JP2007200562A - CONTINUOUS HEAT TREATMENT DEVICE OF Bi-BASED OXIDE SUPERCONDUCTIVE WIRE - Google Patents

CONTINUOUS HEAT TREATMENT DEVICE OF Bi-BASED OXIDE SUPERCONDUCTIVE WIRE Download PDF

Info

Publication number
JP2007200562A
JP2007200562A JP2006014043A JP2006014043A JP2007200562A JP 2007200562 A JP2007200562 A JP 2007200562A JP 2006014043 A JP2006014043 A JP 2006014043A JP 2006014043 A JP2006014043 A JP 2006014043A JP 2007200562 A JP2007200562 A JP 2007200562A
Authority
JP
Japan
Prior art keywords
heat treatment
wire
temperature
based oxide
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006014043A
Other languages
Japanese (ja)
Inventor
Takayo Hasegawa
隆代 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2006014043A priority Critical patent/JP2007200562A/en
Publication of JP2007200562A publication Critical patent/JP2007200562A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously manufacture a long Bi-based oxide superconductive wire or twisted wire conductor excelling in characteristics at a low cost without adding distortion. <P>SOLUTION: The wire or twisted wire conductor 9 after a forming process which is wound around a delivery device 3 is mounted on a transport device 5, passes through a preliminary heating chamber 6, heater zones 2a, 2b and 2c of a heat treatment furnace 2 and a slow cooling chamber 7, and is wound around a winding device 4. The temperature and the transport speed of the wire or twisted wire conductor 9 are controlled to secure a slow cooling process from a temperature 50°C lower than a partial dissolution point to a temperature 20°C higher than it in an oxidizing environment up to 10°C below a condensation temperature. The delivery speed of the delivery device 3, the winding speed of the winding device 4 and the transport speed of the transport device 5 are so controlled by a control device 8 that additional distortion to the wire or twisted wire conductor 9 and flexural distortion thereof are set not greater than 0.1% and not greater than 0.1%, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は酸化物超電導体の熱処理装置に係り、特に超電導マグネットや電力機器等に使用されるBi(2212)系酸化物超電導線材の連続熱処理装置の改良に関する。   The present invention relates to an oxide superconductor heat treatment apparatus, and more particularly to improvement of a continuous heat treatment apparatus for Bi (2212) -based oxide superconducting wire used for superconducting magnets and power equipment.

従来、酸化物超電導体として、Bi系(2212)酸化物超電導体(Bi:Sr:Ca:Cu=2:2:1:2のモル比)及びBi系(2223)酸化物超電導体(Bi:Sr:Ca:Cu=2:2:2:3のモル比)が線材化に成功しており、これらの線材は所謂銀シース法(Powder in Tube Method)によって製造されている。この方法は、銀又は銀合金パイプ内に超電導物質の原料粉末を充填し、これに縮径加工を施すか、あるいは更に圧延加工を施して断面丸形又はテープ状に成形した後、熱処理を施して原料粉末を超電導化するものである。   Conventionally, as an oxide superconductor, Bi (2212) oxide superconductor (Bi: Sr: Ca: Cu = 2: 2: 1: 2 molar ratio) and Bi (2223) oxide superconductor (Bi: Sr: Ca: Cu = 2: 2: 2: 3 molar ratio) has been successfully formed into wires, and these wires are produced by a so-called silver sheath method (Powder in Tube Method). In this method, a raw material powder of a superconducting material is filled in a silver or silver alloy pipe, and this is subjected to diameter reduction processing or further rolled to form a round cross-section or tape shape, and then subjected to heat treatment. The raw material powder is made superconductive.

シース材に用いる材料としては、超電導粉末との反応性がないこと、高温で酸化しないこと及び酸素の拡散速度が速い等の観点から、銀あるいは銀合金が選択されている。このようにして、銀あるいは銀合金の中に多数本の細い酸化物超電導体フィラメントを配置した酸化物超電導線材が製造され、大容量化のために、この酸化物超電導線材を多数本撚り合わせて集合導体が製造されている。   As the material used for the sheath material, silver or a silver alloy is selected from the viewpoints of no reactivity with the superconducting powder, no oxidation at a high temperature, and a high oxygen diffusion rate. In this way, an oxide superconducting wire in which a large number of thin oxide superconductor filaments are arranged in silver or a silver alloy is manufactured. Aggregate conductors are manufactured.

このプロセスで超電導体を生成させるためには、冷間加工後、熱処理を施すことが必須である。この熱処理は、耐熱スペーサーと共巻き又は互いに接触しないようにギャップ巻きし、同心円状にパンケーキ状に成型するか、円筒状の焼成ドラム状にソレノイド巻きし、熱処理用電気炉を用いて熱処理が施されている。   In order to produce a superconductor by this process, it is essential to perform heat treatment after cold working. This heat treatment is performed by winding together with a heat-resistant spacer or gaps so as not to contact each other, forming concentric circles in a pancake shape, or winding them in a cylindrical firing drum shape, and heat treatment using an electric furnace for heat treatment. It has been subjected.

上記のバッチ式電気炉による抵抗加熱方式においては、抵抗発熱体で発生した熱によって炉体を加熱し、炉対周囲の断熱材によって保温するものであり、始めに熱容量の大きな炉体を加熱する必要があり、更に熱処理の終了後は炉体の冷却速度によって試料の冷却速度も律速されるため、冷却速度の制御も困難となる。   In the resistance heating method using the batch electric furnace described above, the furnace body is heated by the heat generated by the resistance heating element and is kept warm by the heat insulating material around the furnace. First, the furnace body having a large heat capacity is heated. Further, after completion of the heat treatment, the cooling rate of the sample is also controlled by the cooling rate of the furnace body, so that it is difficult to control the cooling rate.

従って、この場合には、線材が長尺化するにつれて電気炉が大型化しコストが上昇する上、製造効率が低くなるという難点がある。また、上記の銀シース法によりBi(2212)系酸化物超電導線材を製造する場合、冷間加工後の酸化物超電導体を生成させるための熱処理における合成温度は適正温度範囲が狭く、例えば温度範囲を±1〜2℃に制御する必要がある。電気炉が大型化するに従って温度制御が困難になるという問題がある。   Therefore, in this case, as the wire becomes longer, the electric furnace becomes larger and the cost increases, and the manufacturing efficiency is lowered. Further, when a Bi (2212) -based oxide superconducting wire is manufactured by the above silver sheath method, the synthesis temperature in the heat treatment for generating the oxide superconductor after cold working is narrow in the appropriate temperature range, for example, the temperature range Must be controlled to ± 1 to 2 ° C. There is a problem that temperature control becomes difficult as the electric furnace becomes larger.

以上の厳しい温度管理は、線材の長尺化に伴い電気炉が大型化するに従って、その困難さが著しく増大する。これに加えて、長尺の線材の重量を高温中で支えるためには、大型の線材支持具が必要となり、耐熱性の観点からこの線材支持具は耐熱ステンレス鋼、セラミックス成型体等により形成されている。   The difficulty of the above severe temperature control increases remarkably as the electric furnace becomes larger as the wire becomes longer. In addition, in order to support the weight of a long wire at high temperatures, a large wire support is required. From the viewpoint of heat resistance, this wire support is formed of heat resistant stainless steel, ceramic molded body, etc. ing.

上記の線材支持具は熱容量が大きいため、例えば、この線材支持具を円筒状に形成し、この外周に長尺の酸化物超電導体を構成する元素を含む線材をソレノイド状に巻回して熱処理を施すと、線材の熱挙動は線材支持具の熱挙動や熱容量に大きく影響され、熱処理すべき線材の温度制御が困難になり所望の熱処理パターンを得ることが困難になるという欠点があり、特に、冷却条件を厳密に制御しなければならないBi(2212)系酸化物超電導線材の製造においては、特性の優れた超電導線材を得ることは極めて困難となる。
また、線材支持具として耐熱ステンレス鋼を用いた場合には、線材支持具上に巻回した線材の酸化物超電導体との熱膨張率の差により、熱処理時に歪が加わり超電導特性の劣化やシース材に割れが生ずるという問題がある上、線材支持具を構成する元素の線材への拡散により超電導体を汚染し、超電導特性が劣化するという問題がある。
Since the above-mentioned wire rod support has a large heat capacity, for example, the wire rod support is formed in a cylindrical shape, and a wire containing an element constituting a long oxide superconductor is wound around the outer periphery in a solenoid shape to perform heat treatment. When applied, the thermal behavior of the wire is greatly influenced by the thermal behavior and heat capacity of the wire support, and there is a drawback that it becomes difficult to control the temperature of the wire to be heat-treated, making it difficult to obtain a desired heat treatment pattern. In the production of a Bi (2212) -based oxide superconducting wire whose cooling conditions must be strictly controlled, it becomes extremely difficult to obtain a superconducting wire having excellent characteristics.
In addition, when heat-resistant stainless steel is used as the wire support, distortion is applied during heat treatment due to the difference in thermal expansion coefficient between the wire wound on the wire support and the oxide superconductor, resulting in deterioration of the superconducting properties and the sheath. In addition to the problem that the material is cracked, there is a problem that the superconductor is contaminated by the diffusion of the elements constituting the wire support into the wire, and the superconducting properties are deteriorated.

以上の問題を解決する手段として、耐熱性金属材料からなる円筒状部材の表面にセラミックス層を設けた巻枠の外側に、長尺の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材をソレノイド状に巻回した後、熱処理を施すことにより、線材支持具からの熱流入を防止し、所定の熱処理パターンで熱処理制御を可能にするとともに、線材支持具からの線材支持具を構成する元素の線材への拡散を防止して、超電導特性の優れた長尺の酸化物超電導線材を製造する方法が知られている(例えば、特許文献1参照。)。   As means for solving the above problems, the elements constituting the long oxide superconductor are included at a predetermined molar ratio outside the winding frame in which the ceramic layer is provided on the surface of the cylindrical member made of a heat-resistant metal material. After winding the wire containing the raw material powder into a solenoid shape, heat treatment is performed to prevent heat from flowing from the wire support, enabling heat treatment control with a predetermined heat treatment pattern, and from the wire support There is known a method for producing a long oxide superconducting wire having excellent superconducting properties by preventing diffusion of elements constituting the wire support to the wire (see, for example, Patent Document 1).

一方、バッチ式加熱方式に対して、長尺の線材を連続して加熱する方式も検討されている。例えば、加熱手段と、該加熱手段の温度を制御する制御機構とを有し、加熱手段の内部に、熱処理によって酸化物超電導体となる超電導体形成部を有する長尺の線材の一条以上を走行させることにより、線材を加熱して長尺の酸化物超電導線とする熱処理ユニットが、長尺の線材の走行方向に2台以上備えられてなる酸化物超電導線材の連続熱処理装置が知られている(例えば、特許文献2参照。)。   On the other hand, a method in which a long wire is continuously heated as compared to the batch heating method has been studied. For example, it has a heating means and a control mechanism for controlling the temperature of the heating means, and runs on one or more strips of a long wire having a superconductor forming portion that becomes an oxide superconductor by heat treatment inside the heating means. There is known a continuous heat treatment apparatus for an oxide superconducting wire in which two or more heat treatment units are provided in the running direction of the long wire by heating the wire to form a long oxide superconducting wire. (For example, refer to Patent Document 2).

特開2004−200098号公報JP 2004-200098 A 特開平9−147647号公報JP-A-9-147647

上記のバッチ式電気炉による抵抗加熱方式においては、線材支持具からの熱流入の防止および線材支持具からの線材支持具を構成する元素の線材への拡散を防止することはある程度は可能であるが、線材が長尺化するにつれて電気炉が大型化しコストが上昇する上、製造効率が低くなる上、電気炉が大型化するに従って温度制御が困難になるという問題は依然として残存するという問題があった。   In the resistance heating method using the batch electric furnace described above, it is possible to some extent to prevent the heat inflow from the wire support and the diffusion of the elements constituting the wire support from the wire support to the wire. However, as the length of the wire increases, the size of the electric furnace increases and the cost increases, the production efficiency decreases, and the problem that the temperature control becomes difficult as the electric furnace increases in size still remains. It was.

また、上記の連続熱処理装置においては、熱処理ユニットが水平方向に並べられている場合には、水平方向に送り出す際、酸化物超電導線材が加熱手段に接触しないように張力をかけるため(同公報段落0029参照)、送出装置と巻取装置との間で走行する長尺の酸化物超電導線には歪を付加せざるを得ず、Bi系酸化物超電導線材の特性を劣化させるおそれがあった。   Further, in the above-described continuous heat treatment apparatus, when the heat treatment units are arranged in the horizontal direction, tension is applied so that the oxide superconducting wire does not come into contact with the heating means when being sent out in the horizontal direction (paragraph of the same publication). 0029), a long oxide superconducting wire traveling between the delivery device and the winding device has to be distorted, which may deteriorate the characteristics of the Bi-based oxide superconducting wire.

本発明は、以上の問題を解決するためになされたもので、長尺の酸化物超電導線材あるいは導体を歪を付加することなく、厳密な温度制御を可能とし、低コストで超電導特性に優れたBi系酸化物超電導線材を連続して製造することができるBi系酸化物超電導線材の連続熱処理装置を提供することをその目的としている。   The present invention has been made to solve the above problems, and enables strict temperature control without adding strain to a long oxide superconducting wire or conductor, and has excellent superconducting characteristics at low cost. An object of the present invention is to provide a continuous heat treatment apparatus for a Bi-based oxide superconducting wire capable of continuously producing a Bi-based oxide superconducting wire.

以上の問題を解決するために、本発明のBi系酸化物超電導線材の連続熱処理装置は、Bi系酸化物超電導材料を構成する原料粉末を銀または銀合金シース内に充填して成型加工した線材またはこれらの複数本を撚り合わせた導体に熱処理を施して酸化物超電導線または酸化物超電導体を製造するための連続熱処理装置であって、熱処理装置は、送出し装置および巻取り装置と、送出し装置および巻取り装置との間に配設された熱処理炉と、熱処理炉内に配設された線材または導体の搬送装置とを備え、熱処理炉は、Bi(2212)系酸化物超電導体を生成するための部分溶融温度領域を含む熱処理温度に制御可能な熱処理ゾーンを含み、熱処理炉内に配設された線材または導体の搬送装置上に載置された線材または導体を酸化性雰囲気中で熱処理可能な雰囲気制御手段を備えるようにしたものである。   In order to solve the above problems, the Bi-based oxide superconducting wire continuous heat treatment apparatus of the present invention is a wire obtained by filling a raw material powder constituting a Bi-based oxide superconducting material into a silver or silver alloy sheath and molding it. Or a continuous heat treatment apparatus for producing an oxide superconducting wire or an oxide superconductor by heat-treating a conductor in which a plurality of these wires are twisted, the heat treatment apparatus comprising a feeding device and a winding device; A heat treatment furnace disposed between the soldering device and the winding device, and a wire or conductor transfer device disposed in the heat treatment furnace, wherein the heat treatment furnace comprises a Bi (2212) oxide superconductor. It includes a heat treatment zone that can be controlled to a heat treatment temperature including a partial melting temperature region for generation, and the wire or conductor placed on the wire or conductor transfer device disposed in the heat treatment furnace is in an oxidizing atmosphere. It is obtained so as to comprise a heat treatable atmosphere control means.

銀合金シース内に原料粉末を充填して成型加工した線材の場合、4N以上の銀に対してMg、Ni、Sb、Mn、Cu、Alのうち1種あるいは複数を0.01〜1at%添加した銀合金が用いられ、これらの元素の殆どは、Bi(2212)系酸化物超電導体を生成する熱処理中に酸化し、銀中に分散することによって銀の機械強度を上げる効果を果たす。線材の形状は、丸線、平角線、テープ線のいずれでもよく、この中の超電導フィラメント配置構造、フィラメント数は問わない。複数本の線材を撚り合わせた導体の場合、1次撚り及び高次撚り導体、集合化導体、ラザフォード型導体、コンジット型導体、安定層を付けた安定化導体のいずれであっても適用される。   In the case of a wire processed by filling a raw material powder in a silver alloy sheath, one or more of Mg, Ni, Sb, Mn, Cu, and Al are added to 0.01 to 1 at% of silver of 4N or more. Most of these elements are oxidized during the heat treatment for producing the Bi (2212) -based oxide superconductor and dispersed in silver, thereby increasing the mechanical strength of silver. The shape of the wire may be any of a round wire, a flat wire, and a tape wire, and the superconducting filament arrangement structure and the number of filaments are not limited. In the case of a conductor in which a plurality of wires are twisted together, it can be applied to any of a primary twisted and higher-order twisted conductor, an assembled conductor, a Rutherford-type conductor, a conduit-type conductor, and a stabilizing conductor with a stabilizing layer. .

本発明によれば、長尺の銀シース線材または導体を熱処理の適正温度を厳密に制御して連続的に熱処理することができるため、大型の電気炉を必要とせず低コストで、線材あるいは導体を歪を付加することなく優れた超電導特性を有する線材あるいは導体を製造することが可能となり、実用的価値は大きい。   According to the present invention, since a long silver sheath wire or conductor can be continuously heat-treated by strictly controlling the appropriate temperature for heat treatment, a large electric furnace is not required and the wire or conductor can be manufactured at low cost. Therefore, it is possible to produce a wire or conductor having excellent superconducting characteristics without adding strain, and its practical value is great.

本発明は、上記のように、成型加工後の線材または撚線導体を熱処理炉内に配設された搬送装置上に載置して、部分溶融温度領域を含む熱処理温度に制御された熱処理ゾーンを通過させ、酸化性雰囲気中で熱処理を施すことを可能とするものであるが、この熱処理炉は、Bi(2212)系酸化物超電導体を生成するための部分溶融温度領域を含む熱処理温度に制御可能な熱処理ゾーンを含む所定の熱処理パターンで温度制御可能な複数のヒーターゾーンから構成することが好ましい。   As described above, the present invention is a heat treatment zone in which a wire or a stranded wire conductor after molding is placed on a transfer device disposed in a heat treatment furnace and controlled to a heat treatment temperature including a partial melting temperature region. The heat treatment furnace can be heated to a heat treatment temperature including a partial melting temperature region for producing a Bi (2212) -based oxide superconductor. It is preferable to comprise a plurality of heater zones whose temperature can be controlled with a predetermined heat treatment pattern including a heat treatment zone that can be controlled.

上記の熱処理炉は、例えば管状炉により形成され、線材あるいは集合化導体の通過する炉心部分の形状は、丸型、角型および他の形状であってもよい。   The heat treatment furnace is formed of, for example, a tubular furnace, and the shape of the core portion through which the wire or the assembly conductor passes may be round, square, and other shapes.

上記の熱処理パターンは、酸素濃度は50%以上で、熱処理温度がBi(2212)系酸化物超電導体の融点以上で、この融点を超える20℃未満の温度で加熱する加熱領域を含むように構成することが好ましい。   The heat treatment pattern includes a heating region in which the oxygen concentration is 50% or more and the heat treatment temperature is higher than the melting point of the Bi (2212) -based oxide superconductor and heated at a temperature lower than 20 ° C. exceeding the melting point. It is preferable to do.

炉内の雰囲気制御は、炉全体を筐体で覆い、密封状態にした上で全体を同一雰囲気にする方法を採用することもできる。あるいは、ガスを直接炉内に吹き込み、流量によって炉内の酸素濃度を制御してもよい。この後者の場合、導入する酸素によって炉内の温度が変化しないようにする措置が必要である。この措置の例として、予備室を設けてガスの加熱を行なう方法や熱処理炉内に輻射板を入れて対流を防ぐ方法等を挙げることができる。   For controlling the atmosphere in the furnace, it is possible to adopt a method in which the entire furnace is covered with a casing and sealed to make the whole atmosphere the same. Alternatively, gas may be blown directly into the furnace, and the oxygen concentration in the furnace may be controlled by the flow rate. In this latter case, it is necessary to take measures to prevent the temperature in the furnace from being changed by the introduced oxygen. Examples of this measure include a method in which a preliminary chamber is provided to heat the gas and a method in which a radiant plate is placed in a heat treatment furnace to prevent convection.

また、熱処理装置は、熱処理炉内を搬送される線材または導体の搬送路の入口側に予備加熱室および出口側に徐冷室を備えることが好ましく、この場合、予備加熱室は、Bi(2212)系酸化物超電導体の融点以下数十度の温度まで加熱する手段を備え、かつ徐冷室は、Bi(2212)系酸化物超電導体の凝固温度以下10℃まで冷却する手段を備えるようにする。   In addition, the heat treatment apparatus preferably includes a preheating chamber on the inlet side and a slow cooling chamber on the outlet side of the conveyance path of the wire or conductor conveyed in the heat treatment furnace, and in this case, the preheating chamber is Bi (2212). ) A means for heating to a temperature of several tens of degrees below the melting point of the oxide superconductor is provided, and the annealing chamber is provided with a means for cooling to 10 ° C. below the solidification temperature of the Bi (2212) oxide superconductor. To do.

以上の予備加熱室および徐冷室を備えた場合には、予備加熱室、熱処理ゾーンおよび徐冷室のそれぞれの長さは、線材あるいは導体が十分に加熱する時間、部分溶解点から50℃低い温度から20℃高い温度未満までを望ましくは10〜30℃/hで上昇させる時間、続く徐冷過程を凝固温度以下10℃まで0.1℃〜10℃/hで冷却する時間を確保するように設計される。   When the preheating chamber and the slow cooling chamber are provided, the lengths of the preheating chamber, the heat treatment zone, and the slow cooling chamber are 50 ° C. lower than the time during which the wire or conductor is sufficiently heated and the partial melting point. The time to raise the temperature from below 20 ° C. to below the temperature is desirably 10 to 30 ° C./h, and the time for cooling the subsequent slow cooling process to 0.1 ° C. to 10 ° C./h from the solidification temperature to 10 ° C. Designed to.

線材あるいは導体の搬送は、線材あるいは導体に機械的応力を極力かけない構造であることが望ましい。必要に応じて、送り出し機構には、張力を制御する機構を設置する。搬送用支持具は、熱処理の酸化雰囲気、温度において形状、機械強度を保つものであればよく、例えば、搬送装置は、一対の同期回転する駆動ローラと、これらの駆動ローラ間に掛け渡された耐熱性金属材料の線材により形成した網状体からなる無端ベルトにより構成することが好ましく、送出し装置、巻取り装置および搬送装置は、線材または導体を構成する線材への引張歪が0.1%以下で、かつ曲げ歪量が0.1%以下となるように、送出し速度、巻取り速度および搬送速度を制御する制御装置を備えることが好ましい。   The conveyance of the wire or conductor is preferably a structure that applies as little mechanical stress as possible to the wire or conductor. If necessary, a mechanism for controlling tension is installed in the delivery mechanism. The carrier support may be anything that maintains its shape and mechanical strength in an oxidizing atmosphere and temperature of heat treatment. For example, the carrier device is spanned between a pair of synchronously rotating drive rollers and these drive rollers. It is preferable to use an endless belt made of a net-like body formed of a heat-resistant metal material. The feeding device, the winding device and the conveying device have a tensile strain of 0.1% on the wire constituting the wire or conductor. It is preferable to include a control device that controls the feeding speed, the winding speed, and the conveying speed so that the bending strain amount is 0.1% or less.

上記の無端ベルトは、ステンレス鋼、ハステロイ、インコネルその他の耐熱金属材料からなる線状体を編むことによって作成することができ、この線状体の表面に拡散防止層としてZrO、Al、MgO等のセラミックスをコーティングしたのものを用いることができる。 The endless belt can be prepared by knitting a linear body made of stainless steel, Hastelloy, Inconel, or other heat-resistant metal material, and ZrO 2 , Al 2 O 3 as a diffusion preventing layer on the surface of the linear body. A ceramic-coated material such as MgO can be used.

以下、本発明の一実施例を図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明のBi系酸化物超電導線材の連続熱処理装置の一実施例を示す概略断面図である。   FIG. 1 is a schematic cross-sectional view showing an embodiment of a continuous heat treatment apparatus for Bi-based oxide superconducting wire of the present invention.

同図において、Bi系酸化物超電導線材の連続熱処理装置1は、管状炉からなる熱処理炉2、送出し装置3、巻取り装置4、搬送装置5、予備加熱室6、徐冷室7および制御装置8から主として構成されている。   In the figure, a continuous heat treatment apparatus 1 for a Bi-based oxide superconducting wire includes a heat treatment furnace 2 comprising a tubular furnace, a feeding device 3, a winding device 4, a conveying device 5, a preheating chamber 6, a slow cooling chamber 7, and a control. The apparatus 8 is mainly configured.

熱処理炉2は、送出し装置3と巻取り装置4との間に配設されており、被熱処理材であるBi系酸化物超電導材料を構成する原料粉末を銀または銀合金シース内に充填して成型加工した線材またはこれらの複数本を撚り合わせた導体9の走行方向の熱処理炉2の入口側に予備加熱室6が配設され、また出口側に徐冷室7が配設されている。予備加熱室6は、Bi(2212)系酸化物超電導体の融点以下数十度の温度、例えば、融点以下50℃低い温度まで加熱する手段(図示せず)を備え、かつ徐冷室7は、Bi(2212)系酸化物超電導体の凝固温度以下10℃まで冷却する手段(図示せず)を備えている。   The heat treatment furnace 2 is disposed between the feeding device 3 and the winding device 4, and fills a silver or silver alloy sheath with a raw material powder constituting a Bi-based oxide superconducting material that is a material to be heat treated. The preheating chamber 6 is disposed on the entrance side of the heat treatment furnace 2 in the traveling direction of the conductor 9 formed by twisting the wires 9 formed by twisting them, and the annealing chamber 7 is disposed on the exit side. . The preheating chamber 6 includes means (not shown) for heating to a temperature of several tens of degrees below the melting point of the Bi (2212) oxide superconductor, for example, a temperature lower than the melting point by 50 ° C., and the slow cooling chamber 7 is And a means (not shown) for cooling to 10 ° C. or lower than the solidification temperature of the Bi (2212) oxide superconductor.

予備加熱室6には、ガス供給装置10から雰囲気ガスが供給され、熱処理炉2内を酸化性雰囲気に制御する。この炉内雰囲気は、熱処理炉2全体を筐体11で覆い、その内部を同一雰囲気にするようにしてもよく、この場合には、予備加熱室6を省略することもできる。   An atmosphere gas is supplied from the gas supply device 10 to the preheating chamber 6 to control the inside of the heat treatment furnace 2 to an oxidizing atmosphere. As for the atmosphere in the furnace, the entire heat treatment furnace 2 may be covered with the casing 11, and the inside thereof may be made the same atmosphere. In this case, the preheating chamber 6 may be omitted.

上記の熱処理炉2は、Bi(2212)系酸化物超電導体を生成するための部分溶融温度領域を含む熱処理温度に制御可能な熱処理ゾーンを含む所定の熱処理パターンで温度制御可能な複数ヒーターゾーン2a、2bおよび2cとから構成されており、例えば、酸素濃度は50%以上で、熱処理温度がBi(2212)系酸化物超電導体の融点以上で、この融点を超える20℃未満の温度で加熱する加熱領域を含む熱処理パターンで制御される。   The heat treatment furnace 2 includes a plurality of heater zones 2a that can be controlled in temperature by a predetermined heat treatment pattern including a heat treatment zone that can be controlled to a heat treatment temperature including a partial melting temperature region for generating a Bi (2212) -based oxide superconductor. 2b and 2c. For example, the oxygen concentration is 50% or more, and the heat treatment temperature is higher than the melting point of the Bi (2212) -based oxide superconductor and is heated at a temperature lower than 20 ° C. exceeding this melting point. It is controlled by a heat treatment pattern including a heating region.

搬送装置5は、熱処理炉2内に配設されており、予備加熱室6から熱処理炉2および徐冷室7内を通って巻取り装置4の巻取りドラム直前まで配設されている。
上記の搬送装置5は、一対の同期回転する駆動ローラ(図示せず)と、これらの駆動ローラ間に掛け渡された網状体からなる無端ベルトにより構成され、この無端ベルトは、表面にZrO、Al、MgO等のセラミックスを拡散防止層としてコーティングしたステンレス鋼、ハステロイ、インコネルその他の耐熱金属材料からなる線状体を編むことによって作成される。
The conveying device 5 is disposed in the heat treatment furnace 2 and is disposed from the preheating chamber 6 through the heat treatment furnace 2 and the slow cooling chamber 7 to just before the winding drum of the winding device 4.
The conveying device 5 is composed of a pair of synchronously rotating drive rollers (not shown) and an endless belt made of a net-like material stretched between these drive rollers. The endless belt has ZrO 2 on the surface. It is made by knitting a linear body made of stainless steel, Hastelloy, Inconel or other heat-resistant metal material coated with ceramics such as Al 2 O 3 and MgO as a diffusion preventing layer.

以上のBi系酸化物超電導線材の連続熱処理装置1において、送出し装置3のドラム上に巻回された成型加工後の線材または撚線導体9は、搬送装置5上に載置されて予備加熱室6、熱処理炉2のヒーターゾーン2a、2b、2cおよび徐冷室7を通過し、巻取り装置4のドラム上に巻取られる。線材または撚線導体9は、予備加熱室6、熱処理炉2および徐冷室7を通過する間に酸化性雰囲気中で、例えば、部分溶解点から50℃低い温度から20℃高い温度未満までを10〜30℃/hで上昇させる時間、続く徐冷過程を、例えば、凝固温度以下10℃まで0.1℃〜10℃/hで冷却する時間を確保するように温度および搬送速度が制御される。   In the Bi-based oxide superconducting wire continuous heat treatment apparatus 1 described above, the molded wire or the stranded wire conductor 9 wound on the drum of the delivery device 3 is placed on the transport device 5 and preheated. It passes through the chamber 6, the heater zones 2 a, 2 b, 2 c of the heat treatment furnace 2 and the annealing chamber 7, and is wound on the drum of the winding device 4. The wire or stranded wire conductor 9 is in an oxidizing atmosphere while passing through the preheating chamber 6, the heat treatment furnace 2 and the slow cooling chamber 7, for example, from a temperature 50 ° C. lower than the partial melting point to a temperature lower than 20 ° C. The temperature and the conveying speed are controlled so as to secure the time for raising at 10 to 30 ° C./h, and the subsequent slow cooling process, for example, cooling at 0.1 ° C. to 10 ° C./h to 10 ° C. or less. The

また、送出し装置3、巻取り装置4および搬送装置5は、線材または撚線導体9への付加歪が0.1%以下で、かつ曲げ歪量が0.1%以下となるように、送出し装置3の送出し速度、巻取り装置4の巻取り速度および搬送装置5の搬送速度が制御装置8により制御される。   Further, the feeding device 3, the winding device 4 and the conveying device 5 are such that the additional strain on the wire or the stranded wire conductor 9 is 0.1% or less and the amount of bending strain is 0.1% or less. The control device 8 controls the sending speed of the sending device 3, the winding speed of the winding device 4, and the conveying speed of the conveying device 5.

本発明のBi系酸化物超電導線材の連続熱処理装置によれば、超電導マグネットや電力機器等に使用される優れた超電導特性を有する長尺のBi(2212)系酸化物超電導線材を、低コストで連続的に製造することが可能となる。   According to the continuous heat treatment apparatus for Bi-based oxide superconducting wire of the present invention, a long Bi (2212) -based oxide superconducting wire having excellent superconducting properties used in superconducting magnets and power equipment can be obtained at low cost. It becomes possible to manufacture continuously.

本発明のBi系酸化物超電導線材の連続熱処理装置の一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example of the continuous heat processing apparatus of Bi type oxide superconducting wire of this invention.

符号の説明Explanation of symbols

1 Bi系酸化物超電導線材の連続熱処理装置
2 熱処理炉
2a、2b、2c ヒーターゾーン
3 送出し装置
4 巻取り装置
5 搬送装置
6 予備加熱室
7 徐冷室
8 制御装置
9 線材または撚線導体
10 ガス供給装置
11 筐体
DESCRIPTION OF SYMBOLS 1 Continuous heat processing apparatus of Bi type oxide superconducting wire 2 Heat processing furnace 2a, 2b, 2c Heater zone 3 Sending apparatus 4 Winding apparatus 5 Conveying apparatus 6 Preheating chamber 7 Slow cooling chamber 8 Control apparatus 9 Wire or twisted conductor 10 Gas supply device 11 Case

Claims (7)

Bi系酸化物超電導材料を構成する原料粉末を銀または銀合金シース内に充填して成型加工した線材またはこれらの複数本を撚り合わせた導体に熱処理を施して酸化物超電導線または酸化物超電導体を製造するための連続熱処理装置であって、前記熱処理装置は、送出し装置および巻取り装置と、前記送出し装置および前記巻取り装置との間に配設された熱処理炉と、前記熱処理炉内に配設された前記線材または前記導体の搬送装置とを備え、前記熱処理炉は、Bi(2212)系酸化物超電導体を生成するための部分溶融温度領域を含む熱処理温度に制御可能な熱処理ゾーンを含み、前記熱処理炉内に配設された前記線材または前記導体の搬送装置上に載置された前記線材または前記導体を酸化性雰囲気中で熱処理可能な雰囲気制御手段を備えたことを特徴とするBi系酸化物超電導線材の連続熱処理装置。   Oxide superconducting wire or oxide superconductor by heat-treating wire formed by filling raw material powder constituting Bi-based oxide superconducting material into a silver or silver alloy sheath, or a conductor obtained by twisting a plurality of them. The heat treatment apparatus includes: a feeding apparatus and a winding apparatus; a heat treatment furnace disposed between the feeding apparatus and the winding apparatus; and the heat treatment furnace. Heat treatment controllable to a heat treatment temperature including a partial melting temperature region for producing a Bi (2212) -based oxide superconductor. An atmosphere control means including a zone and capable of heat-treating the wire or conductor placed on the wire or conductor disposed in the heat treatment furnace in an oxidizing atmosphere. Bi-based oxide superconducting wire of a continuous heat treatment apparatus, characterized in that was e. 熱処理炉は、Bi(2212)系酸化物超電導体を生成するための部分溶融温度領域を含む熱処理温度に制御可能な熱処理ゾーンを含む所定の熱処理パターンで温度制御可能な複数のヒーターゾーンからなることを特徴とする請求項1記載のBi系酸化物超電導線材の連続熱処理装置。   The heat treatment furnace is composed of a plurality of heater zones whose temperature can be controlled with a predetermined heat treatment pattern including a heat treatment zone which can be controlled to a heat treatment temperature including a partial melting temperature region for generating a Bi (2212) -based oxide superconductor. The continuous heat treatment apparatus for a Bi-based oxide superconducting wire according to claim 1. 熱処理パターンは、酸素濃度は50%以上で、熱処理温度がBi(2212)系酸化物超電導体の融点以上で、この融点を超える20℃未満の温度で加熱する加熱領域を含むことを特徴とする請求項2記載のBi系酸化物超電導線材の連続熱処理装置。   The heat treatment pattern includes a heating region in which the oxygen concentration is 50% or more and the heat treatment temperature is higher than the melting point of the Bi (2212) -based oxide superconductor and heated at a temperature lower than 20 ° C. exceeding the melting point. A continuous heat treatment apparatus for a Bi-based oxide superconducting wire according to claim 2. 熱処理装置は、熱処理炉内を搬送される線材または導体の搬送路の入口側に予備加熱室および出口側に徐冷室を備えていることを特徴とする請求項1乃至3いずれか1項記載のBi系酸化物超電導線材の連続熱処理装置。   4. The heat treatment apparatus according to claim 1, further comprising a preheating chamber on an inlet side and a slow cooling chamber on an outlet side of a conveyance path for a wire or conductor conveyed in the heat treatment furnace. 5. Continuous heat treatment apparatus for Bi-based oxide superconducting wire. 予備加熱室は、Bi(2212)系酸化物超電導体の融点以下数十度の温度まで加熱する手段を備え、かつ徐冷室は、Bi(2212)系酸化物超電導体の凝固温度以下10℃まで冷却する手段を備えたことを特徴とする請求項4記載のBi系酸化物超電導線材の連続熱処理装置。   The preheating chamber includes means for heating to a temperature of several tens of degrees below the melting point of the Bi (2212) oxide superconductor, and the slow cooling chamber is 10 ° C. below the solidification temperature of the Bi (2212) oxide superconductor. 5. A continuous heat treatment apparatus for a Bi-based oxide superconducting wire according to claim 4, further comprising means for cooling to a temperature. 搬送装置は、一対の同期回転する駆動ローラと、これらの駆動ローラ間に掛け渡された耐熱性金属材料の線材により形成した網状体からなる無端ベルトにより構成されていることを特徴とする請求項1記載のBi系酸化物超電導線材の連続熱処理装置。   The conveying device is constituted by a pair of synchronously rotating drive rollers and an endless belt made of a net-like body formed of a wire of a heat-resistant metal material stretched between the drive rollers. 2. A continuous heat treatment apparatus for a Bi-based oxide superconducting wire according to 1. 送出し装置、巻取り装置および搬送装置は、線材または導体を構成する線材への引張歪が0.1%以下で、かつ曲げ歪量が0.1%以下となるように、送出し速度、巻取り速度および搬送速度を制御する制御装置を備えたことを特徴とする請求項1記載のBi系酸化物超電導線材の連続熱処理装置。
The feeding device, the winding device, and the conveying device have a feeding speed such that the tensile strain on the wire constituting the wire or conductor is 0.1% or less and the amount of bending strain is 0.1% or less. The continuous heat treatment apparatus for a Bi-based oxide superconducting wire according to claim 1, further comprising a control device for controlling a winding speed and a conveying speed.
JP2006014043A 2006-01-23 2006-01-23 CONTINUOUS HEAT TREATMENT DEVICE OF Bi-BASED OXIDE SUPERCONDUCTIVE WIRE Withdrawn JP2007200562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014043A JP2007200562A (en) 2006-01-23 2006-01-23 CONTINUOUS HEAT TREATMENT DEVICE OF Bi-BASED OXIDE SUPERCONDUCTIVE WIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014043A JP2007200562A (en) 2006-01-23 2006-01-23 CONTINUOUS HEAT TREATMENT DEVICE OF Bi-BASED OXIDE SUPERCONDUCTIVE WIRE

Publications (1)

Publication Number Publication Date
JP2007200562A true JP2007200562A (en) 2007-08-09

Family

ID=38454978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014043A Withdrawn JP2007200562A (en) 2006-01-23 2006-01-23 CONTINUOUS HEAT TREATMENT DEVICE OF Bi-BASED OXIDE SUPERCONDUCTIVE WIRE

Country Status (1)

Country Link
JP (1) JP2007200562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816367A (en) * 2019-04-12 2020-10-23 斯帕有限公司 Thermal distribution management device for wire processing
CN115287444A (en) * 2022-09-08 2022-11-04 西部超导材料科技股份有限公司 Heat treatment method of Bi-2212 superconducting wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816367A (en) * 2019-04-12 2020-10-23 斯帕有限公司 Thermal distribution management device for wire processing
CN115287444A (en) * 2022-09-08 2022-11-04 西部超导材料科技股份有限公司 Heat treatment method of Bi-2212 superconducting wire
CN115287444B (en) * 2022-09-08 2024-02-06 西部超导材料科技股份有限公司 Bi-2212 superconducting wire heat treatment method

Similar Documents

Publication Publication Date Title
EP3249329B1 (en) Heat treatment apparatus
JP2007200562A (en) CONTINUOUS HEAT TREATMENT DEVICE OF Bi-BASED OXIDE SUPERCONDUCTIVE WIRE
JPH04155828A (en) Heat treatment device
JP4212882B2 (en) Manufacturing method of oxide superconducting wire
JP3705853B2 (en) Continuous heat treatment equipment for oxide superconducting wire
JPS58212863A (en) Cooling device of in-furnace brazing furnace
JP2006073236A (en) Manufacturing method of oxide superconductive wire rod and support tool for manufacturing the wire rod
JPS60245215A (en) Vertical furnace
JP2604379B2 (en) Manufacturing method of ceramic superconducting wire
US8153187B2 (en) Method for oxidising a thermocouple sheath
US5363952A (en) High temperature transport belt for materials treating furnace
JPH1046232A (en) Continuous heat treatment and apparatus thereof
JP2005232577A (en) Apparatus and method for heating ring shaped wire rod
JPH06240368A (en) Method for heat-treating wire rod and heat treating device
EP3913071A1 (en) Device for current transmission in a heating process
JP3020774B2 (en) Heat treatment equipment
JP4284129B2 (en) Superconducting coil manufacturing method
JP2003500851A (en) Superconducting coil
KR100871757B1 (en) In line annealing apparatus for ultrafine microfiber
JPH0328141A (en) Production of oxide superconducting wire
JPS63236220A (en) Wire forming method for oxide superconductive material
JPS63294623A (en) Manufacture of oxide superconductive wire
JP2005232576A (en) Apparatus and method for heating ringed wire rod
JPS5829523A (en) Multistage wire drawing machine
JPH01149317A (en) Manufacture of ceramic superconductive wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407