JP2006073236A - Manufacturing method of oxide superconductive wire rod and support tool for manufacturing the wire rod - Google Patents

Manufacturing method of oxide superconductive wire rod and support tool for manufacturing the wire rod Download PDF

Info

Publication number
JP2006073236A
JP2006073236A JP2004252493A JP2004252493A JP2006073236A JP 2006073236 A JP2006073236 A JP 2006073236A JP 2004252493 A JP2004252493 A JP 2004252493A JP 2004252493 A JP2004252493 A JP 2004252493A JP 2006073236 A JP2006073236 A JP 2006073236A
Authority
JP
Japan
Prior art keywords
wire
heat
support
wire rod
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004252493A
Other languages
Japanese (ja)
Inventor
Shigeo Nagaya
重夫 長屋
Naoki Hirano
直樹 平野
Takayo Hasegawa
隆代 長谷川
Yasuo Hikichi
康雄 引地
Teruto Nakatsu
照人 仲津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
SWCC Corp
Original Assignee
Chubu Electric Power Co Inc
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Showa Electric Wire and Cable Co filed Critical Chubu Electric Power Co Inc
Priority to JP2004252493A priority Critical patent/JP2006073236A/en
Publication of JP2006073236A publication Critical patent/JP2006073236A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an oxide superconductive wire rod in which precise heat treatment control can be performed with a prescribed heat-treatment pattern, and which has a superior superconductive property with a long length. <P>SOLUTION: A plurality of rods 2 made of Al<SB>2</SB>O<SB>3</SB>are arranged and fixed to the outer periphery of a drum 1 of heat resistant stainless steel in parallel with the axial direction of the drum and at equal spaces, and a long wire rod 4 which houses material powder containing an element to constitute an oxide superconductor with a given mole ratio is wound on top of this in a solenoid shape, and put into an electric furnace 5 to be applied with heat treatment, thereby precise heat-treatment control is made possible with a prescribed heat-treatment pattern, and by preventing the diffusion of an element constituting a wire rod support fixture from the wire rod support fixture, and furthermore preventing the deterioration of the wire rod caused by distortion added on it at heat treatment, a long oxide superconductive wire rod having a superior superconductive property can be manufactured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は酸化物超電導線材の製造方法及びその製造用支持具の改良に関するものである。   The present invention relates to a method for manufacturing an oxide superconducting wire and an improvement of a support for manufacturing the same.

従来、酸化物超電導体として、Bi系(2212)酸化物超電導体(Bi:Sr:Ca:Cu=2:2:1:2のモル比)及びBi系(2223)酸化物超電導体(Bi:Sr:Ca:Cu=2:2:2:3のモル比)が線材化に成功しており、これらの線材は所謂銀シース法(Powder in Tube Method)によって製造されている。この方法は、銀又は銀合金シース内に超電導物質の原料粉末を充填し、これに縮径加工を施すか、あるいは更に圧延加工を施して断面丸形又はテープ状に成形した後、熱処理を施して原料粉末を超電導化するものである(例えば、非特許文献1参照。)。   Conventionally, as an oxide superconductor, a Bi-based (2212) oxide superconductor (Bi: Sr: Ca: Cu = 2: 2: 1: 2 molar ratio) and a Bi-based (2223) oxide superconductor (Bi: Sr: Ca: Cu = 2: 2: 2: 3 molar ratio) has been successfully formed into wires, and these wires are produced by a so-called silver sheath method (Powder in Tube Method). In this method, a raw material powder of a superconducting substance is filled in a silver or silver alloy sheath and subjected to diameter reduction processing or further rolling to form a round cross-section or tape, and then heat treatment. Thus, the raw material powder is superconducted (see, for example, Non-Patent Document 1).

上記の銀シース法により酸化物超電導線材を製造する場合、冷間加工後に酸化物超電導体を生成させるための熱処理が必要となる。酸化物超電導体の合成温度は適正温度範囲が狭く、例えば温度範囲を±1〜2℃に制御する必要がある。   When manufacturing an oxide superconducting wire by the above silver sheath method, a heat treatment for generating an oxide superconductor after cold working is required. The synthesis temperature of the oxide superconductor has a narrow appropriate temperature range, and it is necessary to control the temperature range to ± 1 to 2 ° C., for example.

T.Hasegawa et.al.“HTS Conductors for Magnets”,MT−17,Sep.2001,Geneva.T.A. Hasegawa et. al. “HTS Conductors for Magnets”, MT-17, Sep. 2001, Geneva.

以上の厳しい温度管理は、線材の長尺化に伴い電気炉が大型化するに従って、その困難さが著しく増大する。これに加えて、長尺の線材の重量を高温中で支えるためには、大型の線材支持具が必要となり、耐熱性の観点からこの線材支持具は耐熱ステンレス鋼、セラミックス成型体等により形成されている。   The difficulty of the above severe temperature control increases remarkably as the electric furnace becomes larger as the wire becomes longer. In addition, in order to support the weight of a long wire at a high temperature, a large wire support is required. From the viewpoint of heat resistance, this wire support is formed of heat resistant stainless steel, ceramic molded body, etc. ing.

これらの線材支持具は熱容量が大きいため、例えば、この線材支持具を円筒状に形成し、この外周に長尺の酸化物超電導体を構成する元素を含む線材をソレノイド状に巻回して熱処理を施すと、線材の熱挙動は線材支持具の熱挙動や熱容量に大きく影響され、熱処理すべき線材の温度制御が困難になり所望の熱処理パターンを得ることが困難になるという問題があり、特に、冷却条件を厳密に制御しなければならないBi系(2212)酸化物超電導線材の製造においては、特性の優れた超電導線材を得ることは極めて困難となる。   Since these wire rod supports have a large heat capacity, for example, the wire rod support is formed in a cylindrical shape, and a wire containing an element constituting a long oxide superconductor is wound around the outer periphery in a solenoid shape to perform heat treatment. When applied, the thermal behavior of the wire is greatly influenced by the thermal behavior and heat capacity of the wire support, and there is a problem that it becomes difficult to control the temperature of the wire to be heat-treated and to obtain a desired heat treatment pattern, In the production of a Bi-based (2212) oxide superconducting wire whose cooling conditions must be strictly controlled, it is extremely difficult to obtain a superconducting wire having excellent characteristics.

また、線材支持具として耐熱ステンレス鋼を用いた場合には、線材支持具上に巻回した線材との熱膨張率の差により、熱処理時に線材に歪が加わり超電導特性が劣化するという問題がある上、線材支持具を構成する元素の線材への拡散により超電導特性が劣化するという問題がある。   In addition, when heat-resistant stainless steel is used as the wire support, there is a problem that due to the difference in coefficient of thermal expansion from the wire wound on the wire support, the wire is distorted during heat treatment and the superconducting properties deteriorate. In addition, there is a problem that the superconducting characteristics are deteriorated by diffusion of elements constituting the wire support into the wire.

本発明は、以上の問題を解決するためになされたもので、線材支持具と長尺の酸化物超電導体を構成する元素を含む線材との間に熱絶縁層を設けて線材支持具からの熱流入を防止することにより、所定の熱処理パターンで精密な熱処理制御を可能にするとともに、線材支持具からの線材支持具を構成する元素の線材への拡散を防止し、さらに、熱処理時に線材に加わる歪による劣化を防止して、超電導特性の優れた長尺の酸化物超電導線材を製造することができる酸化物超電導線材の製造方法及びその製造用支持具を提供することをその目的とする。   The present invention has been made in order to solve the above-described problems. A thermal insulating layer is provided between the wire support and the wire containing the elements constituting the long oxide superconductor, and the wire support is provided from the wire support. Preventing heat inflow enables precise heat treatment control with a predetermined heat treatment pattern, prevents diffusion of the elements constituting the wire support from the wire support to the wire, An object of the present invention is to provide an oxide superconducting wire manufacturing method and a support for manufacturing the oxide superconducting wire capable of manufacturing a long oxide superconducting wire excellent in superconducting characteristics while preventing deterioration due to applied strain.

以上の目的を達成するために、本発明による酸化物超電導線材の製造方法は、
長尺の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材を巻回して線材支持具上に載置した後、熱処理を施して酸化物超電導線材を製造する方法において、線材支持具と線材との間に熱絶縁層を設けて熱処理を施すことを特徴としている。
In order to achieve the above object, a method for producing an oxide superconducting wire according to the present invention includes:
A method for producing an oxide superconducting wire by winding a wire containing a raw material powder containing elements constituting a long oxide superconductor in a predetermined molar ratio and placing the wire on a wire support, followed by heat treatment 1 is characterized in that a heat insulating layer is provided between the wire support and the wire to perform heat treatment.

また、本発明による他の酸化物超電導線材の製造方法は、線材支持具上に長尺の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材をソレノイド状に巻回した後、熱処理を施して酸化物超電導線材を製造する方法において、線材支持具とソレノイド状に巻回した長尺の線材との間に熱絶縁層を設けて熱処理を施すことを特徴としている。   In addition, another oxide superconducting wire manufacturing method according to the present invention is a method in which a wire containing a raw material powder containing elements constituting a long oxide superconductor in a predetermined molar ratio is wound in a solenoid shape on a wire support. In the method of manufacturing an oxide superconducting wire by performing a heat treatment after turning, a heat insulating layer is provided between the wire support and a long wire wound in a solenoid shape, and the heat treatment is performed. .

さらに、本発明による酸化物超電導線材の製造用支持具は、耐熱性金属材料又はセラミックスからなる円筒状の線材支持具表面に、複数のセラミックスからなる棒状部材を線材支持具の軸方向に平行に所定の間隔を置いて配置したことを特徴としている。   Furthermore, the support for manufacturing an oxide superconducting wire according to the present invention has a cylindrical wire support made of a heat-resistant metal material or ceramic, and a rod-shaped member made of a plurality of ceramics parallel to the axial direction of the wire support. It is characterized by being arranged at a predetermined interval.

本発明における酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材としては、銀シース法により製造した単芯線、多芯線又はこれらの複数本を集合又は撚合せた集合導体を挙げることができる。   As the wire containing the raw material powder containing the element constituting the oxide superconductor in the present invention at a predetermined molar ratio, a single core wire, a multi-core wire manufactured by the silver sheath method, or a set obtained by collecting or twisting a plurality of these wires Mention may be made of conductors.

以上述べたように、本発明による酸化物超電導線材の製造方法によれば、線材支持具と長尺の線材との間に熱絶縁層を設けたことにより、線材支持具からの熱流入を防止して所定の熱処理パターンで精密な熱処理制御を可能にするとともに、線材支持具からの線材支持具を構成する元素の線材への拡散を防止し、さらに、熱処理時に線材に加わる歪による劣化を防止して、超電導特性の優れた長尺の酸化物超電導線材を製造することができる利点を有する。   As described above, according to the method for manufacturing an oxide superconducting wire according to the present invention, a heat insulating layer is provided between the wire support and the long wire, thereby preventing heat from flowing from the wire support. This enables precise heat treatment control with a predetermined heat treatment pattern, prevents diffusion of the elements constituting the wire support from the wire support to the wire, and prevents deterioration due to strain applied to the wire during heat treatment. Thus, there is an advantage that a long oxide superconducting wire excellent in superconducting characteristics can be manufactured.

本発明の酸化物超電導線材の製造方法の一実施形態においては、図3に示すように、線材支持具10の上に線材重量に耐える複数本の支柱11を立て、この上に網状の支持板12を置いて、この上にパンケーキ状に巻回した長尺の酸化物超電導体を構成する元素を含む線材13を載置した後、電気炉14内に配置して熱処理を施し酸化物超電導線材を製造する。この場合、上記の網状の支持板12により線材支持具10と線材13との間に形成される空気層によって熱絶縁層が形成される。   In one embodiment of the method for producing an oxide superconducting wire according to the present invention, as shown in FIG. 3, a plurality of support columns 11 that stand the weight of the wire are erected on a wire support 10 and a net-like support plate is formed thereon. 12, a wire 13 containing an element constituting a long oxide superconductor wound in a pancake shape is placed thereon, and then placed in an electric furnace 14 and subjected to a heat treatment to perform oxide superconductivity. Manufacture wire. In this case, a heat insulating layer is formed by the air layer formed between the wire support 10 and the wire 13 by the mesh-like support plate 12.

また、本発明の他の酸化物超電導線材の製造方法においては、図1に示すように、線材支持具1とソレノイド状に巻回した長尺の線材4との間に熱絶縁層が設けられるが、この熱絶縁層は、線材支持具を構成する元素の前記線材への拡散を防止する機能も有し、熱絶縁と拡散防止機能を有する材料を線材支持具上に配設することもできるが、この熱絶縁層を空気絶縁層により形成することが好ましい。   Moreover, in the manufacturing method of the other oxide superconducting wire of this invention, as shown in FIG. 1, a heat insulation layer is provided between the wire support 1 and the elongate wire 4 wound like a solenoid. However, this thermal insulating layer also has a function of preventing diffusion of elements constituting the wire support into the wire, and a material having a heat insulation and diffusion preventing function can be disposed on the wire support. However, it is preferable that the heat insulating layer is formed of an air insulating layer.

上記の空気絶縁層は、線材への拡散を防止する物質からなる部材2を線材支持具1とソレノイド状に巻回した長尺の線材4との間に間欠的に配置することにより形成することができる。この場合、耐熱性材料からなる円筒状の線材支持具1表面に、複数のセラミックスからなる棒状部材2を線材支持具の軸方向に平行に所定の間隔を置いて配置して、この棒状部材の外側に長尺の酸化物超電導体を構成する元素を含む線材をソレノイド状に巻回することが好ましい。   The air insulating layer is formed by intermittently disposing the member 2 made of a substance that prevents diffusion into the wire between the wire support 1 and the long wire 4 wound in a solenoid shape. Can do. In this case, a rod-shaped member 2 made of a plurality of ceramics is arranged on the surface of the cylindrical wire-supporting member 1 made of a heat-resistant material at a predetermined interval in parallel to the axial direction of the wire-supporting member. It is preferable to wind a wire containing an element constituting the long oxide superconductor on the outside in a solenoid shape.

線材支持具上に空気絶縁層を介してソレノイド状に巻回された冷間加工後の長尺の線材に、酸化物超電導体を生成させるための熱処理が施されるが、この熱処理は酸化物超電導体の合成温度で施され、Bi系(2212)酸化物超電導体の場合、酸素濃度50%以上の雰囲気中での加熱とそれに続く徐冷工程により施される。この加熱工程は、Bi系(2212)酸化物超電導体の融点以上で融点以上20℃未満の温度で施され、一方、徐冷工程は、0.1〜10℃/hの冷却速度の範囲で、少なくともBi系(2212)酸化物超電導体の凝固温度以下10℃まで施される。   A heat treatment for generating an oxide superconductor is performed on a long wire after cold working wound in a solenoid shape on a wire support through an air insulating layer. It is applied at the synthesis temperature of the superconductor, and in the case of a Bi-based (2212) oxide superconductor, it is applied by heating in an atmosphere having an oxygen concentration of 50% or more, followed by a slow cooling step. This heating step is performed at a temperature higher than the melting point of the Bi-based (2212) oxide superconductor and higher than the melting point and lower than 20 ° C., while the slow cooling step is performed at a cooling rate in the range of 0.1 to 10 ° C./h. And at least 10 ° C. below the solidification temperature of the Bi-based (2212) oxide superconductor.

上記の線材支持具は、熱処理中の酸化性雰囲気及び温度でその形状及び機械的強度を保持することができるものであればよく、MgO、Al、Al−SiO系等のセラミックス材料あるいはステンレス鋼、ハステロイ、インコネル等の耐熱金属材料を用いることができ、一方、空気絶縁層を形成するための棒状部材はセラミックスにより形成することが好ましい。 The wire support may be any material that can maintain its shape and mechanical strength in an oxidizing atmosphere and temperature during heat treatment, such as MgO, Al 2 O 3 , Al 2 O 3 —SiO series, etc. A ceramic material or a refractory metal material such as stainless steel, Hastelloy, or Inconel can be used. On the other hand, the rod-shaped member for forming the air insulating layer is preferably formed of ceramics.

以下本発明の一実施例について図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

実施例
外径φ18mm、内径φ15mmの純銀パイプ中に、BiSrCaCuの酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を充填し、これに伸線加工を施して外径φ2mmまで成形した。この61本を束ねて同一サイズの純銀パイプ中に収容し、更に外径φ4.5mmまで伸線加工を施した。
Example A pure silver pipe having an outer diameter of φ18 mm and an inner diameter of φ15 mm was filled with a raw material powder containing elements constituting the oxide superconductor of Bi 2 Sr 2 CaCu 2 O 8 at a predetermined molar ratio, and this was subjected to wire drawing. To give an outer diameter of 2 mm. The 61 pieces were bundled and accommodated in a pure silver pipe of the same size, and further drawn to an outer diameter of φ4.5 mm.

次いで、この6本を束ねてAg−Mg−Sb三元合金を用いて作製したパイプ中に収容し、これに伸線加工を施して成形し、φ1mmの線材を製造した。   Next, these 6 pieces were bundled and accommodated in a pipe produced using an Ag—Mg—Sb ternary alloy, and this was subjected to wire drawing to form a wire with a diameter of 1 mm.

一方、図2に示すように、外径φ1m、長さ0.5m、厚さ5mmの耐熱ステンレス製のドラム1の外周に、Alからなる外径φ8mmのロッド2の10本を、ドラムの軸方向に平行に、かつ等間隔に配置して固定し、酸化物超電導線材の製造用支持具3を形成した。 On the other hand, as shown in FIG. 2, 10 rods 2 having an outer diameter of φ8 mm made of Al 2 O 3 are placed on the outer periphery of a heat-resistant stainless steel drum 1 having an outer diameter of φ1 m, a length of 0.5 m, and a thickness of 5 mm. The support 3 for manufacturing an oxide superconducting wire was formed by being arranged and fixed in parallel to the drum in the axial direction and at equal intervals.

次いで、図1に示すように、この製造用支持具3上に上記の線材4の300mをソレノイド状に巻回して、電気炉5中に入れ熱処理を施した。熱処理条件は、酸素雰囲気中で900℃、冷却速度10℃/hとした。   Next, as shown in FIG. 1, 300 m of the above-described wire rod 4 was wound in a solenoid shape on the manufacturing support 3 and placed in an electric furnace 5 for heat treatment. The heat treatment conditions were 900 ° C. and a cooling rate of 10 ° C./h in an oxygen atmosphere.

このようにして製造した酸化物超電導線材の臨界電流値(Ic)を4.2K、0Tで測定した結果、1050Aの値を示した。   As a result of measuring the critical current value (Ic) of the oxide superconducting wire thus manufactured at 4.2 K and 0 T, a value of 1050 A was shown.

比較例
ドラムを、外径φ1m、長さ0.5m、厚さ5mmの耐熱ステンレス製あるいはAlで作製し、実施例と同様にしてこのドラム上に上記の線材の300mをソレノイド状に巻回して、電気炉中に入れ熱処理を施した。熱処理条件は、酸素雰囲気中で900℃、冷却速度10℃/hを目標とした。
Comparative Example A drum was made of heat-resistant stainless steel or Al 2 O 3 having an outer diameter of 1 m, a length of 0.5 m, and a thickness of 5 mm, and 300 m of the above-mentioned wire rod was solenoidally formed on this drum in the same manner as in the example. It was wound and placed in an electric furnace for heat treatment. The heat treatment conditions were set to 900 ° C. and a cooling rate of 10 ° C./h in an oxygen atmosphere.

このようにして製造した酸化物超電導線材の臨界電流値(Ic)を4.2K、0Tで測定した結果、耐熱ステンレス製のドラムの場合には350A、Al製のドラムの場合には600Aの値を示した。 The critical current value (Ic) of the oxide superconducting wire thus manufactured was measured at 4.2 K and 0 T. As a result, in the case of a drum made of heat resistant stainless steel, 350 A, in the case of a drum made of Al 2 O 3 A value of 600A was shown.

以上の実施例及び比較例の結果から明らかなように、耐熱ステンレス製のドラムの外周にAlからなる複数本のロッドを、ドラムの軸方向に平行に、かつ等間隔に配置して固定し、この上に線材をソレノイド状に巻回して線材とドラムとの間に空気絶縁層を設けて熱処理を施すことにより、高い臨界電流値を有する酸化物超電導線材を製造することができる。 As is clear from the results of the above examples and comparative examples, a plurality of rods made of Al 2 O 3 are arranged on the outer periphery of a heat-resistant stainless steel drum in parallel to the drum in the axial direction and at equal intervals. An oxide superconducting wire having a high critical current value can be produced by fixing, winding a wire in a solenoid shape on this, providing an air insulating layer between the wire and the drum, and performing heat treatment.

これに対して、耐熱ステンレス製からなるドラム上に直接線材をソレノイド状に巻回して熱処理を施した場合には、ドラムの構成元素が拡散して超電導特性が低下し、一方、Alで作製したドラム上に直接線材をソレノイド状に巻回して熱処理を施した場合には、ドラムの構成元素の拡散は防止し得るものの、ドラムの熱容量が大きいために温度上昇が遅く、ドラムからの熱流入が冷却開始後も続き冷却速度を所定の範囲内に制御できず、高い臨界電流値を有する酸化物超電導線材を製造することができない。 In contrast, when a heat treatment is performed by winding a wire directly on a drum made of heat-resistant stainless steel in a solenoid shape, the constituent elements of the drum are diffused and the superconducting properties are lowered, while Al 2 O 3 When the heat treatment is performed by winding the wire directly on the drum produced in the above in the form of a solenoid, the diffusion of the constituent elements of the drum can be prevented, but the temperature rise is slow due to the large heat capacity of the drum. Heat inflow continues after the start of cooling, and the cooling rate cannot be controlled within a predetermined range, and an oxide superconducting wire having a high critical current value cannot be manufactured.

本発明は、所定の熱処理パターンで正確な熱処理制御を可能とし、特性の優れた酸化物超電導線材の製造に適用することができる。   The present invention enables accurate heat treatment control with a predetermined heat treatment pattern, and can be applied to the production of an oxide superconducting wire having excellent characteristics.

本発明による酸化物超電導線材の製造方法の一実施例を示す概略図である。It is the schematic which shows one Example of the manufacturing method of the oxide superconducting wire by this invention. 本発明による酸化物超電導線材の製造用支持具の一実施例を示す概略図である。It is the schematic which shows one Example of the support tool for manufacture of the oxide superconducting wire by this invention. 本発明による他の酸化物超電導線材の製造方法の一実施例を示す概略図である。It is the schematic which shows one Example of the manufacturing method of the other oxide superconducting wire by this invention.

符号の説明Explanation of symbols

1 線材支持具(耐熱ステンレス製のドラム)
2 棒状部材(Alロッド)
3 酸化物超電導線材の製造用支持具
4、13 線材
5、14 電気炉
10 線材支持具
11 支柱
12 網状の支持板
1 Wire support (drum made of heat-resistant stainless steel)
2 Rod-shaped member (Al 2 O 3 rod)
DESCRIPTION OF SYMBOLS 3 Support tool for manufacturing oxide superconducting wire 4, 13 Wire material 5, 14 Electric furnace 10 Wire support tool 11 Strut 12 Reticulated support plate

Claims (8)

長尺の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材を巻回して線材支持具上に載置した後、熱処理を施して酸化物超電導線材を製造する方法において、前記線材支持具と前記線材との間に熱絶縁層を設けて熱処理を施すことを特徴とする酸化物超電導線材の製造方法。   A method for producing an oxide superconducting wire by winding a wire containing a raw material powder containing elements constituting a long oxide superconductor in a predetermined molar ratio and placing the wire on a wire support, followed by heat treatment A method for producing an oxide superconducting wire, comprising: providing a heat insulating layer between the wire support and the wire to perform heat treatment. 線材支持具上に長尺の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材をソレノイド状に巻回した後、熱処理を施して酸化物超電導線材を製造する方法において、前記線材支持具とソレノイド状に巻回した長尺の前記線材との間に熱絶縁層を設けて熱処理を施すことを特徴とする酸化物超電導線材の製造方法。   A method for producing an oxide superconducting wire by conducting a heat treatment after winding a wire containing a raw material powder containing elements constituting a long oxide superconductor in a predetermined molar ratio on a wire support in a solenoid shape A method for producing an oxide superconducting wire, comprising: providing a heat insulating layer between the wire support and the elongated wire wound in a solenoid shape to perform heat treatment. 熱絶縁層は、前記線材支持具を構成する元素の前記線材への拡散を防止する機能を有することを特徴とする請求項1又は2記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to claim 1 or 2, wherein the heat insulating layer has a function of preventing diffusion of an element constituting the wire support to the wire. 熱絶縁層は、空気絶縁層からなることを特徴とする請求項1乃至3いずれか1項記載の酸化物超電導線材の製造方法。   The method of manufacturing an oxide superconducting wire according to any one of claims 1 to 3, wherein the heat insulating layer is an air insulating layer. 熱絶縁層は、前記線材支持具とソレノイド状に巻回した長尺の前記線材との間に間欠的に配置され、前記線材への拡散を防止する物質からなる部材により形成される空気絶縁層からなることを特徴とする請求項2又は3記載の酸化物超電導線材の製造方法。   The thermal insulating layer is an air insulating layer formed by a member made of a substance that is intermittently disposed between the wire support and the elongated wire wound in a solenoid shape and prevents diffusion to the wire. The method for producing an oxide superconducting wire according to claim 2 or 3, wherein 耐熱性材料からなる円筒状の線材支持具表面に、複数のセラミックスからなる棒状部材を前記線材支持具の軸方向に平行に所定の間隔を置いて配置し、前記棒状部材の外側に長尺の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材をソレノイド状に巻回した後、熱処理を施すことを特徴とする酸化物超電導線材の製造方法。   A rod-shaped member made of a plurality of ceramics is arranged on the surface of a cylindrical wire rod support member made of a heat-resistant material at a predetermined interval in parallel to the axial direction of the wire rod support member. A method for producing an oxide superconducting wire, characterized in that a wire material containing a raw material powder containing an element constituting an oxide superconductor in a predetermined molar ratio is wound in a solenoid shape and then heat-treated. 線材支持具は耐熱金属材料又はセラミックスからなることを特徴とする請求項6記載の酸化物超電導線材の製造方法。   The method of manufacturing an oxide superconducting wire according to claim 6, wherein the wire support is made of a heat-resistant metal material or ceramics. 耐熱性金属材料又はセラミックスからなる円筒状の線材支持具の表面に、複数のセラミックスからなる棒状部材を前記線材支持具の軸方向に平行に所定の間隔を置いて配置したことを特徴とする酸化物超電導線材の製造用支持具。
Oxidation characterized in that a rod-shaped member made of a plurality of ceramics is arranged on the surface of a cylindrical wire support made of a heat-resistant metal material or ceramic at a predetermined interval in parallel to the axial direction of the wire support. Support for manufacturing superconducting wire.
JP2004252493A 2004-08-31 2004-08-31 Manufacturing method of oxide superconductive wire rod and support tool for manufacturing the wire rod Withdrawn JP2006073236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252493A JP2006073236A (en) 2004-08-31 2004-08-31 Manufacturing method of oxide superconductive wire rod and support tool for manufacturing the wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252493A JP2006073236A (en) 2004-08-31 2004-08-31 Manufacturing method of oxide superconductive wire rod and support tool for manufacturing the wire rod

Publications (1)

Publication Number Publication Date
JP2006073236A true JP2006073236A (en) 2006-03-16

Family

ID=36153649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252493A Withdrawn JP2006073236A (en) 2004-08-31 2004-08-31 Manufacturing method of oxide superconductive wire rod and support tool for manufacturing the wire rod

Country Status (1)

Country Link
JP (1) JP2006073236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529093A (en) * 2016-02-03 2016-04-27 安徽瑞昊缆业有限公司 Self-heating anti-cracking cable
CN105529095A (en) * 2016-02-03 2016-04-27 安徽瑞昊缆业有限公司 Multi-core self heating cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529093A (en) * 2016-02-03 2016-04-27 安徽瑞昊缆业有限公司 Self-heating anti-cracking cable
CN105529095A (en) * 2016-02-03 2016-04-27 安徽瑞昊缆业有限公司 Multi-core self heating cable

Similar Documents

Publication Publication Date Title
JPH09511099A (en) Post-winding reaction superconducting coil and manufacturing method
CN101728028B (en) Method for preparing multicore TiC doped with MgB2 superconductive material by in situ method
JP2006073236A (en) Manufacturing method of oxide superconductive wire rod and support tool for manufacturing the wire rod
JP4212882B2 (en) Manufacturing method of oxide superconducting wire
WO2006001100A1 (en) Method for producing superconducting wire
WO1988008618A2 (en) Ceramic superconducting devices and fabrication methods
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
RU171955U1 (en) SUPERCONDUCTING COMPOSITE WIRE BASED ON MAGNESIUM DIBORIDE
JP2604379B2 (en) Manufacturing method of ceramic superconducting wire
JPH05266726A (en) Oxide superconducting wire
RU2647483C2 (en) Method for obtaining long-dimensional superconducting composite wire based on magnesium diboride (options)
JP5353215B2 (en) Superconducting wire manufacturing method and superconducting wire
JP2007200562A (en) CONTINUOUS HEAT TREATMENT DEVICE OF Bi-BASED OXIDE SUPERCONDUCTIVE WIRE
JPH04262308A (en) Oxide superconductive wire rod
RU170080U1 (en) SUPERCONDUCTING COMPOSITE WIRE BASED ON MAGNESIUM DIBORIDE
JPH09232131A (en) Winding spacer for oxide superconductor wire
JPH07169342A (en) Multi-filament oxide superconducting wire
JPH04264315A (en) Manufacture of large-capacity oxide superconducting conductor
JP2007220493A (en) MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTING WIRE ROD AND PRECURSOR FOR THE SAME
JPH01321605A (en) Manufacture of oxide ceramic superconductor coil
JPH11273469A (en) Superconductive precursor composite wire and manufacture of superconductive composite wire
JP2573506B2 (en) Manufacturing method of ceramic superconducting wire
JP2008047386A (en) Nb3Sn SUPERCONDUCTING WIRE ROD, AND MANUFACTURING METHOD THEREFOR
WO1999052157A1 (en) Superconducting wires
JPH02181315A (en) Manufacture of superconductive wire with predetermined shape

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106