaction / analysis is performed in a minute amount using an expensive microchemical device, a large number of samples can be processed quickly without a decrease in reaction efficiency or contamination due to the sample adsorbed inside the device. Moreover, since it can be used many times, it has the advantage that the number of discarded chips can be reduced.
This is very useful in terms of work efficiency and waste reduction in the field of exploratory research such as high-throughput screening of pharmaceuticals and agricultural chemicals using microchemical devices, combinatorial chemistry, and high-speed catalyst optimization.
In addition, it enables highly efficient material production methods by continuously using micro chemical devices for a long time, reducing production energy, reducing environmental impact, reducing capital investment costs, reducing equipment maintenance costs, etc. This is very useful in the chemical industry.

反応液、洗浄液をそれぞれ高圧送液法によりマイクロ化学デバイスに導入する洗浄機構を備えた化学反応装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the chemical reaction apparatus provided with the washing | cleaning mechanism which introduce | transduces a reaction liquid and a washing | cleaning liquid into a microchemical device, respectively by a high pressure liquid feeding method. 反応液、洗浄液をそれぞれ減圧送液法によりマイクロ化学デバイスに導入する洗浄機構を備えた化学反応装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the chemical reaction apparatus provided with the washing | cleaning mechanism which introduce | transduces a reaction liquid and a washing | cleaning liquid into a microchemical device, respectively by the pressure reduction liquid feeding method. 反応液を高圧送液法、洗浄液を減圧送液法によりマイクロ化学デバイスに導入する洗浄機構を備えた化学反応装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the chemical reaction apparatus provided with the washing | cleaning mechanism which introduce | transduces a reaction liquid into a microchemical device by a high pressure liquid feeding method and a washing | cleaning liquid by a pressure reduction liquid feeding method. マイクロ化学デバイスの一例の概略図である。It is the schematic of an example of a microchemical device. 実験で用いた装置構成の概略図である。It is the schematic of the apparatus structure used in experiment. サレンマンガン錯体の一例である。It is an example of a salen manganese complex.

符号の説明Explanation of symbols

R1,R2は反応液の貯留槽であるP1,P2は反応液を送液するためのポンプである。R3は洗浄液の貯留槽である。P3は洗浄液を送液するためのポンプである。Vは流路を切り替えるバルブである。Cはチューブとデバイスを繋ぐコネクターであるR4は反応後の反応混合液を貯留するための貯留槽である。MDはマイクロ化学デバイスである。各装置を繋ぐ実線は送液のためのチューブである。 R1 and R2 are reservoirs for the reaction solution, and P1 and P2 are pumps for feeding the reaction solution. R3 is a cleaning liquid reservoir. P3 is a pump for feeding the cleaning liquid. V is a valve for switching the flow path. C is a connector for connecting the tube and the device, and R4 is a storage tank for storing the reaction mixture after the reaction. MD is a microchemical device. A solid line connecting the devices is a tube for liquid feeding.

Claims (9)

反応後のマイクロ化学デバイスに酸化剤水溶液を通液することを特徴とするマイクロ化学デバイスの洗浄方法。 A method for cleaning a microchemical device, comprising passing an aqueous oxidizing agent solution through the microchemical device after the reaction. マイクロ化学デバイスがガラス製のマイクロ化学デバイスである請求項1記載の洗浄方法。 The cleaning method according to claim 1, wherein the microchemical device is a glass microchemical device. ガラス製のマイクロ化学デバイスが石英またはパイレックス(登録商標)である請求項1または2記載の洗浄方法。 The cleaning method according to claim 1 or 2, wherein the glass microchemical device is quartz or Pyrex (registered trademark). 酸化剤が発煙硝酸である請求項1〜3のいずれか一項に記載の洗浄方法。 The cleaning method according to any one of claims 1 to 3, wherein the oxidizing agent is fuming nitric acid. 酸化剤水溶液を吸引により導入し、吸引部には酸化剤水溶液及び/又は酸化剤から発生するガスを捕捉するための手段を有する請求項1〜4のいずれか一項に記載の洗浄方法。 The cleaning method according to any one of claims 1 to 4, wherein the oxidizing agent aqueous solution is introduced by suction, and the suction part has means for capturing the oxidizing agent aqueous solution and / or gas generated from the oxidizing agent. 請求項1〜5記載の洗浄方法を反応工程中に間歇的に行うことを特徴とするマイクロ化学デバイスを用いる反応方法。 6. A reaction method using a microchemical device, wherein the cleaning method according to claim 1 is carried out intermittently during the reaction step. 反応方法が均一系触媒反応である請求項6に記載の反応方法。 The reaction method according to claim 6, wherein the reaction method is a homogeneous catalytic reaction. 請求項7記載の均一系触媒反応として、サレンマンガン錯体を用いてオレフィンに不斉エポキシ化反応を行うことを特徴とする光学活性エポキシドの製造方法。 The method for producing an optically active epoxide, wherein the homogeneous catalytic reaction according to claim 7 is carried out by performing an asymmetric epoxidation reaction on an olefin using a salen manganese complex. 酸化剤水溶液を吸引により導入し、吸引部には酸化剤水溶液及び/又は酸化剤から発生するガスを捕捉するための手段を有するマイクロ化学デバイス。 A microchemical device having a means for introducing an aqueous oxidant solution by suction and capturing the oxidant aqueous solution and / or gas generated from the oxidant in the suction part.
JP2003388864A 2003-11-19 2003-11-19 Washing method for microchemical device and manufacturing method for optically-active epoxide using the same Pending JP2005144634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003388864A JP2005144634A (en) 2003-11-19 2003-11-19 Washing method for microchemical device and manufacturing method for optically-active epoxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003388864A JP2005144634A (en) 2003-11-19 2003-11-19 Washing method for microchemical device and manufacturing method for optically-active epoxide using the same

Publications (1)

Publication Number Publication Date
JP2005144634A true JP2005144634A (en) 2005-06-09

Family

ID=34695777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003388864A Pending JP2005144634A (en) 2003-11-19 2003-11-19 Washing method for microchemical device and manufacturing method for optically-active epoxide using the same

Country Status (1)

Country Link
JP (1) JP2005144634A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349273B2 (en) 2007-10-12 2013-01-08 Fuji Xerox Co., Ltd. Microreactor device
US8418719B2 (en) 2006-07-18 2013-04-16 Fuji Xerox Co., Ltd. Microchannel device
US8585278B2 (en) 2009-03-16 2013-11-19 Fuji Xerox Co., Ltd. Micro fluidic device and fluid control method
US8679336B2 (en) 2008-11-14 2014-03-25 Fuji Xerox Co., Ltd. Microchannel device, separation apparatus, and separation method
US8721992B2 (en) 2007-03-27 2014-05-13 Fuji Xerox Co., Ltd Micro fluidic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240870A (en) * 1992-02-28 1993-09-21 Olympus Optical Co Ltd Cleaning mechanism of analyzing apparatus
JPH07145157A (en) * 1993-11-24 1995-06-06 Sumitomo Chem Co Ltd Production of optically active epoxide
JPH1010088A (en) * 1996-06-26 1998-01-16 Hitachi Ltd Capillary electrophoretic device
WO1999028504A1 (en) * 1997-12-03 1999-06-10 Curagen Corporation Surface treatments for dna processing devices
JP2001137693A (en) * 1999-11-11 2001-05-22 Kawamura Inst Of Chem Res Fine chemical device having liquid separating structure
WO2002030561A2 (en) * 2000-10-10 2002-04-18 Biotrove, Inc. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
WO2003020414A1 (en) * 2001-09-04 2003-03-13 Clariant Gmbh Method and device for the process-attendant cleaning of micro- and mini-reactors
JP2003260351A (en) * 2002-03-12 2003-09-16 National Institute Of Advanced Industrial & Technology Microreactor and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240870A (en) * 1992-02-28 1993-09-21 Olympus Optical Co Ltd Cleaning mechanism of analyzing apparatus
JPH07145157A (en) * 1993-11-24 1995-06-06 Sumitomo Chem Co Ltd Production of optically active epoxide
JPH1010088A (en) * 1996-06-26 1998-01-16 Hitachi Ltd Capillary electrophoretic device
WO1999028504A1 (en) * 1997-12-03 1999-06-10 Curagen Corporation Surface treatments for dna processing devices
JP2001137693A (en) * 1999-11-11 2001-05-22 Kawamura Inst Of Chem Res Fine chemical device having liquid separating structure
WO2002030561A2 (en) * 2000-10-10 2002-04-18 Biotrove, Inc. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
WO2003020414A1 (en) * 2001-09-04 2003-03-13 Clariant Gmbh Method and device for the process-attendant cleaning of micro- and mini-reactors
JP2003260351A (en) * 2002-03-12 2003-09-16 National Institute Of Advanced Industrial & Technology Microreactor and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418719B2 (en) 2006-07-18 2013-04-16 Fuji Xerox Co., Ltd. Microchannel device
US8721992B2 (en) 2007-03-27 2014-05-13 Fuji Xerox Co., Ltd Micro fluidic device
US8349273B2 (en) 2007-10-12 2013-01-08 Fuji Xerox Co., Ltd. Microreactor device
US8679336B2 (en) 2008-11-14 2014-03-25 Fuji Xerox Co., Ltd. Microchannel device, separation apparatus, and separation method
US8585278B2 (en) 2009-03-16 2013-11-19 Fuji Xerox Co., Ltd. Micro fluidic device and fluid control method

Similar Documents

Publication Publication Date Title
Soler et al. Catalytic nanomotors for environmental monitoring and water remediation
Wang et al. Ultrasound-enhanced zero-valent copper activation of persulfate for the degradation of bisphenol AF
Köhler et al. Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors
Wagner et al. Microfluidic generation of metal nanoparticles by borohydride reduction
Hoang et al. Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet-and ionic liquid-assisted microfluidic system
Uppu Synthesis of peroxynitrite using isoamyl nitrite and hydrogen peroxide in a homogeneous solvent system
WO2007030501A3 (en) Microfluidic manipulation of fluids and reactions
Maruyama et al. Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device
Köhler et al. Formation of isolated and clustered Au nanoparticles in the presence of polyelectrolyte molecules using a flow-through Si chip reactor
Ren et al. The ozone mass transfer characteristics and ozonation of pentachlorophenol in a novel microchannel reactor
JP2006239640A (en) Microreactor for oxidative decomposition of hardly decomposable organic compound
CN104447246A (en) Method for preparing o-methoxybenzaldehyde by use of micro-reaction device
Dietrich et al. Production and characteristics of microreactors made from glass
JP2005144634A (en) Washing method for microchemical device and manufacturing method for optically-active epoxide using the same
Lok et al. Passive micromixer for luminol-peroxide chemiluminescence detection
Ogunyinka et al. Epoxidation of trans-stilbene in a microfluidic plasma reactor
US20070284249A1 (en) Microchannel cleaning method
JP2003164745A (en) Microreactor
JP2005066382A (en) Microreactor and its using method
Sostaric et al. Advancement of high power ultrasound technology for the destruction of surface active waterborne contaminants
Icardo et al. Selective chlorine determination by gas diffusion in a tandem flow assembly and spectrophotometric detection with o-dianisidine
Hu et al. Continuous synthesis of tetraethyl thiuram disulfide with CO 2 as acid agent in a gas-liquid microdispersion system
Karre et al. Review of air-water interface adsorption and reactions between trace gaseous organic and oxidant compounds
US20190195806A1 (en) Method and device for chemiluminescence-based analysis
Toyoda et al. Design of a flow reactor system for safe handling of phosgenation reactions: scale-up study of T-shaped mixers for industrial chemical production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427