JP2006071875A - Polarizing plate, its manufacture method and liquid crystal display device - Google Patents

Polarizing plate, its manufacture method and liquid crystal display device Download PDF

Info

Publication number
JP2006071875A
JP2006071875A JP2004254018A JP2004254018A JP2006071875A JP 2006071875 A JP2006071875 A JP 2006071875A JP 2004254018 A JP2004254018 A JP 2004254018A JP 2004254018 A JP2004254018 A JP 2004254018A JP 2006071875 A JP2006071875 A JP 2006071875A
Authority
JP
Japan
Prior art keywords
film
retardation
polarizing
liquid crystal
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004254018A
Other languages
Japanese (ja)
Inventor
Masayuki Kurematsu
雅行 榑松
Sota Kawakami
壮太 川上
Katsumi Maejima
勝己 前島
Yoshikazu Kojima
良和 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004254018A priority Critical patent/JP2006071875A/en
Publication of JP2006071875A publication Critical patent/JP2006071875A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarizing plate suitable for the backlight side of a liquid crystal display device, which is free from dimensional deviation in a width direction when a retardation film, a polarizing film and a backlight side polarizing film protection film are stuck, is inexpensive and is excellent in mass productivity, and to provide its manufacture method and the liquid crystal display device. <P>SOLUTION: The polarizing plate is used for the backlight side of the liquid crystal cell of the liquid crystal display device, and has protection films on both sides of the polarizing film. The polarizing film is a polyvinyl alcohol based polarizing film, a liquid crystal cell side polarizing film protection film is the retardation film produced by stretching cellulose ester film and set so that retardation Ro is 20 to 300 nm and retardation Rt is 70 to 400 nm under a condition of 23°C and 55%RH, and the backlight side polarizing film protection film is the cellulose ester film whose rate of dimensional change after saponification treatment is 0.01 to 0.10% of that before the saponification treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、偏光板、その製造方法及び液晶表示装置に関する。   The present invention relates to a polarizing plate, a manufacturing method thereof, and a liquid crystal display device.

近年、薄型軽量ノートパソコンの開発が進んでいる。それに伴って、液晶表示装置等の表示装置で用いられる偏光板の保護フィルムもますます薄膜化、高性能化への要求が強くなってきており、薄膜化のためには、優れた光学特性が要求される。   In recent years, development of thin and light notebook computers has been progressing. Along with this, the demand for thinner and higher performance protective films for polarizing plates used in display devices such as liquid crystal display devices has become stronger. Required.

液晶表示装置等に使用される偏光板は、一般に、偏光膜の両面に高分子フィルムからなる保護フィルムを張り合わせることで構成されている。   A polarizing plate used in a liquid crystal display device or the like is generally configured by attaching protective films made of a polymer film on both surfaces of a polarizing film.

偏光膜は、例えば、ポリビニルアルコール系フィルム、エチレンビニルアルコール系フィルム、セルロース系フィルム、ポリカーボネート系フィルム等があるが、加工性等の理由からヨウ素染色したポリビニルアルコール系フィルムを延伸したもの、あるいは、ポリビニルアルコール系フィルムを延伸した後、ヨウ素染色したものが一般に用いられている。   The polarizing film includes, for example, a polyvinyl alcohol film, an ethylene vinyl alcohol film, a cellulose film, a polycarbonate film, etc., but a stretched polyvinyl alcohol film dyed with iodine for reasons of workability or the like, or polyvinyl In general, an alcohol film is stretched and then dyed with iodine.

保護フィルムとしては、光学的異方性が小さく、透明性に優れ、さらに偏光膜との接着性以外に、寸法安定性や偏光膜の劣化を防止するための紫外線吸収機能、水分のバリアー機能等に優れることが重要である。偏光膜と保護フィルムは、天然ゴム、合成ゴム、アクリル系樹脂、ブチラール系樹脂、エポキシ系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂等を主成分とする接着剤ないし粘着剤を用いて接着される。   As a protective film, it has low optical anisotropy, excellent transparency, and adhesion to the polarizing film, as well as UV absorption and moisture barrier functions to prevent dimensional stability and polarizing film deterioration. It is important to excel. The polarizing film and the protective film use an adhesive or pressure sensitive adhesive mainly composed of natural rubber, synthetic rubber, acrylic resin, butyral resin, epoxy resin, polyester resin, polyamide resin, polyvinyl alcohol resin, etc. Glued together.

液晶表示装置等に使用されている位相差フィルムは、偏光板と組み合わせて使用することで、色補償、視野角拡大等の問題を解決するために用いられており、可視光領域の波長に対して直線偏光を円偏光に変換したり逆に円偏光を直線偏光に変換する機能を有している。1枚の位相差フィルムで上記の効果を得るには、位相差フィルムに入射する波長(λ)において位相差がλ/4になることが好ましい。また、プラズマディスプレイや有機EL素子を用いたディスプレイ等の前面板における反射防止フィルムとして利用することで、反射光の色付きを低減することが可能である。位相差フィルムは、偏光板と組み合わせて用いることで、前述したような効果が得られる。これまでは、液晶表示装置の中で、偏光板と位相差フィルムは別々の光学要素として構成されてきた。   Retardation films used in liquid crystal display devices, etc. are used in combination with polarizing plates to solve problems such as color compensation and viewing angle expansion. Thus, it has a function of converting linearly polarized light into circularly polarized light or conversely converting circularly polarized light into linearly polarized light. In order to obtain the above effect with a single retardation film, the retardation is preferably λ / 4 at the wavelength (λ) incident on the retardation film. Moreover, it is possible to reduce the coloring of reflected light by using it as an antireflection film in a front plate of a plasma display or a display using an organic EL element. When the retardation film is used in combination with a polarizing plate, the effects as described above can be obtained. Until now, in a liquid crystal display device, a polarizing plate and a retardation film have been configured as separate optical elements.

位相差フィルムの材料としては、例えば、ノルボルネン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、アモルファスポリオレフィン等がある。これらの高分子位相差フィルムは、偏光板と組み合わせて使用するために、貼合して用いるのが一般的であり、積層フィルム枚数が多く、高コストである欠点がある。また、製造工程が複雑になることに加えて、貼合時に、泡や異物が入り込んだり、しわが入ったりすることで、不良品が発生する問題もある。   Examples of the material for the retardation film include norbornene, polycarbonate, polysulfone, polyethersulfone, and amorphous polyolefin. Since these polymer retardation films are used in combination with a polarizing plate, they are generally used by being bonded together, and there are disadvantages that the number of laminated films is large and the cost is high. Moreover, in addition to the complexity of the manufacturing process, there is a problem in that defective products are generated when bubbles or foreign substances enter or wrinkles enter during bonding.

これに対して、セルロースエステルフィルムを主材料とする位相差フィルムは、偏光板の保護フィルムの代わりに位相差フィルムを偏光膜と貼合することで、液晶表示装置の製造工程が短縮でき、さらに不良の発生も低減できることが知られている(例えば、特許文献1〜5参照。)。   On the other hand, the retardation film mainly composed of cellulose ester film can shorten the manufacturing process of the liquid crystal display device by bonding the retardation film to the polarizing film instead of the protective film of the polarizing plate. It is known that the occurrence of defects can be reduced (see, for example, Patent Documents 1 to 5).

偏光板の構成はセルロースエステル系位相差フィルムと、ポリビニルアルコールとヨウ素を使用した偏光膜と、リターデーション値を実質的に持たないセルロースエステル系偏光板保護フィルムからなる構成となる。   The polarizing plate is composed of a cellulose ester-based retardation film, a polarizing film using polyvinyl alcohol and iodine, and a cellulose ester-based polarizing plate protective film having substantially no retardation value.

偏光板を液晶表示装置に使用する場合、視認側の偏光板は、セルロースエステル系偏光板保護フィルム上に反射防止層や防眩層、防眩反射防止層が設けられ、生産工程の初期段階で、該反射防止層や防眩層、防眩反射防止層の保護の目的(取扱いの中で最表面に傷が入ることを防止)で傷防止保護フィルムが貼られる。このため、偏光膜と接着性を高めるための鹸化処理時には傷防止保護フィルムが貼られた状態である。   When using a polarizing plate in a liquid crystal display device, the polarizing plate on the viewing side is provided with an antireflection layer, an antiglare layer, and an antiglare antireflection layer on a cellulose ester-based polarizing plate protective film. A scratch-preventing protective film is applied for the purpose of protecting the antireflection layer, the antiglare layer, and the antiglare and antireflection layer (to prevent scratches on the outermost surface during handling). For this reason, the scratch-protecting protective film is stuck during the saponification treatment for improving the adhesion with the polarizing film.

一方、液晶セルのバックライト側に使用する偏光板はセルロースエステル系偏光板保護フィルムをそのまま鹸化処理して使用することが知られている。そして、生産効率向上のためにセルロースエステル系偏光板保護フィルムをロール状態で処理しようとした時に、視認側の偏光板製造では寸法差の問題はないが、バックライト側の偏光板製造では、鹸化処理後のセルロースエステル系位相差フィルムと、鹸化処理後のセルロースエステル系偏光板保護フィルムで幅手方向の寸法が異なるために、貼り合せ時に端部が1枚の状態となり、蛇行を含めて液晶表示装置用のサイズカッティング時に安全性のために使用可能範囲が狭くなる問題が生じることが判明した。   On the other hand, it is known that the polarizing plate used on the backlight side of the liquid crystal cell is used after saponifying the cellulose ester polarizing plate protective film as it is. And, when trying to process the cellulose ester-based polarizing plate protective film in a roll state to improve production efficiency, there is no problem of dimensional difference in the polarizing plate manufacturing on the viewing side, but in the manufacturing of the polarizing plate on the backlight side, saponification is performed. Because the dimensions in the width direction are different between the cellulose ester phase-difference film after treatment and the cellulose ester-type polarizing plate protective film after saponification treatment, the end part is in a single state at the time of bonding, and liquid crystal including meandering It has been found that there is a problem that the usable range is narrowed for safety for size cutting for display devices.

なお、視認側のセルロースエステル系位相差フィルムは傷防止保護フィルムが貼られているため、寸法変動がほとんどないことが解析で分かっており、バックライト側のセルロースエステル系偏光板保護フィルムにも視認側と同様に傷防止保護フィルムを貼ることで上記問題は解決できるが、工程数が増加しコスト的な面で問題が生じる。   In addition, the cellulose ester-based retardation film on the viewing side has a scratch-preventing protective film, so the analysis shows that there is almost no dimensional variation, and the cellulose-ester polarizing plate protective film on the backlight side is also visible. Although the said problem can be solved by sticking a flaw prevention protective film similarly to the side, the number of processes increases and a problem arises in terms of cost.

また、特許文献6では、偏光板に使用する偏光膜の両側のセルロースエステルフィルムの表面に活性線硬化樹脂層を設けて、片面反射防止層を設けた偏光板を作製し、液晶セルの上下両側に同じ偏光板を使用した例があるが本発明を示唆するものではない。
特開2002−71957号公報 特開2002−62430号公報 特開2001−249223号公報 特開2002−82226号公報 特開2002−98832号公報 特開2003−29036号公報
Moreover, in patent document 6, the active ray hardening resin layer is provided on the surface of the cellulose-ester film of the both sides of the polarizing film used for a polarizing plate, the polarizing plate which provided the single-sided antireflection layer was produced, and the upper and lower sides of a liquid crystal cell However, the present invention is not suggested.
JP 2002-71957 A JP 2002-62430 A JP 2001-249223 A JP 2002-82226 A JP 2002-98732 A JP 2003-29036 A

本発明の目的は、位相差フィルム、偏光膜及びバックライト側偏光膜保護フィルムの貼り合せ時に幅手方向の寸法のずれがなく、低コストで量産性に優れた液晶表示装置のバックライト側に適した偏光板、その製造方法及び液晶表示装置を提供することにある。   The object of the present invention is that there is no deviation in the width direction when laminating a retardation film, a polarizing film, and a backlight side polarizing film protective film, and it is on the backlight side of a liquid crystal display device that is low in cost and excellent in mass productivity. An object is to provide a suitable polarizing plate, a method for producing the same, and a liquid crystal display device.

本発明の上記課題は、以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

(請求項1)
液晶表示装置の液晶セルのバックライト側に用いられる偏光板であって、偏光膜の両側に保護フィルムを有する偏光板において、該偏光膜はポリビニルアルコール系偏光膜であり、液晶セル側偏光膜保護フィルムはセルロースエステルフィルムを延伸して作製され、23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが70〜400nmの位相差フィルムであり、バックライト側偏光膜保護フィルムは鹸化処理前に対して、鹸化処理後の寸法変化率が0.01〜0.10%のセルロースエステルフィルムであることを特徴とする偏光板。
(Claim 1)
A polarizing plate used on a backlight side of a liquid crystal cell of a liquid crystal display device, wherein the polarizing film has a protective film on both sides of the polarizing film, the polarizing film is a polyvinyl alcohol polarizing film, and the liquid crystal cell side polarizing film protection The film is produced by stretching a cellulose ester film, and is a retardation film having a retardation Ro defined by the following formula of 20 to 300 nm and a retardation Rt of 70 to 400 nm under the conditions of 23 ° C. and 55% RH. The polarizing plate, wherein the right-side polarizing film protective film is a cellulose ester film having a dimensional change rate of 0.01 to 0.10% after the saponification treatment with respect to that before the saponification treatment.

Ro=(Nx−Ny)×d
Rt=((Nx+Ny)/2−Nz)×d
(式中、Nxはフィルム面内の最大屈折率、Nyはフィルム面内でNxと直交方向の屈折率、Nzは厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す。)
(請求項2)
前記バックライト側偏光膜保護フィルムはバックライト側に活性線硬化樹脂層を有し、23℃、55%RHの条件下で、上記式で定義されるリタデーションRoが0〜20nm、リタデーションRtが0〜70nmであることを特徴とする請求項1に記載の偏光板。
Ro = (Nx−Ny) × d
Rt = ((Nx + Ny) / 2−Nz) × d
(In the formula, Nx represents the maximum refractive index in the film plane, Ny represents the refractive index in the direction perpendicular to Nx in the film plane, Nz represents the refractive index in the thickness direction, and d represents the thickness (nm) of the film.)
(Claim 2)
The backlight side polarizing film protective film has an actinic radiation curable resin layer on the backlight side, and the retardation Ro defined by the above formula is 0 to 20 nm and the retardation Rt is 0 under the conditions of 23 ° C. and 55% RH. The polarizing plate according to claim 1, wherein the polarizing plate is ˜70 nm.

(請求項3)
前記位相差フィルムがリタデーション上昇剤を含有することを特徴とする請求項1または2に記載の偏光板。
(Claim 3)
The polarizing plate according to claim 1, wherein the retardation film contains a retardation increasing agent.

(請求項4)
前記リタデーション上昇剤が棒状化合物であることを特徴とする請求項3に記載の偏光板。
(Claim 4)
The polarizing plate according to claim 3, wherein the retardation increasing agent is a rod-shaped compound.

(請求項5)
前記バックライト側偏光膜保護フィルムはセルローストリアセテートであり、前記活性線硬化樹脂層に用いられる活性線硬化樹脂がアクリル系、アクリルウレタン系のUV硬化性樹脂であり、該活性線硬化樹脂層の膜厚が1〜20μmであることを特徴とする請求項1〜4のいずれか1項に記載の偏光板。
(Claim 5)
The backlight side polarizing film protective film is cellulose triacetate, the active ray curable resin used for the active ray curable resin layer is an acrylic or acrylurethane UV curable resin, and the active ray curable resin layer film Thickness is 1-20 micrometers, The polarizing plate of any one of Claims 1-4 characterized by the above-mentioned.

(請求項6)
液晶表示装置の液晶セルのバックライト側に用いられる偏光板の製造方法であって、偏光膜の両側に保護フィルムを有する偏光板の製造方法において、該偏光膜はロール状のポリビニルアルコール系偏光膜であり、液晶セル側偏光膜保護フィルムはセルロースエステルフィルムを延伸して作製され、23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが70〜400nmのロール状の位相差フィルムであり、バックライト側偏光膜保護フィルムは、先後端部以外は鹸化処理前に対して、鹸化処理後の寸法変化率が0.01〜0.10%であり、鹸化処理した前記位相差フィルム、前記ポリビニルアルコール系偏光膜、鹸化処理した前記バックライト側偏光膜保護フィルムをロール状態で連続的に貼り合わせることを特徴とする偏光板の製造方法。
(Claim 6)
A method for producing a polarizing plate used on a backlight side of a liquid crystal cell of a liquid crystal display device, wherein the polarizing film has a protective film on both sides of the polarizing film, the polarizing film being a roll-shaped polyvinyl alcohol polarizing film The liquid crystal cell-side polarizing film protective film is produced by stretching a cellulose ester film, and under the conditions of 23 ° C. and 55% RH, the retardation Ro defined by the following formula is 20 to 300 nm, and the retardation Rt is 70 to It is a roll-like retardation film of 400 nm, and the backlight side polarizing film protective film has a dimensional change rate after saponification treatment of 0.01 to 0.10% with respect to that before saponification treatment except for the front and rear ends. The saponified retardation film, the polyvinyl alcohol polarizing film, the saponified backlight side polarizing film protective film Method for producing a polarizing plate, characterized in that bonded to the continuous state.

Ro=(Nx−Ny)×d
Rt=((Nx+Ny)/2−Nz)×d
(式中、Nxはフィルム面内の最大屈折率、Nyはフィルム面内でNxと直交方向の屈折率、Nzは厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す。)
(請求項7)
前記バックライト側偏光膜保護フィルムの鹸化処理後の幅手方向の寸法変化率の平均値が0.04%以下であることを特徴とする請求項6に記載の偏光板の製造方法。
Ro = (Nx−Ny) × d
Rt = ((Nx + Ny) / 2−Nz) × d
(In the formula, Nx represents the maximum refractive index in the film plane, Ny represents the refractive index in the direction perpendicular to Nx in the film plane, Nz represents the refractive index in the thickness direction, and d represents the thickness (nm) of the film.)
(Claim 7)
The method for producing a polarizing plate according to claim 6, wherein the average value of the dimensional change rate in the width direction after the saponification treatment of the backlight side polarizing film protective film is 0.04% or less.

(請求項8)
鹸化処理した前記位相差フィルム、前記ポリビニルアルコール系偏光膜、鹸化処理した前記バックライト側偏光膜保護フィルムをロール状態で連続的に貼り合わせる工程と巻き取りを行なう工程の間に、前記位相差フィルムの液晶セルへの接着面に、接着層と剥離保護層を設ける工程を有することを特徴とする請求項6または7に記載の偏光板の製造方法。
(Claim 8)
Between the step of continuously laminating the saponified retardation film, the polyvinyl alcohol polarizing film, the saponified backlight-side polarizing film protective film in a roll state and the winding step, the retardation film The method for producing a polarizing plate according to claim 6 or 7, further comprising a step of providing an adhesive layer and a peeling protective layer on an adhesive surface to the liquid crystal cell.

(請求項9)
液晶表示装置の液晶セルのバックライト側に用いられる偏光板であって、偏光膜の両側に保護フィルムを有する偏光板において、該偏光膜はポリビニルアルコール系偏光膜であり、液晶セル側偏光膜保護フィルムはセルロースエステルフィルムを延伸して作製され、23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが70〜400nmのリタデーション上昇剤を含有する位相差フィルムであり、バックライト側偏光膜保護フィルムは23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが0〜20nm、リタデーションRtが0〜70nmのセルロースエステルフィルムであり、バックライト側表面に膜厚が1〜20μmの活性線硬化樹脂層を有し、該活性線硬化樹脂層に用いられる活性線硬化樹脂がアクリル系、アクリルウレタン系のUV硬化性樹脂であることを特徴とする偏光板。
(Claim 9)
A polarizing plate used on a backlight side of a liquid crystal cell of a liquid crystal display device, wherein the polarizing film has a protective film on both sides of the polarizing film, the polarizing film is a polyvinyl alcohol polarizing film, and the liquid crystal cell side polarizing film protection The film is prepared by stretching a cellulose ester film, and contains a retardation increasing agent having a retardation Ro defined by the following formula of 20 to 300 nm and a retardation Rt of 70 to 400 nm under the conditions of 23 ° C. and 55% RH. It is a phase difference film, and the backlight side polarizing film protective film is a cellulose ester film having a retardation Ro defined by the following formula of 0 to 20 nm and a retardation Rt of 0 to 70 nm under the conditions of 23 ° C. and 55% RH. An active ray curable resin layer having a film thickness of 1 to 20 μm on the backlight side surface; A polarizing plate, wherein the active ray curable resin used to line the cured resin layer is an acrylic, acrylic urethane UV curing resin.

Ro=(Nx−Ny)×d
Rt=((Nx+Ny)/2−Nz)×d
(式中、Nxはフィルム面内の最大屈折率、Nyはフィルム面内でNxと直交方向の屈折率、Nzは厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す。)
(請求項10)
請求項1〜5、9のいずれか1項に記載の偏光板、または請求項6〜8のいずれか1項に記載の偏光板の製造方法により得られた偏光板を用いることを特徴とする液晶表示装置。
Ro = (Nx−Ny) × d
Rt = ((Nx + Ny) / 2−Nz) × d
(In the formula, Nx represents the maximum refractive index in the film plane, Ny represents the refractive index in the direction perpendicular to Nx in the film plane, Nz represents the refractive index in the thickness direction, and d represents the thickness (nm) of the film.)
(Claim 10)
The polarizing plate according to any one of claims 1 to 5 and 9, or the polarizing plate obtained by the method for producing a polarizing plate according to any one of claims 6 to 8 is used. Liquid crystal display device.

本発明により、位相差フィルム、偏光膜及びバックライト側偏光膜保護フィルムの貼り合せ時に幅手方向の寸法のずれがなく、低コストで量産性に優れた液晶表示装置のバックライト側に適した偏光板、その製造方法及び液晶表示装置を提供することができる。   According to the present invention, there is no dimensional deviation in the width direction when laminating the retardation film, the polarizing film and the backlight side polarizing film protective film, and it is suitable for the backlight side of a liquid crystal display device which is low in cost and excellent in mass productivity. A polarizing plate, a manufacturing method thereof, and a liquid crystal display device can be provided.

本発明者は、鹸化処理後の位相差フィルム、偏光膜及び鹸化処理後のバックライト側偏光膜保護フィルムをロール状で連続的に貼り合せて偏光板を製造する時に、幅手方向の寸法のずれが発生する現象について解析検討を行なった。その結果、鹸化処理後の位相差フィルムは鹸化処理前に比べて寸法が少し伸びるのに対して、バックライト側偏光膜保護フィルムは鹸化処理により膨張し伸びている量がより大きいことが原因であることが分かった。   The present inventor, when producing a polarizing plate by continuously laminating a saponified retardation film, a polarizing film and a saponified backlight-side polarizing film protective film in a roll shape, We analyzed and analyzed the phenomenon of misalignment. As a result, the retardation film after the saponification treatment is slightly larger in dimensions than before the saponification treatment, whereas the backlight side polarizing film protective film is expanded due to the saponification treatment, and the amount of elongation is larger. I found out.

本発明者は、これらの解析検討と合わせて鋭意研究の結果、液晶表示装置の液晶セルのバックライト側に用いられる偏光板であって、偏光膜の両側に保護フィルムを有する偏光板において、該偏光膜はポリビニルアルコール系偏光膜であり、液晶セル側偏光膜保護フィルムはセルロースエステルフィルムを延伸して作製され、23℃、55%RHの条件下で、前記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが70〜400nmの位相差フィルムであり、バックライト側偏光膜保護フィルムは鹸化処理前に対して、鹸化処理後の寸法変化率が0.01〜0.10%のセルロースエステルフィルムである偏光板により、位相差フィルム、偏光膜及びバックライト側偏光膜保護フィルムの貼り合せ時に幅手方向の寸法のずれがなく、低コストで量産性に優れた液晶表示装置のバックライト側に適した偏光板が得られることを見出した。特に、バックライト側偏光膜保護フィルムの寸法変化率が0.01〜0.10%と位相差フィルムの寸法変化率に近い低い値であることが特徴である。   As a result of earnest research combined with these analysis studies, the present inventor is a polarizing plate used on the backlight side of the liquid crystal cell of the liquid crystal display device, and having a protective film on both sides of the polarizing film, The polarizing film is a polyvinyl alcohol polarizing film, the liquid crystal cell side polarizing film protective film is produced by stretching a cellulose ester film, and the retardation Ro defined by the above formula is 20 under the conditions of 23 ° C. and 55% RH. Cellulose ester having a retardation film having a retardation Rt of 70 to 400 nm and a polarizing film protective film on the backlight side of 0.01 to 0.10% after saponification, With the polarizing plate that is a film, the width direction of the retardation film, polarizing film, and backlight side polarizing film protective film is bonded. No displacement law, found that a polarizing plate which is suitable for a backlight side of a liquid crystal display device with excellent mass productivity can be obtained at low cost. Particularly, the dimensional change rate of the backlight side polarizing film protective film is 0.01 to 0.10%, which is a low value close to the dimensional change rate of the retardation film.

また、液晶表示装置の液晶セルのバックライト側に用いられる偏光板であって、偏光膜の両側に保護フィルムを有する偏光板において、該偏光膜はポリビニルアルコール系偏光膜であり、液晶セル側偏光膜保護フィルムはセルロースエステルフィルムを延伸して作製され、23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが70〜400nmのリタデーション上昇剤を含有する位相差フィルムであり、バックライト側偏光膜保護フィルムは23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが0〜20nm、リタデーションRtが0〜70nmのセルロースエステルフィルムであり、バックライト側表面に膜厚が1〜20μmの活性線硬化樹脂層を有し、該活性線硬化樹脂層に用いられる活性線硬化樹脂がアクリル系、アクリルウレタン系のUV硬化性樹脂である偏光板により、同様な効果が得られることを見出した。本発明では、位相差フィルムがリタデーション上昇剤を含有し、位相差フィルムのリタデーションが高いことが特徴であり、これによりバックライト側偏光膜保護フィルムの寸法変化率が0.10%を超える場合にも、同様な効果が得られる。   Further, a polarizing plate used on the backlight side of a liquid crystal cell of a liquid crystal display device, and having a protective film on both sides of the polarizing film, the polarizing film is a polyvinyl alcohol polarizing film, The film protective film is prepared by stretching a cellulose ester film, and contains a retardation increasing agent having a retardation Ro defined by the following formula of 20 to 300 nm and a retardation Rt of 70 to 400 nm under the conditions of 23 ° C. and 55% RH. The backlight side polarizing film protective film is a cellulose ester film having a retardation Ro defined by the following formula of 0 to 20 nm and a retardation Rt of 0 to 70 nm under the conditions of 23 ° C. and 55% RH. Yes, it has an actinic radiation curable resin layer with a film thickness of 1-20 μm on the backlight side surface Active ray curable resin is acrylic used for the active ray curable resin layer, the polarizing plate is a UV curable resin acrylic urethane, it found that similar effect is obtained. In the present invention, the retardation film contains a retardation increasing agent, and the retardation of the retardation film is high, whereby the dimensional change rate of the backlight side polarizing film protective film exceeds 0.10%. The same effect can be obtained.

さらに、液晶表示装置の液晶セルのバックライト側に用いられる偏光板の製造方法であって、偏光膜の両側に保護フィルムを有する偏光板の製造方法において、該偏光膜はロール状のポリビニルアルコール系偏光膜であり、液晶セル側偏光膜保護フィルムはセルロースエステルフィルムを延伸して作製され、23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが70〜400nmのロール状の位相差フィルムであり、バックライト側偏光膜保護フィルムは、先後端部以外は鹸化処理前に対して、鹸化処理後の寸法変化率が0.01〜0.10%であり、鹸化処理した前記位相差フィルム、前記ポリビニルアルコール系偏光膜、鹸化処理した前記バックライト側偏光膜保護フィルムをロール状態で連続的に貼り合わせる偏光板の製造方法により、位相差フィルム、偏光膜及びバックライト側偏光膜保護フィルムの貼り合せ時に幅手方向の寸法のずれがなく、低コストで量産性に優れた液晶表示装置のバックライト側に適した偏光板の製造方法が得られることを見出した。   Further, a method for producing a polarizing plate used on the backlight side of a liquid crystal cell of a liquid crystal display device, wherein the polarizing film has a roll-shaped polyvinyl alcohol system. It is a polarizing film, and the liquid crystal cell-side polarizing film protective film is produced by stretching a cellulose ester film. Under the conditions of 23 ° C. and 55% RH, the retardation Ro defined by the following formula is 20 to 300 nm, and the retardation Rt is It is a roll-shaped retardation film of 70 to 400 nm, and the backlight side polarizing film protective film has a dimensional change rate after saponification treatment of 0.01 to 0.10% with respect to that before saponification treatment except for the front and rear ends. The retardation film subjected to saponification treatment, the polyvinyl alcohol polarizing film, and the backlight side polarizing film protective film subjected to saponification treatment Due to the manufacturing method of the polarizing plate that is continuously bonded in a roll state, there is no deviation in the width direction when laminating the retardation film, polarizing film and backlight side polarizing film protective film, and low cost and mass productivity It has been found that a method for producing a polarizing plate suitable for the backlight side of an excellent liquid crystal display device can be obtained.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

(セルロースエステルフィルム)
本発明においては、液晶セル側偏光膜保護フィルム(位相差フィルム)、バックライト側偏光膜保護フィルムの好ましい有機材料として、低複屈折・波長分散特性が正であるセルロースエステルフィルムが用いられる。
(Cellulose ester film)
In the present invention, a cellulose ester film having a low low birefringence / wavelength dispersion property is used as a preferable organic material for the liquid crystal cell side polarizing film protective film (retardation film) and the backlight side polarizing film protective film.

セルロースエステルフィルムとしては、トリアセチルセルロース(TAC)、ジアセチルセルロース(DAC)、セルロースアセテートプロピオネート(CAP)、セルロースアセテートブチレート(CAB)、セルロースアセテートフタレート、セルロースアセテートトリメリテート、硝酸セルロース等のセルロースエステル類が挙げられるが、好ましくはセルロースエステル類である。   Examples of cellulose ester films include triacetyl cellulose (TAC), diacetyl cellulose (DAC), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB), cellulose acetate phthalate, cellulose acetate trimellitate, and cellulose nitrate. Although cellulose ester is mentioned, Preferably it is cellulose ester.

セルロースエステルフィルムの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフ等を挙げることができる。また、これらから得られたセルロースエステルフィルムは、それぞれを単独あるいは任意の割合で混合使用することができるが、綿花リンターを50質量%以上使用することが好ましい。   The cellulose used as a raw material for the cellulose ester film is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. In addition, the cellulose ester films obtained from these can be used alone or in an arbitrary ratio, but it is preferable to use 50% by mass or more of cotton linter.

セルロースエステルフィルムの分子量が大きいと弾性率が大きくなるが、分子量を上げすぎるとセルロースエステルの溶解液の粘度が高くなりすぎるため生産性が低下する。セルロースエステルの分子量は数平均分子量(Mn)で80000〜200000のものが好ましく、100000〜200000のものがさらに好ましい。本発明で用いられるセルロースエステルはMw/Mn比が1.4〜3.0であることが好ましく、さらに好ましくは1.4〜2.3である。   If the molecular weight of the cellulose ester film is large, the modulus of elasticity increases. However, if the molecular weight is increased too much, the viscosity of the cellulose ester solution becomes too high, resulting in a decrease in productivity. The molecular weight of the cellulose ester is preferably 80000 to 200000 in terms of number average molecular weight (Mn), more preferably 100000 to 200000. The cellulose ester used in the present invention preferably has an Mw / Mn ratio of 1.4 to 3.0, more preferably 1.4 to 2.3.

セルロースエステルの平均分子量及び分子量分布は、高速液体クロマトグラフィーを用い測定できるので、これを用いて数平均分子量(Mn)、質量平均分子量(Mw)を算出し、その比を計算することができる。   Since the average molecular weight and molecular weight distribution of the cellulose ester can be measured using high performance liquid chromatography, the number average molecular weight (Mn) and the mass average molecular weight (Mw) can be calculated using this, and the ratio can be calculated.

測定条件は以下の通りである。   The measurement conditions are as follows.

溶媒: メチレンクロライド
カラム: Shodex K806,K805,K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所(株)製)
流量: 1.0ml/min
校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1,000,000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 1,000,000 to 500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.

セルロースエステルの総アシル基置換度は2.0〜2.95(未置換の水酸基0.05〜1.0)が用いられ、2.6〜2.9(未置換の水酸基0.1〜0.4)が好ましく用いられる。総アシル基置換度はASTM−D817−96に準じて測定することができる。   The total acyl group substitution degree of the cellulose ester is 2.0 to 2.95 (unsubstituted hydroxyl group 0.05 to 1.0), and 2.6 to 2.9 (unsubstituted hydroxyl group 0.1 to 0). .4) is preferably used. The total acyl group substitution degree can be measured according to ASTM-D817-96.

また、他の好ましいセルロースエステルは、炭素原子数2〜22のアシル基を置換基として有し、アセチル基の置換度をXとし、炭素原子数3〜22のアシル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすセルロースエステルである。   Another preferred cellulose ester has an acyl group having 2 to 22 carbon atoms as a substituent, the substitution degree of the acetyl group is X, and the substitution degree of the acyl group of 3 to 22 carbon atoms is Y. Sometimes, it is a cellulose ester that simultaneously satisfies the following formulas (I) and (II).

式(I) 2.6≦X+Y≦2.9
式(II) 0≦X≦2.5
中でも1.9≦X≦2.5、0.1≦Y≦1.0のセルロースアセテートプロピオネート(総アシル基置換度=X+Y)が好ましい。アシル基で置換されていない部分は通常水酸基として存在している。これらのセルロースエステルは公知の方法で合成することができる。
Formula (I) 2.6 ≦ X + Y ≦ 2.9
Formula (II) 0 ≦ X ≦ 2.5
Among them, cellulose acetate propionate (total acyl group substitution degree = X + Y) satisfying 1.9 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 1.0 is preferable. The portion not substituted with an acyl group usually exists as a hydroxyl group. These cellulose esters can be synthesized by a known method.

〈溶媒〉
セルロースエステルフィルムは溶媒に溶解させてドープを形成し、これを基材上に流延しフィルムを形成させる。この際に押し出しあるいは流延後に溶媒を蒸発させる必要性があるため、揮発性の溶媒を用いることが好ましい。さらに、反応性金属化合物や触媒等と反応せず、かつ流延用基材を溶解しないものである。また、2種以上の溶媒を混合して用いてもよい。
<solvent>
The cellulose ester film is dissolved in a solvent to form a dope, which is cast on a substrate to form a film. At this time, since it is necessary to evaporate the solvent after extrusion or casting, it is preferable to use a volatile solvent. Furthermore, it does not react with a reactive metal compound or a catalyst, and does not dissolve the casting base material. Two or more solvents may be mixed and used.

ここで、上記セルロースエステルフィルムに対して良好な溶解性を有する有機溶媒を良溶媒といい、また溶解に主たる効果を示し、その中で大量に使用する有機溶媒を主(有機)溶媒または主たる(有機)溶媒という。   Here, an organic solvent having good solubility with respect to the cellulose ester film is referred to as a good solvent, and exhibits a main effect on dissolution, and an organic solvent used in a large amount among them is a main (organic) solvent or a main ( Organic) solvent.

良溶媒の例としてはアセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類、テトラヒドロフラン(THF)、1,4−ジオキサン、1,3−ジオキソラン、1,2−ジメトキシエタン等のエーテル類、ぎ酸メチル、ぎ酸エチル、酢酸メチル、酢酸エチル、酢酸アミル、γ−ブチロラクトン等のエステル類の他、メチルセロソルブ、ジメチルイミダゾリノン、ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、ジメチルスルフォキシド、スルホラン、ニトロエタン、塩化メチレン、アセト酢酸メチル等が挙げられるが、1,3−ジオキソラン、THF、メチルエチルケトン、アセトン、酢酸メチル及び塩化メチレンが好ましい。   Examples of good solvents include ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethers such as tetrahydrofuran (THF), 1,4-dioxane, 1,3-dioxolane, 1,2-dimethoxyethane, and formic acid. In addition to esters such as methyl, ethyl formate, methyl acetate, ethyl acetate, amyl acetate, and γ-butyrolactone, methyl cellosolve, dimethylimidazolinone, dimethylformamide, dimethylacetamide, acetonitrile, dimethylsulfoxide, sulfolane, nitroethane, chloride Examples include methylene and methyl acetoacetate, and 1,3-dioxolane, THF, methyl ethyl ketone, acetone, methyl acetate and methylene chloride are preferred.

ドープには、上記有機溶媒の他に、1〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。これらは、ドープを金属支持体に流延した後、溶媒が蒸発し始めてアルコールの比率が多くなることでウェブ(支持体上にセルロースエステルフィルムのドープを流延した以降のドープ膜の呼び方をウェブとする)をゲル化させ、ウェブを丈夫にし金属支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルフィルムの溶解を促進したりする役割もあり、反応性金属化合物のゲル化、析出、粘度上昇を抑える役割もある。   The dope preferably contains 1 to 40% by mass of an alcohol having 1 to 4 carbon atoms in addition to the organic solvent. After casting the dope on the metal support, the solvent starts to evaporate and the ratio of alcohol increases so that the web (referred to as the dope film after casting the dope of the cellulose ester film on the support). Is used as a gelling solvent that makes the web strong and makes it easy to peel from the metal support, or when these ratios are small, dissolve the cellulose ester film of non-chlorine organic solvent There is also a role to promote gelation, and also has a role to suppress gelation, precipitation, and viscosity increase of the reactive metal compound.

炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール、プロピレングリコールモノメチルエーテルを挙げることができる。これらのうち、ドープの安定性に優れ、沸点も比較的低く、乾燥性もよく、かつ毒性がないこと等からエタノールが好ましい。これらの有機溶媒は、単独ではセルロースエステルに対して溶解性を有しておらず、貧溶媒という。   Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, and propylene glycol monomethyl ether. Of these, ethanol is preferred because it has excellent dope stability, has a relatively low boiling point, good drying properties, and no toxicity. These organic solvents alone are not soluble in cellulose esters and are referred to as poor solvents.

このような条件を満たし好ましい高分子化合物であるセルロースエステルを高濃度に溶解する溶剤として最も好ましい溶剤は塩化メチレン:エチルアルコールの比が95:5〜80:20の混合溶剤である。あるいは、酢酸メチル:エチルアルコール60:40〜95:5の混合溶媒も好ましく用いられる。   The most preferable solvent that satisfies such conditions and dissolves cellulose ester, which is a preferred polymer compound, at a high concentration is a mixed solvent having a ratio of methylene chloride: ethyl alcohol of 95: 5 to 80:20. Alternatively, a mixed solvent of methyl acetate: ethyl alcohol 60:40 to 95: 5 is also preferably used.

また、本発明に用いられるセルロースエステルは、特開2000−352620号公報で示される有機溶媒を使用しないで熱溶融流延によって流延製膜したセルロースエステルを使用することも好ましい態様である。この場合、後述する各種添加剤は溶液流延法と同様に好ましく使用することができる。この場合の延伸は、熱溶融流延後の冷却する工程で行なわれる。   Moreover, it is also a preferable aspect that the cellulose ester used in the present invention is a cellulose ester cast by hot melt casting without using an organic solvent disclosed in JP-A No. 2000-352620. In this case, various additives described later can be preferably used in the same manner as in the solution casting method. The stretching in this case is performed in the cooling step after the hot melt casting.

(添加剤)
本発明における位相差フィルムには、フィルムに加工性・柔軟性・防湿性を付与する可塑剤、紫外線吸収機能を付与する紫外線吸収剤、フィルムの劣化を防止する酸化防止剤、フィルムに滑り性を付与する微粒子(マット剤)を含有させてもよい。また、フィルムのリタデーションを上昇するリタデーション上昇剤等を含有させることが好ましい。
(Additive)
The retardation film in the present invention includes a plasticizer that imparts processability, flexibility, and moisture resistance to the film, an ultraviolet absorber that imparts an ultraviolet absorption function, an antioxidant that prevents deterioration of the film, and a slipperiness to the film. Fine particles to be imparted (mat agent) may be contained. Moreover, it is preferable to contain the retardation raising agent etc. which raise the retardation of a film.

〈可塑剤〉
用いられる可塑剤しては特に限定はないが、フィルムにヘイズを発生させたりフィルムからブリードアウトあるいは揮発しないように、セルロースエステルフィルムや加水分解重縮合が可能な反応性金属化合物の重縮合物と水素結合等によって相互作用可能である官能基を有していることが好ましい。
<Plasticizer>
The plasticizer used is not particularly limited, but a cellulose ester film or a reactive metal compound polycondensate capable of hydrolytic polycondensation so as not to generate haze or bleed out or volatilize from the film. It preferably has a functional group capable of interacting by hydrogen bonding or the like.

このような官能基としては、水酸基、エーテル基、カルボニル基、エステル基、カルボン酸残基、アミノ基、イミノ基、アミド基、イミド基、シアノ基、ニトロ基、スルホニル基、スルホン酸残基、ホスホニル基、ホスホン酸残基等が挙げられるが、好ましくはカルボニル基、エステル基、ホスホニル基である。   Examples of such functional groups include hydroxyl groups, ether groups, carbonyl groups, ester groups, carboxylic acid residues, amino groups, imino groups, amide groups, imide groups, cyano groups, nitro groups, sulfonyl groups, sulfonic acid residues, Examples thereof include a phosphonyl group and a phosphonic acid residue, and a carbonyl group, an ester group and a phosphonyl group are preferred.

このような可塑剤の例として、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、多価アルコール系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、カルボン酸エステル系可塑剤、ポリエステル系可塑剤等を好ましく用いることができるが、特に好ましくは多価アルコール系可塑剤、グリコレート系可塑剤である。   Examples of such plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic ester plasticizers, pyromellitic acid plasticizers, polyhydric alcohol plasticizers, glycolate plasticizers. Citric acid ester plasticizers, fatty acid ester plasticizers, carboxylic acid ester plasticizers, polyester plasticizers and the like can be preferably used. Particularly preferred are polyhydric alcohol plasticizers and glycolate plasticizers. is there.

多価アルコールエステルは2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなり、分子内に芳香環またはシクロアルキル環を有することが好ましい。   The polyhydric alcohol ester is composed of an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.

本発明に用いられる多価アルコールは下記式で表される。   The polyhydric alcohol used in the present invention is represented by the following formula.

1−(OH)n
(ただし、R1はn価の有機基、nは2以上の正の整数を表す)
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
R 1- (OH) n
(However, R 1 represents an n-valent organic group, and n represents a positive integer of 2 or more.)
Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these. Adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3- Butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, galactitol, mannitol, 3-methylpentane- Examples include 1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol. In particular, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable.

多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。   There is no restriction | limiting in particular as monocarboxylic acid used for polyhydric alcohol ester, Well-known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid, etc. can be used. Use of an alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred in terms of improving moisture permeability and retention.

好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。   Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.

脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1〜20であることがさらに好ましく、1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルフィルムとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。   As the aliphatic monocarboxylic acid, a fatty acid having a straight chain or side chain having 1 to 32 carbon atoms can be preferably used. The number of carbon atoms is more preferably 1-20, and particularly preferably 1-10. When acetic acid is contained, the compatibility with the cellulose ester film is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.

好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。   Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid , Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, Examples thereof include unsaturated fatty acids such as oleic acid, sorbic acid, linoleic acid, linolenic acid and arachidonic acid.

好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。   Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, or derivatives thereof.

好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができるが、特に安息香酸が好ましい。   Examples of preferred aromatic monocarboxylic acids include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid. Examples thereof include aromatic monocarboxylic acids and derivatives thereof, and benzoic acid is particularly preferable.

多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることがさらに好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルフィルムとの相溶性の点では小さい方が好ましい。   The molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferable because it is less likely to volatilize, and a lower molecular weight is preferable in terms of moisture permeability and compatibility with the cellulose ester film.

多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。   The carboxylic acid used for the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.

グリコレート系可塑剤は特に限定されないが、分子内に芳香環またはシクロアルキル環を有するグリコレート系可塑剤を好ましく用いることができる。好ましいグリコレート系可塑剤としては、例えばブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート等を用いることができる。   The glycolate plasticizer is not particularly limited, but a glycolate plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be preferably used. As preferred glycolate plasticizers, for example, butyl phthalyl butyl glycolate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate and the like can be used.

リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジシクロヘキシルフタレート等を用いることができる。   For phosphate plasticizers, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For phthalate ester plasticizers, diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dicyclohexyl phthalate and the like can be used.

これらの可塑剤は単独あるいは2種以上混合して用いることができる。可塑剤の使用量は、セルロースエステルフィルムに対して1質量%未満ではフィルムの透湿度を低減させる効果が少ないため好ましくなく、20質量%を越えるとフィルムから可塑剤がブリードアウトし、フィルムの物性が劣化するため、1〜20質量%が好ましい。6〜16質量%がさらに好ましく、特に好ましくは8〜13質量%である。   These plasticizers can be used alone or in combination of two or more. If the amount of the plasticizer used is less than 1% by mass relative to the cellulose ester film, it is not preferable because the effect of reducing the moisture permeability of the film is small. If it exceeds 20% by mass, the plasticizer bleeds out from the film, and the physical properties of the film 1 to 20% by mass is preferable. 6-16 mass% is further more preferable, Most preferably, it is 8-13 mass%.

〈紫外線吸収剤〉
紫外線吸収機能は、液晶の劣化防止の観点から、偏光板保護フィルム、位相差フィルム、光学補償フィルム等の各種光学フィルムに付与されていることが好ましい。このような紫外線吸収機能は、紫外線を吸収する材料をセルロースエステルフィルム中に含ませてもよく、セルロースエステルフィルムからなるフィルム上に紫外線吸収機能のある層を設けてもよい。
<Ultraviolet absorber>
The ultraviolet absorbing function is preferably imparted to various optical films such as a polarizing plate protective film, a retardation film, and an optical compensation film from the viewpoint of preventing deterioration of the liquid crystal. For such an ultraviolet absorbing function, a material that absorbs ultraviolet rays may be included in the cellulose ester film, or a layer having an ultraviolet absorbing function may be provided on a film made of the cellulose ester film.

このような紫外線吸収機能のある紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。好ましく用いられる紫外線吸収剤の具体例としては、例えばトリアジン系化合物、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。また、特開平6−148430号公報に記載の高分子紫外線吸収剤も好ましく用いられる。   As such an ultraviolet absorber having an ultraviolet absorbing function, those having an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less and little absorption of visible light having a wavelength of 400 nm or more are preferably used. Specific examples of preferably used ultraviolet absorbers include triazine compounds, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, it is not limited to these. Moreover, the polymeric ultraviolet absorber described in JP-A-6-148430 is also preferably used.

本発明に有用な紫外線吸収剤の具体例として、2−(2′−ヒドロキシ−5′−メチル−フェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチル−フェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチル−フェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチル−フェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチル−フェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチル−フェノール<<チヌビン(TINUVIN)171>>、2−オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物<<チヌビン(TINUVIN)109>>、2−(2H−ベンゾトリアゾール−2イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール<<チヌビン234>>、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロ−ベンゾトリアゾール<<チヌビン326>>等を挙げることができるが、これらに限定されない。また、上記のチヌビン109、チヌビン171、チヌビン326等チヌビンは何れもチバ・スペシャルティ・ケミカルズ社製の市販品で、好ましく使用できる。   Specific examples of ultraviolet absorbers useful in the present invention include 2- (2′-hydroxy-5′-methyl-phenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl). -Phenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methyl-phenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butyl) -Phenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methyl-phenyl) benzotriazole, 2 , 2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2′-hydroxy -3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methyl-phenol << TINUVIN 171 >>, 2-octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3 -[3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate mixture << TINUVIN 109 >>, 2- (2H-benzotriazole -2yl) -4,6-bis (1-methyl-1-phenylethyl) phenol << Tinuvin 234 >> 2- (3-t- butyl-5-methyl-2-hydroxyphenyl) -5-chloro - can be exemplified benzotriazole << Tinuvin 326 >>, and the like. In addition, any of the above-mentioned tinuvins such as tinuvin 109, tinuvin 171 and tinuvin 326 are commercially available products manufactured by Ciba Specialty Chemicals and can be preferably used.

ベンゾフェノン系化合物の具体例として、2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されない。   Specific examples of benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy- 5-benzoylphenylmethane) and the like, but is not limited thereto.

また、位相差フィルムに用いることのできる紫外線吸収剤は、各種塗布層の塗布性にも優れるため、特開2000−187825に記載されている分配係数が9.2以上の紫外線吸収剤を含むことが好ましく、特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。   Moreover, since the ultraviolet absorber which can be used for a phase difference film is excellent also in the applicability | paintability of various coating layers, it contains the ultraviolet absorber whose distribution coefficient described in Unexamined-Japanese-Patent No. 2000-187825 is 9.2 or more. In particular, it is preferable to use an ultraviolet absorber having a distribution coefficient of 10.1 or more.

また、特開平6−148430号及び特開2002−47357号記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)を好ましく用いることができる。特開平6−148430号の一般式(1)、あるいは一般式(2)、あるいは特開2002−47357号の一般式(3)(6)(7)記載の高分子紫外線吸収剤が特に好ましく用いられる。   Moreover, the polymeric ultraviolet absorber (or ultraviolet absorbing polymer) described in JP-A-6-148430 and JP-A-2002-47357 can be preferably used. The polymer ultraviolet absorbers described in general formula (1), general formula (2) of JP-A-6-148430, or general formulas (3), (6) and (7) of JP-A-2002-47357 are particularly preferably used. It is done.

また、本発明の位相差フィルムの紫外線吸収剤として、1,3,5−トリアジン環を有する化合物を好ましく用いることができる。該化合物はリタデーション調整剤としても用いることができる。   In addition, a compound having a 1,3,5-triazine ring can be preferably used as the ultraviolet absorber of the retardation film of the present invention. The compound can also be used as a retardation adjusting agent.

これらの化合物の添加量は、セルロースエステルフィルムに対して質量割合で0.1〜5.0%が好ましく、0.5〜1.5%がさらに好ましい。   The addition amount of these compounds is preferably 0.1 to 5.0% by mass ratio, and more preferably 0.5 to 1.5% with respect to the cellulose ester film.

〈酸化防止剤〉
酸化防止剤は劣化防止剤ともいわれる。高湿高温の状態に液晶画像表示装置等がおかれた場合には、位相差フィルムの劣化が起こる場合がある。酸化防止剤は、例えば、位相差フィルム中の残留溶媒量のハロゲンやリン酸系可塑剤のリン酸等により位相差フィルムが分解するのを遅らせたり、防いだりする役割を有するので、前記位相差フィルム中に含有させるのが好ましい。
<Antioxidant>
Antioxidants are also referred to as deterioration inhibitors. When a liquid crystal image display device or the like is placed in a high humidity and high temperature state, the retardation film may be deteriorated. The antioxidant has a role of delaying or preventing the retardation film from being decomposed by, for example, the residual solvent amount of halogen in the retardation film or phosphoric acid of the phosphoric acid plasticizer. It is preferable to make it contain in a film.

酸化防止剤、劣化防止剤として好ましくは、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン化合物であり、特開平3−199201号、同5−1907073号、同5−194789号、同5−271471号、同6−107854号の各公報に記載がある。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(BHT)、トリベンジルアミン(TBA)を挙げることができる。また、このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N′−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト等を挙げることができる。特に、2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また、例えば、N,N′−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4−ジ−t−ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。   Antioxidants, peroxide decomposers, radical inhibitors, metal deactivators, acid scavengers, and amine compounds are preferred as the antioxidants and deterioration inhibitors, and JP-A-3-199201 and 5- Nos. 1907073, 5-194789, 5-271471, and 6-107854. Examples of particularly preferred deterioration inhibitors include butylated hydroxytoluene (BHT) and tribenzylamine (TBA). Further, as such an antioxidant, a hindered phenol compound is preferably used. For example, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino ) -1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], Ttadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide) 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tris- (3,5-di-t-butyl-4-hydroxy Benzyl) -isocyanurate and the like. In particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred. Further, for example, hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di- A phosphorus processing stabilizer such as t-butylphenyl) phosphite may be used in combination.

これらの化合物の添加量は、セルロースエステルフィルムに対して質量割合で1ppm〜1.0%が好ましく、10〜1000ppmがさらに好ましい。   The amount of these compounds added is preferably 1 ppm to 1.0%, more preferably 10 to 1000 ppm in terms of mass ratio with respect to the cellulose ester film.

〈マット剤〉
セルロースエステルフィルムには、滑り性を付与するためにマット剤等の微粒子を添加することができる。微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。
<Matting agent>
Fine particles such as a matting agent can be added to the cellulose ester film in order to impart slipperiness. Examples of the fine particles include fine particles of an inorganic compound or fine particles of an organic compound.

微粒子の添加量は、位相差フィルム1m2当たり0.01〜1.0gが好ましく、0.03〜0.5gがより好ましく、0.08〜0.3gがさらに好ましい。これにより、位相差フィルム表面に0.1〜1μmの凸部が形成されることが好ましく、フィルムに滑り性が付与される。 The amount of fine particles added is preferably 0.01 to 1.0 g, more preferably 0.03 to 0.5 g, and still more preferably 0.08 to 0.3 g per 1 m 2 of the retardation film. Thereby, it is preferable that a 0.1-1 micrometer convex part is formed in the phase difference film surface, and slipperiness is provided to a film.

位相差フィルム中に添加される微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。中でもケイ素を含むものが濁度が低くなり、また、フィルムのヘイズを小さくできるので好ましく、特に二酸化珪素が好ましい。   Examples of the fine particles added to the retardation film include inorganic compounds such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated silica. Mention may be made of calcium acid, aluminum silicate, magnesium silicate and calcium phosphate. Among them, those containing silicon are preferable because the turbidity is low and the haze of the film can be reduced, and silicon dioxide is particularly preferable.

二酸化珪素のような微粒子は有機物により表面処理されている場合が多いが、このようなものはフィルムのヘイズを低下できるため好ましい。表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサン等を挙げることができる。   In many cases, fine particles such as silicon dioxide are surface-treated with an organic material, but such particles are preferable because they can reduce the haze of the film. Preferred organic materials for the surface treatment include halosilanes, alkoxysilanes, silazanes, siloxanes, and the like.

二酸化珪素微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000〜1200℃にて空気中で燃焼させて得ることができる。   The silicon dioxide fine particles can be obtained, for example, by burning vaporized silicon tetrachloride and hydrogen mixed at 1000 to 1200 ° C. in the air.

二酸化珪素の微粒子は、1次平均粒子径が20nm以下、見掛比重が70g/L以上であるものが好ましい。1次粒子の平均径が5〜16nmであるのがより好ましく、5〜12nmであるのがさらに好ましい。これらの微粒子はフィルム中で2次凝集体を形成してフィルム表面に凹凸を形成することによって滑り性を付与している。1次粒子の平均径が小さい方がヘイズが低く好ましい。見掛比重は90〜200g/L以上がより好ましく、さらに100〜200g/L以上がより好ましい。見掛比重が大きい程、高濃度の微粒子分散液を作ることが可能になり、ヘイズ、大きな凝集物の発生が少なく好ましい。なお、本発明において、リットルをLで表すこととする。   The fine particles of silicon dioxide preferably have a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / L or more. The average diameter of the primary particles is more preferably 5 to 16 nm, and further preferably 5 to 12 nm. These fine particles form a secondary agglomerate in the film and form unevenness on the film surface to impart slipperiness. A smaller primary particle average diameter is preferred because haze is low. The apparent specific gravity is more preferably 90 to 200 g / L or more, and further preferably 100 to 200 g / L or more. Higher apparent specific gravity makes it possible to produce a high-concentration fine particle dispersion, and less haze and large aggregates are generated. In the present invention, the liter is represented by L.

好ましい二酸化珪素の微粒子としては、例えば、日本アエロジル(株)製のアエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されているものを挙げることができ、アエロジル200V、R972、R972V、R974、R202、R812を好ましく用いることができる。酸化ジルコニウムの微粒子としては、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、何れも使用することができる。   As preferable fine particles of silicon dioxide, for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (above Nippon Aerosil Co., Ltd.) manufactured by Nippon Aerosil Co., Ltd. A commercially available one can be mentioned, and Aerosil 200V, R972, R972V, R974, R202, R812 can be preferably used. The fine particles of zirconium oxide are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.), and any of them can be used.

これらの中でアエロジル200V、アエロジルR972V、アエロジルTT600が本発明の位相差フィルムの濁度を低くし、かつ摩擦係数を下げる効果が大きいため特に好ましい。   Among these, Aerosil 200V, Aerosil R972V, and Aerosil TT600 are particularly preferable because they have a large effect of lowering the turbidity and lowering the friction coefficient of the retardation film of the present invention.

有機化合物の微粒子の例としては、シリコーン樹脂、弗素樹脂及びアクリル樹脂を挙げることができる。これらのうちシリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(東芝シリコーン(株)製)を挙げることができる。   Examples of the fine particles of the organic compound include silicone resin, fluorine resin, and acrylic resin. Of these, silicone resins are preferred, and those having a three-dimensional network structure are particularly preferred. For example, Tospearl 103, 105, 108, 120, 145, 3120 and 240 (manufactured by Toshiba Silicone Co., Ltd.) Can be mentioned.

微粒子の1次平均粒子径の測定においては、透過型電子顕微鏡(倍率50万〜200万倍)で粒子の観察を行い、粒子100個を観察し、その平均値をもって、1次平均粒子径とすることができる。   In the measurement of the primary average particle diameter of the fine particles, the particles are observed with a transmission electron microscope (magnification of 500,000 to 2,000,000 times), 100 particles are observed, and the average value is used as the primary average particle diameter. can do.

また、上記記載の見掛比重は、二酸化珪素微粒子を一定量メスシリンダーに採り、この時の重さを測定し、下記式で算出することができる。   Further, the apparent specific gravity described above can be calculated by the following equation by taking a certain amount of silicon dioxide fine particles in a graduated cylinder and measuring the weight at this time.

見掛比重(g/L)=二酸化珪素質量(g)/二酸化珪素の容積(L)
ここで添加される無機微粒子は、フィルム表面に滑り性を付与することができるが、本発明で用いられる反応性金属化合物の重縮合物の添加によって得られるリタデーションの変動抑制効果は得られない。また、多量の無機微粒子の添加は凝集物の増加や、ヘイズの著しい上昇を伴う点が異なる
〈リタデーション上昇剤〉
リターデーションを上昇するために添加する化合物は、欧州特許911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物を使用することができる。
Apparent specific gravity (g / L) = silicon dioxide mass (g) / volume of silicon dioxide (L)
The inorganic fine particles added here can impart slipperiness to the film surface, but the retardation fluctuation suppressing effect obtained by adding the polycondensate of the reactive metal compound used in the present invention cannot be obtained. In addition, the addition of a large amount of inorganic fine particles is different in that it involves an increase in aggregates and a significant increase in haze.
As a compound to be added for increasing the retardation, an aromatic compound having two or more aromatic rings as described in EP 911,656 A2 can be used.

また二種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に不飽和ヘテロ環である。中でも1,3,5−トリアジン環が特に好ましい。   Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic hetero ring in addition to an aromatic hydrocarbon ring. An aromatic heterocyclic ring is particularly preferred, and the aromatic heterocyclic ring is generally an unsaturated heterocyclic ring. Of these, a 1,3,5-triazine ring is particularly preferred.

芳香族化合物が有する芳香族環の数は2〜20であることが好ましく、2〜12であることがより好ましく、2〜8であることがさらに好ましく、3〜6であることが最も好ましい。二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合及び(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成できない)。結合関係は、(a)〜(c)のいずれでもよい。   The number of aromatic rings contained in the aromatic compound is preferably 2 to 20, more preferably 2 to 12, further preferably 2 to 8, and most preferably 3 to 6. The bonding relationship between two aromatic rings can be classified into (a) when forming a condensed ring, (b) when directly connecting with a single bond, and (c) when connecting via a linking group (for aromatic rings). , Spiro bonds cannot be formed). The connection relationship may be any of (a) to (c).

(a)の縮合環(二つ以上の芳香族環の縮合環)の例には、インデン環、ナフタレン環、アズレン環、フルオレン環、フェナントレン環、アントラセン環、アセナフチレン環、ナフタセン環、ピレン環、インドール環、イソインドール環、ベンゾフラン環、ベンゾチオフェン環、インドリジン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、プリン環、インダゾール環、クロメン環、キノリン環、イソキノリン環、キノリジン環、キナゾリン環、シンノリン環、キノキサリン環、フタラジン環、プテリジン環、カルバゾール環、アクリジン環、フェナントリジン環、キサンテン環、フェナジン環、フェノチアジン環、フェノキサチイン環、フェノキサジン環及びチアントレン環が含まれる。中でも、ナフタレン環、アズレン環、インドール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環及びキノリン環が好ましい。   Examples of the condensed ring of (a) (condensed ring of two or more aromatic rings) include an indene ring, a naphthalene ring, an azulene ring, a fluorene ring, a phenanthrene ring, an anthracene ring, an acenaphthylene ring, a naphthacene ring, a pyrene ring, Indole ring, isoindole ring, benzofuran ring, benzothiophene ring, indolizine ring, benzoxazole ring, benzothiazole ring, benzimidazole ring, benzotriazole ring, purine ring, indazole ring, chromene ring, quinoline ring, isoquinoline ring, quinolidine Ring, quinazoline ring, cinnoline ring, quinoxaline ring, phthalazine ring, pteridine ring, carbazole ring, acridine ring, phenanthridine ring, xanthene ring, phenazine ring, phenothiazine ring, phenoxathiin ring, phenoxazine ring and thianthrene ring It is. Among these, naphthalene ring, azulene ring, indole ring, benzoxazole ring, benzothiazole ring, benzimidazole ring, benzotriazole ring and quinoline ring are preferable.

(b)の単結合は、二つの芳香族環の炭素原子間の結合であることが好ましい。二以上の単結合で二つの芳香族環を結合して、二つの芳香族環の間に脂肪族環または非芳香族性複素環を形成してもよい。   The single bond (b) is preferably a bond between carbon atoms of two aromatic rings. Two aromatic rings may be bonded with two or more single bonds to form an aliphatic ring or a non-aromatic heterocyclic ring between the two aromatic rings.

(c)の連結基も二つの芳香族環の炭素原子と結合することが好ましい。連結基は、アルキレン基、アルケニレン基、アルキニレン基、−CO−、−O−、−NH−、−S−またはそれらの組み合わせであることが好ましい。組み合わせからなる連結基の例を以下に示す。なお、以下の連結基の例の左右の関係は、逆になってもよい。   The linking group in (c) is also preferably bonded to carbon atoms of two aromatic rings. The linking group is preferably an alkylene group, an alkenylene group, an alkynylene group, —CO—, —O—, —NH—, —S—, or a combination thereof. Examples of linking groups composed of combinations are shown below. In addition, the relationship between the left and right in the following examples of the linking group may be reversed.

−CO−O−、−CO−NH−、−アルキレン−O−、−NH−CO−NH−、−NH−CO−O−、−O−CO−O−、−O−アルキレン−O−、−CO−アルケニレン−、−CO−アルケニレン−NH−、−CO−アルケニレン−O−、−アルキレン−CO−O−アルキレン−O−CO−アルキレン−、−O−アルキレン−CO−O−アルキレン−O−CO−アルキレン−O−、−O−CO−アルキレン−CO−O−、−NH−CO−アルケニレン−、−O−CO−アルケニレン−。   -CO-O-, -CO-NH-, -alkylene-O-, -NH-CO-NH-, -NH-CO-O-, -O-CO-O-, -O-alkylene-O-, -CO-alkenylene-, -CO-alkenylene-NH-, -CO-alkenylene-O-, -alkylene-CO-O-alkylene-O-CO-alkylene-, -O-alkylene-CO-O-alkylene-O -CO-alkylene-O-, -O-CO-alkylene-CO-O-, -NH-CO-alkenylene-, -O-CO-alkenylene-.

芳香族環及び連結基は置換基を有していてもよい。置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル、カルボキシル、シアノ、アミノ、ニトロ、スルホ、カルバモイル、スルファモイル、ウレイド、アルキル基、アルケニル基、アルキニル基、脂肪族アシル基、脂肪族アシルオキシ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アルキルスルホニル基、脂肪族アミド基、脂肪族スルホンアミド基、脂肪族置換アミノ基、脂肪族置換カルバモイル基、脂肪族置換スルファモイル基、脂肪族置換ウレイド基及び非芳香族性複素環基が含まれる。   The aromatic ring and the linking group may have a substituent. Examples of the substituent include halogen atom (F, Cl, Br, I), hydroxyl, carboxyl, cyano, amino, nitro, sulfo, carbamoyl, sulfamoyl, ureido, alkyl group, alkenyl group, alkynyl group, aliphatic acyl group , Aliphatic acyloxy group, alkoxy group, alkoxycarbonyl group, alkoxycarbonylamino group, alkylthio group, alkylsulfonyl group, aliphatic amide group, aliphatic sulfonamido group, aliphatic substituted amino group, aliphatic substituted carbamoyl group, aliphatic Substituted sulfamoyl groups, aliphatic substituted ureido groups and non-aromatic heterocyclic groups are included.

アルキル基の炭素原子数は1〜8であることが好ましい。環状アルキル基よりも鎖状アルキル基の方が好ましく、直鎖状アルキル基が特に好ましい。アルキル基は、さらに置換基(例、ヒドロキシ、カルボキシ、アルコキシ基、アルキル置換アミノ基)を有していてもよい。アルキル基の(置換アルキル基を含む)例には、メチル、エチル、n−ブチル、n−ヘキシル、2−ヒドロキシエチル、4−カルボキシブチル、2−メトキシエチル及び2−ジエチルアミノエチルが含まれる。アルケニル基の炭素原子数は、2〜8であることが好ましい。環状アルケニル基よりも鎖状アルケニル基の方が好ましく、直鎖状アルケニル基が特に好ましい。アルケニル基は、さらに置換基を有していてもよい。アルケニル基の例には、ビニル、アリル及び1−ヘキセニルが含まれる。アルキニル基の炭素原子数は、2〜8であることが好ましい。環状アルキニル基よりも鎖状アルキニル基の方が好ましく、直鎖状アルキニル基が特に好ましい。アルキニル基は、さらに置換基を有していてもよい。アルキニル基の例には、エチニル、1−ブチニル及び1−ヘキシニルが含まれる。   It is preferable that the alkyl group has 1 to 8 carbon atoms. A chain alkyl group is preferable to a cyclic alkyl group, and a linear alkyl group is particularly preferable. The alkyl group may further have a substituent (eg, hydroxy, carboxy, alkoxy group, alkyl-substituted amino group). Examples of alkyl groups (including substituted alkyl groups) include methyl, ethyl, n-butyl, n-hexyl, 2-hydroxyethyl, 4-carboxybutyl, 2-methoxyethyl and 2-diethylaminoethyl. The alkenyl group preferably has 2 to 8 carbon atoms. A chain alkenyl group is preferable to a cyclic alkenyl group, and a linear alkenyl group is particularly preferable. The alkenyl group may further have a substituent. Examples of alkenyl groups include vinyl, allyl and 1-hexenyl. The alkynyl group preferably has 2 to 8 carbon atoms. A chain alkynyl group is preferable to a cyclic alkynyl group, and a linear alkynyl group is particularly preferable. The alkynyl group may further have a substituent. Examples of alkynyl groups include ethynyl, 1-butynyl and 1-hexynyl.

脂肪族アシル基の炭素原子数は1〜10であることが好ましい。脂肪族アシル基の例には、アセチル、プロパノイル及びブタノイルが含まれる。脂肪族アシルオキシ基の炭素原子数は、1〜10であることが好ましい。脂肪族アシルオキシ基の例には、アセトキシが含まれる。アルコキシ基の炭素原子数は1〜8であることが好ましい。アルコキシ基は、さらに置換基(例、アルコキシ基)を有していてもよい。アルコキシ基の(置換アルコキシ基を含む)例には、メトキシ、エトキシ、ブトキシ及びメトキシエトキシが含まれる。アルコキシカルボニル基の炭素原子数は2〜10であることが好ましい。アルコキシカルボニル基の例には、メトキシカルボニル及びエトキシカルボニルが含まれる。アルコキシカルボニルアミノ基の炭素原子数は、2〜10であることが好ましい。アルコキシカルボニルアミノ基の例には、メトキシカルボニルアミノ及びエトキシカルボニルアミノが含まれる。   The aliphatic acyl group preferably has 1 to 10 carbon atoms. Examples of the aliphatic acyl group include acetyl, propanoyl and butanoyl. The number of carbon atoms in the aliphatic acyloxy group is preferably 1-10. Examples of the aliphatic acyloxy group include acetoxy. The alkoxy group preferably has 1 to 8 carbon atoms. The alkoxy group may further have a substituent (eg, alkoxy group). Examples of alkoxy groups (including substituted alkoxy groups) include methoxy, ethoxy, butoxy and methoxyethoxy. The alkoxycarbonyl group preferably has 2 to 10 carbon atoms. Examples of the alkoxycarbonyl group include methoxycarbonyl and ethoxycarbonyl. The number of carbon atoms of the alkoxycarbonylamino group is preferably 2-10. Examples of the alkoxycarbonylamino group include methoxycarbonylamino and ethoxycarbonylamino.

アルキルチオ基の炭素原子数は1〜12であることが好ましい。アルキルチオ基の例には、メチルチオ、エチルチオ及びオクチルチオが含まれる。アルキルスルホニル基の炭素原子数は、1〜8であることが好ましい。アルキルスルホニル基の例には、メタンスルホニル及びエタンスルホニルが含まれる。脂肪族アミド基の炭素原子数は、1〜10であることが好ましい。脂肪族アミド基の例には、アセトアミドが含まれる。脂肪族スルホンアミド基の炭素原子数は、1〜8であることが好ましい。脂肪族スルホンアミド基の例には、メタンスルホンアミド、ブタンスルホンアミド及びn−オクタンスルホンアミドが含まれる。脂肪族置換アミノ基の炭素原子数は、1〜10であることが好ましい。脂肪族置換アミノ基の例には、ジメチルアミノ、ジエチルアミノ及び2−カルボキシエチルアミノが含まれる。脂肪族置換カルバモイル基の炭素原子数は2〜10であることが好ましい。脂肪族置換カルバモイル基の例には、メチルカルバモイル及びジエチルカルバモイルが含まれる。脂肪族置換スルファモイル基の炭素原子数は、1〜8であることが好ましい。脂肪族置換スルファモイル基の例には、メチルスルファモイル及びジエチルスルファモイルが含まれる。脂肪族置換ウレイド基の炭素原子数は、2〜10であることが好ましい。脂肪族置換ウレイド基の例には、メチルウレイドが含まれる。非芳香族性複素環基の例には、ピペリジノ及びモルホリノが含まれる。   The alkylthio group preferably has 1 to 12 carbon atoms. Examples of the alkylthio group include methylthio, ethylthio and octylthio. The alkylsulfonyl group preferably has 1 to 8 carbon atoms. Examples of the alkylsulfonyl group include methanesulfonyl and ethanesulfonyl. The number of carbon atoms in the aliphatic amide group is preferably 1-10. Examples of the aliphatic amide group include acetamide. The number of carbon atoms of the aliphatic sulfonamide group is preferably 1-8. Examples of the aliphatic sulfonamido group include methanesulfonamido, butanesulfonamido and n-octanesulfonamido. The number of carbon atoms of the aliphatic substituted amino group is preferably 1-10. Examples of the aliphatic substituted amino group include dimethylamino, diethylamino and 2-carboxyethylamino. The aliphatic substituted carbamoyl group preferably has 2 to 10 carbon atoms. Examples of the aliphatic substituted carbamoyl group include methylcarbamoyl and diethylcarbamoyl. The number of carbon atoms in the aliphatic substituted sulfamoyl group is preferably 1-8. Examples of the aliphatic substituted sulfamoyl group include methylsulfamoyl and diethylsulfamoyl. The number of carbon atoms in the aliphatic substituted ureido group is preferably 2-10. Examples of the aliphatic substituted ureido group include methylureido. Examples of non-aromatic heterocyclic groups include piperidino and morpholino.

リターデーション上昇剤の分子量は、300〜800であることが好ましい。これは、使用時及び偏光板加工時における流出抑制の観点から、任意に分子構造の極性を選択することができる。   The molecular weight of the retardation increasing agent is preferably 300 to 800. This can arbitrarily select the polarity of the molecular structure from the viewpoint of suppressing the outflow at the time of use and processing of the polarizing plate.

1,3,5−トリアジン環を有する化合物は、中でも、下記一般式(I)で表される化合物が好ましい。   Among them, the compound having a 1,3,5-triazine ring is preferably a compound represented by the following general formula (I).

Figure 2006071875
Figure 2006071875

一般式(I)において、X1は、単結合、−NR4−、−O−または−S−であり;X2は単結合、−NR5−、−O−または−S−であり;X3は単結合、−NR6−、−O−または−S−であり;R1、R2及びR3はアルキル基、アルケニル基、アリール基または複素環基であり;そして、R4、R5及びR6は、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。一般式(I)で表される化合物は、メラミン化合物であることが特に好ましい。 In the general formula (I), X 1 is a single bond, —NR 4 —, —O— or —S—; X 2 is a single bond, —NR 5 —, —O— or —S—; X 3 is a single bond, —NR 6 —, —O— or —S—; R 1 , R 2 and R 3 are an alkyl group, an alkenyl group, an aryl group or a heterocyclic group; and R 4 , R 5 and R 6 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group. The compound represented by the general formula (I) is particularly preferably a melamine compound.

メラミン化合物では、一般式(I)において、X1、X2及びX3が、それぞれ、−NR4−、−NR5−及び−NR6−であるか、或いは、X1、X2及びX3が単結合であり、かつ、R1、R2及びR3が窒素原子に遊離原子価を持つ複素環基である。−X1−R1、−X2−R2及び−X3−R3は、同一の置換基であることが好ましい。R1、R2及びR3は、アリール基であることが特に好ましい。R4、R5及びR6は、水素原子であることが特に好ましい。 In the melamine compound, in the general formula (I), X 1 , X 2 and X 3 are —NR 4 —, —NR 5 — and —NR 6 —, respectively, or X 1 , X 2 and X 3 3 is a single bond, and R 1 , R 2 and R 3 are heterocyclic groups having a free valence on the nitrogen atom. -X 1 -R 1, -X 2 -R 2 and -X 3 -R 3 are preferably the same substituents. R 1 , R 2 and R 3 are particularly preferably aryl groups. R 4 , R 5 and R 6 are particularly preferably a hydrogen atom.

上記アルキル基は、環状アルキル基よりも鎖状アルキル基である方が好ましい。分岐を有する鎖状アルキル基よりも、直鎖状アルキル基の方が好ましい。   The alkyl group is preferably a chain alkyl group rather than a cyclic alkyl group. A linear alkyl group is preferred to a branched alkyl group.

アルキル基の炭素原子数は、1〜30であることが好ましく、1〜20であることがより好ましく、1〜10であることがさらに好ましく、1〜8であることがさらにまた好ましく、1〜6であることが最も好ましい。アルキル基は置換基を有していてもよい。   The number of carbon atoms in the alkyl group is preferably 1-30, more preferably 1-20, still more preferably 1-10, still more preferably 1-8, 6 is most preferred. The alkyl group may have a substituent.

置換基の具体例としては、例えばハロゲン原子、アルコキシ基(例えばメトキシ、エトキシ、エポキシエチルオキシ等の各基)及びアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ)等が挙げられる。上記アルケニル基は、環状アルケニル基よりも鎖状アルケニル基である方が好ましい。分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基の方が好ましい。アルケニル基の炭素原子数は、2〜30であることが好ましく、2〜20であることがより好ましく、2〜10であることがさらに好ましく、2〜8であることがさらにまた好ましく、2〜6であることが最も好ましい。アルケニル基は、置換基を有していてもよい。   Specific examples of the substituent include a halogen atom, an alkoxy group (for example, each group such as methoxy, ethoxy, and epoxyethyloxy) and an acyloxy group (for example, acryloyloxy, methacryloyloxy). The alkenyl group is preferably a chain alkenyl group rather than a cyclic alkenyl group. A linear alkenyl group is preferable to a branched chain alkenyl group. The number of carbon atoms in the alkenyl group is preferably 2 to 30, more preferably 2 to 20, still more preferably 2 to 10, still more preferably 2 to 8, 6 is most preferred. The alkenyl group may have a substituent.

置換基の具体例としては、ハロゲン原子、アルコキシ基(例えば、メトキシ、エトキシ、エポキシエチルオキシ等の各基)またはアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ等の各基)が挙げられる。   Specific examples of the substituent include a halogen atom, an alkoxy group (for example, each group such as methoxy, ethoxy, and epoxyethyloxy) or an acyloxy group (for example, each group such as acryloyloxy and methacryloyloxy).

上記アリール基は、フェニル基またはナフチル基であることが好ましく、フェニル基であることが特に好ましい。アリール基は置換基を有していてもよい。   The aryl group is preferably a phenyl group or a naphthyl group, and particularly preferably a phenyl group. The aryl group may have a substituent.

置換基の具体例としては、例えば、ハロゲン原子、ヒドロキシル、シアノ、ニトロ、カルボキシル、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルホンアミド基、カルバモイル、アルキル置換カルモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基及びアシル基が含まれる。上記アルキル基は、前述したアルキル基と同義である。   Specific examples of the substituent include, for example, a halogen atom, hydroxyl, cyano, nitro, carboxyl, alkyl group, alkenyl group, aryl group, alkoxy group, alkenyloxy group, aryloxy group, acyloxy group, alkoxycarbonyl group, alkenyloxy Carbonyl group, aryloxycarbonyl group, sulfamoyl, alkyl-substituted sulfamoyl group, alkenyl-substituted sulfamoyl group, aryl-substituted sulfamoyl group, sulfonamido group, carbamoyl, alkyl-substituted carmoyl group, alkenyl-substituted carbamoyl group, aryl-substituted carbamoyl group, amide group, alkylthio Groups, alkenylthio groups, arylthio groups and acyl groups are included. The said alkyl group is synonymous with the alkyl group mentioned above.

アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アルキル置換スルファモイル基、スルホンアミド基、アルキル置換カルバモイル基、アミド基、アルキルチオ基とアシル基のアルキル部分も、前述したアルキル基と同義である。   The alkyl group of the alkoxy group, acyloxy group, alkoxycarbonyl group, alkyl-substituted sulfamoyl group, sulfonamido group, alkyl-substituted carbamoyl group, amide group, alkylthio group and acyl group is also synonymous with the alkyl group described above.

上記アルケニル基は、前述したアルケニル基と同義である。   The said alkenyl group is synonymous with the alkenyl group mentioned above.

アルケニルオキシ基、アシルオキシ基、アルケニルオキシカルボニル基、アルケニル置換スルファモイル基、スルホンアミド基、アルケニル置換カルバモイル基、アミド基、アルケニルチオ基及びアシル基のアルケニル部分も、前述したアルケニル基と同義である。   The alkenyl part of the alkenyloxy group, acyloxy group, alkenyloxycarbonyl group, alkenyl-substituted sulfamoyl group, sulfonamide group, alkenyl-substituted carbamoyl group, amide group, alkenylthio group and acyl group is also synonymous with the alkenyl group described above.

上記アリール基の具体例としては、例えば、フェニル、α−ナフチル、β−ナフチル、4−メトキシフェニル、3,4−ジエトキシフェニル、4−オクチルオキシフェニルまたは4−ドデシルオキシフェニル等の各基が挙げられる。   Specific examples of the aryl group include phenyl, α-naphthyl, β-naphthyl, 4-methoxyphenyl, 3,4-diethoxyphenyl, 4-octyloxyphenyl, and 4-dodecyloxyphenyl. Can be mentioned.

アリールオキシ基、アシルオキシ基、アリールオキシカルボニル基、アリール置換スルファモイル基、スルホンアミド基、アリール置換カルバモイル基、アミド基、アリールチオ基及びアシル基の部分の例は、上記アリール基と同義である。   Examples of the aryloxy group, acyloxy group, aryloxycarbonyl group, aryl-substituted sulfamoyl group, sulfonamido group, aryl-substituted carbamoyl group, amide group, arylthio group, and acyl group are the same as the above aryl group.

1、X2またはX3が−NR−、−O−または−S−である場合の複素環基は、芳香族性を有することが好ましい。 When X 1 , X 2 or X 3 is —NR—, —O— or —S—, the heterocyclic group preferably has aromaticity.

芳香族性を有する複素環基中の複素環としては、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、6員環であることが最も好ましい。   The heterocyclic ring in the heterocyclic group having aromaticity is generally an unsaturated heterocyclic ring, preferably a heterocyclic ring having the largest number of double bonds. The heterocyclic ring is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring, and most preferably a 6-membered ring.

複素環中のヘテロ原子は、N、SまたはO等の各原子であることが好ましく、N原子であることが特に好ましい。   The hetero atom in the heterocyclic ring is preferably each atom such as N, S or O, and particularly preferably an N atom.

芳香族性を有する複素環としては、ピリジン環(複素環基としては、例えば、2−ピリジルまたは4−ピリジル等の各基)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記アリール部分の置換基の例と同様である。   As the heterocyclic ring having aromaticity, a pyridine ring (as the heterocyclic group, for example, each group such as 2-pyridyl or 4-pyridyl) is particularly preferable. The heterocyclic group may have a substituent. Examples of the substituent of the heterocyclic group are the same as the examples of the substituent of the aryl moiety.

1、X2またはX3が単結合である場合の複素環基は、窒素原子に遊離原子価を持つ複素環基であることが好ましい。窒素原子に遊離原子価を持つ複素環基は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、5員環であることが最も好ましい。複素環基は、複数の窒素原子を有していてもよい。 When X 1 , X 2 or X 3 is a single bond, the heterocyclic group is preferably a heterocyclic group having a free valence on the nitrogen atom. The heterocyclic group having a free valence on the nitrogen atom is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring, and a 5-membered ring. Is most preferred. The heterocyclic group may have a plurality of nitrogen atoms.

また、複素環基中のヘテロ原子は、窒素原子以外のヘテロ原子(例えば、O原子、S原子)を有していてもよい。複素環基は、置換基を有していてもよい。複素環基の置換基の具体例は、上記アリール部分の置換基の具体例と同義である。   Moreover, the hetero atom in a heterocyclic group may have hetero atoms other than a nitrogen atom (for example, O atom, S atom). The heterocyclic group may have a substituent. Specific examples of the substituent of the heterocyclic group are the same as the specific examples of the substituent of the aryl moiety.

以下に、窒素原子に遊離原子価を持つ複素環基の具体例を示す。   Specific examples of the heterocyclic group having a free valence on the nitrogen atom are shown below.

Figure 2006071875
Figure 2006071875

Figure 2006071875
Figure 2006071875

以下に、1,3,5−トリアジン環を有する化合物の具体例を示す。   Specific examples of the compound having a 1,3,5-triazine ring are shown below.

なお、以下に示す複数のRは同一の基を表す。   In addition, several R shown below represents the same group.

Figure 2006071875
Figure 2006071875

(1)ブチル
(2)2−メトキシ−2−エトキシエチル
(3)5−ウンデセニル
(4)フェニル
(5)4−エトキシカルボニルフェニル
(6)4−ブトキシフェニル
(7)p−ビフェニリル
(8)4−ピリジル
(9)2−ナフチル
(10)2−メチルフェニル
(11)3,4−ジメトキシフェニル
(12)2−フリル
(1) Butyl (2) 2-Methoxy-2-ethoxyethyl (3) 5-Undecenyl (4) Phenyl (5) 4-Ethoxycarbonylphenyl (6) 4-Butoxyphenyl (7) p-Biphenylyl (8) 4 -Pyridyl (9) 2-naphthyl (10) 2-methylphenyl (11) 3,4-dimethoxyphenyl (12) 2-furyl

Figure 2006071875
Figure 2006071875

Figure 2006071875
Figure 2006071875

(14)フェニル
(15)3−エトキシカルボニルフェニル
(16)3−ブトキシフェニル
(17)m−ビフェニリル
(18)3−フェニルチオフェニル
(19)3−クロロフェニル
(20)3−ベンゾイルフェニル
(21)3−アセトキシフェニル
(22)3−ベンゾイルオキシフェニル
(23)3−フェノキシカルボニルフェニル
(24)3−メトキシフェニル
(25)3−アニリノフェニル
(26)3−イソブチリルアミノフェニル
(27)3−フェノキシカルボニルアミノフェニル
(28)3−(3−エチルウレイド)フェニル
(29)3−(3,3−ジエチルウレイド)フェニル
(30)3−メチルフェニル
(31)3−フェノキシフェニル
(32)3−ヒドロキシフェニル
(33)4−エトキシカルボニルフェニル
(34)4−ブトキシフェニル
(35)p−ビフェニリル
(36)4−フェニルチオフェニル
(37)4−クロロフェニル
(38)4−ベンゾイルフェニル
(39)4−アセトキシフェニル
(40)4−ベンゾイルオキシフェニル
(41)4−フェノキシカルボニルフェニル
(42)4−メトキシフェニル
(43)4−アニリノフェニル
(44)4−イソブチリルアミノフェニル
(45)4−フェノキシカルボニルアミノフェニル
(46)4−(3−エチルウレイド)フェニル
(47)4−(3,3−ジエチルウレイド)フェニル
(48)4−メチルフェニル
(49)4−フェノキシフェニル
(50)4−ヒドロキシフェニル
(51)3,4−ジエトキシカルボニルフェニル
(52)3,4−ジブトキシフェニル
(53)3,4−ジフェニルフェニル
(54)3,4−ジフェニルチオフェニル
(55)3,4−ジクロロフェニル
(56)3,4−ジベンゾイルフェニル
(57)3,4−ジアセトキシフェニル
(58)3,4−ジベンゾイルオキシフェニル
(59)3,4−ジフェノキシカルボニルフェニル
(60)3,4−ジメトキシフェニル
(61)3,4−ジアニリノフェニル
(62)3,4−ジメチルフェニル
(63)3,4−ジフェノキシフェニル
(64)3,4−ジヒドロキシフェニル
(65)2−ナフチル
(66)3,4,5−トリエトキシカルボニルフェニル
(67)3,4,5−トリブトキシフェニル
(68)3,4,5−トリフェニルフェニル
(69)3,4,5−トリフェニルチオフェニル
(70)3,4,5−トリクロロフェニル
(71)3,4,5−トリベンゾイルフェニル
(72)3,4,5−トリアセトキシフェニル
(73)3,4,5−トリベンゾイルオキシフェニル
(74)3,4,5−トリフェノキシカルボニルフェニル
(75)3,4,5−トリメトキシフェニル
(76)3,4,5−トリアニリノフェニル
(77)3,4,5−トリメチルフェニル
(78)3,4,5−トリフェノキシフェニル
(79)3,4,5−トリヒドロキシフェニル
(14) phenyl (15) 3-ethoxycarbonylphenyl (16) 3-butoxyphenyl (17) m-biphenylyl (18) 3-phenylthiophenyl (19) 3-chlorophenyl (20) 3-benzoylphenyl (21) 3 -Acetoxyphenyl (22) 3-benzoyloxyphenyl (23) 3-phenoxycarbonylphenyl (24) 3-methoxyphenyl (25) 3-anilinophenyl (26) 3-isobutyrylaminophenyl (27) 3-phenoxy Carbonylaminophenyl (28) 3- (3-ethylureido) phenyl (29) 3- (3,3-diethylureido) phenyl (30) 3-methylphenyl (31) 3-phenoxyphenyl (32) 3-hydroxyphenyl (33) 4-Ethoxycarbonylphenyl (34) 4-butoxyphenyl (35) p-biphenylyl (36) 4-phenylthiophenyl (37) 4-chlorophenyl (38) 4-benzoylphenyl (39) 4-acetoxyphenyl (40) 4-benzoyloxyphenyl ( 41) 4-phenoxycarbonylphenyl (42) 4-methoxyphenyl (43) 4-anilinophenyl (44) 4-isobutyrylaminophenyl (45) 4-phenoxycarbonylaminophenyl (46) 4- (3-ethyl (Ureido) phenyl (47) 4- (3,3-diethylureido) phenyl (48) 4-methylphenyl (49) 4-phenoxyphenyl (50) 4-hydroxyphenyl (51) 3,4-diethoxycarbonylphenyl ( 52) 3,4-dibutoxyphenyl (53) 3 -Diphenylphenyl (54) 3,4-diphenylthiophenyl (55) 3,4-dichlorophenyl (56) 3,4-dibenzoylphenyl (57) 3,4-diacetoxyphenyl (58) 3,4-dibenzoyl Oxyphenyl (59) 3,4-diphenoxycarbonylphenyl (60) 3,4-dimethoxyphenyl (61) 3,4-dianilinophenyl (62) 3,4-dimethylphenyl (63) 3,4-diphenoxy Phenyl (64) 3,4-dihydroxyphenyl (65) 2-naphthyl (66) 3,4,5-triethoxycarbonylphenyl (67) 3,4,5-tributoxyphenyl (68) 3,4,5- Triphenylphenyl (69) 3,4,5-triphenylthiophenyl (70) 3,4,5-trichlorophenyl (71) 3,4,5-tribenzoylphenyl (72) 3,4,5-triacetoxyphenyl (73) 3,4,5-tribenzoyloxyphenyl (74) 3,4,5-triphenoxycarbonylphenyl (75) 3,4,5-trimethoxyphenyl (76) 3,4,5-trianilinophenyl (77) 3,4,5-trimethylphenyl (78) 3,4,5-triphenoxyphenyl (79 ) 3,4,5-trihydroxyphenyl

Figure 2006071875
Figure 2006071875

(80)フェニル
(81)3−エトキシカルボニルフェニル
(82)3−ブトキシフェニル
(83)m−ビフェニリル
(84)3−フェニルチオフェニル
(85)3−クロロフェニル
(86)3−ベンゾイルフェニル
(87)3−アセトキシフェニル
(88)3−ベンゾイルオキシフェニル
(89)3−フェノキシカルボニルフェニル
(90)3−メトキシフェニル
(91)3−アニリノフェニル
(92)3−イソブチリルアミノフェニル
(93)3−フェノキシカルボニルアミノフェニル
(94)3−(3−エチルウレイド)フェニル
(95)3−(3,3−ジエチルウレイド)フェニル
(96)3−メチルフェニル
(97)3−フェノキシフェニル
(98)3−ヒドロキシフェニル
(99)4−エトキシカルボニルフェニル
(100)4−ブトキシフェニル
(101)p−ビフェニリル
(102)4−フェニルチオフェニル
(103)4−クロロフェニル
(104)4−ベンゾイルフェニル
(105)4−アセトキシフェニル
(106)4−ベンゾイルオキシフェニル
(107)4−フェノキシカルボニルフェニル
(108)4−メトキシフェニル
(109)4−アニリノフェニル
(110)4−イソブチリルアミノフェニル
(111)4−フェノキシカルボニルアミノフェニル
(112)4−(3−エチルウレイド)フェニル
(113)4−(3,3−ジエチルウレイド)フェニル
(114)4−メチルフェニル
(115)4−フェノキシフェニル
(116)4−ヒドロキシフェニル
(117)3,4−ジエトキシカルボニルフェニル
(118)3,4−ジブトキシフェニル
(119)3,4−ジフェニルフェニル
(120)3,4−ジフェニルチオフェニル
(121)3,4−ジクロロフェニル
(122)3,4−ジベンゾイルフェニル
(123)3,4−ジアセトキシフェニル
(124)3,4−ジベンゾイルオキシフェニル
(125)3,4−ジフェノキシカルボニルフェニル
(126)3,4−ジメトキシフェニル
(127)3,4−ジアニリノフェニル
(128)3,4−ジメチルフェニル
(129)3,4−ジフェノキシフェニル
(130)3,4−ジヒドロキシフェニル
(131)2−ナフチル
(132)3,4,5−トリエトキシカルボニルフェニル
(133)3,4,5−トリブトキシフェニル
(134)3,4,5−トリフェニルフェニル
(135)3,4,5−トリフェニルチオフェニル
(136)3,4,5−トリクロロフェニル
(137)3,4,5−トリベンゾイルフェニル
(138)3,4,5−トリアセトキシフェニル
(139)3,4,5−トリベンゾイルオキシフェニル
(140)3,4,5−トリフェノキシカルボニルフェニル
(141)3,4,5−トリメトキシフェニル
(142)3,4,5−トリアニリノフェニル
(143)3,4,5−トリメチルフェニル
(144)3,4,5−トリフェノキシフェニル
(145)3,4,5−トリヒドロキシフェニル
(80) phenyl (81) 3-ethoxycarbonylphenyl (82) 3-butoxyphenyl (83) m-biphenylyl (84) 3-phenylthiophenyl (85) 3-chlorophenyl (86) 3-benzoylphenyl (87) 3 -Acetoxyphenyl (88) 3-benzoyloxyphenyl (89) 3-phenoxycarbonylphenyl (90) 3-methoxyphenyl (91) 3-anilinophenyl (92) 3-isobutyrylaminophenyl (93) 3-phenoxy Carbonylaminophenyl (94) 3- (3-ethylureido) phenyl (95) 3- (3,3-diethylureido) phenyl (96) 3-methylphenyl (97) 3-phenoxyphenyl (98) 3-hydroxyphenyl (99) 4-Ethoxycarbonylphenyl (100) 4-butoxyphenyl (101) p-biphenylyl (102) 4-phenylthiophenyl (103) 4-chlorophenyl (104) 4-benzoylphenyl (105) 4-acetoxyphenyl (106) 4-benzoyloxyphenyl ( 107) 4-phenoxycarbonylphenyl (108) 4-methoxyphenyl (109) 4-anilinophenyl (110) 4-isobutyrylaminophenyl (111) 4-phenoxycarbonylaminophenyl (112) 4- (3-ethyl (Ureido) phenyl (113) 4- (3,3-diethylureido) phenyl (114) 4-methylphenyl (115) 4-phenoxyphenyl (116) 4-hydroxyphenyl (117) 3,4-diethoxycarbonylphenyl ( 118) 3 , 4-dibutoxyphenyl (119) 3,4-diphenylphenyl (120) 3,4-diphenylthiophenyl (121) 3,4-dichlorophenyl (122) 3,4-dibenzoylphenyl (123) 3,4- Diacetoxyphenyl (124) 3,4-dibenzoyloxyphenyl (125) 3,4-diphenoxycarbonylphenyl (126) 3,4-dimethoxyphenyl (127) 3,4-dianilinophenyl (128) 3,4 -Dimethylphenyl (129) 3,4-diphenoxyphenyl (130) 3,4-dihydroxyphenyl (131) 2-naphthyl (132) 3,4,5-triethoxycarbonylphenyl (133) 3,4,5- Tributoxyphenyl (134) 3,4,5-triphenylphenyl (135) 3 4,5-triphenylthiophenyl (136) 3,4,5-trichlorophenyl (137) 3,4,5-tribenzoylphenyl (138) 3,4,5-triacetoxyphenyl (139) 3,4 5-tribenzoyloxyphenyl (140) 3,4,5-triphenoxycarbonylphenyl (141) 3,4,5-trimethoxyphenyl (142) 3,4,5-trianilinophenyl (143) 3,4 , 5-trimethylphenyl (144) 3,4,5-triphenoxyphenyl (145) 3,4,5-trihydroxyphenyl

Figure 2006071875
Figure 2006071875

(146)フェニル
(147)4−エトキシカルボニルフェニル
(148)4−ブトキシフェニル
(149)p−ビフェニリル
(150)4−フェニルチオフェニル
(151)4−クロロフェニル
(152)4−ベンゾイルフェニル
(153)4−アセトキシフェニル
(154)4−ベンゾイルオキシフェニル
(155)4−フェノキシカルボニルフェニル
(156)4−メトキシフェニル
(157)4−アニリノフェニル
(158)4−イソブチリルアミノフェニル
(159)4−フェノキシカルボニルアミノフェニル
(160)4−(3−エチルウレイド)フェニル
(161)4−(3,3−ジエチルウレイド)フェニル
(162)4−メチルフェニル
(163)4−フェノキシフェニル
(164)4−ヒドロキシフェニル
(146) phenyl (147) 4-ethoxycarbonylphenyl (148) 4-butoxyphenyl (149) p-biphenylyl (150) 4-phenylthiophenyl (151) 4-chlorophenyl (152) 4-benzoylphenyl (153) 4 -Acetoxyphenyl (154) 4-benzoyloxyphenyl (155) 4-phenoxycarbonylphenyl (156) 4-methoxyphenyl (157) 4-anilinophenyl (158) 4-isobutyrylaminophenyl (159) 4-phenoxy Carbonylaminophenyl (160) 4- (3-ethylureido) phenyl (161) 4- (3,3-diethylureido) phenyl (162) 4-methylphenyl (163) 4-phenoxyphenyl (164) 4-hydroxyphenyl

Figure 2006071875
Figure 2006071875

(165)フェニル
(166)4−エトキシカルボニルフェニル
(167)4−ブトキシフェニル
(168)p−ビフェニリル
(169)4−フェニルチオフェニル
(170)4−クロロフェニル
(171)4−ベンゾイルフェニル
(172)4−アセトキシフェニル
(173)4−ベンゾイルオキシフェニル
(174)4−フェノキシカルボニルフェニル
(175)4−メトキシフェニル
(176)4−アニリノフェニル
(177)4−イソブチリルアミノフェニル
(178)4−フェノキシカルボニルアミノフェニル
(179)4−(3−エチルウレイド)フェニル
(180)4−(3,3−ジエチルウレイド)フェニル
(181)4−メチルフェニル
(182)4−フェノキシフェニル
(183)4−ヒドロキシフェニル
(165) phenyl (166) 4-ethoxycarbonylphenyl (167) 4-butoxyphenyl (168) p-biphenylyl (169) 4-phenylthiophenyl (170) 4-chlorophenyl (171) 4-benzoylphenyl (172) 4 -Acetoxyphenyl (173) 4-benzoyloxyphenyl (174) 4-phenoxycarbonylphenyl (175) 4-methoxyphenyl (176) 4-anilinophenyl (177) 4-isobutyrylaminophenyl (178) 4-phenoxy Carbonylaminophenyl (179) 4- (3-ethylureido) phenyl (180) 4- (3,3-diethylureido) phenyl (181) 4-methylphenyl (182) 4-phenoxyphenyl (183) 4-hydroxyphenyl

Figure 2006071875
Figure 2006071875

(184)フェニル
(185)4−エトキシカルボニルフェニル
(186)4−ブトキシフェニル
(187)p−ビフェニリル
(188)4−フェニルチオフェニル
(189)4−クロロフェニル
(190)4−ベンゾイルフェニル
(191)4−アセトキシフェニル
(192)4−ベンゾイルオキシフェニル
(193)4−フェノキシカルボニルフェニル
(194)4−メトキシフェニル
(195)4−アニリノフェニル
(196)4−イソブチリルアミノフェニル
(197)4−フェノキシカルボニルアミノフェニル
(198)4−(3−エチルウレイド)フェニル
(199)4−(3,3−ジエチルウレイド)フェニル
(200)4−メチルフェニル
(201)4−フェノキシフェニル
(202)4−ヒドロキシフェニル
(184) phenyl (185) 4-ethoxycarbonylphenyl (186) 4-butoxyphenyl (187) p-biphenylyl (188) 4-phenylthiophenyl (189) 4-chlorophenyl (190) 4-benzoylphenyl (191) 4 -Acetoxyphenyl (192) 4-benzoyloxyphenyl (193) 4-phenoxycarbonylphenyl (194) 4-methoxyphenyl (195) 4-anilinophenyl (196) 4-isobutyrylaminophenyl (197) 4-phenoxy Carbonylaminophenyl (198) 4- (3-ethylureido) phenyl (199) 4- (3,3-diethylureido) phenyl (200) 4-methylphenyl (201) 4-phenoxyphenyl (202) 4-hydroxyphenyl

Figure 2006071875
Figure 2006071875

(203)フェニル
(204)4−エトキシカルボニルフェニル
(205)4−ブトキシフェニル
(206)p−ビフェニリル
(207)4−フェニルチオフェニル
(208)4−クロロフェニル
(209)4−ベンゾイルフェニル
(210)4−アセトキシフェニル
(211)4−ベンゾイルオキシフェニル
(212)4−フェノキシカルボニルフェニル
(213)4−メトキシフェニル
(214)4−アニリノフェニル
(215)4−イソブチリルアミノフェニル
(216)4−フェノキシカルボニルアミノフェニル
(217)4−(3−エチルウレイド)フェニル
(218)4−(3,3−ジエチルウレイド)フェニル
(219)4−メチルフェニル
(220)4−フェノキシフェニル
(221)4−ヒドロキシフェニル
(203) phenyl (204) 4-ethoxycarbonylphenyl (205) 4-butoxyphenyl (206) p-biphenylyl (207) 4-phenylthiophenyl (208) 4-chlorophenyl (209) 4-benzoylphenyl (210) 4 -Acetoxyphenyl (211) 4-benzoyloxyphenyl (212) 4-phenoxycarbonylphenyl (213) 4-methoxyphenyl (214) 4-anilinophenyl (215) 4-isobutyrylaminophenyl (216) 4-phenoxy Carbonylaminophenyl (217) 4- (3-ethylureido) phenyl (218) 4- (3,3-diethylureido) phenyl (219) 4-methylphenyl (220) 4-phenoxyphenyl (221) 4-hydroxyphenyl

Figure 2006071875
Figure 2006071875

(222)フェニル
(223)4−ブチルフェニル
(224)4−(2−メトキシ−2−エトキシエチル)フェニル
(225)4−(5−ノネニル)フェニル
(226)p−ビフェニリル
(227)4−エトキシカルボニルフェニル
(228)4−ブトキシフェニル
(229)4−メチルフェニル
(230)4−クロロフェニル
(231)4−フェニルチオフェニル
(232)4−ベンゾイルフェニル
(233)4−アセトキシフェニル
(234)4−ベンゾイルオキシフェニル
(235)4−フェノキシカルボニルフェニル
(236)4−メトキシフェニル
(237)4−アニリノフェニル
(238)4−イソブチリルアミノフェニル
(239)4−フェノキシカルボニルアミノフェニル
(240)4−(3−エチルウレイド)フェニル
(241)4−(3,3−ジエチルウレイド)フェニル
(242)4−フェノキシフェニル
(243)4−ヒドロキシフェニル
(244)3−ブチルフェニル
(245)3−(2−メトキシ−2−エトキシエチル)フェニル
(246)3−(5−ノネニル)フェニル
(247)m−ビフェニリル
(248)3−エトキシカルボニルフェニル
(249)3−ブトキシフェニル
(250)3−メチルフェニル
(251)3−クロロフェニル
(252)3−フェニルチオフェニル
(253)3−ベンゾイルフェニル
(254)3−アセトキシフェニル
(255)3−ベンゾイルオキシフェニル
(256)3−フェノキシカルボニルフェニル
(257)3−メトキシフェニル
(258)3−アニリノフェニル
(259)3−イソブチリルアミノフェニル
(260)3−フェノキシカルボニルアミノフェニル
(261)3−(3−エチルウレイド)フェニル
(262)3−(3,3−ジエチルウレイド)フェニル
(263)3−フェノキシフェニル
(264)3−ヒドロキシフェニル
(265)2−ブチルフェニル
(266)2−(2−メトキシ−2−エトキシエチル)フェニル
(267)2−(5−ノネニル)フェニル
(268)o−ビフェニリル
(269)2−エトキシカルボニルフェニル
(270)2−ブトキシフェニル
(271)2−メチルフェニル
(272)2−クロロフェニル
(273)2−フェニルチオフェニル
(274)2−ベンゾイルフェニル
(275)2−アセトキシフェニル
(276)2−ベンゾイルオキシフェニル
(277)2−フェノキシカルボニルフェニル
(278)2−メトキシフェニル
(279)2−アニリノフェニル
(280)2−イソブチリルアミノフェニル
(281)2−フェノキシカルボニルアミノフェニル
(282)2−(3−エチルウレイド)フェニル
(283)2−(3,3−ジエチルウレイド)フェニル
(284)2−フェノキシフェニル
(285)2−ヒドロキシフェニル
(286)3,4−ジブチルフェニル
(287)3,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
(288)3,4−ジフェニルフェニル
(289)3,4−ジエトキシカルボニルフェニル
(290)3,4−ジドデシルオキシフェニル
(291)3,4−ジメチルフェニル
(292)3,4−ジクロロフェニル
(293)3,4−ジベンゾイルフェニル
(294)3,4−ジアセトキシフェニル
(295)3,4−ジメトキシフェニル
(296)3,4−ジ−N−メチルアミノフェニル
(297)3,4−ジイソブチリルアミノフェニル
(298)3,4−ジフェノキシフェニル
(299)3,4−ジヒドロキシフェニル
(300)3,5−ジブチルフェニル
(301)3,5−ジ(2−メトキシ−2−エトキシエチル)フェニル
(302)3,5−ジフェニルフェニル
(303)3,5−ジエトキシカルボニルフェニル
(304)3,5−ジドデシルオキシフェニル
(305)3,5−ジメチルフェニル
(306)3,5−ジクロロフェニル
(307)3,5−ジベンゾイルフェニル
(308)3,5−ジアセトキシフェニル
(309)3,5−ジメトキシフェニル
(310)3,5−ジ−N−メチルアミノフェニル
(311)3,5−ジイソブチリルアミノフェニル
(312)3,5−ジフェノキシフェニル
(313)3,5−ジヒドロキシフェニル
(314)2,4−ジブチルフェニル
(315)2,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
(316)2,4−ジフェニルフェニル
(317)2,4−ジエトキシカルボニルフェニル
(318)2,4−ジドデシルオキシフェニル
(319)2,4−ジメチルフェニル
(320)2,4−ジクロロフェニル
(321)2,4−ジベンゾイルフェニル
(322)2,4−ジアセトキシフェニル
(323)2,4−ジメトキシフェニル
(324)2,4−ジ−N−メチルアミノフェニル
(325)2,4−ジイソブチリルアミノフェニル
(326)2,4−ジフェノキシフェニル
(327)2,4−ジヒドロキシフェニル
(328)2,3−ジブチルフェニル
(329)2,3−ジ(2−メトキシ−2−エトキシエチル)フェニル
(330)2,3−ジフェニルフェニル
(331)2,3−ジエトキシカルボニルフェニル
(332)2,3−ジドデシルオキシフェニル
(333)2,3−ジメチルフェニル
(334)2,3−ジクロロフェニル
(335)2,3−ジベンゾイルフェニル
(336)2,3−ジアセトキシフェニル
(337)2,3−ジメトキシフェニル
(338)2,3−ジ−N−メチルアミノフェニル
(339)2,3−ジイソブチリルアミノフェニル
(340)2,3−ジフェノキシフェニル
(341)2,3−ジヒドロキシフェニル
(342)2,6−ジブチルフェニル
(343)2,6−ジ(2−メトキシ−2−エトキシエチル)フェニル
(344)2,6−ジフェニルフェニル
(345)2,6−ジエトキシカルボニルフェニル
(346)2,6−ジドデシルオキシフェニル
(347)2,6−ジメチルフェニル
(348)2,6−ジクロロフェニル
(349)2,6−ジベンゾイルフェニル
(350)2,6−ジアセトキシフェニル
(351)2,6−ジメトキシフェニル
(352)2,6−ジ−N−メチルアミノフェニル
(353)2,6−ジイソブチリルアミノフェニル
(354)2,6−ジフェノキシフェニル
(355)2,6−ジヒドロキシフェニル
(356)3,4,5−トリブチルフェニル
(357)3,4,5−トリ(2−メトキシ−2−エトキシエチル)フェニル
(358)3,4,5−トリフェニルフェニル
(359)3,4,5−トリエトキシカルボニルフェニル
(360)3,4,5−トリドデシルオキシフェニル
(361)3,4,5−トリメチルフェニル
(362)3,4,5−トリクロロフェニル
(363)3,4,5−トリベンゾイルフェニル
(364)3,4,5−トリアセトキシフェニル
(365)3,4,5−トリメトキシフェニル
(366)3,4,5−トリ−N−メチルアミノフェニル
(367)3,4,5−トリイソブチリルアミノフェニル
(368)3,4,5−トリフェノキシフェニル
(369)3,4,5−トリヒドロキシフェニル
(370)2,4,6−トリブチルフェニル
(371)2,4,6−トリ(2−メトキシ−2−エトキシエチル)フェニル
(372)2,4,6−トリフェニルフェニル
(373)2,4,6−トリエトキシカルボニルフェニル
(374)2,4,6−トリドデシルオキシフェニル
(375)2,4,6−トリメチルフェニル
(376)2,4,6−トリクロロフェニル
(377)2,4,6−トリベンゾイルフェニル
(378)2,4,6−トリアセトキシフェニル
(379)2,4,6−トリメトキシフェニル
(380)2,4,6−トリ−N−メチルアミノフェニル
(381)2,4,6−トリイソブチリルアミノフェニル
(382)2,4,6−トリフェノキシフェニル
(383)2,4,6−トリヒドロキシフェニル
(384)ペンタフルオロフェニル
(385)ペンタクロロフェニル
(386)ペンタメトキシフェニル
(387)6−N−メチルスルファモイル−8−メトキシ−2−ナフチル
(388)5−N−メチルスルファモイル−2−ナフチル
(389)6−N−フェニルスルファモイル−2−ナフチル
(390)5−エトキシ−7−N−メチルスルファモイル−2−ナフチル
(391)3−メトキシ−2−ナフチル
(392)1−エトキシ−2−ナフチル
(393)6−N−フェニルスルファモイル−8−メトキシ−2−ナフチル
(394)5−メトキシ−7−N−フェニルスルファモイル−2−ナフチル
(395)1−(4−メチルフェニル)−2−ナフチル
(396)6,8−ジ−N−メチルスルファモイル−2−ナフチル
(397)6−N−2−アセトキシエチルスルファモイル−8−メトキシ−2−ナフチル
(398)5−アセトキシ−7−N−フェニルスルファモイル−2−ナフチル
(399)3−ベンゾイルオキシ−2−ナフチル
(400)5−アセチルアミノ−1−ナフチル
(401)2−メトキシ−1−ナフチル
(402)4−フェノキシ−1−ナフチル
(403)5−N−メチルスルファモイル−1−ナフチル
(404)3−N−メチルカルバモイル−4−ヒドロキシ−1−ナフチル
(405)5−メトキシ−6−N−エチルスルファモイル−1−ナフチル
(406)7−テトラデシルオキシ−1−ナフチル
(407)4−(4−メチルフェノキシ)−1−ナフチル
(408)6−N−メチルスルファモイル−1−ナフチル
(409)3−N,N−ジメチルカルバモイル−4−メトキシ−1−ナフチル
(410)5−メトキシ−6−N−ベンジルスルファモイル−1−ナフチル
(411)3,6−ジ−N−フェニルスルファモイル−1−ナフチル
(412)メチル
(413)エチル
(414)ブチル
(415)オクチル
(416)ドデシル
(417)2−ブトキシ−2−エトキシエチル
(418)ベンジル
(419)4−メトキシベンジル
(222) phenyl (223) 4-butylphenyl (224) 4- (2-methoxy-2-ethoxyethyl) phenyl (225) 4- (5-nonenyl) phenyl (226) p-biphenylyl (227) 4-ethoxy Carbonylphenyl (228) 4-butoxyphenyl (229) 4-methylphenyl (230) 4-chlorophenyl (231) 4-phenylthiophenyl (232) 4-benzoylphenyl (233) 4-acetoxyphenyl (234) 4-benzoyl Oxyphenyl (235) 4-phenoxycarbonylphenyl (236) 4-methoxyphenyl (237) 4-anilinophenyl (238) 4-isobutyrylaminophenyl (239) 4-phenoxycarbonylaminophenyl (240) 4- ( 3-ethylureido Phenyl (241) 4- (3,3-diethylureido) phenyl (242) 4-phenoxyphenyl (243) 4-hydroxyphenyl (244) 3-butylphenyl (245) 3- (2-methoxy-2-ethoxyethyl) ) Phenyl (246) 3- (5-nonenyl) phenyl (247) m-biphenylyl (248) 3-ethoxycarbonylphenyl (249) 3-butoxyphenyl (250) 3-methylphenyl (251) 3-chlorophenyl (252) 3-phenylthiophenyl (253) 3-benzoylphenyl (254) 3-acetoxyphenyl (255) 3-benzoyloxyphenyl (256) 3-phenoxycarbonylphenyl (257) 3-methoxyphenyl (258) 3-anilinophenyl (259) 3-I Butyrylaminophenyl (260) 3-phenoxycarbonylaminophenyl (261) 3- (3-ethylureido) phenyl (262) 3- (3,3-diethylureido) phenyl (263) 3-phenoxyphenyl (264) 3 -Hydroxyphenyl (265) 2-butylphenyl (266) 2- (2-methoxy-2-ethoxyethyl) phenyl (267) 2- (5-nonenyl) phenyl (268) o-biphenylyl (269) 2-ethoxycarbonyl Phenyl (270) 2-Butoxyphenyl (271) 2-Methylphenyl (272) 2-Chlorophenyl (273) 2-Phenylthiophenyl (274) 2-Benzoylphenyl (275) 2-Acetoxyphenyl (276) 2-Benzoyloxy Phenyl (277) 2 Phenoxycarbonylphenyl (278) 2-methoxyphenyl (279) 2-anilinophenyl (280) 2-isobutyrylaminophenyl (281) 2-phenoxycarbonylaminophenyl (282) 2- (3-ethylureido) phenyl ( 283) 2- (3,3-diethylureido) phenyl (284) 2-phenoxyphenyl (285) 2-hydroxyphenyl (286) 3,4-dibutylphenyl (287) 3,4-di (2-methoxy-2) -Ethoxyethyl) phenyl (288) 3,4-diphenylphenyl (289) 3,4-diethoxycarbonylphenyl (290) 3,4-didodecyloxyphenyl (291) 3,4-dimethylphenyl (292) 3, 4-dichlorophenyl (293) 3,4-dibenzoyl Enyl (294) 3,4-diacetoxyphenyl (295) 3,4-dimethoxyphenyl (296) 3,4-di-N-methylaminophenyl (297) 3,4-diisobutyrylaminophenyl (298) 3 , 4-diphenoxyphenyl (299) 3,4-dihydroxyphenyl (300) 3,5-dibutylphenyl (301) 3,5-di (2-methoxy-2-ethoxyethyl) phenyl (302) 3,5- Diphenylphenyl (303) 3,5-diethoxycarbonylphenyl (304) 3,5-didodecyloxyphenyl (305) 3,5-dimethylphenyl (306) 3,5-dichlorophenyl (307) 3,5-dibenzoyl Phenyl (308) 3,5-diacetoxyphenyl (309) 3,5-dimethoxyphenyl (3 0) 3,5-di-N-methylaminophenyl (311) 3,5-diisobutyrylaminophenyl (312) 3,5-diphenoxyphenyl (313) 3,5-dihydroxyphenyl (314) 2,4 -Dibutylphenyl (315) 2,4-di (2-methoxy-2-ethoxyethyl) phenyl (316) 2,4-diphenylphenyl (317) 2,4-diethoxycarbonylphenyl (318) 2,4-di Dodecyloxyphenyl (319) 2,4-dimethylphenyl (320) 2,4-dichlorophenyl (321) 2,4-dibenzoylphenyl (322) 2,4-diacetoxyphenyl (323) 2,4-dimethoxyphenyl ( 324) 2,4-di-N-methylaminophenyl (325) 2,4-diisobutyrylaminopheny (326) 2,4-diphenoxyphenyl (327) 2,4-dihydroxyphenyl (328) 2,3-dibutylphenyl (329) 2,3-di (2-methoxy-2-ethoxyethyl) phenyl (330) 2,3-diphenylphenyl (331) 2,3-diethoxycarbonylphenyl (332) 2,3-didodecyloxyphenyl (333) 2,3-dimethylphenyl (334) 2,3-dichlorophenyl (335) 2, 3-dibenzoylphenyl (336) 2,3-diacetoxyphenyl (337) 2,3-dimethoxyphenyl (338) 2,3-di-N-methylaminophenyl (339) 2,3-diisobutyrylaminophenyl (340) 2,3-diphenoxyphenyl (341) 2,3-dihydroxyphenyl (342 2,6-dibutylphenyl (343) 2,6-di (2-methoxy-2-ethoxyethyl) phenyl (344) 2,6-diphenylphenyl (345) 2,6-diethoxycarbonylphenyl (346) 2, 6-didodecyloxyphenyl (347) 2,6-dimethylphenyl (348) 2,6-dichlorophenyl (349) 2,6-dibenzoylphenyl (350) 2,6-diacetoxyphenyl (351) 2,6- Dimethoxyphenyl (352) 2,6-di-N-methylaminophenyl (353) 2,6-diisobutyrylaminophenyl (354) 2,6-diphenoxyphenyl (355) 2,6-dihydroxyphenyl (356) 3,4,5-tributylphenyl (357) 3,4,5-tri (2-methoxy-2-ethoxy) Til) phenyl (358) 3,4,5-triphenylphenyl (359) 3,4,5-triethoxycarbonylphenyl (360) 3,4,5-tridodecyloxyphenyl (361) 3,4,5- Trimethylphenyl (362) 3,4,5-trichlorophenyl (363) 3,4,5-tribenzoylphenyl (364) 3,4,5-triacetoxyphenyl (365) 3,4,5-trimethoxyphenyl ( 366) 3,4,5-tri-N-methylaminophenyl (367) 3,4,5-triisobutyrylaminophenyl (368) 3,4,5-triphenoxyphenyl (369) 3,4,5 -Trihydroxyphenyl (370) 2,4,6-tributylphenyl (371) 2,4,6-tri (2-methoxy-2-ethoxyethyl) ) Phenyl (372) 2,4,6-triphenylphenyl (373) 2,4,6-triethoxycarbonylphenyl (374) 2,4,6-tridodecyloxyphenyl (375) 2,4,6-trimethyl Phenyl (376) 2,4,6-trichlorophenyl (377) 2,4,6-tribenzoylphenyl (378) 2,4,6-triacetoxyphenyl (379) 2,4,6-trimethoxyphenyl (380 ) 2,4,6-tri-N-methylaminophenyl (381) 2,4,6-triisobutyrylaminophenyl (382) 2,4,6-triphenoxyphenyl (383) 2,4,6- Trihydroxyphenyl (384) Pentafluorophenyl (385) Pentachlorophenyl (386) Pentamethoxyphenyl (38 ) 6-N-methylsulfamoyl-8-methoxy-2-naphthyl (388) 5-N-methylsulfamoyl-2-naphthyl (389) 6-N-phenylsulfamoyl-2-naphthyl (390) 5-Ethoxy-7-N-methylsulfamoyl-2-naphthyl (391) 3-methoxy-2-naphthyl (392) 1-ethoxy-2-naphthyl (393) 6-N-phenylsulfamoyl-8- Methoxy-2-naphthyl (394) 5-methoxy-7-N-phenylsulfamoyl-2-naphthyl (395) 1- (4-methylphenyl) -2-naphthyl (396) 6,8-di-N- Methylsulfamoyl-2-naphthyl (397) 6-N-2-acetoxyethylsulfamoyl-8-methoxy-2-naphthyl (398) 5-acetoxy-7- N-phenylsulfamoyl-2-naphthyl (399) 3-benzoyloxy-2-naphthyl (400) 5-acetylamino-1-naphthyl (401) 2-methoxy-1-naphthyl (402) 4-phenoxy-1 -Naphtyl (403) 5-N-methylsulfamoyl-1-naphthyl (404) 3-N-methylcarbamoyl-4-hydroxy-1-naphthyl (405) 5-methoxy-6-N-ethylsulfamoyl- 1-naphthyl (406) 7-tetradecyloxy-1-naphthyl (407) 4- (4-methylphenoxy) -1-naphthyl (408) 6-N-methylsulfamoyl-1-naphthyl (409) 3- N, N-dimethylcarbamoyl-4-methoxy-1-naphthyl (410) 5-methoxy-6-N-benzylsulfamoyl 1-naphthyl (411) 3,6-di-N-phenylsulfamoyl-1-naphthyl (412) methyl (413) ethyl (414) butyl (415) octyl (416) dodecyl (417) 2-butoxy-2 -Ethoxyethyl (418) benzyl (419) 4-methoxybenzyl

Figure 2006071875
Figure 2006071875

(424)メチル
(425)フェニル
(426)ブチル
(424) Methyl (425) Phenyl (426) Butyl

Figure 2006071875
Figure 2006071875

(430)メチル
(431)エチル
(432)ブチル
(433)オクチル
(434)ドデシル
(435)2−ブトキシ2−エトキシエチル
(436)ベンジル
(437)4−メトキシベンジル
(430) methyl (431) ethyl (432) butyl (433) octyl (434) dodecyl (435) 2-butoxy-2-ethoxyethyl (436) benzyl (437) 4-methoxybenzyl

Figure 2006071875
Figure 2006071875

Figure 2006071875
Figure 2006071875

本発明においては、1,3,5−トリアジン環を有する化合物として、メラミンポリマーを用いてもよい。メラミンポリマーは、下記一般式(II)で示すメラミン化合物とカルボニル化合物との重合反応により合成することが好ましい。   In the present invention, a melamine polymer may be used as the compound having a 1,3,5-triazine ring. The melamine polymer is preferably synthesized by a polymerization reaction between a melamine compound represented by the following general formula (II) and a carbonyl compound.

Figure 2006071875
Figure 2006071875

上記合成反応スキームにおいて、R11、R12、R13、R14、R15及びR16は、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。 In the above synthetic reaction scheme, R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group.

上記アルキル基、アルケニル基、アリール基及び複素環基及びこれらの置換基は前記一般式(I)で説明した各基、それらの置換基と同義である。   The alkyl group, alkenyl group, aryl group, heterocyclic group, and substituents thereof have the same meanings as the groups and substituents described in the general formula (I).

メラミン化合物とカルボニル化合物との重合反応は、通常のメラミン樹脂(例えば、メラミンホルムアルデヒド樹脂等)の合成方法と同様である。また、市販のメラミンポリマー(メラミン樹脂)を用いてもよい。   The polymerization reaction between the melamine compound and the carbonyl compound is the same as the method for synthesizing a normal melamine resin (for example, melamine formaldehyde resin). Moreover, you may use a commercially available melamine polymer (melamine resin).

メラミンポリマーの分子量は、2千〜40万であることが好ましい。メラミンポリマーの繰り返し単位の具体例を以下に示す。   The molecular weight of the melamine polymer is preferably 2,000 to 400,000. Specific examples of the repeating unit of the melamine polymer are shown below.

Figure 2006071875
Figure 2006071875

MP−1:R13、R14、R15、R16:CH2OH
MP−2:R13、R14、R15、R16:CH2OCH3
MP−3:R13、R14、R15、R16:CH2O−i−C49
MP−4:R13、R14、R15、R16:CH2O−n−C49
MP−5:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−6:R13、R14、R15、R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−7:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−8:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−9:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−10:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−11:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−12:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−13:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−14:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−15:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−16:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−17:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−18:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−19:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−20:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−21:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−22:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−23:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−24:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−25:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−26:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−27:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−28:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−29:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−30:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−31:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−32:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−33:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−34:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−35:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−36:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−37:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−38:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−39:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−40:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−41:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−42:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−43:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−44:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−45:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−46:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−47:R13:CH2OH;R14:CH2NHCO(CH27CH=CH(CH27CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−48:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−49:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−50:R13:CH2NHCO(CH27CH=CH(CH27CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP-1: R 13 , R 14 , R 15 , R 16 : CH 2 OH
MP-2: R 13, R 14, R 15, R 16: CH 2 OCH 3
MP-3: R 13, R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-4: R 13, R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-5: R 13, R 14, R 15, R 16: CH 2 NHCOCH = CH 2
MP-6: R 13, R 14, R 15, R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-7: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 OCH 3
MP-8: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 OCH 3
MP-9: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 OCH 3
MP-10: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 OCH 3
MP-11: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 OCH 3
MP-12: R 13, R 14, R 16: CH 2 OCH 3; R 15: CH 2 OH
MP-13: R 13, R 16: CH 2 OCH 3; R 14, R 15: CH 2 OH
MP-14: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-i-C 4 H 9
MP-15: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-i-C 4 H 9
MP-16: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-i-C 4 H 9
MP-17: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-i-C 4 H 9
MP-18: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-19: R 13, R 14, R 16: CH 2 O-i-C 4 H 9; R 15: CH 2 OH
MP-20: R 13, R 16: CH 2 O-i-C 4 H 9; R 14, R 15: CH 2 OH
MP-21: R 13 , R 14 , R 15 : CH 2 OH; R 16 : CH 2 On -C 4 H 9
MP-22: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-23: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-n-C 4 H 9
MP-24: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9
MP-25: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-26: R 13, R 14, R 16: CH 2 O-n-C 4 H 9; R 15: CH 2 OH
MP-27: R 13, R 16: CH 2 O-n-C 4 H 9; R 14, R 15: CH 2 OH
MP-28: R 13, R 14: CH 2 OH; R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-29: R 13, R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-30: R 13, R 16: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-31: R 13: CH 2 OH; R 14, R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-32: R 13: CH 2 OH; R 14, R 16: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-33: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15, R 16: CH 2 O-n-C 4 H 9
MP-34: R 13: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-35: R 13, R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-36: R 13, R 16: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-37: R 13: CH 2 OCH 3; R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-38: R 13, R 16: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH
MP-39: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-40: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-41: R 13: CH 2 OH; R 14: CH 2 O-n-C 4 H 9; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-42: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-43: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-44: R 13: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2
MP-45: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-46: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-47: R 13: CH 2 OH; R 14: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-48: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-49: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-50: R 13: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2

Figure 2006071875
Figure 2006071875

MP−51:R13、R14、R15、R16:CH2OH
MP−52:R13、R14、R15、R16:CH2OCH3
MP−53:R13、R14、R15、R16:CH2O−i−C49
MP−54:R13、R14、R15、R16:CH2O−n−C49
MP−55:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−56:R13、R14、R15、R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−57:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−58:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−59:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−60:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−61:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−62:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−63:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−64:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−65:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−66:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−67:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−68:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−69:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−70:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−71:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−72:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−73:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−74:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−75:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−76:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−77:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−78:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−79:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−80:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−81:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−82:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−83:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−84:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−85:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−86:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−87:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−88:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−89:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−90:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−91:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−92:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−93:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−94:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−95:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−96:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−97:R13:CH2OH;R14:CH2NHCO(CH27CH=CH(CH27CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−98:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−99:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−100:R13:CH2NHCO(CH27CH=CH(CH27CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP-51: R 13, R 14, R 15, R 16: CH 2 OH
MP-52: R 13, R 14, R 15, R 16: CH 2 OCH 3
MP-53: R 13, R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-54: R 13, R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-55: R 13, R 14, R 15, R 16: CH 2 NHCOCH = CH 2
MP-56: R 13, R 14, R 15, R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-57: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 OCH 3
MP-58: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 OCH 3
MP-59: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 OCH 3
MP-60: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 OCH 3
MP-61: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 OCH 3
MP-62: R 13, R 14, R 16: CH 2 OCH 3; R 15: CH 2 OH
MP-63: R 13, R 16: CH 2 OCH 3; R 14, R 15: CH 2 OH
MP-64: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-i-C 4 H 9
MP-65: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-i-C 4 H 9
MP-66: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-i-C 4 H 9
MP-67: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-i-C 4 H 9
MP-68: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-69: R 13, R 14, R 16: CH 2 O-i-C 4 H 9; R 15: CH 2 OH
MP-70: R 13, R 16: CH 2 O-i-C 4 H 9; R 14, R 15: CH 2 OH
MP-71: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-72: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-73: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-n-C 4 H 9
MP-74: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9
MP-75: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-76: R 13, R 14, R 16: CH 2 O-n-C 4 H 9; R 15: CH 2 OH
MP-77: R 13, R 16: CH 2 O-n-C 4 H 9; R 14, R 15: CH 2 OH
MP-78: R 13, R 14: CH 2 OH; R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-79: R 13, R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-80: R 13, R 16: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-81: R 13: CH 2 OH; R 14, R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-82: R 13: CH 2 OH; R 14, R 16: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-83: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15, R 16: CH 2 O-n-C 4 H 9
MP-84: R 13: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-85: R 13, R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-86: R 13, R 16: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-87: R 13: CH 2 OCH 3; R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-88: R 13, R 16: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH
MP-89: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-90: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-91: R 13: CH 2 OH; R 14: CH 2 O-n-C 4 H 9; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-92: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-93: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-94: R 13: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2
MP-95: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-96: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-97: R 13: CH 2 OH; R 14: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-98: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-99: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-100: R 13: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2

Figure 2006071875
Figure 2006071875

MP−101:R13、R14、R15、R16:CH2OH
MP−102:R13、R14、R15、R16:CH2OCH3
MP−103:R13、R14、R15、R16:CH2O−i−C49
MP−104:R13、R14、R15、R16:CH2O−n−C49
MP−105:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−106:R13、R14、R15、R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−107:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−108:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−109:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−110:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−111:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−112:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−113:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−114:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−115:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−116:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−117:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−118:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−119:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−120:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−121:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−122:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−123:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−124:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−125:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−126:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−127:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−128:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−129:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−130:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−131:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−132:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−133:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−134:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−135:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−136:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−137:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−138:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−139:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−140:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−141:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−142:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−143:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−144:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−145:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−146:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−147:R13:CH2OH;R14:CH2NHCO(CH27CH=CH(CH27CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−148:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−149:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−150:R13:CH2NHCO(CH27CH=CH(CH27CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP-101: R 13, R 14, R 15, R 16: CH 2 OH
MP-102: R 13, R 14, R 15, R 16: CH 2 OCH 3
MP-103: R 13, R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-104: R 13, R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-105: R 13, R 14, R 15, R 16: CH 2 NHCOCH = CH 2
MP-106: R 13, R 14, R 15, R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-107: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 OCH 3
MP-108: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 OCH 3
MP-109: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 OCH 3
MP-110: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 OCH 3
MP-111: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 OCH 3
MP-112: R 13, R 14, R 16: CH 2 OCH 3; R 15: CH 2 OH
MP-113: R 13, R 16: CH 2 OCH 3; R 14, R 15: CH 2 OH
MP-114: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-i-C 4 H 9
MP-115: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-i-C 4 H 9
MP-116: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-i-C 4 H 9
MP-117: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-i-C 4 H 9
MP-118: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-119: R 13, R 14, R 16: CH 2 O-i-C 4 H 9; R 15: CH 2 OH
MP-120: R 13, R 16: CH 2 O-i-C 4 H 9; R 14, R 15: CH 2 OH
MP-121: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-122: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-123: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-n-C 4 H 9
MP-124: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9
MP-125: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-126: R 13, R 14, R 16: CH 2 O-n-C 4 H 9; R 15: CH 2 OH
MP-127: R 13, R 16: CH 2 O-n-C 4 H 9; R 14, R 15: CH 2 OH
MP-128: R 13, R 14: CH 2 OH; R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-129: R 13, R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-130: R 13, R 16: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-131: R 13: CH 2 OH; R 14, R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-132: R 13: CH 2 OH; R 14, R 16: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-133: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15, R 16: CH 2 O-n-C 4 H 9
MP-134: R 13: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-135: R 13, R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-136: R 13, R 16: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-137: R 13: CH 2 OCH 3; R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-138: R 13, R 16: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH
MP-139: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-140: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-141: R 13: CH 2 OH; R 14: CH 2 O-n-C 4 H 9; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-142: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-143: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-144: R 13: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2
MP-145: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-146: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-147: R 13: CH 2 OH; R 14: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-148: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-149: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-150: R 13: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2

Figure 2006071875
Figure 2006071875

MP−151:R13、R14、R15、R16:CH2OH
MP−152:R13、R14、R15、R16:CH2OCH3
MP−153:R13、R14、R15、R16:CH2O−i−C49
MP−154:R13、R14、R15、R16:CH2O−n−C49
MP−155:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−156:R13、R14、R15、R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−157:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−158:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−159:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−160:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−161:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−162:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−163:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−164:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−165:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−166:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−167:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−168:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−169:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−170:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−171:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−172:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−173:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−174:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−175:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−176:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−177:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−178:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−179:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−180:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−181:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−182:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−183:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−184:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−185:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−186:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−187:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−188:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−189:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−190:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−191:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−192:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−193:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−194:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−195:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−196:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−197:R13:CH2OH;R14:CH2NHCO(CH27CH=CH(CH27CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−198:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−199:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−200:R13:CH2NHCO(CH27CH=CH(CH27CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
本発明においては、上記繰り返し単位を二種類以上組み合わせたコポリマーを用いてもよい。二種類以上のホモポリマーまたはコポリマーを併用してもよい。
MP-151: R 13, R 14, R 15, R 16: CH 2 OH
MP-152: R 13, R 14, R 15, R 16: CH 2 OCH 3
MP-153: R 13, R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-154: R 13, R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-155: R 13, R 14, R 15, R 16: CH 2 NHCOCH = CH 2
MP-156: R 13, R 14, R 15, R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-157: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 OCH 3
MP-158: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 OCH 3
MP-159: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 OCH 3
MP-160: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 OCH 3
MP-161: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 OCH 3
MP-162: R 13, R 14, R 16: CH 2 OCH 3; R 15: CH 2 OH
MP-163: R 13, R 16: CH 2 OCH 3; R 14, R 15: CH 2 OH
MP-164: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-i-C 4 H 9
MP-165: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-i-C 4 H 9
MP-166: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-i-C 4 H 9
MP-167: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-i-C 4 H 9
MP-168: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-169: R 13, R 14, R 16: CH 2 O-i-C 4 H 9; R 15: CH 2 OH
MP-170: R 13, R 16: CH 2 O-i-C 4 H 9; R 14, R 15: CH 2 OH
MP-171: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-172: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-173: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-n-C 4 H 9
MP-174: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9
MP-175: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-176: R 13 , R 14 , R 16 : CH 2 On -C 4 H 9 ; R 15 : CH 2 OH
MP-177: R 13, R 16: CH 2 O-n-C 4 H 9; R 14, R 15: CH 2 OH
MP-178: R 13, R 14: CH 2 OH; R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-179: R 13, R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-180: R 13, R 16: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-181: R 13: CH 2 OH; R 14, R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-182: R 13: CH 2 OH; R 14, R 16: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-183: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15, R 16: CH 2 O-n-C 4 H 9
MP-184: R 13: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-185: R 13, R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-186: R 13, R 16: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-187: R 13: CH 2 OCH 3; R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-188: R 13, R 16: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH
MP-189: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-190: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-191: R 13: CH 2 OH; R 14: CH 2 O-n-C 4 H 9; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-192: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-193: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-194: R 13: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2
MP-195: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-196: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-197: R 13: CH 2 OH; R 14: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-198: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-199: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-200: R 13: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2
In the present invention, a copolymer obtained by combining two or more of the above repeating units may be used. Two or more homopolymers or copolymers may be used in combination.

また、二種類以上の1,3,5−トリアジン環を有する化合物を併用してもよい。二種類以上の円盤状化合物(例えば、1,3,5−トリアジン環を有する化合物とポルフィリン骨格を有する化合物)を併用してもよい。   Moreover, you may use together the compound which has a 2 or more types of 1,3,5- triazine ring. Two or more kinds of discotic compounds (for example, a compound having a 1,3,5-triazine ring and a compound having a porphyrin skeleton) may be used in combination.

本発明に好ましく用いられる別のタイプのリタデーション上昇剤としては、特開2002−267847号、同2002−363343号、同2003−35821号、同2004−4550号等に記載のリタデーション制御剤(上昇剤)を挙げることができる。溶液の紫外線吸収スペクトルにおいて最大吸収波長(λmax)が250nmより短波長である棒状化合物をリタデーション制御剤として用いる。リタデーション制御剤の機能の観点では、棒状化合物は、少なくとも一つの芳香族環を有することが好ましく、少なくとも二つの芳香族環を有することがさらに好ましい。棒状化合物は、直線的な分子構造を有することが好ましい。直線的な分子構造とは、熱力学的に最も安定な構造において棒状化合物の分子構造が直線的であることを意味する。熱力学的に最も安定な構造は、結晶構造解析または分子軌道計算によって求めることができる。例えば、分子軌道計算ソフト(例、WinMOPAC2000、富士通(株)製)を用いて分子軌道計算を行い、化合物の生成熱が最も小さくなるような分子の構造を求めることができる。分子構造が直線的であるとは、上記のように計算して求められる熱力学的に最も安定な構造において、分子構造の角度が140度以上であることを意味する。   As another type of retardation increasing agent preferably used in the present invention, a retardation controlling agent (elevating agent) described in JP-A Nos. 2002-267847, 2002-363343, 2003-35821, 2004-4550, etc. ). A rod-like compound having a maximum absorption wavelength (λmax) shorter than 250 nm in the ultraviolet absorption spectrum of the solution is used as a retardation control agent. From the viewpoint of the function of the retardation control agent, the rod-like compound preferably has at least one aromatic ring, and more preferably has at least two aromatic rings. The rod-like compound preferably has a linear molecular structure. The linear molecular structure means that the molecular structure of the rod-like compound is linear in the most thermodynamically stable structure. The most thermodynamically stable structure can be obtained by crystal structure analysis or molecular orbital calculation. For example, molecular orbital calculation can be performed using molecular orbital calculation software (eg, WinMOPAC2000, manufactured by Fujitsu Limited) to obtain a molecular structure that minimizes the heat of formation of a compound. The molecular structure being linear means that the angle of the molecular structure is 140 degrees or more in the thermodynamically most stable structure obtained by calculation as described above.

棒状化合物としては、下記式(I)で表される化合物が好ましい。   As the rod-like compound, a compound represented by the following formula (I) is preferable.

(I)Ar1−L1−Ar2
式(I)において、Ar1及びAr2は、それぞれ独立に芳香族基である。芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基及び置換芳香族性ヘテロ環基を含む。アリール基及び置換アリール基の方が、芳香族性ヘテロ環基及び置換芳香族性ヘテロ環基よりも好ましい。芳香族性へテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5〜7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性へテロ環は一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子または硫黄原子が好ましく、窒素原子または硫黄原子がさらに好ましい。芳香族性へテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、及び1,3,5−トリアジン環が含まれる。芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環及びピラジン環が好ましく、ベンゼン環が特に好ましい。
(I) Ar 1 -L 1 -Ar 2
In the formula (I), Ar 1 and Ar 2 are each independently an aromatic group. The aromatic group includes an aryl group (aromatic hydrocarbon group), a substituted aryl group, an aromatic heterocyclic group, and a substituted aromatic heterocyclic group. An aryl group and a substituted aryl group are more preferable than an aromatic heterocyclic group and a substituted aromatic heterocyclic group. The heterocycle of the aromatic heterocyclic group is generally unsaturated. The aromatic heterocycle is preferably a 5- to 7-membered ring, more preferably a 5-membered ring or a 6-membered ring. Aromatic heterocycles generally have the most double bonds. As a hetero atom, a nitrogen atom, an oxygen atom or a sulfur atom is preferable, and a nitrogen atom or a sulfur atom is more preferable. Examples of aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine Rings, pyridazine rings, pyrimidine rings, pyrazine rings, and 1,3,5-triazine rings are included. As the aromatic ring of the aromatic group, a benzene ring, a furan ring, a thiophene ring, a pyrrole ring, an oxazole ring, a thiazole ring, an imidazole ring, a triazole ring, a pyridine ring, a pyrimidine ring and a pyrazine ring are preferable, and a benzene ring is particularly preferable. .

置換アリール基及び置換芳香族性ヘテロ環基の置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基(例、メチルアミノ、エチルアミノ、ブチルアミノ、ジメチルアミノ)、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基(例、N−メチルカルバモイル、N−エチルカルバモイル、N,N−ジメチルカルバモイル)、スルファモイル、アルキルスルファモイル基(例、N−メチルスルファモイル、N−エチルスルファモイル、N,N−ジメチルスルファモイル)、ウレイド、アルキルウレイド基(例、N−メチルウレイド、N,N−ジメチルウレイド、N,N,N′−トリメチルウレイド)、アルキル基(例、メチル、エチル、プロピル、ブチル、ペンチル、ヘプチル、オクチル、イソプロピル、s−ブチル、t−アミル、シクロヘキシル、シクロペンチル)、アルケニル基(例、ビニル、アリル、ヘキセニル)、アルキニル基(例、エチニル、ブチニル)、アシル基(例、ホルミル、アセチル、ブチリル、ヘキサノイル、ラウリル)、アシルオキシ基(例、アセトキシ、ブチリルオキシ、ヘキサノイルオキシ、ラウリルオキシ)、アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘプチルオキシ、オクチルオキシ)、アリールオキシ基(例、フェノキシ)、アルコキシカルボニル基(例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペンチルオキシカルボニル、ヘプチルオキシカルボニル)、アリールオキシカルボニル基(例、フェノキシカルボニル)、アルコキシカルボニルアミノ基(例、ブトキシカルボニルアミノ、ヘキシルオキシカルボニルアミノ)、アルキルチオ基(例、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ、ペンチルチオ、ヘプチルチオ、オクチルチオ)、アリールチオ基(例、フェニルチオ)、アルキルスルホニル基(例、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、ペンチルスルホニル、ヘプチルスルホニル、オクチルスルホニル)、アミド基(例、アセトアミド、ブチルアミド基、ヘキシルアミド、ラウリルアミド)及び非芳香族性複素環基(例、モルホリル、ピラジニル)が含まれる。   Examples of substituents for substituted aryl groups and substituted aromatic heterocyclic groups include halogen atoms (F, Cl, Br, I), hydroxyl, carboxyl, cyano, amino, alkylamino groups (eg, methylamino, ethylamino) , Butylamino, dimethylamino), nitro, sulfo, carbamoyl, alkylcarbamoyl groups (eg, N-methylcarbamoyl, N-ethylcarbamoyl, N, N-dimethylcarbamoyl), sulfamoyl, alkylsulfamoyl groups (eg, N- Methylsulfamoyl, N-ethylsulfamoyl, N, N-dimethylsulfamoyl), ureido, alkylureido groups (eg, N-methylureido, N, N-dimethylureido, N, N, N′-trimethyl) Ureido), alkyl groups (eg, methyl, ethyl, propyl, butyl, pentyl, Butyl, octyl, isopropyl, s-butyl, t-amyl, cyclohexyl, cyclopentyl), alkenyl groups (eg, vinyl, allyl, hexenyl), alkynyl groups (eg, ethynyl, butynyl), acyl groups (eg, formyl, acetyl, Butyryl, hexanoyl, lauryl), acyloxy groups (eg, acetoxy, butyryloxy, hexanoyloxy, lauryloxy), alkoxy groups (eg, methoxy, ethoxy, propoxy, butoxy, pentyloxy, heptyloxy, octyloxy), aryloxy groups (Eg, phenoxy), alkoxycarbonyl group (eg, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentyloxycarbonyl, heptyloxycarbonyl), aryloxycarbo Group (eg, phenoxycarbonyl), alkoxycarbonylamino group (eg, butoxycarbonylamino, hexyloxycarbonylamino), alkylthio group (eg, methylthio, ethylthio, propylthio, butylthio, pentylthio, heptylthio, octylthio), arylthio group (eg, , Phenylthio), alkylsulfonyl groups (eg, methylsulfonyl, ethylsulfonyl, propylsulfonyl, butylsulfonyl, pentylsulfonyl, heptylsulfonyl, octylsulfonyl), amide groups (eg, acetamide, butylamide group, hexylamide, laurylamide) and non- Aromatic heterocyclic groups (eg, morpholyl, pyrazinyl) are included.

置換アリール基及び置換芳香族性ヘテロ環基の置換基としては、ハロゲン原子、シアノ、カルボキシル、ヒドロキシル、アミノ、アルキル置換アミノ基、アシル基、アシルオキシ基、アミド基、アルコキシカルボニル基、アルコキシ基、アルキルチオ基及びアルキル基が好ましい。アルキルアミノ基、アルコキシカルボニル基、アルコキシ基及びアルキルチオ基のアルキル部分とアルキル基とは、さらに置換基を有していてもよい。アルキル部分及びアルキル基の置換基の例には、ハロゲン原子、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アミド基及び非芳香族性複素環基が含まれる。アルキル部分及びアルキル基の置換基としては、ハロゲン原子、ヒドロキシル、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基及びアルコキシ基が好ましい。   Substituents for substituted aryl groups and substituted aromatic heterocyclic groups include halogen atoms, cyano, carboxyl, hydroxyl, amino, alkyl-substituted amino groups, acyl groups, acyloxy groups, amide groups, alkoxycarbonyl groups, alkoxy groups, alkylthios. And groups and alkyl groups are preferred. The alkyl moiety of the alkylamino group, alkoxycarbonyl group, alkoxy group, and alkylthio group and the alkyl group may further have a substituent. Examples of alkyl moieties and substituents of alkyl groups include halogen atoms, hydroxyl, carboxyl, cyano, amino, alkylamino groups, nitro, sulfo, carbamoyl, alkylcarbamoyl groups, sulfamoyl, alkylsulfamoyl groups, ureido, alkylureido Group, alkenyl group, alkynyl group, acyl group, acyloxy group, alkoxy group, aryloxy group, alkoxycarbonyl group, aryloxycarbonyl group, alkoxycarbonylamino group, alkylthio group, arylthio group, alkylsulfonyl group, amide group and non-aromatic An aromatic heterocyclic group is included. As the substituent for the alkyl moiety and the alkyl group, a halogen atom, hydroxyl, amino, alkylamino group, acyl group, acyloxy group, acylamino group, alkoxycarbonyl group and alkoxy group are preferable.

式(I)において、L1は、アルキレン基、アルケニレン基、アルキニレン基、−O−、−CO−及びそれらの組み合わせからなる群より選ばれる二価の連結基である。アルキレン基は、環状構造を有していてもよい。環状アルキレン基としては、シクロヘキシレンが好ましく、1,4−シクロへキシレンが特に好ましい。鎖状アルキレン基としては、直鎖状アルキレン基の方が分岐を有するアルキレン基よりも好ましい。アルキレン基の炭素原子数は、1〜20であることが好ましく、1〜15であることがより好ましく、1〜10であることがさらに好ましく、1〜8であることがさらにまた好ましく、1〜6であることが最も好ましい。 In the formula (I), L 1 is a divalent linking group selected from the group consisting of an alkylene group, an alkenylene group, an alkynylene group, —O—, —CO—, and combinations thereof. The alkylene group may have a cyclic structure. As the cyclic alkylene group, cyclohexylene is preferable, and 1,4-cyclohexylene is particularly preferable. As the chain alkylene group, a linear alkylene group is more preferable than a branched alkylene group. The number of carbon atoms of the alkylene group is preferably 1-20, more preferably 1-15, still more preferably 1-10, still more preferably 1-8, 6 is most preferred.

アルケニレン基及びアルキニレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。アルケニレン基及びアルキニレン基の炭素原子数は、2〜10であることが好ましく、2〜8であることがより好ましく、2〜6であることがさらに好ましく、2〜4であることがさらにまた好ましく、2(ビニレンまたはエチニレン)であることが最も好ましい。   The alkenylene group and the alkynylene group preferably have a chain structure rather than a cyclic structure, and more preferably have a linear structure rather than a branched chain structure. The number of carbon atoms of the alkenylene group and the alkynylene group is preferably 2 to 10, more preferably 2 to 8, still more preferably 2 to 6, and still more preferably 2 to 4. Most preferred is 2 (vinylene or ethynylene).

組み合わせからなる二価の連結基の例を示す。   The example of the bivalent coupling group which consists of a combination is shown.

L−1:−O−CO−アルキレン基−CO−O−
L−2:−CO−O−アルキレン基−O−CO−
L−3:−O−CO−アルケニレン基−CO−O−
L−4:−CO−O−アルケニレン基−O−CO−
L−5:−O−CO−アルキニレン基−CO−O−
L−6:−CO−O−アルキニレン基−O−CO−
式(I)の分子構造において、L1を挟んで、Ar1とAr2とが形成する角度は、140度以上であることが好ましい。棒状化合物としては、下記式(II)で表される化合物がさらに好ましい。
L-1: —O—CO-alkylene group —CO—O—
L-2: -CO-O-alkylene group -O-CO-
L-3: —O—CO—alkenylene group —CO—O—
L-4: -CO-O-alkenylene group -O-CO-
L-5: -O-CO-alkynylene group -CO-O-
L-6: -CO-O-alkynylene group -O-CO-
In the molecular structure of the formula (I), the angle formed by Ar 1 and Ar 2 across L 1 is preferably 140 degrees or more. As the rod-like compound, a compound represented by the following formula (II) is more preferable.

(II) Ar1−L2−X−L3−Ar2
式(II)において、Ar1及びAr2は、それぞれ独立に、芳香族基である。芳香族基の定義及び例は、式(I)のAr1及びAr2と同様である。
(II) Ar 1 -L 2 -XL 3 -Ar 2
In the formula (II), Ar 1 and Ar 2 are each independently an aromatic group. The definition and examples of the aromatic group are the same as those for Ar 1 and Ar 2 in the formula (I).

式(II)において、L2及びL3は、それぞれ独立に、アルキレン基、−O−、−CO−及びそれらの組み合わせからなる群より選ばれる二価の連結基である。アルキレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。アルキレン基の炭素原子数は、1〜10であることが好ましく、1〜8であることがより好ましく、1〜6であることがさらに好ましく、1〜4であることがさらにまた好ましく、1または2(メチレンまたはエチレン)であることが最も好ましい。L2及びL3は、−O−CO−または−CO−O−であることが特に好ましい。 In the formula (II), L 2 and L 3 are each independently a divalent linking group selected from the group consisting of an alkylene group, —O—, —CO—, and combinations thereof. The alkylene group preferably has a chain structure rather than a cyclic structure, and more preferably has a linear structure rather than a branched chain structure. The number of carbon atoms of the alkylene group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, and 1 or Most preferred is 2 (methylene or ethylene). L 2 and L 3 are particularly preferably —O—CO— or —CO—O—.

式(II)において、Xは、1,4−シクロへキシレン、ビニレンまたはエチニレンである。   In the formula (II), X is 1,4-cyclohexylene, vinylene or ethynylene.

以下に、式(I)で表される化合物の具体例を示す。   Specific examples of the compound represented by formula (I) are shown below.

Figure 2006071875
Figure 2006071875

Figure 2006071875
Figure 2006071875

Figure 2006071875
Figure 2006071875

Figure 2006071875
Figure 2006071875

Figure 2006071875
Figure 2006071875

これらの棒状化合物は、文献記載の方法を参照して合成できる。文献としては、Mol.Cryst.Liq.Cryst.,53巻、229頁(1979年)、同89巻、93頁(1982年)、同145巻、111頁(1987年)、同170巻、43頁(1989年)、J.Am.Chem.Soc.,113巻、1349頁(1991年)、同118巻、5346頁(1996年)、同92巻、1582頁(1970年)、J.Org.Chem.,40巻、420頁(1975年)、Tetrahedron、48巻16号、3437頁(1992年)を挙げることができる。   These rod-shaped compounds can be synthesized with reference to methods described in the literature. As literature, Mol. Cryst. Liq. Cryst. 53, 229 (1979), 89, 93 (1982), 145, 111 (1987), 170, 43 (1989); Am. Chem. Soc. 113, p. 1349 (1991), p. 118, p. 5346 (1996), p. 92, p. 1582 (1970). Org. Chem. 40, 420 (1975), Tetrahedron, 48, 16, 3437 (1992).

〈製膜〉
以下、本発明に用いられる位相差フィルム及びバックライト側偏光膜保護フィルムの好ましい製膜方法について説明する。
<Film formation>
Hereinafter, the preferable film forming method of the retardation film and the backlight side polarizing film protective film used in the present invention will be described.

1)溶解工程
セルロースエステルに対する良溶媒を主とする有機溶媒に、溶解釜中で該セルロースエステル、添加剤を攪拌しながら溶解しドープを形成する工程、あるいはセルロースエステル溶液に添加剤溶液を混合してドープを形成する工程である。
1) Dissolution process In a dissolution vessel, the cellulose ester and additives are dissolved in an organic solvent mainly containing a good solvent for the cellulose ester while stirring to form a dope, or the additive solution is mixed with the cellulose ester solution. And forming a dope.

セルロースエステルの溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9−95544号、特開平9−95557号、または特開平9−95538号に記載の如き冷却溶解法で行う方法、特開平11−21379号に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。   For dissolving the cellulose ester, a method performed at normal pressure, a method performed at a temperature lower than the boiling point of the main solvent, a method performed at a pressure higher than the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557, or Various dissolution methods such as a method using a cooling dissolution method as described in Kaihei 9-95538 and a method using a high pressure as described in Japanese Patent Application Laid-Open No. 11-21379 can be used. A method in which pressure is applied is preferable.

ドープ中のセルロースエステルの濃度は10〜35質量%が好ましい。溶解中または後のドープに添加剤を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。   The concentration of the cellulose ester in the dope is preferably 10 to 35% by mass. An additive is added to the dope during or after dissolution to dissolve and disperse, then filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.

可塑剤や紫外線吸収剤のような添加剤の全量または一部を、これらのドープに添加してもよい。全ての材料が溶解後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。   All or part of additives such as plasticizers and UV absorbers may be added to these dopes. After all the materials are dissolved, they are filtered with a filter medium, defoamed, and sent to the next process with a liquid feed pump.

2)流延工程
ドープを送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液し、無限に移送する無端の金属ベルト、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
2) Casting process An endless metal belt, such as a stainless steel belt or a rotating metal drum, which feeds the dope through a liquid feed pump (for example, a pressurized metering gear pump) to a pressure die and transfers it indefinitely. This is a step of casting the dope from the pressure die slit to the upper casting position.

ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、何れも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。   A pressure die that can adjust the slit shape of the die base portion and can easily make the film thickness uniform is preferable. The pressure die includes a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.

3)溶媒蒸発工程
ウェブを金属支持体上で加熱し、金属支持体からウェブが剥離可能になるまで溶媒を蒸発させる工程である。
3) Solvent evaporation step In this step, the web is heated on the metal support, and the solvent is evaporated until the web becomes peelable from the metal support.

溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/または金属支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱の方法が乾燥効率がよく好ましい。またそれらを組み合わせる方法も好ましい。裏面液体伝熱の場合は、ドープ使用有機溶媒の主溶媒または最も低い沸点を有する有機溶媒の沸点以下で加熱するのが好ましい。   In order to evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the metal support by a liquid, a method of transferring heat from the front and back by radiant heat, and the like. However, the drying efficiency is preferable. A method of combining them is also preferable. In the case of backside liquid heat transfer, it is preferable to heat at or below the boiling point of the main solvent of the organic solvent used in the dope or the organic solvent having the lowest boiling point.

4)剥離工程
金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。なお、剥離する時点でのウェブの残留溶媒量(下記式)があまり大き過ぎると剥離し難かったり、逆に金属支持体上で充分に乾燥させ過ぎてから剥離すると、途中でウェブの一部が剥がれたりする。
4) Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process. It should be noted that if the residual solvent amount of the web at the time of peeling (the following formula) is too large, it is difficult to peel, or conversely, if it is peeled off after being sufficiently dried on the metal support, a part of the web is partway through It may come off.

ここで、製膜速度を上げる方法(残留溶媒量ができるだけ多いうちに剥離することで製膜速度を上げることができる)としてゲル流延法(ゲルキャスティング)がある。例えば、ドープ中にセルロースエステルフィルムに対する貧溶媒を加えて、ドープ流延後、ゲル化する方法、金属支持体の温度を低めてゲル化する方法等がある。金属支持体上でゲル化させ剥離時の膜の強度を上げておくことによって、剥離を早め製膜速度を上げることができる。   Here, there is a gel casting method (gel casting) as a method for increasing the film forming speed (the film forming speed can be increased by peeling while the residual solvent amount is as large as possible). For example, there are a method in which a poor solvent for the cellulose ester film is added to the dope and the gel is formed after casting the dope, a method in which the temperature of the metal support is lowered and the gel is formed. By gelling on the metal support and increasing the strength of the film at the time of peeling, the speed of film formation can be increased by speeding up the peeling.

金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により5〜150質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損なったり、剥離張力によるツレや縦スジが発生しやすいため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。本発明においては、該金属支持体上の剥離位置における温度を−50〜40℃とするのが好ましく、10〜40℃がより好ましく、15〜30℃とするのが最も好ましい。   The amount of residual solvent during peeling of the web on the metal support is preferably within a range of 5 to 150% by mass depending on the strength of drying conditions, the length of the metal support, etc., but the amount of residual solvent is larger. In the case of peeling at a point in time, if the web is too soft, flatness at the time of peeling is impaired, or slippage or vertical stripes due to peeling tension are likely to occur. Therefore, the residual solvent amount at the time of peeling is determined in consideration of economic speed and quality. In the present invention, the temperature at the peeling position on the metal support is preferably -50 to 40 ° C, more preferably 10 to 40 ° C, and most preferably 15 to 30 ° C.

また、剥離位置におけるウェブの残留溶媒量を10〜150質量%とすることが好ましく、さらに10〜120質量%とすることが好ましい。   Further, the residual solvent amount of the web at the peeling position is preferably 10 to 150% by mass, and more preferably 10 to 120% by mass.

残留溶媒量は下記の式で表すことができる。   The amount of residual solvent can be represented by the following formula.

残留溶媒量(質量%)={(M−N)/N}×100
ここで、Mはウェブの任意時点での質量、Nは質量Mのものを110℃で3時間乾燥させた時の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass of the web at an arbitrary point in time, and N is the mass when the mass M is dried at 110 ° C. for 3 hours.

5)乾燥及び延伸工程
剥離後、ウェブを乾燥装置内に複数配置したロールに交互に通して搬送する乾燥装置、及び/またはクリップでウェブの両端をクリップして搬送するテンター装置を用いて、ウェブを乾燥する。
5) Drying and stretching step After peeling, the web is transferred using a drying device that alternately passes the web through a roll arranged in the drying device and / or a tenter device that clips and transports both ends of the web with clips. To dry.

クリップ間の幅手方向に対して1.0〜2.0倍延伸する方法として、テンター装置を用いて延伸することが好ましい。延伸量は、液晶セル側偏光保護膜フィルムが1.05〜1.5、バックライト側偏光保護膜フィルムが1.01〜1.15であること好ましい。   As a method of stretching 1.0 to 2.0 times with respect to the width direction between the clips, it is preferable to stretch using a tenter device. The stretching amount is preferably 1.05 to 1.5 for the liquid crystal cell side polarizing protective film and 1.01 to 1.15 for the backlight side polarizing protective film.

さらに好ましくは縦及び横方向に2軸延伸されたものである。2軸延伸の際に縦方向に0.8〜1.0倍に緩和させて所望のリタデーション値を得ることもできる。延伸倍率は目的の光学特性(Ro、Rt)に応じて設定される。また、本発明に係るセルロスエステルフィルムを製造する場合、長尺方向に一軸延伸することもできる。本発明では、23℃、55%RHの条件下で、液晶セル側偏光保護膜フィルム(位相差フィルム)は下記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが40〜400nmの位相差フィルムであることが必要であり、バックライト側偏光保護膜フィルムはリタデーションRoが0〜20nm、リタデーションRtが0〜70nmであることが好ましい。   More preferably, it is biaxially stretched in the longitudinal and transverse directions. In the biaxial stretching, a desired retardation value can also be obtained by relaxing by 0.8 to 1.0 times in the longitudinal direction. The draw ratio is set according to the target optical characteristics (Ro, Rt). Moreover, when manufacturing the cellulose ester film which concerns on this invention, it can also be uniaxially stretched in the elongate direction. In the present invention, under conditions of 23 ° C. and 55% RH, the liquid crystal cell side polarizing protective film (retardation film) has a retardation Ro defined by the following formula of 20 to 300 nm and a retardation Rt of 40 to 400 nm. It is necessary to be a film, and the backlight side polarizing protective film preferably has a retardation Ro of 0 to 20 nm and a retardation Rt of 0 to 70 nm.

Ro=(Nx−Ny)×d
Rt=((Nx+Ny)/2−Nz)×d
(式中、Nxはフィルム面内の最大屈折率、Nyはフィルム面内でNxと直交方向の屈折率、Nzは厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す。)
延伸の際の温度は80〜180℃、好ましくは90〜160℃であり、延伸時の残留溶媒量は5〜40質量%、好ましくは10〜30質量%である。
Ro = (Nx−Ny) × d
Rt = ((Nx + Ny) / 2−Nz) × d
(In the formula, Nx represents the maximum refractive index in the film plane, Ny represents the refractive index in the direction perpendicular to Nx in the film plane, Nz represents the refractive index in the thickness direction, and d represents the thickness (nm) of the film.)
The temperature during stretching is 80 to 180 ° C., preferably 90 to 160 ° C., and the amount of residual solvent during stretching is 5 to 40% by mass, preferably 10 to 30% by mass.

これにより、湿度が変動する条件下でもRo、Rtの変動の少ない耐久性に優れた位相差フィルムを提供することができる。   Thereby, the retardation film excellent in durability with little fluctuation | variation of Ro and Rt can be provided even on the conditions which humidity changes.

乾燥の手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウエーブを当てて加熱する手段もある。あまり急激な乾燥はでき上がりのフィルムの平面性を損ねやすい。全体を通して、通常乾燥温度は40〜250℃の範囲で行われる。使用する溶媒によって、乾燥温度、乾燥風量及び乾燥時間が異なり、使用溶媒の種類、組合せに応じて乾燥条件を適宜選べばよい。   As a drying means, hot air is generally blown on both sides of the web, but there is also a means for heating by applying a microwave instead of the wind. Too rapid drying tends to impair the flatness of the finished film. Throughout, the drying temperature is usually in the range of 40 to 250 ° C. The drying temperature, the amount of drying air, and the drying time differ depending on the solvent used, and the drying conditions may be appropriately selected according to the type and combination of the solvents used.

フィルムの厚さは特に限定されないが、例えば、10μm〜1mm程度のもの等任意の厚さのフィルムを作製することができる。好ましくは乾燥、延伸等の処理が終わった後の膜厚で10〜500μmが好ましく、特に30〜120μmが好ましい。   Although the thickness of a film is not specifically limited, For example, a film of arbitrary thickness, such as a thing of about 10 micrometers-1 mm, can be produced. Preferably, the film thickness after drying, stretching and the like is preferably 10 to 500 μm, particularly preferably 30 to 120 μm.

(活性線硬化樹脂層)
本発明に係るバックライト側偏光膜保護フィルムは、バックライト側に活性線硬化樹脂層を有することが好ましい。
(Actinic radiation curable resin layer)
The backlight side polarizing film protective film according to the present invention preferably has an actinic radiation curable resin layer on the backlight side.

本発明では活性線硬化樹脂層は活性線硬化樹脂を主成分として用いる。活性線硬化樹脂層とは紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂を主たる成分とする層をいう。   In the present invention, the actinic radiation curable resin layer uses actinic radiation curable resin as a main component. The actinic radiation curable resin layer refers to a layer mainly composed of a resin that cures through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.

活性線硬化樹脂層に用いる活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて活性線硬化樹脂層が形成される。活性エネルギー線硬化アクリレート系樹脂としては、例えば、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、エポキシアクリレート系樹脂、ポリオールアクリレート系樹脂等が挙げられる。本発明では活性線硬化樹脂層が、バインダーとしてアクリル系、アクリルウレタン系のUV硬化樹脂を主成分とすることが好ましい。   As the actinic radiation curable resin used for the actinic radiation curable resin layer, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an actinic energy ray such as an ultraviolet ray or an electron beam. An actinic radiation curable resin layer is formed. Examples of the active energy ray-curable acrylate resin include acrylic urethane resins, polyester acrylate resins, epoxy acrylate resins, polyol acrylate resins, and the like. In the present invention, the actinic radiation curable resin layer is preferably mainly composed of an acrylic or acrylic urethane UV curable resin as a binder.

アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59−151110号に記載のものを用いることができる。   Acrylic urethane-based resins generally include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylates including methacrylates) to products obtained by reacting polyester polyols with isocyanate monomers or prepolymers. Can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. For example, those described in JP-A-59-151110 can be used.

例えば、ユニディック17−806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。   For example, a mixture of 100 parts Unidic 17-806 (Dainippon Ink Co., Ltd.) and 1 part Coronate L (Nihon Polyurethane Co., Ltd.) is preferably used.

紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59−151112号に記載のものを用いることができる。   Examples of UV curable polyester acrylate resins include those that are easily formed when 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers are generally reacted with polyester polyols. Can be used.

紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることができ、特開平1−105738号に記載のものを用いることができる。   Specific examples of the ultraviolet curable epoxy acrylate resin include an epoxy acrylate as an oligomer, a reactive diluent and a photoreaction initiator added to the oligomer, and a reaction. Those described in US Pat. No. 105738 can be used.

紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。   Specific examples of UV curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, etc. Can be mentioned.

樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。   Examples of the resin monomer include common monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, cyclohexyl acrylate, vinyl acetate, and styrene as monomers having one unsaturated double bond. In addition, monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.

これらの中で、バインダーの主成分として、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールエタン(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレートから選択されるアクリル系の活性線硬化樹脂が好ましい。   Among these, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane (meth) acrylate, trimethylolethane (meth) acrylate as the main component of the binder , An acrylic selected from dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate A system active ray curable resin is preferred.

本発明において使用し得る紫外線硬化樹脂の市販品としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製)等を適宜選択して利用できる。   Examples of commercially available ultraviolet curable resins that can be used in the present invention include ADEKA OPTMER KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (Asahi Denka ( Co., Ltd.); Koeihard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS -101, FT-102Q8, MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Co., Ltd.); Seika Beam PHC2210 (S), PHC X-9 (K-3), PHC2213, DP -10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (manufactured by Dainichi Seika Kogyo Co., Ltd.) KRM7033, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL29202 (manufactured by Daicel UCB); RC-5015, RC-5016, RC-5020, RC-5031, RC-5100, RC-5102, RC-5120 RC-5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by Dainippon Ink & Chemicals, Inc.); 340 clear (manufactured by China Paint Co., Ltd.); Sunrad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (manufactured by Sanyo Chemical Industries); SP -1509, SP-1507 (manufactured by Showa Polymer Co., Ltd.); RCC-15C (manufactured by Grace Japan Co., Ltd.), Aronix M-6100, M-8030, M-8060 (manufactured by Toagosei Co., Ltd.), etc. Can be selected as appropriate.

これら紫外線硬化性樹脂の光反応開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。上記光反応開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光反応開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。紫外線硬化樹脂組成物に用いられる光反応開始剤また光増感剤は該組成物100質量部に対して0.1〜15質量部であり、好ましくは1〜10質量部である。   Specific examples of the photoreaction initiator of these ultraviolet curable resins include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof. You may use with a photosensitizer. The photoinitiator can also be used as a photosensitizer. In addition, when using an epoxy acrylate photoinitiator, a sensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used. The photoreaction initiator or photosensitizer used in the ultraviolet curable resin composition is 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the composition.

活性エネルギー線硬化性樹脂組成物は塗布乾燥された後、活性エネルギー線、例えば、紫外線を照射し硬化する。   After the active energy ray-curable resin composition is applied and dried, it is cured by irradiating active energy rays, for example, ultraviolet rays.

こうして得た硬化皮膜層に、ブロッキングを防止するため、また対擦り傷性等を高めるために無機または有機の微粒子を加えることが好ましい。例えば、無機微粒子としては酸化珪素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることができ、また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等を挙げることができ、紫外線硬化性樹脂組成物に加えることができる。これらの微粒子粉末の平均粒径としては、0.005〜1μmが好ましく0.01〜0.1μmであることが特に好ましい。   It is preferable to add inorganic or organic fine particles to the cured film layer thus obtained in order to prevent blocking and to improve scratch resistance and the like. Examples of the inorganic fine particles include silicon oxide, titanium oxide, aluminum oxide, tin oxide, zinc oxide, calcium carbonate, barium sulfate, talc, kaolin, calcium sulfate, and the like, and examples of the organic fine particles include polymethacrylic acid. Methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder , Polyamide resin powder, polyimide resin powder, polyfluoroethylene resin powder, and the like, which can be added to the ultraviolet curable resin composition. The average particle size of these fine particle powders is preferably 0.005 to 1 μm, and particularly preferably 0.01 to 0.1 μm.

活性線硬化樹脂組成物と微粒子粉末との割合は、樹脂組成物100質量部に対して、0.1〜10質量部となるように配合することが望ましい。   As for the ratio of actinic ray curable resin composition and fine particle powder, it is desirable to mix | blend so that it may be 0.1-10 mass parts with respect to 100 mass parts of resin compositions.

このようにして形成された活性線硬化樹脂を硬化させた層は、JIS B 0601に規定される中心線平均粗さRaが1〜50nmのクリア活性線硬化樹脂層であっても、Raが0.1〜1μm程度の防眩層であってもよい。   The layer obtained by curing the actinic radiation curable resin thus formed is a clear actinic radiation curable resin layer having a centerline average roughness Ra of 1 to 50 nm as defined in JIS B 0601, even if Ra is 0. An antiglare layer of about 1 to 1 μm may be used.

活性線硬化樹脂層の屈折率は、セルロースエステルフィルムの屈折率に対して±0.005以内とすることが干渉ムラ防止のために好ましく、±0.002以内とすることより好ましい。   The refractive index of the actinic radiation curable resin layer is preferably within ± 0.005 with respect to the refractive index of the cellulose ester film in order to prevent interference unevenness, and more preferably within ± 0.002.

セルロースエステルフィルムと活性線硬化樹脂層の間には、密着層、接着層を設けてもよく、この場合は0.1μm以下の膜厚として本発明の効果の障害とならないようにしなくてはならない。セルロースエステルフィルム上に活性線硬化樹脂層を塗布する前処理として、火炎処理、コロナ放電、プラズマ加工を行ってもよい。これらの活性線硬化樹脂層層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することができる。   An adhesion layer and an adhesive layer may be provided between the cellulose ester film and the actinic radiation curable resin layer. In this case, the film thickness should be 0.1 μm or less so as not to obstruct the effect of the present invention. . Flame treatment, corona discharge, and plasma processing may be performed as pretreatment for applying the active ray curable resin layer on the cellulose ester film. These actinic radiation curable resin layer layers can be coated by a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or an ink jet method.

紫外線硬化性樹脂を光硬化反応により硬化させ、硬化皮膜層を形成するための光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性エネルギー線の照射量は、通常5〜500mJ/cm2、好ましくは5〜100mJ/cm2であるが、特に好ましくは20〜80mJ/cm2である。 As a light source for curing an ultraviolet curable resin by a photocuring reaction to form a cured film layer, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. Irradiation conditions vary depending on each lamp, but the irradiation amount of active energy rays is usually 5 to 500 mJ / cm 2 , preferably 5 to 100 mJ / cm 2 , and particularly preferably 20 to 80 mJ / cm 2 .

また、活性エネルギー線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、さらに好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、若しくは2軸方向に張力を付与してもよい。これによってさらに平面性優れたフィルムを得ることができる。   Moreover, when irradiating an active energy ray, it is preferable to carry out while applying tension | tensile_strength in the conveyance direction of a film, More preferably, it is performing applying tension | tensile_strength also in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying the tension is not particularly limited, and the tension may be applied in the conveying direction on the back roll, or the tension may be applied in the width direction or the biaxial direction by a tenter. This makes it possible to obtain a film having further excellent flatness.

紫外線硬化樹脂層組成物塗布液には溶媒が含まれていてもよく、必要に応じて適宜含有し、希釈されたものであってもよい。塗布液に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中でもから適宜選択し、あるいはこれらを混合し利用できる。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。   The ultraviolet curable resin layer composition coating solution may contain a solvent, or may be appropriately contained and diluted as necessary. Examples of the organic solvent contained in the coating solution include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), It can be appropriately selected from esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used. Propylene glycol monoalkyl ether (1 to 4 carbon atoms of the alkyl group) or propylene glycol monoalkyl ether acetate ester (1 to 4 carbon atoms of the alkyl group) is 5% by mass or more, more preferably 5 to 80%. It is preferable to use the organic solvent containing at least mass%.

また、紫外線硬化樹脂層組成物塗布液には、特にシリコン化合物を添加することが好ましい。例えば、ポリエーテル変性シリコーンオイル等が好ましく添加される。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば、1,000〜100,000、好ましくは、2,000〜50,000が適当であり、数平均分子量が1,000未満では、塗膜の乾燥性が低下し、逆に、数平均分子量が100,000を越えると、塗膜表面にブリードアウトしにくくなる傾向にある。   In addition, it is particularly preferable to add a silicon compound to the ultraviolet curable resin layer composition coating solution. For example, polyether-modified silicone oil is preferably added. The number average molecular weight of the polyether-modified silicone oil is, for example, 1,000 to 100,000, preferably 2,000 to 50,000. When the number average molecular weight is less than 1,000, the coating film is dried. On the contrary, when the number average molecular weight exceeds 100,000, it tends to be difficult to bleed out on the surface of the coating film.

シリコン化合物の市販品としては、DKQ8−779(ダウコーニング社製商品名)、SF3771、SF8410、SF8411、SF8419、SF8421、SF8428、SH200、SH510、SH1107、SH3749、SH3771、BX16−034、SH3746、SH3749、SH8400、SH3771M、SH3772M、SH3773M、SH3775M、BY−16−837、BY−16−839、BY−16−869、BY−16−870、BY−16−004、BY−16−891、BY−16−872、BY−16−874、BY22−008M、BY22−012M、FS−1265(以上、東レ・ダウコーニングシリコーン社製商品名)、KF−101、KF−100T、KF351、KF352、KF353、KF354、KF355、KF615、KF618、KF945、KF6004、シリコーンX−22−945、X22−160AS(以上、信越化学工業社製商品名)、XF3940、XF3949(以上、東芝シリコーン社製商品名)、ディスパロンLS−009(楠本化成社製)、グラノール410(共栄社油脂化学工業(株)製)、TSF4440、TSF4441、TSF4445、TSF4446、TSF4452、TSF4460(GE東芝シリコーン製)、BYK−306、BYK−330、BYK−307、BYK−341、BYK−344、BYK−361(ビックケミ−ジャパン社製)日本ユニカー(株)製のLシリーズ(例えばL7001、L−7006、L−7604、L−9000)、Yシリーズ、FZシリーズ(FZ−2203、FZ−2206、FZ−2207)等が挙げられ、好ましく用いられる。   Commercially available silicon compounds include DKQ8-779 (trade name, manufactured by Dow Corning), SF3771, SF8410, SF8411, SF8419, SF8421, SF8428, SH200, SH510, SH1107, SH3749, SH3771, BX16-034, SH3746, SH3749, SH8400, SH3771M, SH3772M, SH3773M, SH3775M, BY-16-837, BY-16-839, BY-16-869, BY-16-870, BY-16-004, BY-16-891, BY-16 872, BY-16-874, BY22-008M, BY22-012M, FS-1265 (above, product names manufactured by Toray Dow Corning Silicone), KF-101, KF-100T, KF351, KF3 2, KF353, KF354, KF355, KF615, KF618, KF945, KF6004, Silicone X-22-945, X22-160AS (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), XF3940, XF3949 (trade name, manufactured by Toshiba Silicone Co., Ltd.) ), Disparon LS-009 (manufactured by Enomoto Kasei Co., Ltd.), Granol 410 (manufactured by Kyoeisha Oil Chemical Co., Ltd.), TSF4440, TSF4441, TSF4445, TSF4446, TSF4452, TSF4460 (manufactured by GE Toshiba Silicone), BYK-306, BYK- 330, BYK-307, BYK-341, BYK-344, BYK-361 (manufactured by BYK-Japan) L series (for example, L7001, L-7006, L-7604, L-9000) manufactured by Nippon Unicar Co., Ltd. Y Over's, FZ series (FZ-2203, FZ-2206, FZ-2207) and the like, are preferably used.

これらの成分は基材や下層への塗布性を高める。積層体最表面層に添加した場合には、塗膜の撥水、撥油性、防汚性を高めるばかりでなく、表面の耐擦り傷性にも効果を発揮する。これらの成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。   These components enhance the applicability to the substrate and the lower layer. When added to the outermost surface layer of the laminate, it not only improves the water repellency, oil repellency and antifouling properties of the coating film, but also exhibits an effect on the scratch resistance of the surface. These components are preferably added in a range of 0.01 to 3% by mass with respect to the solid component in the coating solution.

紫外線硬化性樹脂組成物塗布液の塗布方法としては、前述のものを用いることができる。塗布量はウェット膜厚として1〜40μmが適当で、好ましくは、3〜20μmである。また、ドライ膜厚としては1〜20μm、好ましくは1.5〜10μmである。膜厚が1〜20μmであれば、ロール状で偏光板を取り扱う場合に、搬送ローラーと接触することによる微細な傷が生じることを防止する効果もある。   As a method for applying the ultraviolet curable resin composition coating solution, the above-described methods can be used. The coating amount is suitably 1 to 40 μm as a wet film thickness, and preferably 3 to 20 μm. The dry film thickness is 1 to 20 μm, preferably 1.5 to 10 μm. When the film thickness is 1 to 20 μm, there is also an effect of preventing fine scratches due to contact with the transport roller when handling the polarizing plate in a roll shape.

紫外線硬化性樹脂組成物は塗布乾燥中または後に、紫外線を照射するのがよく、必要な活性エネルギー線の照射量を得るための照射時間としては、0.1秒〜1分程度がよく、紫外線硬化性樹脂の硬化効率または作業効率の観点から0.1〜10秒がより好ましい。また、これら活性エネルギー線照射部の照度は50〜150mW/m2であることが好ましい。活性線硬化樹脂層を2層重層して塗布するときは重層した状態で紫外線を照射するのが好ましい。 The ultraviolet curable resin composition is preferably irradiated with ultraviolet rays during or after coating and drying, and the irradiation time for obtaining the necessary dose of active energy rays is preferably about 0.1 second to 1 minute. From the viewpoint of curing efficiency or work efficiency of the curable resin, 0.1 to 10 seconds is more preferable. Moreover, it is preferable that the illumination intensity of these active energy ray irradiation parts is 50-150 mW / m < 2 >. When two actinic radiation curable resin layers are applied in layers, it is preferable to irradiate with ultraviolet rays in the state of being overlapped.

バックライト側偏光膜保護フィルムの活性線硬化樹脂層のナノインデンテーション硬度(H)は0.8〜2.0GPaで、かつ、ナノインデンテーション弾性率(Er)は6〜15GPaであることが好ましい。   The nanoindentation hardness (H) of the active ray curable resin layer of the backlight side polarizing film protective film is preferably 0.8 to 2.0 GPa, and the nanoindentation elastic modulus (Er) is preferably 6 to 15 GPa. .

最表面層のナノインデンテーション硬度(H)、弾性率(Er)とは、最表面層の膜厚が10nm以下の場合と、10nmを超える場合とで、各々下記のように定義される。   The nanoindentation hardness (H) and elastic modulus (Er) of the outermost surface layer are defined as follows depending on whether the film thickness of the outermost surface layer is 10 nm or less and exceeds 10 nm, respectively.

(1)最表面層の膜厚が10nmを超える場合
最表面層の膜厚が10nmを超える場合には、後述する測定方法により最表面層自体のナノインデンテーション硬度(H)と弾性率(Er)が求められる。
(1) When the film thickness of the outermost surface layer exceeds 10 nm When the film thickness of the outermost surface layer exceeds 10 nm, the nanoindentation hardness (H) and elastic modulus (Er) of the outermost surface layer itself are measured by the measurement method described later. ) Is required.

(2)最表面層の膜厚が10nm以下の場合
最表面層の膜厚が10nm以下の場合には、後述する測定方法では、最表面層自体のナノインデンテーション硬度(H)、弾性率(Er)を求めることが困難であり、そのような場合、本発明では、最表面層と該最表面層の下層をも含めた実施形態で測定を行い、得られたデータを最表面層のナノインデンテーション硬度(H)、弾性率(Er)と各々定義する。
(2) When the film thickness of the outermost surface layer is 10 nm or less When the film thickness of the outermost surface layer is 10 nm or less, in the measurement method described later, the nanoindentation hardness (H), elastic modulus ( In such a case, in the present invention, measurement is performed in an embodiment including the outermost surface layer and the lower layer of the outermost surface layer. Indentation hardness (H) and elastic modulus (Er) are defined respectively.

例えば、最表面層が、膜厚が10nm以下の保護層であり、前記保護層の下層が偏光膜保護フィルムである場合の最表面層のナノインデンテーション硬度(H)と弾性率(Er)とは、保護層+偏光膜保護フィルムの2層にわたるデータとして測定されたものである。   For example, when the outermost surface layer is a protective layer having a thickness of 10 nm or less and the lower layer of the protective layer is a polarizing film protective film, the nanoindentation hardness (H) and elastic modulus (Er) of the outermost surface layer Is measured as data over two layers of protective layer + polarizing film protective film.

ナノインデンテーション硬度(H)が0.8GPaより小さい、または弾性率(Er)が6GPaより小さい場合、耐擦傷性が悪くなる。また、硬度(H)が2GPaより大きいか、または、弾性率(Er)が15GPaより大きい場合、加熱条件下でクラックが発生しやすくなるという問題点が発生する。   When the nanoindentation hardness (H) is smaller than 0.8 GPa or the elastic modulus (Er) is smaller than 6 GPa, the scratch resistance is deteriorated. Further, when the hardness (H) is greater than 2 GPa or the elastic modulus (Er) is greater than 15 GPa, there is a problem that cracks are likely to occur under heating conditions.

本発明に係る活性線硬化樹脂層のナノインデンテーション硬度(H)と弾性率(Er)は、活性線硬化樹脂層の膜厚の15±3%の押し込み量もしくは250nmの押し込み量で測定されるが、本発明では、活性線硬化樹脂層の膜厚の15±3%の値が250nm以上の場合には、押し込み量を250nmに設定して測定を行う。   The nanoindentation hardness (H) and elastic modulus (Er) of the actinic radiation curable resin layer according to the present invention are measured by an indentation amount of 15 ± 3% or an indentation amount of 250 nm of the thickness of the actinic radiation curable resin layer. However, in the present invention, when the value of 15 ± 3% of the thickness of the actinic radiation curable resin layer is 250 nm or more, the indentation amount is set to 250 nm and the measurement is performed.

本発明に係る活性線硬化樹脂層に十分な耐傷性を付与し、かつ、加熱条件下でのクラック発生を防止する観点から、ナノインデンテーション硬度(H)を0.8〜2.0GPaの範囲に調整し、かつ、弾性率(Er)を6〜15GPaの範囲に調整することが好ましい。   From the viewpoint of imparting sufficient scratch resistance to the actinic radiation curable resin layer according to the present invention and preventing the occurrence of cracks under heating conditions, the nanoindentation hardness (H) is in the range of 0.8 to 2.0 GPa. And the elastic modulus (Er) is preferably adjusted in the range of 6 to 15 GPa.

本発明に係るバックライト側偏光膜保護フィルムの最表面層である活性線硬化樹脂層のナノインデンテーション硬度(H)及びナノインデンテーション弾性率(Er)の測定は、Hysitron社製TriboscopeをDigital Instruments社製NanoscopeIIIに装着し測定した。   The measurement of the nanoindentation hardness (H) and the nanoindentation elastic modulus (Er) of the active ray curable resin layer, which is the outermost surface layer of the backlight side polarizing film protective film according to the present invention, is performed by using Triboscope manufactured by Hystron Corp. with Digital Instruments. The measurement was carried out on a Nanoscope III manufactured by the company.

測定には、圧子としてベルコビッチ型圧子(先端稜角142.3°)と呼ばれる三角錘型ダイヤモンド製圧子を用いた。   For the measurement, a triangular pyramid type diamond indenter called a Belkovic indenter (tip ridge angle 142.3 °) was used as an indenter.

三角錘型ダイヤモンド製圧子を試料表面に直角に当て、徐々に荷重を印加し、最大荷重到達後に荷重を0にまで徐々に戻した。この時の最大荷重Pを圧子接触部の投影面積Aで除した値P/Aをナノインデンテーション硬度(H)として算出した。ナノインデンテーション弾性率(Er)は、除荷曲線の傾きSとしたとき、下記式を用いて算出した。   A triangular pyramid-shaped diamond indenter was applied to the sample surface at a right angle, a load was gradually applied, and the load was gradually returned to 0 after reaching the maximum load. A value P / A obtained by dividing the maximum load P at this time by the projected area A of the indenter contact portion was calculated as nanoindentation hardness (H). The nanoindentation elastic modulus (Er) was calculated using the following formula, assuming the slope S of the unloading curve.

(式)
Er=(S×√π)/(2√A)(πは円周率)
なお、標準試料として、付属の溶融石英を押し込んだ結果得られる硬さが9.5±1.5GPaとなるよう、事前に装置を校正して測定した。
(formula)
Er = (S × √π) / (2√A) (π is the circumference)
In addition, the apparatus was calibrated and measured in advance so that the hardness obtained as a result of pressing the attached fused silica as a standard sample was 9.5 ± 1.5 GPa.

原理の詳細は、Handbook of Micro/Nano Tribology(Bharat Bhushan編 CRC)に記載されている。   Details of the principle are described in Handbook of Micro / Nano Tribology (CRC edited by Bharat Bhushan).

試料はスライドガラス上に東亞合成株式会社製接着剤アロンアルファを1滴滴下した後、約1cm角に切ったフィルムを乗せ、24時間放置して硬化させた。   A drop of adhesive Aron Alpha manufactured by Toagosei Co., Ltd. was dropped on a slide glass, and then a sample was placed on a 1 cm square film and allowed to stand for 24 hours to be cured.

最表面の測定には最大荷重Pは最大深さが15nmとなるようにあらかじめ設定した。負荷及び除荷とも5秒で行った
〔偏光板及び液晶表示装置の製造〕
偏光板は、偏光膜及びその両側に配置された二枚の透明保護膜(液晶セル側偏光膜保護フィルム及びバックライト側偏光膜保護フィルム)からなる。偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。本発明では、ヨウ素系偏光膜及び染料系偏光膜の、ポリビニルアルコール系フイルム(ポリビニルアルコール系偏光膜)を用いて製造する。
For the measurement of the outermost surface, the maximum load P was set in advance so that the maximum depth was 15 nm. Loading and unloading were performed in 5 seconds [Manufacture of polarizing plates and liquid crystal display devices]
The polarizing plate is composed of a polarizing film and two transparent protective films (a liquid crystal cell side polarizing film protective film and a backlight side polarizing film protective film) disposed on both sides thereof. Examples of the polarizing film include an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film. In this invention, it manufactures using the polyvinyl-alcohol-type film (polyvinyl-alcohol-type polarizing film) of an iodine type polarizing film and a dye-type polarizing film.

本発明の偏光板は、一般的な方法で作製することができる。例えば、本発明に係る液晶セル側偏光膜保護フィルムをアルカリ鹸化処理した後に、沃素溶液中に浸漬延伸して作製した偏光膜の片面に、バックライト側偏光膜保護フィルムをアルカリ鹸化処理した後に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリ鹸化処理とは、水系接着剤の濡れを良くし、接着性を向上させるために、セルロースエステルフィルムを高温の強アルカリ液中に浸ける処理のことをいう。   The polarizing plate of the present invention can be produced by a general method. For example, after subjecting the liquid crystal cell-side polarizing film protective film according to the present invention to an alkali saponification treatment, the backlight-side polarizing film protective film is subjected to an alkali saponification treatment on one side of a polarizing film prepared by immersion and stretching in an iodine solution, There is a method of bonding using a completely saponified polyvinyl alcohol aqueous solution. The alkali saponification treatment is a treatment in which the cellulose ester film is immersed in a strong alkaline solution at high temperature in order to improve the wetness of the aqueous adhesive and improve the adhesion.

本発明の偏光板に用いる偏光子としては、ポリビニルアルコールフィルムを、ヨウ素の如き二色性染料で処理して延伸したものや、塩化ビニルの如きプラスチックフィルムを処理して配向させたもの(ポリビニルアルコール系偏光膜)を用いる。こうして得られた偏光子を、セルロースエステルフィルムと貼合する。   As the polarizer used in the polarizing plate of the present invention, a polyvinyl alcohol film is treated with a dichroic dye such as iodine and stretched, or a plastic film such as vinyl chloride is treated and oriented (polyvinyl alcohol). System polarizing film). The polarizer thus obtained is bonded to a cellulose ester film.

本発明において偏光膜と偏光膜保護フィルムとを接着する場合、例えば、ビニルアルコール系ポリマーからなる接着剤、あるいは、ホウ酸やホウ砂、グルタルアルデヒドやメラミン、シュウ酸等のビニルアルコール系ポリマーの水溶性架橋剤からなる接着剤等を介して行うことができる。特に、ポリビニルアルコール系フィルムとの接着性が最も良好である点で、ポリビニルアルコール系接着剤を用いることが好ましい。かかる接着層は、水溶液の塗布乾燥層等として形成しうるが、その水溶液の調製に際しては必要に応じて、他の添加剤や酸等の触媒も配合することができる。   When adhering the polarizing film and the polarizing film protective film in the present invention, for example, an adhesive made of a vinyl alcohol polymer, or a water-soluble vinyl alcohol polymer such as boric acid, borax, glutaraldehyde, melamine, or oxalic acid. It can be carried out via an adhesive composed of a functional crosslinking agent. In particular, it is preferable to use a polyvinyl alcohol-based adhesive because it has the best adhesiveness to the polyvinyl alcohol-based film. Such an adhesive layer can be formed as a coating / drying layer or the like of an aqueous solution, but other additives and catalysts such as acids can be blended as necessary when preparing the aqueous solution.

偏光板の製造方法としては、偏光膜はロール状のポリビニルアルコール系偏光膜であり、液晶セル側偏光膜保護フィルムはセルロースエステルフィルムを延伸して作製され、23℃、55%RHの条件下で、前記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが70〜400nmのロール状の位相差フィルムであり、バックライト側偏光膜保護フィルムは、先後端部以外は鹸化処理前に対して、鹸化処理後の寸法変化率が0.01〜0.10%であり、鹸化処理した前記位相差フィルム、前記ポリビニルアルコール系偏光膜、鹸化処理した前記バックライト側偏光膜保護フィルムをロール状態で連続的に貼り合わせることが好ましい。   As a method for producing a polarizing plate, the polarizing film is a roll-shaped polyvinyl alcohol polarizing film, and the liquid crystal cell-side polarizing film protective film is produced by stretching a cellulose ester film, under the conditions of 23 ° C. and 55% RH. The retardation Ro defined by the above formula is a roll-shaped retardation film having a retardation Rt of 20 to 300 nm and a retardation Rt of 70 to 400 nm, and the backlight side polarizing film protective film is the same as before the saponification treatment except for the front and rear ends. The dimensional change after saponification is 0.01 to 0.10%, and the saponified retardation film, the polyvinyl alcohol-based polarizing film, and the saponified backlight-side polarizing film protective film are in a roll state. It is preferable to stick them together continuously.

また、前記バックライト側偏光膜保護フィルムの鹸化処理後の幅手方向の寸法変化率の平均値は0.04%以下であることが好ましい。   Moreover, it is preferable that the average value of the dimensional change rate in the width direction after the saponification treatment of the backlight side polarizing film protective film is 0.04% or less.

さらに、鹸化処理した前記位相差フィルム、前記ポリビニルアルコール系偏光膜、鹸化処理した前記バックライト側偏光膜保護フィルムをロール状態で連続的に貼り合わせる工程と巻き取りを行なう工程の間に、前記位相差フィルムの液晶セルへの接着面に、接着層と後述する剥離保護層を設ける工程を有することが好ましい。   Further, between the step of continuously laminating the saponified retardation film, the polyvinyl alcohol polarizing film, and the saponified backlight-side polarizing film protective film in a roll state and the winding step, It is preferable to have a step of providing an adhesive layer and a release protective layer described later on the adhesive surface of the retardation film to the liquid crystal cell.

本発明において、偏光板を液晶セルに積層する方法は特に制限されないが、従来公知の接着剤や粘着剤等が使用でき、適宜決定できる。粘着剤として好ましくは、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテル、ポリビニルアルコール系ポリマー、合成ゴムのポリマー性材料のように、応力緩和性に優れる透明な粘着剤が挙げられる。前記接着剤や粘着剤は、偏光板の液晶セル側表面に塗布して接着層または粘着層を設け、液晶セルのガラス面に貼り合わせることが好ましい。接着層または粘着層の厚みは、特に制限されず適宜決定できるが、例えば、一般的に、接着力や薄型化等の点より、例えば1〜500μm、好ましくは2〜200μm、特に好ましくは5〜100μmである。なお、接着層または粘着層には、必要に応じて、石油系樹脂、ロジン系樹脂、テルペン系樹脂、クマロンインデン系樹脂、フェノール系樹脂、キシレン系樹脂、アルキド系樹脂等の粘着付与剤、フタル酸エステル、リン酸エステル、塩化パラフィン、ポリブテン、ポリイソブチレン等の軟化剤、またはその他の各種充填剤や老化防止剤等、従来公知の添加剤を適宜配合してもよい。   In the present invention, the method for laminating the polarizing plate on the liquid crystal cell is not particularly limited, but conventionally known adhesives and pressure-sensitive adhesives can be used and can be determined as appropriate. The pressure-sensitive adhesive is preferably a transparent pressure-sensitive adhesive having excellent stress relaxation properties such as an acrylic polymer, silicone polymer, polyester, polyurethane, polyether, polyvinyl alcohol polymer, and synthetic rubber polymer material. The adhesive or pressure-sensitive adhesive is preferably applied to the surface of the polarizing plate on the liquid crystal cell side to provide an adhesive layer or a pressure-sensitive adhesive layer and bonded to the glass surface of the liquid crystal cell. The thickness of the adhesive layer or the pressure-sensitive adhesive layer is not particularly limited and can be appropriately determined. For example, it is generally 1 to 500 μm, preferably 2 to 200 μm, particularly preferably 5 to 5 μm from the viewpoints of adhesive strength and thinning. 100 μm. In addition, the adhesive layer or the pressure-sensitive adhesive layer, if necessary, a tackifier such as petroleum resin, rosin resin, terpene resin, coumarone indene resin, phenol resin, xylene resin, alkyd resin, Conventionally known additives such as softeners such as phthalic acid esters, phosphoric acid esters, chlorinated paraffins, polybutenes, polyisobutylenes, and other various fillers and anti-aging agents may be appropriately blended.

また、接着層または粘着層は、吸湿による発泡や剥離の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、さらに高品質で耐久性に優れる画像表示装置を形成する点等から、吸湿率が低く、耐熱性に優れる接着層または粘着層であることが好ましい。また、接着層または粘着層に微粒子を含有させて、光拡散性を示す接着層または粘着層としてもよい。   In addition, the adhesive layer or adhesive layer prevents foaming and peeling due to moisture absorption, reduces optical characteristics due to differences in thermal expansion, prevents warping of the liquid crystal cell, and forms an image display device with high quality and excellent durability. The adhesive layer or the pressure-sensitive adhesive layer has a low moisture absorption rate and excellent heat resistance. Alternatively, the adhesive layer or the pressure-sensitive adhesive layer may contain fine particles to form an adhesive layer or a pressure-sensitive adhesive layer exhibiting light diffusibility.

本発明において、偏光板表面に形成した前記接着層または粘着層は、表面を剥離保護層(ライナー)によってカバーすることが好ましい。このようにカバーすることによって、液晶セル等に実装するまでの間、前記接着層または粘着層の汚染を防止し、取り扱い性を向上できるからである。前記ライナーは、前記透明保護フィルム等のような適当なフィルムに、必要に応じて、シリコーン系、長鎖アルキル系、フッ素系、硫化モリブデン等の剥離剤による剥離コートを設ける方法等によって形成できる。   In the present invention, the adhesive layer or the pressure-sensitive adhesive layer formed on the surface of the polarizing plate is preferably covered with a release protective layer (liner). By covering in this way, it is possible to prevent contamination of the adhesive layer or the pressure-sensitive adhesive layer and improve handleability until it is mounted on a liquid crystal cell or the like. The liner can be formed by, for example, a method of providing a release coat with a release agent such as silicone, long chain alkyl, fluorine, or molybdenum sulfide on an appropriate film such as the transparent protective film.

このとき、バックライト側偏光膜保護フィルムは、本発明に係る位相差フィルムを用いてもよいし、位相差フィルムではない別のセルロースエステルフィルムを用いることができる。バックライト側偏光膜保護フィルムには、市販のセルロースエステルフィルム(KC8UX2M、KC4UX2M、KC5UN、KC4UY、KC8UY(コニカミノルタオプト(株)製)に活性線硬化樹脂層を設けて偏光膜保護フィルムとして用いることができる。   At this time, the retardation film according to the present invention may be used as the backlight-side polarizing film protective film, or another cellulose ester film that is not a retardation film can be used. For the backlight side polarizing film protective film, a commercially available cellulose ester film (KC8UX2M, KC4UX2M, KC5UN, KC4UY, KC8UY (manufactured by Konica Minolta Opto Co., Ltd.)) is provided with an active ray curable resin layer and used as a polarizing film protective film. Can do.

偏光板のカーリングは少ないことが本発明の目的から好ましい。数値的には、50cm角に裁断し、23℃、55%RHの条件下で水平な平面板上に放置した時に、端部が平面より持ち上がる距離が50mm以下であり、特に好ましくは20mm以下である。カーリングの調整は、偏光保護フィルムの材料組成、製造方法、膜厚等により可能である。また、鹸化条件を調整することでもカーリングを調整できる。   It is preferable from the object of the present invention that the curling of the polarizing plate is small. Numerically, when it is cut into a 50 cm square and left on a horizontal flat plate under the conditions of 23 ° C. and 55% RH, the distance that the end is lifted from the plane is 50 mm or less, particularly preferably 20 mm or less. is there. Curling can be adjusted by the material composition, manufacturing method, film thickness, etc. of the polarizing protective film. Curling can also be adjusted by adjusting the saponification conditions.

上記のようにして得られる、本発明の偏光板を液晶セルのバックライト側面に貼合し、液晶セルの視認側には、表面側から、反射防止層、防眩層、反射防止防眩層のいずれかの表面層をコーティングした視認側偏光膜保護フィルム、ポリビニルアルコール系偏光膜、液晶側偏光膜保護フィルム、接着剤層(液晶側偏光膜保護フィルムと液晶セルを貼り付ける)をこの順に積層し、本発明の液晶表示装置を作製することができる。   The polarizing plate of the present invention obtained as described above is bonded to the backlight side of the liquid crystal cell, and on the viewing side of the liquid crystal cell, from the surface side, an antireflection layer, an antiglare layer, an antireflection antiglare layer. A viewing-side polarizing film protective film coated with any surface layer, a polyvinyl alcohol polarizing film, a liquid crystal-side polarizing film protective film, and an adhesive layer (a liquid crystal-side polarizing film protective film and a liquid crystal cell are attached) are laminated in this order. Thus, the liquid crystal display device of the present invention can be manufactured.

液晶セルの視認側の表面側に用いられる偏光板保護フィルムには反射防止層、防眩層、反射防止防眩層のいずれかの表面層をコーティングした視認側偏光膜保護フィルムを使用することが、量産性、コスト面、性能(バックライト側と同じ挙動をして問題が発生し難い)より好ましい。具体的なコーティング層の構成は、クリア活性線硬化樹脂層、防眩性活性線硬化樹脂層、反射防止層、帯電防止層、防汚層を設けることが好ましく、塗布、スパッタ、CVD、大気圧プラズマCVD、真空蒸着等の方法で好ましく設けることができる。   For the polarizing plate protective film used on the viewing side of the liquid crystal cell, it is possible to use a viewing-side polarizing film protective film coated with any surface layer of an antireflection layer, an antiglare layer, or an antireflection antiglare layer. It is more preferable than mass production, cost, and performance (because of the same behavior as the backlight side and less likely to cause problems). The specific coating layer configuration is preferably provided with a clear active ray curable resin layer, an antiglare active ray curable resin layer, an antireflection layer, an antistatic layer, and an antifouling layer, coating, sputtering, CVD, atmospheric pressure It can preferably be provided by a method such as plasma CVD or vacuum deposition.

また、偏光板の作製時には、本発明に係る位相差フィルムの面内遅相軸と偏光子の透過軸が実質的に平行になるように貼合することが好ましい。この場合、特に長尺フィルムを用いてロール トゥ ロールで貼合することが生産上好ましい。これによって、黒表示のときの光漏れが著しく改善され、15型以上、好ましくは19型以上の大画面の液晶表示装置であっても、画面周辺部での白抜け等もなく、その効果が湿度変動が大きい環境下であっても、安定した視野角特性が長期間維持され、特にMVA(マルチドメインバーティカルアライメント)型液晶表示装置では顕著な効果が認められる。また、TN、VA、OCB、HAN等の各種駆動方式を採用した液晶表示装置の視野角特性を最適化することができ、特にVA方型において効力を発揮する。   Moreover, at the time of producing the polarizing plate, it is preferable to bond the retardation film according to the present invention so that the in-plane slow axis of the retardation film and the transmission axis of the polarizer are substantially parallel. In this case, it is particularly preferable for production to use a long film to bond by roll-to-roll. As a result, light leakage at the time of black display is remarkably improved, and even a large-screen liquid crystal display device of 15 type or more, preferably 19 type or more has no white spots at the periphery of the screen, and the effect thereof. Even under an environment where the humidity fluctuation is large, a stable viewing angle characteristic is maintained for a long time, and a remarkable effect is recognized particularly in an MVA (multi-domain vertical alignment) type liquid crystal display device. Further, the viewing angle characteristics of the liquid crystal display device adopting various driving methods such as TN, VA, OCB, and HAN can be optimized, and the effect is exhibited particularly in the VA type.

特に、本発明の偏光板を用いた液晶表示装置ではサイズが15インチ以上で、光源と偏光板の距離を短くした熱の影響が大きい薄型液晶表示装置で本発明は有効である。面状白色LEDが光源は本発明の液晶表示装置に好ましく用いられる光源である。   In particular, the liquid crystal display device using the polarizing plate of the present invention has a size of 15 inches or more, and the present invention is effective for a thin liquid crystal display device having a large influence of heat with a short distance between the light source and the polarizing plate. A planar white LED is a light source preferably used in the liquid crystal display device of the present invention.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されない。なお、特に断りない限り、実施例中の「%」は「質量%」を表す。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. Unless otherwise specified, “%” in the examples represents “mass%”.

実施例1
《セルロースエステルフィルムの作製》
以下に示す方法に従って、セルロースエステルフィルムを作製した。
Example 1
<< Production of cellulose ester film >>
A cellulose ester film was produced according to the method described below.

〔ドープの調製〕
(酸化ケイ素分散液の調製)
アエロジル200V(日本アエロジル(株)製) 1kg
エタノール 9kg
上記素材をディゾルバで30分間撹拌混合した後、マントンゴーリン型高圧分散装置を用いて分散を行った。
[Preparation of dope]
(Preparation of silicon oxide dispersion)
Aerosil 200V (Nippon Aerosil Co., Ltd.) 1kg
Ethanol 9kg
The above material was stirred and mixed with a dissolver for 30 minutes, and then dispersed using a Manton Gorin type high-pressure dispersion device.

(添加液Aの調製)
セルロースアセテート(アセチル置換度:60.3%) 4kg
メチレンクロライド 76kg
チヌビン326(チバスペシャルティケミカルズ社製) 3kg
チヌビン109(チバスペシャルティケミカルズ社製) 4kg
チヌビン171(チバスペシャルティケミカルズ社製) 4kg
上記素材を密閉容器に投入し、加熱、撹拌しながら、完全に溶解、濾過した。これに9kgの上記酸化ケイ素分散液を撹拌しながら加えて、さらに30分間撹拌した後、濾過し、添加液Aを調製した。
(Preparation of additive solution A)
Cellulose acetate (acetyl substitution degree: 60.3%) 4kg
76 kg of methylene chloride
Tinuvin 326 (Ciba Specialty Chemicals) 3kg
Tinuvin 109 (Ciba Specialty Chemicals) 4kg
Tinuvin 171 (Ciba Specialty Chemicals) 4kg
The above material was put into a sealed container and completely dissolved and filtered while heating and stirring. To this, 9 kg of the above silicon oxide dispersion was added with stirring, and the mixture was further stirred for 30 minutes, followed by filtration to prepare additive solution A.

〔ドープAの調製〕
トリフェニルフォスフェート 15kg
エチルフタリルエチルグリコレート 5kg
リタデーション上昇剤A 7.7kg
メチレンクロライド 640kg
エタノール 120kg
セルロースアセテート(アセチル置換度:60.3%) 220kg
上記素材を順に、攪拌しながら密閉容器に投入し、加熱、撹拌しながら、完全に溶解、混合した。ドープを流延する温度まで下げて一晩静置し、脱泡操作を施した後、溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過した。さらに、この溶液100kgあたり添加液Aを2kgの割合で添加し、インラインミキサー(東レ静止型管内混合機Hi−Mixer SWJ)で十分混合した後、濾過してドープAを調製した。
[Preparation of Dope A]
Triphenyl phosphate 15kg
Ethyl phthalyl ethyl glycolate 5kg
Retardation raising agent A 7.7 kg
640 kg of methylene chloride
120 kg of ethanol
Cellulose acetate (acetyl substitution degree: 60.3%) 220 kg
The above materials were sequentially put into a sealed container with stirring, and completely dissolved and mixed while heating and stirring. The dope was lowered to the temperature at which the dope was cast and allowed to stand overnight, and after defoaming operation, the solution was added to Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. Filtered using 244. Further, 2 kg of the additive solution A was added per 100 kg of the solution, sufficiently mixed with an in-line mixer (Toray static in-pipe mixer Hi-Mixer SWJ), and then filtered to prepare a dope A.

〔ドープBの調製〕
ドープAの調製において、リタデーション上昇剤Aをリタデーション上昇剤Bに変更した以外は同様にして、ドープBを調製した。
[Preparation of dope B]
In the preparation of the dope A, a dope B was prepared in the same manner except that the retardation increasing agent A was changed to the retardation increasing agent B.

Figure 2006071875
Figure 2006071875

〔ドープCの調製〕
ドープAの調製において、セルロースアセテート(アセチル置換度:60.3%)をセルロースアセテートプロピオネート(アシル置換度:60.3%)に変え、リタデーション上昇剤Aを除去した以外は同様にして、ドープCを調製した。
[Preparation of dope C]
In the preparation of the dope A, cellulose acetate (acetyl substitution degree: 60.3%) was changed to cellulose acetate propionate (acyl substitution degree: 60.3%), and the retardation increasing agent A was removed in the same manner. Dope C was prepared.

(セルロースエステルの置換度の測定)
上記記ドープA〜Cの各々の調製に用いたセルロースエステルの置換度は、ASTM−D817−96に規定の方法に準じて測定した。
(Measurement of substitution degree of cellulose ester)
The degree of substitution of the cellulose ester used for the preparation of each of the above-mentioned dopes A to C was measured according to the method prescribed in ASTM-D817-96.

〔位相差フィルム(液晶セル側偏光膜保護フィルム)の作製〕
上記調製したドープA〜Cを用いて下記のようにしてそれぞれ位相差フィルム1〜3を作製した。
[Production of retardation film (liquid crystal cell side polarizing film protective film)]
Retardation films 1 to 3 were prepared using the prepared dopes A to C as follows.

ドープA〜Cを濾過した後、ベルト流延装置を用い、ドープ温度35℃で30℃のステンレスバンド支持体上に均一に流延した。その後、剥離可能な範囲まで乾燥させた後、ステンレスバンド支持体上からウェブを剥離した。このときのウェブの残留溶媒量は80%であった。   After the dopes A to C were filtered, they were uniformly cast on a stainless band support having a dope temperature of 35 ° C. and a temperature of 30 ° C. using a belt casting apparatus. Then, after drying to the peelable range, the web was peeled from the stainless steel band support body. At this time, the residual solvent amount of the web was 80%.

ステンレスバンド支持体から剥離した後、85℃の乾燥ゾーンをロール搬送しながら乾燥させた後、残留溶媒量が35質量%未満となったところで、Roが45、Rtが130となるように2軸延伸テンターでTD方向(幅手方向)及びMD方向(製膜方向)に延伸しながら90℃で乾燥させた後、幅把持を解放し、さらにロール搬送しながら125℃の乾燥ゾーンで乾燥を終了させ、フィルム両端に幅10mm、高さ8μmのナーリング加工を施して、位相差フィルム1〜3を作製した。位相差フィルム1〜3のTD方向の延伸倍率はそれぞれ、1.31、1.32、1.30、膜厚はそれぞれ、82、81、80μmであった。位相差フィルム1〜3のフィルム幅は1300mm、巻き取り長は2000mとした。巻き取り時の残留溶媒量は0.1質量%未満であった。   After peeling from the stainless steel band support, it was dried while being conveyed in a roll at 85 ° C., and when the residual solvent amount was less than 35% by mass, it was biaxial so that Ro was 45 and Rt was 130. After stretching in 90 ° C while stretching in the TD direction (width direction) and MD direction (film-forming direction) with a stretching tenter, release the width gripping and finish drying in the 125 ° C drying zone while further transporting rolls. Then, a knurling process having a width of 10 mm and a height of 8 μm was applied to both ends of the film to prepare retardation films 1 to 3. The stretching ratios of the retardation films 1 to 3 in the TD direction were 1.31, 1.32, and 1.30, respectively, and the film thicknesses were 82, 81, and 80 μm, respectively. The film widths of the retardation films 1 to 3 were 1300 mm, and the winding length was 2000 m. The residual solvent amount at the time of winding was less than 0.1% by mass.

(リタデーションRtの測定)
自動複屈折率計KOBRA−21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下で、波長が590nmにおいて、3次元屈折率測定を行い、屈折率nx、ny、nzを求めた。前記に従って、リタデーションRtを算出した。
(Measurement of retardation Rt)
Using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments), a three-dimensional refractive index measurement is performed at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH, and refractive indexes nx, ny , Nz was determined. According to the above, retardation Rt was calculated.

(リタデーションRoの測定)
上記と同様の方法にて、屈折率nx、nyを求めた。前記式に従って、面方向のリタデーションRo)を算出した。
(Measurement of retardation Ro)
Refractive indexes nx and ny were determined by the same method as described above. According to the above formula, the retardation Ro) in the plane direction was calculated.

〔バックライト側偏光膜保護フィルムの作製〕
〈セルロースエステルフィルム11の作製〉
(ドープDの調製)
セルロースエステル(リンター綿から合成されたセルローストリアセテート)
100質量部
トリフェニルフォスフェート 9.5質量部
エチルフタリルエチルグリコレート 2.2質量部
メチレンクロライド 440質量部
エタノール 40質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープDを調製した。製膜ライン中で日本精線(株)製のファインメットNFでドープDを濾過した。(ドープDの一部は下記のインライン添加液Dの作製にも使用した。)
(二酸化珪素分散液D)
アエロジル200V(日本アエロジル(株)製、一次粒子の平均径12nm、見掛け比重100g/リットル) 2質量部
エタノール 18質量部
以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。分散後の液濁度は100ppmであった。二酸化珪素分散液に18質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液Dを作製した。
[Preparation of protective film for backlight-side polarizing film]
<Preparation of cellulose ester film 11>
(Preparation of dope D)
Cellulose ester (cellulose triacetate synthesized from linter cotton)
100 parts by weight Triphenyl phosphate 9.5 parts by weight Ethylphthalyl ethyl glycolate 2.2 parts by weight Methylene chloride 440 parts by weight Ethanol 40 parts by weight or more is put into a sealed container, heated and stirred, and completely dissolved Azumi Filter Paper No. manufactured by Azumi Filter Paper Co., Ltd. 24 was used to prepare a dope D. The dope D was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the film production line. (A part of the dope D was also used for preparing the following inline additive solution D.)
(Silicon dioxide dispersion D)
Aerosil 200V (manufactured by Nippon Aerosil Co., Ltd., average particle size of primary particles 12 nm, apparent specific gravity 100 g / liter) 2 parts by mass Ethanol 18 parts by mass or more was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. The liquid turbidity after dispersion was 100 ppm. 18 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution D.

(インライン添加液Dの作製)
メチレンクロライド 100質量部
ドープD 34質量部
チヌビン109(チバスペシャルティケミカルズ(株)製) 5質量部
チヌビン171(チバスペシャルティケミカルズ(株)製) 5質量部
チヌビン326(チバスペシャルティケミカルズ(株)製) 3質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、濾過した。これに二酸化珪素分散希釈液Dを20質量部を、撹拌しながら加えて、さらに60分間撹拌した後、アドバンテック東洋(株)のポリプロピレンワインドカートリッジフィルターTCW−PPS−1Nで濾過し、インライン添加液Dを調製した。
(Preparation of inline additive solution D)
Methylene chloride 100 parts by weight Dope D 34 parts by weight Tinuvin 109 (manufactured by Ciba Specialty Chemicals) 5 parts by weight Tinuvin 171 (manufactured by Ciba Specialty Chemicals) 5 parts by weight Tinuvin 326 (manufactured by Ciba Specialty Chemicals) 3 More than part by mass was put into a sealed container, heated, stirred and completely dissolved and filtered. To this was added 20 parts by mass of silicon dioxide dispersion diluted solution D while stirring, and the mixture was further stirred for 60 minutes, followed by filtration with Advantech Toyo Co., Ltd. polypropylene wind cartridge filter TCW-PPS-1N. Was prepared.

インライン添加液のライン中で、日本精線(株)製のファインメットNFでインライン添加液Dを濾過した。濾過したドープ液Dを100質量部に対し、濾過したインライン添加液Dを2.5質量部加えて、インラインミキサー(東レ静止型管内混合機 Hi−Mixer、SWJ)で十分混合し、次いで、ベルト流延装置を用い、温度35℃、1800mm幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離したセルロースエステルのウェブを35℃で溶媒を蒸発させ、1650mm幅にスリットし、その後、テンターでTD方向(フィルムの搬送方向と直交する方向)に1.1倍に延伸しながら、130℃の乾燥温度で、乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は20%であった。その後、120℃、110℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1400mm幅にスリットし、フィルム両端に幅15mm、平均高さ10μmのナーリング加工を施し、巻き取り初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り、セルロースエステルフィルム11を得た。セルロースエステルフィルム11の残留溶剤量は0.2%であり、平均膜厚は80μm、巻数は4000m、Roは1nm、Rtは54nmであった。   In-line additive solution D was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the in-line additive solution line. Add 2.5 parts by mass of the filtered inline additive D to 100 parts by mass of the filtered dope solution D, and mix well with an inline mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ). Using a casting apparatus, casting was uniformly performed on a stainless steel band support at a temperature of 35 ° C. and a width of 1800 mm. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and then peeled off from the stainless steel band support. The peeled cellulose ester web was evaporated at 35 ° C., slit to 1650 mm width, and then stretched 1.1 times in the TD direction (direction perpendicular to the film transport direction) with a tenter, Dried at the drying temperature. At this time, the residual solvent amount when starting stretching with a tenter was 20%. Thereafter, drying is completed while transporting the drying zone at 120 ° C. and 110 ° C. with a number of rolls, slitting to a width of 1400 mm, a knurling process with a width of 15 mm and an average height of 10 μm is applied to both ends of the film, and an initial winding tension of 220 N The cellulose ester film 11 was obtained by winding it around a 6-inch inner diameter core at a final tension of 110 N / m. The residual solvent amount of the cellulose ester film 11 was 0.2%, the average film thickness was 80 μm, the number of turns was 4000 m, Ro was 1 nm, and Rt was 54 nm.

〈セルロースエステルフィルム12の作製〉
(ドープEの調製)
セルロースエステル(セルロースアセテートプロピオネート、アセチル基置換度1.9、プロピオニル基置換度0.8、Mn=70000、Mw/Mn=2.14)
100質量部
トリフェニルフォスフェート 8質量部
エチルフタリルエチルグリコレート 2質量部
メチレンクロライド 300質量部
エタノール 60質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープEを調製した。製膜ライン中で日本精線(株)製のファインメットNFでドープEを濾過した。
<Preparation of cellulose ester film 12>
(Preparation of dope E)
Cellulose ester (cellulose acetate propionate, acetyl group substitution degree 1.9, propionyl group substitution degree 0.8, Mn = 70000, Mw / Mn = 2.14)
100 parts by weight Triphenyl phosphate 8 parts by weight Ethyl phthalyl ethyl glycolate 2 parts by weight Methylene chloride 300 parts by weight Ethanol 60 parts by weight or more is put into a closed container, heated and stirred, completely dissolved, and Azumi filter paper Azumi filter paper No. 24 was used to prepare a dope E. The dope E was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the film production line.

(二酸化珪素分散液E)
アエロジル972V(日本アエロジル(株)製、一次粒子の平均径16nm、見掛け比重90g/リットル) 10質量部
エタノール 75質量部
以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。分散後の液濁度は200ppmであった。二酸化珪素分散液に75質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液Eを作製した。
(Silicon dioxide dispersion E)
Aerosil 972V (manufactured by Nippon Aerosil Co., Ltd., average particle size 16 nm, apparent specific gravity 90 g / liter) 10 parts by mass Ethanol 75 parts by mass or more was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. The liquid turbidity after dispersion was 200 ppm. 75 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes to prepare a silicon dioxide dispersion dilution E.

(インライン添加液Eの作製)
メチレンクロライド 100質量部
チヌビン109(チバスペシャルティケミカルズ(株)製) 4質量部
チヌビン171(チバスペシャルティケミカルズ(株)製) 4質量部
チヌビン326(チバスペシャルティケミカルズ(株)製) 2質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、濾過した。これに二酸化珪素分散希釈液Eを20質量部、撹拌しながら加えて、さらに30分間撹拌した後、セルロースエステル(セルロースアセテートプロピオネート、アセチル基置換度1.9、プロピオニル基置換度0.8、Mn=70000、Mw/Mn=2.14)5質量部を撹拌しながら加えて、さらに60分間撹拌した後、アドバンテック東洋(株)のポリプロピレンワインドカートリッジフィルターTCW−PPS−1Nで濾過し、インライン添加液Eを調製した。
(Preparation of inline additive solution E)
Methylene chloride 100 parts by weight Tinuvin 109 (manufactured by Ciba Specialty Chemicals) 4 parts by weight Tinuvin 171 (manufactured by Ciba Specialty Chemicals) 4 parts by weight Tinuvin 326 (manufactured by Ciba Specialty Chemicals) Seal 2 parts by weight or more The solution was put into a container, heated, dissolved completely with stirring and filtered. To this was added 20 parts by mass of silicon dioxide dispersion diluent E with stirring, and the mixture was further stirred for 30 minutes, and then cellulose ester (cellulose acetate propionate, acetyl group substitution degree 1.9, propionyl group substitution degree 0.8). , Mn = 70000, Mw / Mn = 2.14) Add 5 parts by mass and stir for another 60 minutes, then filter with Advantech Toyo's polypropylene wind cartridge filter TCW-PPS-1N. Additive liquid E was prepared.

インライン添加液のライン中で、日本精線(株)製のファインメットNFでインライン添加液Eを濾過した。濾過したドープEを100質量部に対し、濾過したインライン添加液Eを4質量部加えて、インラインミキサー(東レ静止型管内混合機 Hi−Mixer、SWJ)で十分混合し、次いで、ベルト流延装置を用い、温度35℃、1800mm幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離したセルロースエステルのウェブを55℃で溶媒を蒸発させ、1650mm幅にスリットした。その後、120℃、110℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1400mm幅にスリットし、フィルム両端に幅15mm、平均高さ10μmのナーリング加工を施し、巻き取り初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り、セルロースエステルフィルム12を得た。セルロースエステルフィルム12の残留溶剤量は0.1%であり、平均膜厚は80μm、巻数は4000m、Roは0.2nm、Rtは50nmであった。   In-line additive solution E was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the in-line additive solution line. 4 parts by mass of the filtered in-line additive liquid E is added to 100 parts by mass of the filtered dope E, and sufficiently mixed with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ). Was cast uniformly on a stainless steel band support at a temperature of 35 ° C. and a width of 1800 mm. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and then peeled off from the stainless steel band support. The peeled cellulose ester web was evaporated at 55 ° C. and slit to 1650 mm width. Thereafter, drying is completed while transporting the drying zone of 120 ° C. and 110 ° C. with a number of rolls, slitting to a width of 1400 mm, a knurling process having a width of 15 mm and an average height of 10 μm is applied to both ends of the film, and an initial winding tension of 220 N / M and a final tension of 110 N / m were wound around a 6-inch inner diameter core to obtain a cellulose ester film 12. The residual solvent amount of the cellulose ester film 12 was 0.1%, the average film thickness was 80 μm, the number of turns was 4000 m, Ro was 0.2 nm, and Rt was 50 nm.

〔活性線硬化樹脂層付き偏光膜保護フィルムの作製〕
上記の作製したセルロースエステルフィルム11、12の上に、下記の活性線硬化樹脂層塗布組成物16〜19を押し出しコートし、次いで80℃に設定された乾燥部で乾燥した後、118mJ/cm2で紫外線照射し、乾燥膜厚で1〜25μm(表1記載)、中心線平均表面粗さ(Ra)8nmの活性線硬化樹脂層16〜19を設け、活性線硬化樹脂層付き偏光膜保護フィルムを作製した。
[Preparation of protective film for polarizing film with active ray curable resin layer]
The following actinic radiation curable resin layer coating compositions 16 to 19 were extrusion coated on the cellulose ester films 11 and 12 produced above, and then dried in a drying section set at 80 ° C., and then 118 mJ / cm 2. UV-irradiated, provided with an active ray curable resin layer 16-19 having a dry film thickness of 1 to 25 μm (described in Table 1) and a center line average surface roughness (Ra) of 8 nm, and a polarizing film protective film with an active ray curable resin layer Was made.

〈活性線硬化樹脂層塗布組成物16〉
ジペンタエリスリトールヘキサアクリレート単量体 60質量部
ジペンタエリスリトールヘキサアクリレート2量体 20質量部
ジペンタエリスリトールヘキサアクリレート3量体以上の成分 20質量部
ジメトキシベンゾフェノン光反応開始剤 4質量部
メチルエチルケトン 75質量部
プロピレングリコールモノメチルエーテル 75質量部
〈活性線硬化樹脂層塗布組成物17〉
ポリウレタンポリアクリレート 100質量部
ジメトキシベンゾフェノン光反応開始剤 4質量部
メチルエチルケトン 75質量部
プロピレングリコールモノメチルエーテル 75質量部
〈活性線硬化樹脂層塗布組成物18〉
ジペンタエリスリトールヘキサアクリレート単量体 60質量部
ジペンタエリスリトールヘキサアクリレート2量体 20質量部
ジペンタエリスリトールヘキサアクリレート3量体以上の成分 20質量部
架橋ポリスチレン粒子(綜研科学製SX350H、粒径3.5μm) 20質量部
酸化珪素微粒子(日本アエロジル社製、アエロジルR972V) 10質量部
ジメトキシベンゾフェノン光反応開始剤 4質量部
メチルエチルケトン 75質量部
プロピレングリコールモノメチルエーテル 75質量部
〈活性線硬化樹脂層塗布組成物19〉
エポキシアクリレート 60質量部
エポキシアクリレート2量体 20質量部
エポキシアクリレート3量体以上の成分 20質量部
ジメトキシベンゾフェノン光反応開始剤 4質量部
メチルエチルケトン 75質量部
プロピレングリコールモノメチルエーテル 75質量部
次に、前述の方法で上記作製した活性線硬化樹脂層のナノインデンテーション硬度(H)及びナノインデンテーション弾性率(Er)を測定した。さらに、下記方法で活性線硬化樹脂層付き偏光膜保護フィルムの鹸化処理後の寸法変化率を測定した。
<Actinic radiation curable resin layer coating composition 16>
Dipentaerythritol hexaacrylate monomer 60 parts by weight Dipentaerythritol hexaacrylate dimer 20 parts by weight Dipentaerythritol hexaacrylate trimer or higher component 20 parts by weight Dimethoxybenzophenone photoinitiator 4 parts by weight Methyl ethyl ketone 75 parts by weight Propylene Glycol monomethyl ether 75 parts by mass <Actinic radiation curable resin layer coating composition 17>
Polyurethane polyacrylate 100 parts by weight Dimethoxybenzophenone photoinitiator 4 parts by weight Methyl ethyl ketone 75 parts by weight Propylene glycol monomethyl ether 75 parts by weight <Actinic radiation curable resin layer coating composition 18>
Dipentaerythritol hexaacrylate monomer 60 parts by mass Dipentaerythritol hexaacrylate dimer 20 parts by mass Components greater than dipentaerythritol hexaacrylate trimer 20 parts by mass Cross-linked polystyrene particles (SX350H, manufactured by Soken Kagaku, particle size 3.5 μm) ) 20 parts by mass Silicon oxide fine particles (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.) 10 parts by mass Dimethoxybenzophenone photoreaction initiator 4 parts by mass Methyl ethyl ketone 75 parts by mass Propylene glycol monomethyl ether 75 parts by mass <Actinic radiation curable resin layer coating composition 19>
Epoxy acrylate 60 parts by mass Epoxy acrylate dimer 20 parts by mass Components of epoxy acrylate trimer or more 20 parts by mass Dimethoxybenzophenone photoinitiator 4 parts by mass Methyl ethyl ketone 75 parts by mass Propylene glycol monomethyl ether 75 parts by mass Next, the above-described method The nanoindentation hardness (H) and nanoindentation elastic modulus (Er) of the actinic radiation curable resin layer prepared above were measured. Furthermore, the dimensional change rate after saponification processing of the polarizing film protective film with an active ray curable resin layer was measured by the following method.

〈寸法変化率の測定〉
偏光膜保護フィルムについて、長手方向150mm×幅方向1300mmサイズに断裁し、該フィルム表面に100mm間隔でカミソリ等の鋭利な刃物で十文字型の印を付し、23℃、55%RHの環境下で24時間以上調湿し、顕微鏡で端部より100mm左側、端部より100mm右側及び中央部について各10カ所それぞれの印間距離L1を測定する。次に、該試料を44〜46℃の1mol/LのKOH水溶液で2分間処理して表面を鹸化処理した後、20秒間水洗、95〜100℃で30秒間乾燥し、再び、該試料を23℃、55%RHの環境下で24時間調湿し、顕微鏡で鹸化処理後の印間距離L2を測定する。この処理前後の寸法変化率を次式によって求める。
<Measurement of dimensional change rate>
About the polarizing film protective film, it is cut into a size of 150 mm in the longitudinal direction and 1300 mm in the width direction. Humidity is adjusted for 24 hours or more, and the distance L1 between the marks is measured with a microscope at each of 10 positions about 100 mm to the left, 100 mm to the right, and the center. Next, the sample was treated with a 1 mol / L KOH aqueous solution at 44 to 46 ° C. for 2 minutes to saponify the surface, washed with water for 20 seconds, dried at 95 to 100 ° C. for 30 seconds, and again the sample was treated with 23 Humidity is adjusted for 24 hours in an environment of 55 ° C and RH, and the distance L2 between the marks after saponification treatment is measured with a microscope. The dimensional change rate before and after this processing is obtained by the following equation.

寸法変化率(%)=(L1−L2)/L1×100
L1:鹸化処理前の印間距離
L2:鹸化処理後の印間距離
なお、位相差フィルム1〜3の寸法変化率をリタデーションと合わせて表2に示す。
Dimensional change rate (%) = (L1-L2) / L1 × 100
L1: Distance between marks before saponification treatment L2: Distance between marks after saponification treatment Table 2 shows the dimensional change rates of the retardation films 1 to 3 together with retardation.

《液晶セルのバックライト側偏光板の作製》
表1に記載した組み合わせで、44〜46℃の1mol/LのKOH水溶液で2分間処理して表面を鹸化処理した位相差フィルム1〜3及びバックライト側偏光膜保護フィルムで、ヨウ素ドープした延伸ポリビニルアルコールからなる偏光膜を挟んだ構成のロール状の偏光板1〜16を作製した。
<< Preparation of polarizing plate for liquid crystal cell's backlight >>
In the combinations shown in Table 1, iodine-doped stretching with retardation films 1 to 3 and a backlight side polarizing film protective film whose surfaces were saponified by treatment with 1 mol / L KOH aqueous solution at 44 to 46 ° C. for 2 minutes The roll-shaped polarizing plates 1-16 of the structure which pinched | interposed the polarizing film which consists of polyvinyl alcohol were produced.

《液晶セルのバックライト側偏光板の評価》
作製した偏光板の端部の接着状況を下記基準で4段階評価した。
<Evaluation of polarizing plate on the backlight side of the liquid crystal cell>
The adhesion state of the edge part of the produced polarizing plate was evaluated in four stages according to the following criteria.

◎:端部から接着成分がはみ出すことが全くなく、段差もなく、非常に良好
○:端部から接着成分がはみ出すことはないが、フィルム段差がみられる
△:端部から接着成分のはみ出しが認められるが実質的問題はない
×:端部から接着成分等がはみ出して問題なレベル
評価の結果及び寸法変化率を表1に示す。
◎: Adhesive component does not protrude from the edge, no difference in level, very good ○: Adhesive component does not protrude from the edge, but film step is observed △: Adhesive component protrudes from the edge Although it is recognized, there is no substantial problem. X: Table 1 shows the result of the level evaluation and the dimensional change rate which are problematic because the adhesive component protrudes from the end.

Figure 2006071875
Figure 2006071875

Figure 2006071875
Figure 2006071875

表1より寸法変化率が小さい本発明の試料は、比較品に比べて、偏光板の端部の接着状況が良好である。   The sample of the present invention having a smaller dimensional change rate than Table 1 has better adhesion at the end of the polarizing plate than the comparative product.

実施例2
《液晶セルのバックライト側偏光板の作製》
実施例1と同様にして液晶セルのバックライト側偏光板16種を作製した。ただし、ロール状の位相差フィルム及び偏光膜保護フィルムを使用し、その鹸化は下記条件で行い、鹸化処理した位相差フィルム、前記ポリビニルアルコール系偏光膜及び鹸化処理した偏光膜保護フィルムをロール状態で連続的に貼り合わせ、位相差フィルムの液晶セルへの接着面に、下記のようにして粘着層と剥離保護層を設けて、連続処理で偏光板を作製した。
Example 2
<< Preparation of polarizing plate for liquid crystal cell's backlight >>
In the same manner as in Example 1, 16 types of backlight-side polarizing plates of liquid crystal cells were produced. However, a roll-like retardation film and a polarizing film protective film were used, and the saponification was performed under the following conditions. The pressure-sensitive adhesive layer and the release protective layer were provided as follows on the adhesion surface of the retardation film to the liquid crystal cell, and a polarizing plate was produced by continuous treatment.

(鹸化処理条件)
44〜46℃の1mol/LのKOH水溶液で2分間処理して表面を鹸化処理した後、20秒間水洗、95〜100℃で30秒間乾燥する。搬送張力は75〜85Nとする。
(Saponification conditions)
The surface is saponified by treatment with a 1 mol / L KOH aqueous solution at 44 to 46 ° C. for 2 minutes, washed with water for 20 seconds, and dried at 95 to 100 ° C. for 30 seconds. The conveyance tension is 75 to 85N.

(粘着層と剥離保護層の形成)
下記アクリル系粘着剤を離型紙上に乾燥後の膜厚が10μmとなるように塗布、乾燥して粘着層を作製後、前記偏光板の位相差フィルム面に粘着層と剥離保護層を接着する。
(Formation of adhesive layer and release protective layer)
The following acrylic pressure-sensitive adhesive is coated on a release paper so that the film thickness after drying is 10 μm, dried to prepare an adhesive layer, and then the adhesive layer and the release protective layer are bonded to the retardation film surface of the polarizing plate. .

〈アクリル系粘着剤の作製〉
アクリル酸n−ブチル92.9部、N−シクロヘキシルマレイミド7部、2−ヒドロキシエチルアクリレート0.1部、2,2′−アゾビスイソブチロニトリル0.3部を入れ、酢酸エチル中にて窒素ガス雰囲気下で60℃で5時間、さらに70℃で1.5時間共重合反応を行い、固形分濃度30質量%の共重合体溶液を得た。この溶液に、共重合体100部当たり、トリメチロールプロパントリレンジイソシアネート2部を混合して分子間架橋を行い、アクリル系粘着剤を作製した。
<Production of acrylic adhesive>
Add 92.9 parts of n-butyl acrylate, 7 parts of N-cyclohexylmaleimide, 0.1 part of 2-hydroxyethyl acrylate, 0.3 part of 2,2'-azobisisobutyronitrile, and in ethyl acetate. A copolymerization reaction was performed at 60 ° C. for 5 hours and further at 70 ° C. for 1.5 hours in a nitrogen gas atmosphere to obtain a copolymer solution having a solid content concentration of 30% by mass. To this solution, 2 parts of trimethylolpropane tolylene diisocyanate per 100 parts of the copolymer was mixed and subjected to intermolecular crosslinking to prepare an acrylic pressure-sensitive adhesive.

《液晶セルの視認側偏光板の作製》
《反射防止フィルムの作製》
〔セルロースエステルフィルムの作製〕
以下のセルロースエステル、可塑剤、紫外線吸収剤、微粒子及び溶媒を用いてセルロースエステル溶液(ドープ)を調製し、溶液流延製膜法にてセルロースエステルフィルムを作製した。
<< Production of polarizing plate on the viewing side of liquid crystal cell >>
<< Preparation of antireflection film >>
[Production of cellulose ester film]
A cellulose ester solution (dope) was prepared using the following cellulose ester, plasticizer, ultraviolet absorber, fine particles and solvent, and a cellulose ester film was prepared by a solution casting film forming method.

セルロースエステル(セルローストリアセテート、アセチル基置換度2.9、Mn=160000、Mw/Mn=1.8) 100kg
可塑剤(トリメチロールプロパントリベンゾエート) 5kg
可塑剤(エチルフタリルエチルグリコレート) 5kg
紫外線吸収剤(チヌビン109、チバスペシャリティーケミカルズ(株)製)
1.0kg
紫外線吸収剤(チヌビン171、チバスペシャリティーケミカルズ(株)製)
1.0kg
微粒子(アエロジルR972V、日本アエロジル(株)製) 0.3kg
溶媒(酢酸メチル) 440kg
溶媒(エタノール) 110kg
上記のセルロースエステル、可塑剤、紫外線吸収剤、微粒子及び溶媒を用いてセルロースエステル溶液(ドープ)を調製した。
Cellulose ester (cellulose triacetate, acetyl group substitution degree 2.9, Mn = 16000, Mw / Mn = 1.8) 100 kg
Plasticizer (trimethylolpropane tribenzoate) 5kg
Plasticizer (ethyl phthalyl ethyl glycolate) 5kg
UV absorber (Tinubin 109, manufactured by Ciba Specialty Chemicals Co., Ltd.)
1.0kg
UV absorber (Tinuvin 171 manufactured by Ciba Specialty Chemicals Co., Ltd.)
1.0kg
Fine particles (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.) 0.3kg
Solvent (methyl acetate) 440kg
Solvent (ethanol) 110kg
A cellulose ester solution (dope) was prepared using the above cellulose ester, plasticizer, ultraviolet absorber, fine particles and solvent.

即ち、溶媒を密閉容器に投入し、攪拌しながら残りの素材を順に投入し、加熱、撹拌しながら完全に溶解し、混合した。微粒子は溶媒の一部で分散して添加した。溶液を流延する温度まで下げて一晩静置し、脱泡操作を施した後、溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過し、セルロースエステル溶液を得た。   That is, the solvent was put into an airtight container, the remaining materials were put in order with stirring, and completely dissolved and mixed while heating and stirring. The fine particles were added dispersed in a part of the solvent. After the temperature was lowered to the temperature at which the solution was cast and allowed to stand overnight, a defoaming operation was performed, and then the solution was Azumi Filter Paper No. Filtration using 244 gave a cellulose ester solution.

次に、33℃に温度調整したセルロースエステル溶液を、ダイに送液して、ダイスリットからステンレスベルト上に均一に流延した。ステンレスベルトの流延部は裏面から37℃の温水で加熱した。流延後、金属支持体上のドープ膜(ステンレスベルトに流延以降はウエブという)に44℃の温風をあてて乾燥させ、剥離の残留溶媒量が120質量%で剥離し、剥離の際の張力をかけて1.1倍の縦延伸倍率となるように延伸し、ついで、残留溶媒量が35質量%から10質量%となる間にテンターでウェブ端部を把持し、幅手方向に1.1倍の延伸倍率となるように延伸した。延伸後、その幅を維持したまま数秒間保持した後、幅方向の張力を緩和させた後、幅保持を解放し、さらに125℃に設定された第3乾燥ゾーンで20分間搬送させて、乾燥を行い、幅1.5m、膜厚50μmのセルロースエステルフィルムを作製した。   Next, the cellulose ester solution whose temperature was adjusted to 33 ° C. was fed to a die and uniformly cast from a die slit onto a stainless steel belt. The cast part of the stainless steel belt was heated from the back with hot water of 37 ° C. After casting, the dope film on the metal support (referred to as a web after casting on a stainless steel belt) is dried by applying hot air of 44 ° C., and the residual solvent in the peeling is peeled off at 120% by mass. Then, the web was stretched so that the longitudinal stretching ratio was 1.1 times, and then the web edge was gripped with a tenter while the residual solvent amount was from 35% by mass to 10% by mass. It extended | stretched so that it might become 1.1 times the draw ratio. After stretching, the width is maintained for several seconds, and after the tension in the width direction is relaxed, the width is released and further conveyed for 20 minutes in a third drying zone set at 125 ° C., and dried. A cellulose ester film having a width of 1.5 m and a film thickness of 50 μm was produced.

〔ハードコートフィルムの作製〕
上記セルロースエステルフィルムの表面(B面側;流延製膜法において用いられるステンレスバンド等の支持体鏡面に接した面;支持体側)上に、下記の活性線硬化樹脂層塗布液を孔径0.4μmのポリプロピレン製フィルターで濾過して活性線硬化樹脂層塗布液を調製し、これをマイクログラビアコーターを用いて塗布し、90℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を80mJ/cm2として塗布層を硬化させ、厚さ5μmの活性線硬化樹脂層を形成しハードコートフィルムを作製した。
[Production of hard coat film]
On the surface of the cellulose ester film (the B side; the surface in contact with the support mirror surface such as a stainless steel band used in the casting film forming method; the support side), the following actinic radiation curable resin layer coating solution was applied with a pore size of 0. An actinic radiation curable resin layer coating solution is prepared by filtration through a 4 μm polypropylene filter, which is applied using a micro gravure coater, dried at 90 ° C., and then the illuminance of the irradiated part is 100 mW / cm using an ultraviolet lamp. 2 , the irradiation amount was 80 mJ / cm 2 , the coating layer was cured, and an actinic radiation curable resin layer having a thickness of 5 μm was formed to produce a hard coat film.

(活性線硬化樹脂層塗布液)
下記材料を攪拌、混合し活性線硬化樹脂層塗布液とした。
(Active ray curable resin layer coating solution)
The following materials were stirred and mixed to obtain an actinic radiation curable resin layer coating solution.

ジペンタエリスリトールヘキサアクリレート単量体 60質量部
ジペンタエリスリトールヘキサアクリレート2量体 20質量部
ジペンタエリスリトールヘキサアクリレート3量体以上の成分 20質量部
重合開始剤:イルガキュア184(チバスペシャルティケミカルズ(株)製)
4質量部
プロピレングリコールモノメチルエーテル 75質量部
メチルエチルケトン 75質量部
超微粒子シリカ アエロジル200V(日本アエロジル(株)製)0.002質量部
以上のようにして、ハードコートフィルムを作製した。
Dipentaerythritol hexaacrylate monomer 60 mass parts Dipentaerythritol hexaacrylate dimer 20 mass parts Dipentaerythritol hexaacrylate trimer or higher component 20 mass parts Polymerization initiator: Irgacure 184 (manufactured by Ciba Specialty Chemicals) )
4 parts by mass Propylene glycol monomethyl ether 75 parts by mass Methyl ethyl ketone 75 parts by mass Ultrafine particle silica Aerosil 200V (manufactured by Nippon Aerosil Co., Ltd.) 0.002 parts by mass or more was used to prepare a hard coat film.

〔反射防止フィルムの作製〕
ハードコートフィルム上に以下の表面処理を行った後、下記中屈折率層、高屈折率層及び低屈折率層を表1に記載のように、この順に塗設し反射防止フィルムを作製した。
[Preparation of antireflection film]
After performing the following surface treatment on the hard coat film, the following medium refractive index layer, high refractive index layer and low refractive index layer were coated in this order as shown in Table 1 to prepare an antireflection film.

(表面処理)
上記のハードコートフィルムを、50℃に加熱した1.5mol/l−NaOH水溶液に2分間浸漬しアルカリ処理を行い、水洗後、0.5質量%−H2SO4水溶液に室温で30秒間浸漬し中和させ、水洗、乾燥を行った。
(surface treatment)
The hard coat film is immersed in a 1.5 mol / l-NaOH aqueous solution heated to 50 ° C. for 2 minutes for alkali treatment, washed with water, and then immersed in a 0.5 mass% -H 2 SO 4 aqueous solution at room temperature for 30 seconds. Neutralized, washed with water and dried.

〔中屈折率層の作製〕
上記作製したハードコートフィルムの活性線硬化樹脂層上に下記中屈折率層塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ中屈折率層を形成した。
(Preparation of medium refractive index layer)
The following medium refractive index layer coating solution is applied onto the actinic radiation curable resin layer of the hard coat film prepared above using a bar coater, dried at 60 ° C., and then irradiated with ultraviolet rays to cure the coating layer and have a medium refractive index. A layer was formed.

中屈折率層の膜厚:100nm
中屈折率層の屈折率:1.64
(中屈折率層組成)
酸化チタン微粒子分散物(RTSPNB、シーアイ化成工業社製、固形分15%)
270質量部
ジペンタエリスリトールヘキサアクリレート(KAYARAD DPHA、日本化薬社製) 55質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
イルガキュア907(チバガイギー社製) 3質量部
プロピレングリコールモノメチルエーテル 1470質量部
イソプロピルアルコール 2720質量部
メチルエチルケトン 490質量部
〔高屈折率層の作製〕
上記作製した中屈折率層上に下記高屈折率層塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ高屈折率層を形成した。
Medium refractive index layer thickness: 100 nm
Refractive index of medium refractive index layer: 1.64
(Medium refractive index layer composition)
Titanium oxide fine particle dispersion (RTSPNB, manufactured by CI Kasei Kogyo Co., Ltd., solid content 15%)
270 parts by mass Dipentaerythritol hexaacrylate (KAYARAD DPHA, Nippon Kayaku Co., Ltd.) 55 parts by mass FZ-2207 (silicon compound, manufactured by Nippon Unicar Co., Ltd.) 1 part by mass Irgacure 907 (Ciba Geigy) 3 parts by mass propylene glycol Monomethyl ether 1470 parts by weight Isopropyl alcohol 2720 parts by weight Methyl ethyl ketone 490 parts by weight [Preparation of high refractive index layer]
The following high-refractive-index layer coating solution was applied onto the produced medium-refractive-index layer using a bar coater, dried at 60 ° C., and then irradiated with ultraviolet rays to cure the applied layer to form a high-refractive-index layer.

高屈折率層の膜厚:50nm
高屈折率層の屈折率:1.80
(高屈折率層組成)
RTSPNB(シーアイ化成工業(株)製、酸化チタン微粒子分散物、固形分15%) 60質量部
KBM503(シランカップリング剤、信越化学(株)製) 2質量部
テトラブトキシチタン 5質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 0.2質量部
イルガキュア907(チバガイギー社製) 2質量部
イソプロピルアルコール 560質量部
メチルエチルケトン 90質量部
プロピレングリコールモノメチルエーテル 280質量部
〔低屈折率層の作製〕
上記作製した高屈折率層上に下記低屈折率層塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ低屈折率層を形成した。
High refractive index layer thickness: 50 nm
Refractive index of high refractive index layer: 1.80
(High refractive index layer composition)
RTSPNB (Cai Kasei Kogyo Co., Ltd., titanium oxide fine particle dispersion, solid content 15%) 60 parts by weight KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts by weight Tetrabutoxy titanium 5 parts by weight FZ-2207 (Silicon compound, manufactured by Nippon Unicar Co., Ltd.) 0.2 parts by mass Irgacure 907 (manufactured by Ciba Geigy) 2 parts by mass Isopropyl alcohol 560 parts by mass Methyl ethyl ketone 90 parts by mass Propylene glycol monomethyl ether 280 parts by mass [Production of low refractive index layer]
The following low refractive index layer coating solution was coated on the high refractive index layer produced above using a bar coater, dried at 60 ° C., and then irradiated with ultraviolet rays to cure the coated layer to form a low refractive index layer.

低屈折率層の膜厚:90nm
低屈折率層の屈折率:1.38
(低屈折率層組成)
〈アルコキシケイ素加水分解液1の調製〉
テトラエトキシシラン289gとエタノール553gを混和し、これに0.15%酢酸水溶液157gを添加し、25℃のウォーターバス中で30時間攪拌することで加水分解物液1を調製した。
Low refractive index layer thickness: 90 nm
Refractive index of the low refractive index layer: 1.38
(Low refractive index layer composition)
<Preparation of alkoxysilicon hydrolyzate 1>
A hydrolyzate liquid 1 was prepared by mixing 289 g of tetraethoxysilane and 553 g of ethanol, adding 157 g of a 0.15% aqueous acetic acid solution thereto, and stirring in a water bath at 25 ° C. for 30 hours.

アルコキシケイ素加水分解物液1 100質量部
KBM503(シランカップリング剤、信越化学(株)製) 1質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
プロピレングリコールモノメチルエーテル 380質量部
イソプロピルアルコール 380質量部
上記作製した反射防止フィルムを用いて下記のようにして、液晶表示パネル(画像表示装置)の視認側に用いる反射防止層付き液晶セルの視認側偏光板を作製した。
Alkoxysilicon hydrolyzate liquid 1 100 parts by weight KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 1 part by weight FZ-2207 (silicon compound, manufactured by Nippon Unicar Co., Ltd.) 1 part by weight Propylene glycol monomethyl ether 380 parts by weight Part Isopropyl alcohol 380 parts by mass Using the produced antireflection film, a viewing side polarizing plate of a liquid crystal cell with an antireflection layer used on the viewing side of a liquid crystal display panel (image display device) was produced.

(a)偏光膜の作製
厚さ120μmの長尺のポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gの比率からなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gの比率からなる68℃の水溶液に浸漬した。これを水洗、乾燥し長尺の偏光膜を得た。
(A) Production of Polarizing Film A long polyvinyl alcohol film having a thickness of 120 μm was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. . This was washed with water and dried to obtain a long polarizing film.

(b)偏光板の作製
次いで、下記工程1〜5に従って、偏光膜と偏光板用保護フィルムとを貼り合わせて偏光板を作製した。
(B) Production of Polarizing Plate Next, according to the following steps 1 to 5, the polarizing film and the polarizing plate protective film were bonded together to produce a polarizing plate.

工程1:セルローストリアセテートフィルムと反射防止フィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。反射防止フィルムの反射防止層を設けた面にはあらかじめ剥離性の保護フィルム(PET製)を張り付けて保護した。   Step 1: The cellulose triacetate film and the antireflection film were immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried. A surface of the antireflection film provided with the antireflection layer was previously protected with a peelable protective film (PET).

同様にセルローストリアセテートフィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。   Similarly, the cellulose triacetate film was immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried.

工程2:前述の偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。   Process 2: The above-mentioned polarizing film was immersed for 1 to 2 seconds in the polyvinyl alcohol adhesive tank of 2 mass% of solid content.

工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理したセルローストリアセテートフィルムと反射防止フィルムで挟み込んで、積層配置した。   Step 3: Excess adhesive adhered to the polarizing film in Step 2 was lightly removed, and it was sandwiched between the cellulose triacetate film and the antireflective film that had been subjected to alkali treatment in Step 1, and laminated.

工程4:2つの回転するローラにて20〜30N/cm2の圧力で約2m/minの速度で張り合わせた。このとき気泡が入らないように注意して実施した。 Process 4: It bonded together at the speed | rate of about 2 m / min with the pressure of 20-30 N / cm < 2 > with the two rotating rollers. At this time, care was taken to prevent bubbles from entering.

工程5:80℃の乾燥機中にて工程4で作製した試料を2分間乾燥処理し、本発明の偏光板を作製した。   Step 5: The sample prepared in Step 4 in a dryer at 80 ° C. was dried for 2 minutes to prepare the polarizing plate of the present invention.

《液晶表示装置の作製》
シャープ社製のアクオス液晶表示装置の液晶セルのバックライト側偏光板及び視認側偏光板を剥がし、上記作製した液晶セルのバックライト側偏光板及び視認側偏光板(反射防止フィルムを有する)を液晶セルに貼り付け、30インチの液晶表示装置を作製した。本装置は蛍光灯を平行に数本並べた直下式バックライト光源である。
<Production of liquid crystal display device>
The backlight side polarizing plate and the viewing side polarizing plate of the liquid crystal cell of the Aquos liquid crystal display device manufactured by Sharp Corporation are peeled off, and the backlight side polarizing plate and the viewing side polarizing plate (having an antireflection film) of the prepared liquid crystal cell are liquid crystal. A 30-inch liquid crystal display device was produced by pasting on the cell. This device is a direct backlight light source in which several fluorescent lamps are arranged in parallel.

《液晶表示装置の評価》
実施例1で問題のあった処方のロール状偏光板を使用すると量産の中で、はみ出した成分がローラ転写で他の部分にも付着して表示装置として問題のあることが分かった。本発明の偏光板を用いた表示装置は良好であった。また、偏光板保護フィルムに樹脂層(活性線硬化樹脂層)がない偏光板は、バックライト面に傷が認められる(液晶表示自身の視認側からの観察には影響ない)が、樹脂層をコーティングした本発明では、傷がなく外観も良好であった。
<Evaluation of liquid crystal display device>
It was found that when a roll-shaped polarizing plate having a problem in Example 1 was used, the protruding component adhered to other parts by roller transfer and had a problem as a display device in mass production. The display device using the polarizing plate of the present invention was good. Further, a polarizing plate having no resin layer (active ray curable resin layer) on the polarizing plate protective film has scratches on the backlight surface (does not affect the observation from the viewing side of the liquid crystal display itself). In the coated present invention, there was no scratch and the appearance was good.

また、本発明の液晶表示装置は、下記方法で行う視認性に優れ、及び低コストで量産性に優れていた。   Moreover, the liquid crystal display device of the present invention was excellent in visibility performed by the following method, and was excellent in mass productivity at low cost.

(視認性の評価方法)
上記のようにして得られた液晶表示装置を床から80cmの高さの机上に配置し、床から3mの高さの天井部に昼色光直管蛍光灯(FLR40S・D/M−X 松下電器産業(株)製)40W×2本を1セットとして1.5m間隔で10セット配置した。このとき評価者が液晶表示装置正面にいるときに、評価者の頭上より後方に向けて天井部に前記蛍光灯がくるように配置した。液晶表示装置は机に対する垂直方向から25°傾けて蛍光灯が写り込むようにして画面の見易さ(視認性)を下記のようにランク評価した。
(Visibility evaluation method)
The liquid crystal display device obtained as described above was placed on a desk 80 cm high from the floor, and a daylight direct fluorescent lamp (FLR40S • D / MX Matsushita Electric) was placed on the ceiling 3 m high from the floor. 10 sets are arranged at intervals of 1.5 m, with 40W × 2 pieces (produced by Sangyo Co., Ltd.) as one set. At this time, when the evaluator is in front of the liquid crystal display device, the fluorescent lamp is arranged so that the fluorescent lamp comes to the ceiling portion from the evaluator's overhead to the rear. The liquid crystal display device was tilted by 25 ° from the vertical direction with respect to the desk, and a fluorescent lamp was reflected so that the visibility of the screen (visibility) was evaluated as follows.

A:最も近い蛍光灯の移りこみから気にならず、フォントの大きさ8以下の文字もはっきりと読める
B:近くの蛍光灯の写りこみはやや気になるが、遠くは気にならず、フォントの大きさ8以下の文字もなんとかと読める
C:遠くの蛍光灯の写りこみも気になり、フォントの大きさ8以下の文字を読むのは困難である
D:蛍光灯の写りこみがかなり気になり、写り込みの部分はフォントの大きさ8以下の文字を読むことはできない
評価の結果、本発明の液晶表示装置はB以上であり、比較の液晶表示装置より良好であった。
A: You don't have to worry about the movement of the nearest fluorescent lamp, and you can clearly read characters with a font size of 8 or less. Can manage to read characters with a font size of 8 or less C: It is difficult to read characters with a font size of 8 or less. The part of the reflection is not able to read characters having a font size of 8 or less. As a result of the evaluation, the liquid crystal display device of the present invention was B or more, which was better than the comparative liquid crystal display device.

Claims (10)

液晶表示装置の液晶セルのバックライト側に用いられる偏光板であって、偏光膜の両側に保護フィルムを有する偏光板において、該偏光膜はポリビニルアルコール系偏光膜であり、液晶セル側偏光膜保護フィルムはセルロースエステルフィルムを延伸して作製され、23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが70〜400nmの位相差フィルムであり、バックライト側偏光膜保護フィルムは鹸化処理前に対して、鹸化処理後の寸法変化率が0.01〜0.10%のセルロースエステルフィルムであることを特徴とする偏光板。
Ro=(Nx−Ny)×d
Rt=((Nx+Ny)/2−Nz)×d
(式中、Nxはフィルム面内の最大屈折率、Nyはフィルム面内でNxと直交方向の屈折率、Nzは厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す。)
A polarizing plate used on a backlight side of a liquid crystal cell of a liquid crystal display device, wherein the polarizing film has a protective film on both sides of the polarizing film, the polarizing film is a polyvinyl alcohol polarizing film, and the liquid crystal cell side polarizing film protection The film is produced by stretching a cellulose ester film, and is a retardation film having a retardation Ro defined by the following formula of 20 to 300 nm and a retardation Rt of 70 to 400 nm under the conditions of 23 ° C. and 55% RH. The polarizing plate, wherein the right-side polarizing film protective film is a cellulose ester film having a dimensional change rate of 0.01 to 0.10% after the saponification treatment with respect to that before the saponification treatment.
Ro = (Nx−Ny) × d
Rt = ((Nx + Ny) / 2−Nz) × d
(In the formula, Nx represents the maximum refractive index in the film plane, Ny represents the refractive index in the direction perpendicular to Nx in the film plane, Nz represents the refractive index in the thickness direction, and d represents the thickness (nm) of the film.)
前記バックライト側偏光膜保護フィルムはバックライト側に活性線硬化樹脂層を有し、23℃、55%RHの条件下で、上記式で定義されるリタデーションRoが0〜20nm、リタデーションRtが0〜70nmであることを特徴とする請求項1に記載の偏光板。 The backlight side polarizing film protective film has an actinic radiation curable resin layer on the backlight side, and the retardation Ro defined by the above formula is 0 to 20 nm and the retardation Rt is 0 under the conditions of 23 ° C. and 55% RH. The polarizing plate according to claim 1, wherein the polarizing plate is ˜70 nm. 前記位相差フィルムがリタデーション上昇剤を含有することを特徴とする請求項1または2に記載の偏光板。 The polarizing plate according to claim 1, wherein the retardation film contains a retardation increasing agent. 前記リタデーション上昇剤が棒状化合物であることを特徴とする請求項3に記載の偏光板。 The polarizing plate according to claim 3, wherein the retardation increasing agent is a rod-shaped compound. 前記バックライト側偏光膜保護フィルムはセルローストリアセテートであり、前記活性線硬化樹脂層に用いられる活性線硬化樹脂がアクリル系、アクリルウレタン系のUV硬化性樹脂であり、該活性線硬化樹脂層の膜厚が1〜20μmであることを特徴とする請求項1〜4のいずれか1項に記載の偏光板。 The backlight side polarizing film protective film is cellulose triacetate, the active ray curable resin used for the active ray curable resin layer is an acrylic or acrylurethane UV curable resin, and the active ray curable resin layer film Thickness is 1-20 micrometers, The polarizing plate of any one of Claims 1-4 characterized by the above-mentioned. 液晶表示装置の液晶セルのバックライト側に用いられる偏光板の製造方法であって、偏光膜の両側に保護フィルムを有する偏光板の製造方法において、該偏光膜はロール状のポリビニルアルコール系偏光膜であり、液晶セル側偏光膜保護フィルムはセルロースエステルフィルムを延伸して作製され、23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが70〜400nmのロール状の位相差フィルムであり、バックライト側偏光膜保護フィルムは、先後端部以外は鹸化処理前に対して、鹸化処理後の寸法変化率が0.01〜0.10%であり、鹸化処理した前記位相差フィルム、前記ポリビニルアルコール系偏光膜、鹸化処理した前記バックライト側偏光膜保護フィルムをロール状態で連続的に貼り合わせることを特徴とする偏光板の製造方法。
Ro=(Nx−Ny)×d
Rt=((Nx+Ny)/2−Nz)×d
(式中、Nxはフィルム面内の最大屈折率、Nyはフィルム面内でNxと直交方向の屈折率、Nzは厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す。)
A method for producing a polarizing plate used on a backlight side of a liquid crystal cell of a liquid crystal display device, wherein the polarizing film has a protective film on both sides of the polarizing film, the polarizing film being a roll-shaped polyvinyl alcohol polarizing film The liquid crystal cell-side polarizing film protective film is produced by stretching a cellulose ester film, and under the conditions of 23 ° C. and 55% RH, the retardation Ro defined by the following formula is 20 to 300 nm, and the retardation Rt is 70 to It is a roll-like retardation film of 400 nm, and the backlight side polarizing film protective film has a dimensional change rate after saponification treatment of 0.01 to 0.10% with respect to that before saponification treatment except for the front and rear ends. The saponified retardation film, the polyvinyl alcohol polarizing film, the saponified backlight side polarizing film protective film Method for producing a polarizing plate, characterized in that bonded to the continuous state.
Ro = (Nx−Ny) × d
Rt = ((Nx + Ny) / 2−Nz) × d
(In the formula, Nx represents the maximum refractive index in the film plane, Ny represents the refractive index in the direction perpendicular to Nx in the film plane, Nz represents the refractive index in the thickness direction, and d represents the thickness (nm) of the film.)
前記バックライト側偏光膜保護フィルムの鹸化処理後の幅手方向の寸法変化率の平均値が0.04%以下であることを特徴とする請求項6に記載の偏光板の製造方法。 The method for producing a polarizing plate according to claim 6, wherein an average value of a dimensional change rate in the width direction after the saponification treatment of the backlight side polarizing film protective film is 0.04% or less. 鹸化処理した前記位相差フィルム、前記ポリビニルアルコール系偏光膜、鹸化処理した前記バックライト側偏光膜保護フィルムをロール状態で連続的に貼り合わせる工程と巻き取りを行なう工程の間に、前記位相差フィルムの液晶セルへの接着面に、接着層と剥離保護層を設ける工程を有することを特徴とする請求項6または7に記載の偏光板の製造方法。 Between the step of continuously laminating the saponified retardation film, the polyvinyl alcohol polarizing film, the saponified backlight-side polarizing film protective film in a roll state and the winding step, the retardation film The method for producing a polarizing plate according to claim 6 or 7, further comprising a step of providing an adhesive layer and a peeling protective layer on an adhesive surface to the liquid crystal cell. 液晶表示装置の液晶セルのバックライト側に用いられる偏光板であって、偏光膜の両側に保護フィルムを有する偏光板において、該偏光膜はポリビニルアルコール系偏光膜であり、液晶セル側偏光膜保護フィルムはセルロースエステルフィルムを延伸して作製され、23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが20〜300nm、リタデーションRtが70〜400nmのリタデーション上昇剤を含有する位相差フィルムであり、バックライト側偏光膜保護フィルムは23℃、55%RHの条件下で、下記式で定義されるリタデーションRoが0〜20nm、リタデーションRtが0〜70nmのセルロースエステルフィルムであり、バックライト側表面に膜厚が1〜20μmの活性線硬化樹脂層を有し、該活性線硬化樹脂層に用いられる活性線硬化樹脂がアクリル系、アクリルウレタン系のUV硬化性樹脂であることを特徴とする偏光板。
Ro=(Nx−Ny)×d
Rt=((Nx+Ny)/2−Nz)×d
(式中、Nxはフィルム面内の最大屈折率、Nyはフィルム面内でNxと直交方向の屈折率、Nzは厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す。)
A polarizing plate used on a backlight side of a liquid crystal cell of a liquid crystal display device, wherein the polarizing film has a protective film on both sides of the polarizing film, the polarizing film is a polyvinyl alcohol polarizing film, and the liquid crystal cell side polarizing film protection The film is prepared by stretching a cellulose ester film, and contains a retardation increasing agent having a retardation Ro defined by the following formula of 20 to 300 nm and a retardation Rt of 70 to 400 nm under the conditions of 23 ° C. and 55% RH. It is a phase difference film, and the backlight side polarizing film protective film is a cellulose ester film having a retardation Ro defined by the following formula of 0 to 20 nm and a retardation Rt of 0 to 70 nm under the conditions of 23 ° C. and 55% RH. An active ray curable resin layer having a film thickness of 1 to 20 μm on the backlight side surface; A polarizing plate, wherein the active ray curable resin used to line the cured resin layer is an acrylic, acrylic urethane UV curing resin.
Ro = (Nx−Ny) × d
Rt = ((Nx + Ny) / 2−Nz) × d
(In the formula, Nx represents the maximum refractive index in the film plane, Ny represents the refractive index in the direction perpendicular to Nx in the film plane, Nz represents the refractive index in the thickness direction, and d represents the thickness (nm) of the film.)
請求項1〜5、9のいずれか1項に記載の偏光板、または請求項6〜8のいずれか1項に記載の偏光板の製造方法により得られた偏光板を用いることを特徴とする液晶表示装置。 It uses the polarizing plate of any one of Claims 1-5, 9 or the polarizing plate obtained by the manufacturing method of the polarizing plate of any one of Claims 6-8. Liquid crystal display device.
JP2004254018A 2004-09-01 2004-09-01 Polarizing plate, its manufacture method and liquid crystal display device Pending JP2006071875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254018A JP2006071875A (en) 2004-09-01 2004-09-01 Polarizing plate, its manufacture method and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254018A JP2006071875A (en) 2004-09-01 2004-09-01 Polarizing plate, its manufacture method and liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2006071875A true JP2006071875A (en) 2006-03-16

Family

ID=36152607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254018A Pending JP2006071875A (en) 2004-09-01 2004-09-01 Polarizing plate, its manufacture method and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2006071875A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125797A1 (en) * 2006-04-26 2007-11-08 Konica Minolta Opto, Inc. Optical compensating resin film for polarizing plate, method for manufacturing optical compensating resin film, polarizing plate and liquid crystal display device
JP2009122663A (en) * 2007-10-22 2009-06-04 Nitto Denko Corp Polarizing plate, method for producing the same, optical film and image display device
JP2009151289A (en) * 2007-11-30 2009-07-09 Nitto Denko Corp Polarizer, process for producing the same, optical film, and image display
JP2011118088A (en) * 2009-12-02 2011-06-16 Konica Minolta Opto Inc Long polarizing plate and liquid crystal display device
JP2015232507A (en) * 2014-06-10 2015-12-24 横河電機株式会社 Window for measurement
JP2016083938A (en) * 2014-10-24 2016-05-19 積水化学工業株式会社 Light-transmitting conductive film and light-transmitting film with hard coat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166144A (en) * 1999-03-31 2001-06-22 Fuji Photo Film Co Ltd Retardation enhancing agent for cellulose ester film, cellulose ester film, optical compensation sheet, elliptically polarizing film and liquid crystal display device
JP2002267844A (en) * 2001-03-14 2002-09-18 Fuji Photo Film Co Ltd Phase difference film roll and method for manufacturing the same
JP2003302503A (en) * 2002-01-09 2003-10-24 Konica Minolta Holdings Inc Antireflection film for artificial illumination, method of forming antireflection layer for artificial illumination, polarizing plate for artificial illumination, display device and antireflection method for display device
JP2004143376A (en) * 2002-10-28 2004-05-20 Konica Minolta Holdings Inc Method for producing optical film, optical film, polarizing plate having the optical film and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166144A (en) * 1999-03-31 2001-06-22 Fuji Photo Film Co Ltd Retardation enhancing agent for cellulose ester film, cellulose ester film, optical compensation sheet, elliptically polarizing film and liquid crystal display device
JP2002267844A (en) * 2001-03-14 2002-09-18 Fuji Photo Film Co Ltd Phase difference film roll and method for manufacturing the same
JP2003302503A (en) * 2002-01-09 2003-10-24 Konica Minolta Holdings Inc Antireflection film for artificial illumination, method of forming antireflection layer for artificial illumination, polarizing plate for artificial illumination, display device and antireflection method for display device
JP2004143376A (en) * 2002-10-28 2004-05-20 Konica Minolta Holdings Inc Method for producing optical film, optical film, polarizing plate having the optical film and display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125797A1 (en) * 2006-04-26 2007-11-08 Konica Minolta Opto, Inc. Optical compensating resin film for polarizing plate, method for manufacturing optical compensating resin film, polarizing plate and liquid crystal display device
JP5093106B2 (en) * 2006-04-26 2012-12-05 コニカミノルタアドバンストレイヤー株式会社 Optical compensation resin film for polarizing plate, method for producing optical compensation resin film, polarizing plate and liquid crystal display device
US9505187B2 (en) 2006-04-26 2016-11-29 Konica Minolta, Inc. Method for producing an optical compensating resin film for a polarizing plate
JP2009122663A (en) * 2007-10-22 2009-06-04 Nitto Denko Corp Polarizing plate, method for producing the same, optical film and image display device
JP2009151289A (en) * 2007-11-30 2009-07-09 Nitto Denko Corp Polarizer, process for producing the same, optical film, and image display
US8551612B2 (en) 2007-11-30 2013-10-08 Nitto Denko Corporation Polarizing plate, manufacturing method thereof, optical film and image display
JP2011118088A (en) * 2009-12-02 2011-06-16 Konica Minolta Opto Inc Long polarizing plate and liquid crystal display device
JP2015232507A (en) * 2014-06-10 2015-12-24 横河電機株式会社 Window for measurement
JP2016083938A (en) * 2014-10-24 2016-05-19 積水化学工業株式会社 Light-transmitting conductive film and light-transmitting film with hard coat

Similar Documents

Publication Publication Date Title
KR101242294B1 (en) Cellulose ester film, polarizing plate and display
JP5038625B2 (en) Stretched cellulose ester film, hard coat film, antireflection film, optical compensation film, and polarizing plate and display device using them
US20090316084A1 (en) Method of Producing Polarizing Plate, Polarizing Plate, and Liquid Crystal Display
JP2008083307A (en) Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device
JP2005148519A (en) Polarizing plate and display device
JP5678964B2 (en) Manufacturing method of liquid crystal display device with front plate, liquid crystal display device with front plate
WO2012014595A1 (en) Three-dimensional image display device
JP5707811B2 (en) Long λ / 4 plate, circularly polarizing plate, polarizing plate, OLED display device, and stereoscopic image display device
JP4802067B2 (en) Polarizing plate and liquid crystal display device using the same
JP5565281B2 (en) Method for producing obliquely stretched film and method for producing optical film
JP4692035B2 (en) Method for producing retardation film
JP2005156615A (en) Anti-glare film, glare-proof antireflection film, method for manufacturing them, polarizing plate and display device
JP5678965B2 (en) Manufacturing method of liquid crystal display device with front plate, liquid crystal display device with front plate
JP5996163B2 (en) Optical film manufacturing method, polarizing plate and image display device
JP4639682B2 (en) Polarizing plate for liquid crystal display device and liquid crystal display device
JP2012173677A (en) Phase difference film and method for manufacturing the same, elongated polarizing plate, and liquid crystal display device
JP2006071875A (en) Polarizing plate, its manufacture method and liquid crystal display device
JP2005134609A (en) Antireflection film, method for manufacturing antireflection film, polarizing plate and display device
JP2007058183A (en) Polarizing plate and image display device using the same
JP5569323B2 (en) Manufacturing method of long stretched film and manufacturing method of long polarizing plate
JP2005096095A (en) Hard coat film and its manufacturing method
JP5521832B2 (en) λ / 4 plate and stereoscopic image display device
JP2006071705A (en) Polarizing plate and liquid crystal display device
JP2005134713A (en) Optical film and its manufacturing method, and polarizing plate and display device
JP2007119737A (en) Cellulose acylate film, method for producing the same, optical compensation film, light-polarizing plate and liquid crystalline displaying unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921